JP2006102807A - Method for reforming metallic structure - Google Patents
Method for reforming metallic structure Download PDFInfo
- Publication number
- JP2006102807A JP2006102807A JP2004297000A JP2004297000A JP2006102807A JP 2006102807 A JP2006102807 A JP 2006102807A JP 2004297000 A JP2004297000 A JP 2004297000A JP 2004297000 A JP2004297000 A JP 2004297000A JP 2006102807 A JP2006102807 A JP 2006102807A
- Authority
- JP
- Japan
- Prior art keywords
- molten metal
- mold
- solidification
- ultrasonic
- ultrasonic vibration
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Coating By Spraying Or Casting (AREA)
Abstract
Description
本発明は、金属の凝固組織を微細化するための金属組織改質方法に関する。 The present invention relates to a metal structure modification method for making a solidified metal structure fine.
凝固過程の溶融金属に超音波振動を付与することが、凝固組織の微細化に効果があることが従来より知られている。そして、溶融金属に超音波振動を付与するため、従来一般には、鋳型の側壁に超音波振動子を取付けて、側壁を通して溶融金属に超音波振動を付与する間接加振方式(例えば、特許文献1参照)と、保持容器内の溶融金属にホーンを浸漬して、直接溶融金属に超音波振動を付与する直接加振方式(例えば、特許文献2参照)との何れかが採用されていた。しかし、間接加振方式では、鋳型の側壁付近では微細化が進むが、内部まで微細化効果が及ばず、一方、直接加振方式では、浸漬したホーンの周辺では微細化が進むが、容器(鋳型)の側壁付近まで微細化の効果が及ばず、何れの方式とも、全体を微細化することが困難であるという問題がある。さらに、加振部近傍の濡れ性が向上することにより溶融した金属が容器等に密着するという問題も生じる。 It has heretofore been known that applying ultrasonic vibration to molten metal in the solidification process is effective in reducing the solidification structure. In order to apply ultrasonic vibration to the molten metal, an indirect excitation method (for example, Patent Document 1) in which an ultrasonic vibrator is generally attached to the side wall of the mold and ultrasonic vibration is applied to the molten metal through the side wall. And a direct vibration method (for example, refer to Patent Document 2) in which a horn is immersed in the molten metal in the holding container and ultrasonic vibration is directly applied to the molten metal. However, in the indirect vibration method, miniaturization proceeds near the side wall of the mold, but the effect of miniaturization does not reach the inside. On the other hand, in the direct vibration method, miniaturization proceeds in the vicinity of the immersed horn, but the container ( The effect of miniaturization does not reach to the vicinity of the side wall of the mold), and any method has a problem that it is difficult to miniaturize the whole. Furthermore, the problem that the melted metal adheres to a container etc. also arises by the improvement of the wettability in the vicinity of the vibration part.
ところで、特許文献3には、超音波加振と電磁振動加振とを併用することにより、溶融金属中にキャビテーションを生じさせ、その消滅時に発生する衝撃圧力で微細化を図ることが記載されており、この方法によれば、全体に微細化効果が及ぶものと期待される。
しかしながら、上記特許文献3に記載の微細化方法によれば、超音波加振と電磁振動加振とを併用するため、設備が複雑、大型化してコスト負担が増大する、という問題があった。また、加振源の設置に制約があるため、製造すべき製品形状、適用する加工分野等の適用範囲に大きな制限を受ける、という問題があった。また、加振力が強力で、固液界面が激しく活性化するため、酸化膜が破壊されてしまい、鋳造品が鋳型の壁面に密着(焼付き)して離型が困難となり、特にアルミニウム系合金の鋳造に適用した場合は、前記密着の程度が激しくなって、鋳型からの鋳造品の離型がほとんど不可能になる、という問題があった。
However, according to the miniaturization method described in
本発明は、上記した従来の問題点に鑑みてなされたもので、その課題とするところは、複雑、大型の設備に頼ることなく全体を微細化でき、しかも、適用範囲に制限がないばかりか、鋳造に適用しても離型が困難になることがない金属組織改質方法を提供することにある。 The present invention has been made in view of the above-described conventional problems, and the problem is that the whole can be miniaturized without relying on complicated and large-sized equipment, and the scope of application is not limited. Another object of the present invention is to provide a metallographic modification method that does not become difficult to release even when applied to casting.
上記課題を解決するため、本発明は、溶融した金属を冷却する冷却過程において、前記金属の湯面に向けて、離間した位置から超音波を直接照射し、前記金属に超音波振動を付与することを特徴とする。
本発明において、「溶融した金属」とは、凝固開始前の完全液体状態の金属および凝固開始後の半凝固状態の金属を意味している。また、「冷却過程」とは、凝固開始前の過程と凝固開始後の過程との何れか一方、または両方を含んでいる。したがって、「冷却過程の溶融した金属に超音波振動を付与する」ことは、凝固開始前の完全液体状態の金属に超音波振動を付与すること、凝固開始後の半凝固状態の金属に超音波振動を付与すること、完全液体状態から半凝固状態にかけての金属に超音波振動を付与することを含んでいる。
In order to solve the above-described problems, the present invention provides an ultrasonic vibration to the metal by directly irradiating ultrasonic waves from a separated position toward the molten metal surface in the cooling process of cooling the molten metal. It is characterized by that.
In the present invention, the “molten metal” means a metal in a completely liquid state before the start of solidification and a metal in a semi-solid state after the start of solidification. Further, the “cooling process” includes one or both of a process before the start of solidification and a process after the start of solidification. Therefore, “applying ultrasonic vibration to the molten metal in the cooling process” means applying ultrasonic vibration to the metal in the completely liquid state before the start of solidification, and applying ultrasonic vibration to the metal in the semi-solid state after the start of solidification. It includes applying vibration and applying ultrasonic vibration to the metal from a completely liquid state to a semi-solid state.
上記のように行う金属組織微細化方法においては、冷却過程の溶融金属に対し、その湯面から適当に離間した位置から超音波を照射することで、溶融金属の全体に超音波振動が効率よく付与される。そして、この超音波振動の付与により、冷却過程の溶融金属中に凝固の微細な核が発生して分散すると共に、初晶のデンドライトが破壊されて微細な粒子となって分散し、これら微細な核および粒子を中心に凝固が進行して、凝固組織が微細化する。また、超音波振動を単独で付与し、しかも、溶融金属やこれを保持する鋳型等の容器と非接触で超音波振動を付与するので、装置が複雑、大型化することはなく、その上、製造すべき製品形状にほとんど制限を受けないばかりか、適用する加工分野にもほとんど制限がない。さらに、湯面から適当に離間した位置から超音波を照射することで、溶融金属に付与される超音波振動の加振力は適当な大きさとなり、固液界面が激しく活性化することがなくなって、鋳造時、特にアルミニウム系合金の鋳造に適用しても鋳造品が鋳型に密着することはなくなる。 In the metal structure refinement method performed as described above, ultrasonic vibration is efficiently applied to the entire molten metal by irradiating the molten metal in the cooling process with ultrasonic waves from a position appropriately spaced from the molten metal surface. Is granted. Then, by applying this ultrasonic vibration, solidified fine nuclei are generated and dispersed in the molten metal in the cooling process, and the primary dendrites are destroyed and dispersed as fine particles. Solidification progresses around the core and particles, and the solidified structure becomes finer. In addition, since the ultrasonic vibration is applied independently, and the ultrasonic vibration is applied in a non-contact manner with a container such as a molten metal or a mold for holding the molten metal, the apparatus is not complicated and does not increase in size. Not only are there any restrictions on the shape of the product to be manufactured, but there are also almost no restrictions on the applied processing field. Furthermore, by irradiating ultrasonic waves from a position appropriately spaced from the molten metal surface, the excitation force of ultrasonic vibration applied to the molten metal becomes an appropriate magnitude and the solid-liquid interface is not vigorously activated. Thus, the cast product does not adhere to the mold at the time of casting, especially when applied to casting of an aluminum alloy.
本発明が適用される加工分野は任意であり、半凝固状態で成形する半凝固鋳造プロセス(チクソキャスティング)を含む鋳造はもとより、溶接、溶射、はんだ付け等の各種分野に適用できる。したがって、上記冷却過程は、これら適用分野に応じて鋳造過程、溶接過程、溶射過程、はんだ金属のはんだ付け過程となる。 The processing field to which the present invention is applied is arbitrary, and can be applied to various fields such as welding, thermal spraying, and soldering as well as casting including a semi-solid casting process (thixocasting) for forming in a semi-solid state. Therefore, the cooling process is a casting process, a welding process, a thermal spraying process, or a solder metal soldering process according to these application fields.
本発明に係る金属組織微細化方法によれば、複雑、大型の設備に頼ることなく全体を微細化できるので、設備にかかるコスト負担が低減する。また、製造すべき製品形状にほとんど制限を受けないばかりか、適用する加工分野にもほとんど制限がなく、適用範囲が著しく拡大する。さらに、鋳造に適用した場合は、鋳造品が鋳型に密着することがなくなるので、離型が容易となり、特にアルミニウム系合金の金型鋳造に向けて好適となる。 According to the metal structure refinement method according to the present invention, the entire structure can be refined without depending on complicated and large-sized facilities, so that the cost burden on the facilities is reduced. In addition, there are almost no restrictions on the shape of the product to be manufactured, and there are almost no restrictions on the applied processing field, so that the application range is remarkably expanded. Furthermore, when it is applied to casting, the cast product does not adhere to the mold, so that the mold release is easy, and it is particularly suitable for casting of an aluminum alloy.
以下、本発明を実施するための最良の形態を添付図面も参照して説明する。 The best mode for carrying out the present invention will be described below with reference to the accompanying drawings.
図1は、本発明に係る金属組織改質方法の1つの実施形態を示したものである。本実施形態は鋳造に適用したもので、溶融金属(溶湯)Mが注入される鋳型1の上方には、該鋳型1内の溶融金属Mの湯面から所定距離Lだけ離間して超音波照射用のホーン2が配置されている。このホーン2は、超音波振動子3に取付けられており、超音波振動子3には、別途設けた超音波発振器4から超音波が印加されるようになっている。本方法の実施に際しては、鋳型1に溶融金属Mを注入した後、超音波発振器4によって適当なタイミングで超音波振動子3を作動させ、ホーン2から鋳型1内の溶融金属Mに超音波を照射し、超音波振動を付与する。
FIG. 1 shows one embodiment of a metallographic modification method according to the present invention. The present embodiment is applied to casting. Ultrasonic irradiation is performed above the mold 1 into which a molten metal (molten metal) M is poured and separated by a predetermined distance L from the surface of the molten metal M in the mold 1. A
鋳型1内の溶融金属Mに超音波振動を付与する(超音波加振する)タイミングは、凝固開始前の冷却過程であっても、凝固開始後の冷却過程(凝固過程)であっても、あるいは凝固開始前の冷却過程と凝固開始後の冷却過程とを含む範囲であってもよい。凝固開始前においては、溶融金属Mが完全液体状態となっているが、この完全液体状態の溶融金属Mを超音波加振した場合は、冷却に応じて溶融金属M中に凝固の微細な核が発生して分散し、この核を中心に凝固が進行して鋳造組織が微細化する。一方、凝固開始後においては、溶融金属Mが半凝固状態となっているが、この半凝固状態の溶融金属Mを超音波加振した場合は、初晶のデンドライトが破壊されて微細な粒子となって分散し、該微細な粒子を中心に凝固が進行して同様に鋳造組織が微細化する。また、凝固開始前の冷却過程と凝固開始後の冷却過程とを含む範囲で溶融金属Mを超音波加振した場合は、前記した凝固の微細な核の発生と初晶デンドライトの破壊による微細な粒子の生成との相乗効果で、鋳造組織が微細化する。したがって、微細化効果を最大限に発揮させるには、凝固開始点を跨いでその前後で超音波加振を行うのが望ましい。この場合、凝固開始点は、溶融金属Mの種類、鋳型1の大きさ(注入量)等によって異なるので、事前に冷却曲線を求めて凝固開始点を把握する。 The timing of applying ultrasonic vibration to the molten metal M in the mold 1 (ultrasonic vibration) is the cooling process before the start of solidification or the cooling process (solidification process) after the start of solidification. Alternatively, the range may include a cooling process before the start of solidification and a cooling process after the start of solidification. Before the start of solidification, the molten metal M is in a completely liquid state. When the molten metal M in the completely liquid state is subjected to ultrasonic vibration, fine nuclei of solidification in the molten metal M according to cooling. Is generated and dispersed, and solidification progresses around the core to refine the cast structure. On the other hand, after the start of solidification, the molten metal M is in a semi-solid state. However, when this semi-solid state molten metal M is subjected to ultrasonic vibration, the primary crystal dendrite is destroyed and fine particles and Then, the particles are dispersed and solidification progresses around the fine particles, and the cast structure is similarly refined. In addition, when the molten metal M is subjected to ultrasonic vibration within a range including the cooling process before the start of solidification and the cooling process after the start of solidification, the fine nuclei generated by the solidification and the destruction of the primary dendrite described above are generated. The cast structure is refined by a synergistic effect with the generation of particles. Therefore, in order to maximize the effect of miniaturization, it is desirable to perform ultrasonic vibration before and after the solidification start point. In this case, since the solidification start point varies depending on the type of the molten metal M, the size (injection amount) of the mold 1, and the like, the solidification start point is grasped by obtaining a cooling curve in advance.
図2は、鋳物用アルミニウム合金(ADC12)の溶湯を実験室規模(上部内径48mm、下部内径26mm、深さ53mm)の鋳型1に注入した際の冷却曲線を示したもので、凝固開始点P1はほぼ570℃で、注入時点から凝固開始点P1までの時間は約70秒(sec)、凝固開始点P1から凝固終了点P2までの時間は約190秒(注入時点からは約260秒)となっている。したがって、この場合は、注入後、約70秒経過時点を中心にその前後で連続して所定時間超音波加振を行うのが望ましい。 FIG. 2 shows a cooling curve when a molten aluminum alloy for casting (ADC12) is poured into a mold 1 of a laboratory scale (upper inner diameter 48 mm, lower inner diameter 26 mm, depth 53 mm), and a solidification start point P1. Is approximately 570 ° C., the time from the injection point to the coagulation start point P1 is about 70 seconds (sec), and the time from the coagulation start point P1 to the coagulation end point P2 is about 190 seconds (about 260 seconds from the injection point). It has become. Therefore, in this case, it is desirable to perform ultrasonic vibration for a predetermined time continuously around about 70 seconds after injection.
図3は、上記実験室規模の鋳型1にADC12の溶湯を注入した後、600℃付近から約120秒間、超音波加振して得た鋳塊(本発明材)のマクロ組織を、超音波加振を全く行わないで得た鋳塊(比較材)と対比して示したもので、本発明材は、比較材に比べて明らかに凝固組織が微細化している。また、図3から把握される特徴的な点は、比較材に大きな引け巣が認められるのに対し、本発明材には、そのような大きな引け巣が全く認められない点である。この相違は、設定する押湯の大きさと関係し、引け巣の小さい鋳塊が得られる本発明の方法では、押湯を小さく設定できることになり、その分、歩留りが向上してコスト的に有利となる。 FIG. 3 shows a macrostructure of an ingot (the material of the present invention) obtained by ultrasonically oscillating from about 600 ° C. for about 120 seconds after pouring a melt of ADC12 into the laboratory scale mold 1. This is shown in comparison with an ingot (comparative material) obtained without any vibration. The solidified structure of the present invention material is clearly made finer than the comparative material. A characteristic point grasped from FIG. 3 is that a large shrinkage nest is recognized in the comparative material, whereas such a large shrinkage nest is not recognized in the material of the present invention. This difference is related to the size of the riser to be set, and in the method of the present invention in which an ingot with a small shrinkage cavity is obtained, the riser can be set small, and the yield is improved by that amount, which is advantageous in terms of cost. It becomes.
ここで、本発明は、上記したように溶融金属Mから離間した位置から超音波を照射するので、上記した鋳造以外にも、溶接、溶射、はんだ付け等の種々の加工分野に適用可能となる。図4は、2枚の鋼板5Aと5Bの突合せ溶接に本発明を適用した場合の1つの実施形態を示したもので、溶接部位の上方に、鋼板5A、5Bの上面から所定距離Lだけ離間して前記超音波照射用のホーン2と超音波振動子3とを配置し、これらホーン2および超音波振動子3を、溶接棒6による溶接の進行に応じて溶接方向(ここでは、紙面に垂直方向)へ移動させる。このように溶接を行うことで、2枚の鋼板5Aと5Bの間の溶接部(溶融金属)7に超音波振動が付与され、上記鋳造におけると同様に凝固組織が微細化する。
Here, since the present invention irradiates ultrasonic waves from a position apart from the molten metal M as described above, it can be applied to various processing fields such as welding, thermal spraying, and soldering in addition to the above-described casting. . FIG. 4 shows one embodiment when the present invention is applied to the butt welding of two
図5に示すように、舟形の鋳型10を用意し、この鋳型10の上方に、該鋳型10に注入した溶湯Mの湯面から6mm離間するようにホーン2と超音波振動子3とを配置した。なお、鋳型10は、平均内幅35mm、平均長さ20mm、深さ39mmの大きさとなっている。そして、この鋳型10を予め300℃に予熱して、この中に鋳物用アルミニウム合金であるADC12の溶湯(溶融金属)Mを710℃で注入し、この注入直後から60秒間、ホーン2から溶湯Mに向けて振幅40μmの超音波を照射し、凝固後、図示のように鋳塊の下部から切出して引張試験片11を採取し、引張試験を行った。なお、引張試験片11は、その平行部11aの直径が12.3mm、平行部11aの長さが71mmとなっている。また、比較のため、超音波の照射を行わずに同様の鋳造を行い、得られた鋳塊から同様に引張試験片を採取して引張試験を行った。
As shown in FIG. 5, a boat-shaped
図6は、上記のように行った引張試験の結果を示したものである。同図に示す結果より、超音波加振有りのものは、引張強さの平均が約185N/mm2となっているのに対し、超音波加振無しのものは、引張強さの平均が約166N/mm2となっており、超音波振動の付与が、強度の向上に大きく寄与することが明らかとなった。 FIG. 6 shows the results of the tensile test performed as described above. From the results shown in the figure, the average of the tensile strength is about 185 N / mm 2 with the ultrasonic vibration, whereas the average tensile strength is about the one without the ultrasonic vibration. It was about 166 N / mm 2, and it was revealed that application of ultrasonic vibration greatly contributes to improvement in strength.
図1に示した実験室規模の鋳型1を用い、これにADC12の溶湯を710℃で注入した後、湯面から14mm離間して設置した超音波発振用ホーンから湯面に向けて振幅42μmの超音波を、下記のごとき種々のタイミング(加振条件)で出射した。 The molten metal of ADC12 was poured into the mold 1 at 710 ° C. shown in FIG. 1 at 710 ° C., and then an ultrasonic oscillation horn placed 14 mm away from the molten metal surface with an amplitude of 42 μm toward the molten metal surface. Ultrasonic waves were emitted at various timings (excitation conditions) as described below.
1)620℃から120秒加振(完全溶融状態〜凝固過程の初期段階)
2)620℃から30秒加振(完全溶融状態)
3)570℃から30秒加振(凝固過程の初期段階)
4)570℃から90秒後に30秒加振(凝固過程の中期段階)
5)570℃から180秒後に30秒加振(凝固過程の末期段階)
1) Excitation from 620 ° C. for 120 seconds (completely molten state to initial stage of solidification process)
2) Vibration from 620 ° C. for 30 seconds (completely melted state)
3) Excitation at 570 ° C for 30 seconds (initial stage of solidification process)
4) 30 seconds of vibration after 90 seconds from 570 ° C (the middle stage of the solidification process)
5) 30 seconds after 180 seconds from 570 ° C (the final stage of the solidification process)
そして、上記した種々の加振条件で得られた鋳塊について、マクロ試験およびミクロ試験を行い、金属組織を観察した。この結果、各加振条件で微細化が認められたが、凝固の初期段階を含む1)、3)の加振条件で最も微細化が進んでいることが分かった。 And about the ingot obtained on the above-mentioned various vibration conditions, the macro test and the micro test were done and the metal structure was observed. As a result, miniaturization was observed under each excitation condition, but it was found that miniaturization was most advanced under the excitation conditions 1) and 3) including the initial stage of solidification.
図4に示した2枚の鋼板5A、5Bとして、板厚6mm×板幅40mmのSS400を選択するとともに、溶接棒6として、神戸製鋼社製LB−26(低水素系溶接棒)を選択し、2枚の鋼板5A、5Bの突合せ部を前記溶接棒6により溶接し、この間、鋼板5A、5Bの上面から30mm離間して配置したホーン2から溶接部7に向けて振幅42μmの超音波を照射し、溶接後、溶接部のマクロ組織を観察した。また、比較のため、超音波の照射を行わずに同様の溶接を行い、同様に溶接部のマクロ組織を観察した。この結果、超音波照射(超音波振動の付与)を行ったものは、細かい粒状組織となっているのに対し、超音波照射を行わなかったものは、比較的粗い針状組織となっており、溶接においても、超音波振動の付与が組織の微細化に大きく寄与することが確認できた。
As the two
1 鋳型
2 ホーン
3 超音波振動子
4 超音波発振器
M 溶融金属
1
Claims (5)
The metal structure modification method according to claim 1, wherein the metal is solder, and the cooling process is a soldering process.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004297000A JP2006102807A (en) | 2004-10-08 | 2004-10-08 | Method for reforming metallic structure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004297000A JP2006102807A (en) | 2004-10-08 | 2004-10-08 | Method for reforming metallic structure |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2006102807A true JP2006102807A (en) | 2006-04-20 |
Family
ID=36373099
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004297000A Pending JP2006102807A (en) | 2004-10-08 | 2004-10-08 | Method for reforming metallic structure |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2006102807A (en) |
Cited By (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008049351A (en) * | 2006-08-22 | 2008-03-06 | Hitachi Ltd | Method and apparatus for ultrasonic wave-applying welding |
JP2008173668A (en) * | 2007-01-18 | 2008-07-31 | Toyota Motor Corp | Solidifying method |
JP2008200692A (en) * | 2007-02-19 | 2008-09-04 | National Institute For Materials Science | Casting method |
WO2011024040A1 (en) | 2009-08-27 | 2011-03-03 | Toyota Jidosha Kabushiki Kaisha | Microcrystalline alloy, method for production of the same, apparatus for production of the same, and method for production of casting of the same |
US7987897B2 (en) * | 2008-03-27 | 2011-08-02 | Oleg Vladimirovich Anisimov | Method for making castings by directed solidification from a selected point of melt toward casting periphery |
JP2011194411A (en) * | 2010-03-17 | 2011-10-06 | Nippon Steel Corp | Spot welding method and spot welded joint |
JP2011200881A (en) * | 2010-03-24 | 2011-10-13 | Jatco Ltd | Casting apparatus and casting method |
JP2011255392A (en) * | 2010-06-07 | 2011-12-22 | Nippon Light Metal Co Ltd | Method for producing aluminum alloy |
WO2012029363A1 (en) * | 2010-09-01 | 2012-03-08 | Jx日鉱日石金属株式会社 | Indium target and method for manufacturing same |
JP2012132054A (en) * | 2010-12-21 | 2012-07-12 | Toyota Central R&D Labs Inc | Aluminum alloy casting and method of manufacturing the same |
JP2014076454A (en) * | 2012-10-09 | 2014-05-01 | Toyota Motor Corp | METHOD FOR MANUFACTURING Al-Si BASED CASTING ALLOY |
US9023487B2 (en) | 2011-09-21 | 2015-05-05 | Jx Nippon Mining & Metals Corporation | Laminated structure and method for producing the same |
US9139900B2 (en) | 2011-03-01 | 2015-09-22 | JX Nippon Mining Metals Corporation | Indium target and manufacturing method thereof |
US9327347B2 (en) | 2008-03-05 | 2016-05-03 | Southwire Company, Llc | Niobium as a protective barrier in molten metals |
US9382598B2 (en) | 2010-04-09 | 2016-07-05 | Southwire Company, Llc | Ultrasonic device with integrated gas delivery system |
JP2016141884A (en) * | 2015-02-05 | 2016-08-08 | トヨタ自動車株式会社 | Method for removing inclusion |
US9481031B2 (en) | 2015-02-09 | 2016-11-01 | Hans Tech, Llc | Ultrasonic grain refining |
US9528167B2 (en) | 2013-11-18 | 2016-12-27 | Southwire Company, Llc | Ultrasonic probes with gas outlets for degassing of molten metals |
US9617617B2 (en) | 2010-04-09 | 2017-04-11 | Southwire Company, Llc | Ultrasonic degassing of molten metals |
US9758860B2 (en) | 2012-01-05 | 2017-09-12 | Jx Nippon Mining & Metals Corporation | Indium sputtering target and method for manufacturing same |
US9761421B2 (en) | 2012-08-22 | 2017-09-12 | Jx Nippon Mining & Metals Corporation | Indium cylindrical sputtering target and manufacturing method thereof |
US9922807B2 (en) | 2013-07-08 | 2018-03-20 | Jx Nippon Mining & Metals Corporation | Sputtering target and method for production thereof |
US10022786B2 (en) | 2015-09-10 | 2018-07-17 | Southwire Company | Ultrasonic grain refining |
US10233515B1 (en) | 2015-08-14 | 2019-03-19 | Southwire Company, Llc | Metal treatment station for use with ultrasonic degassing system |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56144862A (en) * | 1980-04-11 | 1981-11-11 | Hitachi Ltd | Method for improving melt-stuck metal by ultrasonic wave |
JPH02247314A (en) * | 1989-03-22 | 1990-10-03 | Natl Res Inst For Metals | Method for adding ultrasonic oscillation into molten metal |
JPH04158952A (en) * | 1990-10-20 | 1992-06-02 | Leotec:Kk | Method for holding semi-solidified metal slurry |
JPH05329613A (en) * | 1992-06-01 | 1993-12-14 | Mechatro Joban Internatl:Kk | Casting method |
-
2004
- 2004-10-08 JP JP2004297000A patent/JP2006102807A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56144862A (en) * | 1980-04-11 | 1981-11-11 | Hitachi Ltd | Method for improving melt-stuck metal by ultrasonic wave |
JPH02247314A (en) * | 1989-03-22 | 1990-10-03 | Natl Res Inst For Metals | Method for adding ultrasonic oscillation into molten metal |
JPH04158952A (en) * | 1990-10-20 | 1992-06-02 | Leotec:Kk | Method for holding semi-solidified metal slurry |
JPH05329613A (en) * | 1992-06-01 | 1993-12-14 | Mechatro Joban Internatl:Kk | Casting method |
Cited By (38)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008049351A (en) * | 2006-08-22 | 2008-03-06 | Hitachi Ltd | Method and apparatus for ultrasonic wave-applying welding |
JP2008173668A (en) * | 2007-01-18 | 2008-07-31 | Toyota Motor Corp | Solidifying method |
JP4594336B2 (en) * | 2007-01-18 | 2010-12-08 | トヨタ自動車株式会社 | Solidification method |
JP2008200692A (en) * | 2007-02-19 | 2008-09-04 | National Institute For Materials Science | Casting method |
US9327347B2 (en) | 2008-03-05 | 2016-05-03 | Southwire Company, Llc | Niobium as a protective barrier in molten metals |
US7987897B2 (en) * | 2008-03-27 | 2011-08-02 | Oleg Vladimirovich Anisimov | Method for making castings by directed solidification from a selected point of melt toward casting periphery |
CN101980809B (en) * | 2008-03-27 | 2012-08-22 | 先进合金有限公司 | Method for making castings by directed solidification from a selected point of melt toward casting periphery |
DE112010003405T5 (en) | 2009-08-27 | 2012-08-30 | Toyota Jidosha Kabushiki Kaisha | Microcrystalline alloy, process for producing the same, apparatus for producing the same, and process for producing a cast from the same |
DE112010003405B4 (en) * | 2009-08-27 | 2017-05-04 | Toyota Jidosha Kabushiki Kaisha | Process for producing a microcrystalline alloy |
JP2011045909A (en) * | 2009-08-27 | 2011-03-10 | Toyota Motor Corp | Al-Si BASED ALLOY HAVING FINE CRYSTAL STRUCTURE, METHOD FOR MANUFACTURING THE SAME, DEVICE FOR MANUFACTURING THE SAME, AND METHOD FOR MANUFACTURING CASTING OF THE SAME |
WO2011024040A1 (en) | 2009-08-27 | 2011-03-03 | Toyota Jidosha Kabushiki Kaisha | Microcrystalline alloy, method for production of the same, apparatus for production of the same, and method for production of casting of the same |
US8992705B2 (en) | 2009-08-27 | 2015-03-31 | Toyota Jidosha Kabushiki Kaisha | Microcrystalline alloy, method for production of the same, apparatus for production of the same, and method for production of casting of the same |
JP2011194411A (en) * | 2010-03-17 | 2011-10-06 | Nippon Steel Corp | Spot welding method and spot welded joint |
JP2011200881A (en) * | 2010-03-24 | 2011-10-13 | Jatco Ltd | Casting apparatus and casting method |
US9617617B2 (en) | 2010-04-09 | 2017-04-11 | Southwire Company, Llc | Ultrasonic degassing of molten metals |
US10640846B2 (en) | 2010-04-09 | 2020-05-05 | Southwire Company, Llc | Ultrasonic degassing of molten metals |
US9382598B2 (en) | 2010-04-09 | 2016-07-05 | Southwire Company, Llc | Ultrasonic device with integrated gas delivery system |
JP2011255392A (en) * | 2010-06-07 | 2011-12-22 | Nippon Light Metal Co Ltd | Method for producing aluminum alloy |
US9490108B2 (en) | 2010-09-01 | 2016-11-08 | Jx Nippon Mining & Metals Corporation | Indium target and method for manufacturing same |
KR101202232B1 (en) | 2010-09-01 | 2012-11-16 | 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 | Indium target and method for manufacturing same |
CN102656291A (en) * | 2010-09-01 | 2012-09-05 | Jx日矿日石金属株式会社 | Indium target and method for manufacturing same |
JP2012052193A (en) * | 2010-09-01 | 2012-03-15 | Jx Nippon Mining & Metals Corp | Indium target and method for manufacturing the same |
WO2012029363A1 (en) * | 2010-09-01 | 2012-03-08 | Jx日鉱日石金属株式会社 | Indium target and method for manufacturing same |
JP2012132054A (en) * | 2010-12-21 | 2012-07-12 | Toyota Central R&D Labs Inc | Aluminum alloy casting and method of manufacturing the same |
US9139900B2 (en) | 2011-03-01 | 2015-09-22 | JX Nippon Mining Metals Corporation | Indium target and manufacturing method thereof |
US9023487B2 (en) | 2011-09-21 | 2015-05-05 | Jx Nippon Mining & Metals Corporation | Laminated structure and method for producing the same |
US9758860B2 (en) | 2012-01-05 | 2017-09-12 | Jx Nippon Mining & Metals Corporation | Indium sputtering target and method for manufacturing same |
US9761421B2 (en) | 2012-08-22 | 2017-09-12 | Jx Nippon Mining & Metals Corporation | Indium cylindrical sputtering target and manufacturing method thereof |
JP2014076454A (en) * | 2012-10-09 | 2014-05-01 | Toyota Motor Corp | METHOD FOR MANUFACTURING Al-Si BASED CASTING ALLOY |
US9922807B2 (en) | 2013-07-08 | 2018-03-20 | Jx Nippon Mining & Metals Corporation | Sputtering target and method for production thereof |
US10316387B2 (en) | 2013-11-18 | 2019-06-11 | Southwire Company, Llc | Ultrasonic probes with gas outlets for degassing of molten metals |
US9528167B2 (en) | 2013-11-18 | 2016-12-27 | Southwire Company, Llc | Ultrasonic probes with gas outlets for degassing of molten metals |
JP2016141884A (en) * | 2015-02-05 | 2016-08-08 | トヨタ自動車株式会社 | Method for removing inclusion |
US9481031B2 (en) | 2015-02-09 | 2016-11-01 | Hans Tech, Llc | Ultrasonic grain refining |
US10441999B2 (en) | 2015-02-09 | 2019-10-15 | Hans Tech, Llc | Ultrasonic grain refining |
US10233515B1 (en) | 2015-08-14 | 2019-03-19 | Southwire Company, Llc | Metal treatment station for use with ultrasonic degassing system |
US10022786B2 (en) | 2015-09-10 | 2018-07-17 | Southwire Company | Ultrasonic grain refining |
US10639707B2 (en) | 2015-09-10 | 2020-05-05 | Southwire Company, Llc | Ultrasonic grain refining and degassing procedures and systems for metal casting |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2006102807A (en) | Method for reforming metallic structure | |
CN105458264B (en) | A kind of increasing material manufacturing method under contact type mechanical vibration condition | |
JP4836244B2 (en) | Casting method | |
JP5328569B2 (en) | Al-Si alloy having fine crystal structure, method for producing the same, device for producing the same, and method for producing the casting | |
JP4594336B2 (en) | Solidification method | |
JP2013215756A (en) | METHOD FOR MANUFACTURING Al-Si-BASED CASTING ALLOY | |
JP2007239102A (en) | Aluminum-based casting alloy and manufacturing method therefor | |
Meek et al. | Ultrasonic processing of materials | |
JP7206965B2 (en) | Method and apparatus for manufacturing titanium ingot | |
JP7457691B2 (en) | Ultrasonic enhancement of direct chill casting materials | |
JP5905809B2 (en) | Method for producing Al-Si casting alloy | |
KR101858520B1 (en) | A ELECTRON PULSE GENERATOR FOR manufacturing of Al alloy | |
JP4683695B2 (en) | Casting method or casting apparatus for slab or ingot having finely solidified structure | |
KR102650357B1 (en) | Ultrasonic treatment for microstructural refinement of continuously cast products | |
JP5960634B2 (en) | Manufacturing method of casting made of Al-Si-Cu eutectic alloy | |
RU2799570C2 (en) | Ultrasonic improvement of materials produced by direct cooling casting | |
JP7211122B2 (en) | titanium ingot | |
Suresh et al. | A Review on Characteristics and Mechanical Behavior of Metal Castings under Ultrasonic Vibration Technique | |
Wang et al. | Effect of ultrasonic treatment on the as-cast grain structure during the solidification of an Al-2Cu alloy | |
JP5841028B2 (en) | Method for producing Al-Cu casting alloy | |
Suresh et al. | Microstructure and Mechanical Properties of Castings under Vibration Techniques-A Review | |
JPS5921462A (en) | Pressure casting method | |
JP2000237863A (en) | Formation of metallic interface reaction layer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070112 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20070405 |
|
A521 | Written amendment |
Effective date: 20070405 Free format text: JAPANESE INTERMEDIATE CODE: A821 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070611 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20091113 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20091118 |
|
A521 | Written amendment |
Effective date: 20100115 Free format text: JAPANESE INTERMEDIATE CODE: A523 |
|
A131 | Notification of reasons for refusal |
Effective date: 20100217 Free format text: JAPANESE INTERMEDIATE CODE: A131 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100415 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20100602 |