JP2006195154A - Image forming method - Google Patents
Image forming method Download PDFInfo
- Publication number
- JP2006195154A JP2006195154A JP2005006295A JP2005006295A JP2006195154A JP 2006195154 A JP2006195154 A JP 2006195154A JP 2005006295 A JP2005006295 A JP 2005006295A JP 2005006295 A JP2005006295 A JP 2005006295A JP 2006195154 A JP2006195154 A JP 2006195154A
- Authority
- JP
- Japan
- Prior art keywords
- image forming
- forming method
- charging
- inorganic fine
- fine powder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Landscapes
- Photoreceptors In Electrophotography (AREA)
- Cleaning In Electrography (AREA)
- Electrostatic Charge, Transfer And Separation In Electrography (AREA)
- Developing Agents For Electrophotography (AREA)
Abstract
Description
本発明は電子写真方法、静電記録法などを利用した記録方法に用いられる感光体、及び画像形成方法に関するものである。詳しくは、静電潜像担持体上に形成された静電潜像をトナーにより現像した後、転写材上に転写させて画像形成を行う複写機、プリンター、ファックスに用いられる感光体及び画像形成方法に関するものである。 The present invention relates to a photoreceptor used in a recording method using an electrophotographic method, an electrostatic recording method, or the like, and an image forming method. Specifically, the electrostatic latent image formed on the electrostatic latent image carrier is developed with toner, and then transferred onto a transfer material to form an image. It is about the method.
近年、ランニングコストを低減、また画像劣化(ドット再現性など)の低減等を目的に、感光体の膜強度を高くすることによって耐摩耗性及び耐傷性を向上させ、超寿命化が図れる電子写真感光体が求められている。 In recent years, with the aim of reducing running costs and reducing image degradation (dot reproducibility, etc.), electrophotography that can improve wear resistance and scratch resistance by increasing the film strength of the photoconductor, extending the life span. There is a need for a photoreceptor.
そのような電子写真感光体として、感光層上に保護層を設け、該保護層が感光体が分子内に不飽和重合性官能基を重合させた化合物を含有した表面層を用いることで達成されるという提案がなされている(特許文献1、2参照)。
As such an electrophotographic photoreceptor, a protective layer is provided on the photosensitive layer, and the protective layer is achieved by using a surface layer containing a compound obtained by polymerizing an unsaturated polymerizable functional group in the molecule. (See
また、感光体を帯電させる方法として、帯電部材を感光体に接触させて帯電させる接触帯電方法が知られている。例えば、導電性ローラに電圧を印加しながら、ローラを感光体の如き被帯電体に接触させ、被帯電体表面を所定に電位に帯電させるものである。このような接触帯電手段を用いればコロナ放電器と比較して低電圧化がはかれ、オゾン発生量も減少することが可能である。 As a method for charging the photosensitive member, a contact charging method in which a charging member is brought into contact with the photosensitive member for charging is known. For example, while applying a voltage to the conductive roller, the roller is brought into contact with a member to be charged such as a photosensitive member, and the surface of the member to be charged is charged to a predetermined potential. If such a contact charging means is used, the voltage can be lowered as compared with the corona discharger, and the amount of ozone generated can be reduced.
しかしながら、これらの接触帯電装置は感光体と非接触の帯電装置(コロナ)に比べて、感光体と帯電部材との微少な空間で帯電を行う、つまり感光体により近い位置で帯電を行うので、従来の非接触型の帯電装置に比べて感光体表面の変化、酸化劣化が激しく生じ、帯電の際に生じる放電生成物が感光体表面上に付着しやすい傾向にある。 However, these contact charging devices perform charging in a minute space between the photosensitive member and the charging member, that is, charging at a position closer to the photosensitive member, compared to a charging device (corona) that is not in contact with the photosensitive member. As compared with conventional non-contact type charging devices, the surface of the photoconductor changes and oxidative degradation occurs more violently, and the discharge products generated during charging tend to adhere to the surface of the photoconductor.
そのような感光体の表面は水分を吸着しやすく、水分を吸着することで、表面抵抗が低下し、流れ画像という画像不良が発生しやすくなる。 The surface of such a photoconductor easily adsorbs moisture, and by adsorbing moisture, surface resistance is lowered, and an image defect called a flow image is likely to occur.
特に上記で示した耐磨耗性が向上した電子写真感光体の場合、感光体自身の削れ量が少ないために、一次帯電工程で発生し、感光体表面に付着した放電生成物が、例えばクリーニングブレード等での掻き取り力では除去されにくく、高湿環境下においての画像流れや、クリーニングブレードへのダメージ、捲れといった問題点が生じる。 In particular, in the case of the electrophotographic photosensitive member having improved wear resistance as described above, since the amount of abrasion of the photosensitive member itself is small, the discharge product generated in the primary charging process and adhered to the surface of the photosensitive member is, for example, cleaned. It is difficult to remove with a scraping force with a blade or the like, and problems such as image flow in a high-humidity environment, damage to the cleaning blade, and drooling occur.
それらの問題を解決する方法として、これらの問題に対して、トナー中に研磨作用を有する粒子を添加し、前記の如き感光体表面に付着した帯電生成物を剥ぎ取ることによって改善させることが知られている。しかしながら、従来用いられていた研磨粒子は粒径が大きく、粒度分布もブロードなため感光体表面を均一に研磨するには、トナーに多量に添加する必要があるが、多量に添加すると現像特性(特に飛散や反転かぶり、研磨粒子の蓄積)への問題が発生しやすかった。この点を改良したものとして、粒径を細かく疎粒を少なくしたチタン酸ストロンチウムを提案し、少量添加で優れた研磨効果がある無機微粉体を提案しているものもある(例えば特許文献3参照)。しかしながら、それでも特に、高湿環境での使用の場合、耐摩耗性の高い感光体を用いた場合には、帯電生成物の除去には不十分であった。 As a method for solving these problems, it is known that these problems can be improved by adding particles having an abrasive action to the toner and stripping off the charged products adhering to the surface of the photoreceptor as described above. It has been. However, conventionally used abrasive particles have a large particle size and a broad particle size distribution, so that it is necessary to add a large amount to the toner in order to uniformly polish the surface of the photoreceptor. In particular, problems such as scattering, reversal fogging, and accumulation of abrasive particles were likely to occur. As an improvement of this point, strontium titanate with a small particle size and reduced looseness is proposed, and there is also an inorganic fine powder that has an excellent polishing effect when added in a small amount (for example, see Patent Document 3). ). However, in particular, in the case of use in a high humidity environment, when a photoconductor having high wear resistance is used, it is insufficient for removing the charged product.
また、感光体の耐久が進むにつれて、感光体の表面層の削れ粉がブレード近傍に堆積することで、ブレードからのトナーなどのすり抜けを防止する阻止層としての効果、またブレードと感光体との摩擦を低減させ、ブレードへのダメージを防止する効果が高まるのに対して、耐磨耗性の高い感光体を用いた場合、感光体自身の削れが少ないことから、そのような感光体の削れ粉による阻止層や摩擦低減効果が低下し、細かい粒子のすり抜けがより発生しやすく帯電部材への汚染による帯電不良が発生しやすくなる。 Also, as the durability of the photoconductor progresses, the dust on the surface layer of the photoconductor accumulates in the vicinity of the blade, thereby preventing the toner from slipping through the blade. While the effect of reducing friction and preventing damage to the blade is increased, when using a highly wear-resistant photoconductor, the photoconductor itself is less likely to be scraped. The blocking layer and the friction reducing effect due to the powder are reduced, and fine particles are more likely to slip through, and charging failure due to contamination of the charging member is likely to occur.
さらに、そのような細かい粒子を添加した場合、耐久が進むと、少なからず、クリーニングブレードから、細かい粒子がすり抜けてしまう。しかしながら、すり抜ける事で、ブレードとの摩擦を低下させ、ブレードへのダメージを低下させる効果も上がるが、そのため、すり抜けた、特に付着力の高い細かい無機微粉体により、帯電部材への汚れが顕著に現れる。 Further, when such fine particles are added, the fine particles slip through the cleaning blade as the durability progresses. However, by slipping, the friction with the blade is reduced, and the effect of reducing damage to the blade is also increased, however, the dirt on the charging member is noticeably caused by the fine inorganic fine powder that has slipped through, particularly with high adhesion. appear.
特に高耐久化が図られる感光体を用い、外添剤のすり抜けが多い高湿環境下で使用した場合、そのまま高湿環境下での使用では帯電部材に付着した粒子が水分を吸着し、抵抗が低下するので、帯電に大きな影響を与えることなく、均一な帯電性、帯電電位が得られるが、高湿環境下で使用した画像形成装置を低湿環境下に移して、画出しをすると、帯電部材に付着した細かい粒子から水分が除去さら、高抵抗化してしまい、帯電均一性、帯電電位が著しく低下し、それに伴う画像不良が発生する現象が顕著に現れる。 In particular, when using a photoconductor that is highly durable and used in a high-humidity environment where many external additives pass through, the particles attached to the charging member adsorb moisture when used in a high-humidity environment. Therefore, uniform charging and charging potential can be obtained without greatly affecting the charging. However, if the image forming apparatus used in the high humidity environment is moved to the low humidity environment and the image is printed, Water is removed from the fine particles adhering to the charging member and the resistance is further increased, and the charging uniformity and the charging potential are remarkably lowered, and the phenomenon that the image defect is caused accordingly appears remarkably.
本発明は上述の如き問題点を解決した画像形成方法を提供することである。具体的には特に、高画質化、長寿命化が期待できる耐磨耗性の高い感光体を用い、画像流れを防止できる研磨粒子を添加したトナーを用いた場合において、クリーニングブレードからの外添剤のすり抜けによる帯電部材の汚れを防止し一次の帯電不良、帯電ムラによる画像不良を抑制させる画像形成方法を提供するものである。 An object of the present invention is to provide an image forming method that solves the above-described problems. Specifically, when using a high-abrasion-resistant photoconductor that can be expected to improve image quality and extend the life, and using toner with abrasive particles that can prevent image flow, external addition from the cleaning blade It is an object of the present invention to provide an image forming method in which the charging member is prevented from being soiled by slipping of the agent, and primary charging failure and image failure due to charging unevenness are suppressed.
上記の課題を解決するために本発明は、支持体上に感光層と保護層を有する感光体に回転自在な帯電部材を接触させて帯電させる工程、帯電された感光体に静電潜像を形成させる静電潜像形成工程と、トナー担持体上に担持させたトナーを前記静電潜像に転移させて可視化する現像工程と、感光体上に形成されたトナー像を中間転写体を介して、または介さずに、転写材に転写させる転写工程、転写材に静電転写させる転写工程、転写工程後に感光体上に残った転写残余トナーを感光体上から除去するクリーニング工程を有する画像形成方法において、
該感光体表面のユニバーサル硬さ値HUが150以上240以下(N/mm2)であり、かつ弾性変形率が44%以上65%以下であり、
該トナーは、少なくとも結着樹脂及び着色剤を有するトナー粒子と、粒子形状が立方体状及び/または直方体状であって、一次粒子の平均粒径が80nm〜220nmであるペロブスカイト型結晶の無機微粉体とを少なくとも有するトナーであり、
該帯電部材を清掃するための清掃部材が設けられ、該清掃部材が、少なくとも画像形成中は帯電部材に接触し、かつ帯電部材と接触している部分が帯電部材の長手方向に往復移動を行うブラシであり、該ブラシの繊維密度F(本/10mm)と繊維径D(μm)が該ペロブスカイト型結晶の無機微粉体の一次粒子の平均粒径をd(μm)としたとき、以下の式の範囲であることを特徴とする画像形成方法により達成される。
−2300×d+680≦F≦−4500×d+1350 かつ
200×d≦D≦600×d
In order to solve the above-described problems, the present invention provides a step of bringing a rotatable charging member into contact with a photosensitive member having a photosensitive layer and a protective layer on a support and charging the electrostatic latent image on the charged photosensitive member. An electrostatic latent image forming step to be formed; a developing step of transferring the toner carried on the toner carrying member to the electrostatic latent image for visualization; and the toner image formed on the photoconductor through an intermediate transfer member Or without intervention, a transfer process for transferring to a transfer material, a transfer process for electrostatic transfer to a transfer material, and a cleaning process for removing transfer residual toner remaining on the photoreceptor after the transfer process from the photoreceptor. In the method
The universal hardness value HU of the photoreceptor surface is 150 or more and 240 or less (N / mm 2 ), and the elastic deformation rate is 44% or more and 65% or less,
The toner includes toner particles having at least a binder resin and a colorant, and a perovskite crystal inorganic fine powder having a cubic and / or rectangular parallelepiped shape and an average primary particle diameter of 80 nm to 220 nm. A toner having at least
A cleaning member is provided for cleaning the charging member. The cleaning member contacts the charging member at least during image formation, and a portion in contact with the charging member reciprocates in the longitudinal direction of the charging member. When the average particle size of primary particles of the inorganic fine powder of the perovskite crystal is d (μm), the fiber density F of the brush (fibers / 10 mm) and the fiber diameter D (μm) are expressed by the following formula: This is achieved by an image forming method characterized by
−2300 × d + 680 ≦ F ≦ −4500 × d + 1350 and 200 × d ≦ D ≦ 600 × d
本発明によれば、耐久による摩耗量の少ない高耐久なドラムを用いた場合でも、ドラム表面に付着した放電生成物をクリーニングブレード部で良好に掻き取ることができ、画像流れ、ブレードへのダメージが防止でき、さらに帯電部材の汚染による帯電不良、帯電ムラによる画像不良が防止でき、高耐久な画像形成方法を提供することが可能となる。 According to the present invention, even when a highly durable drum with less wear due to durability is used, the discharge product adhering to the drum surface can be scraped well by the cleaning blade portion, image flow, damage to the blade In addition, it is possible to prevent charging failure due to contamination of the charging member and image failure due to uneven charging, and to provide a highly durable image forming method.
次に、本発明の画像形成方法を添付図面を参照しながら以下に説明する。図1及び2は、本発明の画像形成方法を実施するために用いることができる具体的な装置の一例を示す。 Next, the image forming method of the present invention will be described below with reference to the accompanying drawings. 1 and 2 show an example of a specific apparatus that can be used for carrying out the image forming method of the present invention.
図1及び2において、1は感光ドラムで、その周囲に一次帯電ローラー6、現像器7、転写帯電ローラー2が設けられている。そして感光体1は感光体に接触する一次帯電ローラー6によって帯電される。そして、レーザー発生装置によりレーザー光Lを感光体1に照射することによって露光される。感光体1上の静電潜像は現像器7によってトナーで現像され、転写材を介して感光体に当接された転写ローラー2により転写材1上へ転写される。トナー画像をのせた転写材は搬送ガイドを経て定着器3へ運ばれ転写材上に定着される。また、一部感光体上に残されたトナーは感光体に接触するクリーニング弾性ブレード4により感光体表面上から除去され、帯電ローラに付着した無機部粉体等の汚染物質は清掃部材9により帯電部材表面から除去される画像形成方法である。
1 and 2,
本発明の特徴は、トナーに粒子形状が立方体状及び/または直方体状である一次粒子の平均粒径が80nm〜220nmであるペロブスカイト型結晶の無機微粉体を含有したトナーであり、図1及び2で示す帯電ローラ6にローラ長手方向に往復移動可能な清掃部材であるブラシが、繊維密度F(本/10mm)と繊維径D(μm)が該ペロブスカイト型結晶の無機微粉体の一次粒子の平均粒径をd(μm)としたとき、
−2300×d+680≦F≦−4500×d+1350 かつ
200×d≦D≦600×d
の範囲のブラシが当接していることである。
A feature of the present invention is a toner containing inorganic fine powders of perovskite crystals in which the average particle diameter of primary particles having a cubic shape and / or a rectangular parallelepiped shape is 80 nm to 220 nm. The brush, which is a cleaning member capable of reciprocating in the longitudinal direction of the charging roller 6, has a fiber density F (10 mm) and a fiber diameter D (μm) of the average primary particles of the inorganic fine powder of the perovskite crystal. When the particle diameter is d (μm),
−2300 × d + 680 ≦ F ≦ −4500 × d + 1350 and 200 × d ≦ D ≦ 600 × d
It is that the brush of the range of contact | abuts.
該無機微粉体の粒径が細かいほど、帯電ローラへの付着性が高くなりやすく、そのためブラシの繊維密度が疎であったり、繊維径が太い場合には、帯電部材からの除去が十分に行われずに、帯電ムラが生じてしまう。帯電部材からの清掃、除去が十分に行われるには、検討を行った結果、ブラシの繊維密度F(本/10mm)と繊維径D(μm)、無機微粉体の一次粒子の平均粒径をd(μm)としたとき、−2300×d+680≦F≦−4500×d+1350かつ200×d≦D≦600×dであることが分かった(図13の斜線の範囲内が良好な特性を示した)。 The finer the particle size of the inorganic fine powder, the higher the adhesion to the charging roller. Therefore, when the fiber density of the brush is sparse or the fiber diameter is large, the removal from the charging member is sufficiently performed. Instead, uneven charging occurs. As a result of investigations, in order to sufficiently clean and remove the charging member, the fiber density F of the brush (10 mm), the fiber diameter D (μm), and the average particle diameter of the primary particles of the inorganic fine powder were determined. When d (μm), it was found that −2300 × d + 680 ≦ F ≦ −4500 × d + 1350 and 200 × d ≦ D ≦ 600 × d (the inside of the hatched area in FIG. 13 showed good characteristics) ).
ブラシを往復移動させずに、そのまま当接させた場合、当接している部分と、していない部分とが明確になり、帯電ローラの表面が感光体の回転方向と同じ向きにスジ状に汚れが発生し、帯電ムラが発生する。往復移動を行うことで帯電ローラの長手方向で当接していない部分を極力減らす、またブラシをそのように動かすことによっても、表面に付着した粒子の除去を高める効果もある。 When the brush is contacted as it is without reciprocating, the contacted part and the non-contacted part become clear, and the surface of the charging roller is streaked in the same direction as the rotation direction of the photosensitive member. Occurs, and uneven charging occurs. By reciprocating, the portion of the charging roller that is not in contact in the longitudinal direction is reduced as much as possible, and moving the brush in this way also has the effect of increasing the removal of particles adhering to the surface.
繊維密度が−2300×d+680未満であると、十分な清掃能力が発揮できず、特に耐久が進むと帯電ムラが生じ、繊維径が600×dを超えても、摺擦力は増すが、細かい粒子を削ぎ落とすような能力が低下し、清掃能力が不十分であり、さらに帯電部材の表面層の磨耗が生じ、表面層に傷が発生してしまい、その部分から電流がリークしてしまう問題が生じる。また繊維径が200×d未満であると、ブラシ自体の耐久性に問題が生じ、ブラシのちぎれや、ブラシの抜けなどが発生し(無機微粉体の粒径が大きいほどブラシと無機粒子の引っかかりが大きくなり(摩擦力が増し)ちぎれ安い傾向にあるので繊維径を太くする必要がある)、それらのブラシ繊維がクリーニングブレード部分で挟みこまれて、クリーニング不良や、ブレードへの損傷、感光体表面への傷の発生という問題が生じる。繊維密度が−4500×d+1350を超えると、帯電部材に当接しているブラシの部分の往復移動が阻害されやすく、ブラシの清掃能力が低下してしまう。 When the fiber density is less than −2300 × d + 680, sufficient cleaning ability cannot be exhibited. In particular, when the durability progresses, uneven charging occurs, and even if the fiber diameter exceeds 600 × d, the rubbing force increases, but it is fine. The ability to scrape particles is reduced, the cleaning ability is insufficient, the surface layer of the charging member is worn, the surface layer is scratched, and current leaks from that part Occurs. Further, if the fiber diameter is less than 200 × d, there will be a problem in durability of the brush itself, and the brush will be broken or the brush will be detached (the larger the particle size of the inorganic fine powder, the more the brush and the inorganic particles get caught). (The frictional force increases and the fiber diameter needs to be thickened because it tends to tear off), and the brush fibers are sandwiched between the cleaning blades, resulting in poor cleaning, damage to the blades, and the photoreceptor. The problem of the occurrence of scratches on the surface arises. When the fiber density exceeds −4500 × d + 1350, the reciprocating movement of the brush portion that is in contact with the charging member is likely to be hindered, and the cleaning ability of the brush is reduced.
ブラシの繊維径はブラシの断面を光学顕微鏡で観察することで計測することができ、繊維密度は、例えばシート状態の場合は、ブラシの長手方向の単位長さ当たりのブラシの本数であり、ブラシローラ、パッドブラシの場合は、ブラシ植毛部分を清掃部材の長手方向に結んだ直線の単位長さ当たりの本数を意味する。 The fiber diameter of the brush can be measured by observing the cross section of the brush with an optical microscope, and the fiber density is the number of brushes per unit length in the longitudinal direction of the brush, for example, in the case of a sheet state. In the case of a roller and a pad brush, it means the number per unit length of a straight line connecting the brush flocked portion in the longitudinal direction of the cleaning member.
ブラシ清掃部材の往復移動は帯電ローラの長手方向に動かす(図6に図示)必要があり、往復移動をさせないと、帯電ローラの表面に清掃部材の当接、非当接部が生じ、スジ状の汚れが発生し、帯電ムラの画像不良が生じてしまう。また、ブラシの往復移動距離はT(mm)は2.5/d≧T≧0.2/dの範囲が好ましい。0.2/d未満では帯電部材表面の清掃能力が低下しやすく、また2.5/dを超えるとブラシのちぎれや、帯電部材表面へのダメージが増すので好ましくない。 The reciprocating movement of the brush cleaning member needs to be moved in the longitudinal direction of the charging roller (shown in FIG. 6). If the reciprocating movement is not performed, the cleaning roller abuts on the surface of the charging roller. Smearing occurs, resulting in image defects due to uneven charging. The reciprocating distance of the brush is preferably in the range of 2.5 / d ≧ T ≧ 0.2 / d for T (mm). If it is less than 0.2 / d, the cleaning ability on the surface of the charging member tends to be lowered, and if it exceeds 2.5 / d, the brush will be broken and the damage to the surface of the charging member will increase.
さらに、図3で示すように、清掃部材であるブラシの帯電部材への当接方法は、帯電部材の回転軸線(図3の破線)に対して、清掃部材の軸線(図3の太線)が0.01/d以上0.4/d以下の交差角をもって当接していることが好ましい。 Further, as shown in FIG. 3, the method of contacting the charging member with the brush as the cleaning member is such that the axis of the cleaning member (thick line in FIG. 3) is different from the rotation axis of the charging member (dashed line in FIG. 3). The contact is preferably made with an intersection angle of 0.01 / d to 0.4 / d.
上記のような所定の交差角をもって帯電部材にブラシ清掃部材が当接することによって、帯電部材の回転方向に対して、斜めにブラシが当接することになり、隣同士のブラシが清掃部材の表面に接触する部分に重なる部分が生じるので、帯電部材に非接触する部分が少なくなり、帯電部材が、帯電部材の回転方向にスジ状の汚れを防止することができ、また、斜めに当接することで、部材への接触面積も増し、それだけ汚れの掻き取り能力が増すので好ましい。 When the brush cleaning member comes into contact with the charging member with the predetermined crossing angle as described above, the brush comes into contact with the charging member in an oblique direction with respect to the rotation direction of the charging member. Since a portion that overlaps the contact portion is generated, the portion that does not contact the charging member is reduced, and the charging member can prevent streak-like dirt in the rotation direction of the charging member. This is preferable because the contact area with the member increases and the dirt scraping ability increases accordingly.
交差角が0.01/d未満では上記のような汚れ掻き取り能力、スジ状の汚れ防止の能力が低くなるので好ましくなく、0.4/dを超えると、ブラシへの負荷が増し、また帯電部材表面層へのダメージが大きくなるので好ましくない。 If the crossing angle is less than 0.01 / d, the above-described dirt scraping ability and streak-like dirt prevention ability are low, which is not preferable. If it exceeds 0.4 / d, the load on the brush increases, and This is not preferable because damage to the surface layer of the charging member is increased.
ブラシ繊維の素材としてはナイロンの他、レーヨンやポリエステル、アクリル等など様々な素材で適用でき、抵抗や硬さなどの調整のために、カーボンや金属酸化物などの添加剤を添加した繊維でも構わない。 The material of the brush fiber can be applied to various materials such as rayon, polyester, acrylic, etc. in addition to nylon, and fibers added with additives such as carbon and metal oxides for adjusting resistance and hardness may be used. Absent.
また、耐久性の観点から、ブラシ繊維には表面処理が施されているのが好ましい。ブラシによる帯電部材の清掃は、帯電部材表面の汚れ物質を散らし、付着力を弱めることで汚れを除去するものであり、汚れ物質がブラシに付着すると、清掃能力が低下するので好ましくなく、そのため、例えば離型性の高い、フッ素系のカップリング剤や、金属化合物(硫化銅、酸化スズなど)を蒸着した繊維などを使用するのが好ましい。 Moreover, it is preferable that the surface treatment is given to the brush fiber from a durable viewpoint. Cleaning the charging member with a brush is to remove the dirt by scattering the dirt on the surface of the charging member and weakening the adhesive force.If the dirt adheres to the brush, the cleaning ability is reduced, which is not preferable. For example, it is preferable to use a fluorine-based coupling agent having high releasability or a fiber on which a metal compound (such as copper sulfide or tin oxide) is deposited.
ブラシ清掃部材の形態は例えば図4に示した、ファーブラシローラーを帯電部材に当接させて、その当接部において帯電ローラの回転方向と同方向、あるいは逆方向に回転、帯電部材の回転速度と周速差をもって回転させる方法や、図5に示したパッド状のブラシを当接させる方法、また図6に示したはシート状のブラシを当接させる方法などがあり、その中でもより簡易な構成であるシート型が好ましい。 The form of the brush cleaning member is, for example, as shown in FIG. 4, the fur brush roller is brought into contact with the charging member, and the contact portion rotates in the same direction as or opposite to the rotation direction of the charging roller. There are a method of rotating with a difference in peripheral speed, a method of contacting the pad-like brush shown in FIG. 5, and a method of contacting the sheet-like brush shown in FIG. The sheet type which is a structure is preferable.
またブラシ清掃部材を帯電ローラに当接させる場合、ブラシの先端部分を当接させてもよいし(図7)、帯電ローラの回転方向に対してブラシの腹の部分で当接(図8)させても構わないが、ブラシの耐久性(ブラシのちぎれや抜け)の観点から、ブラシの先端部分で当接させる方が好ましい。 Further, when the brush cleaning member is brought into contact with the charging roller, the tip of the brush may be brought into contact (FIG. 7), or in contact with the antinode of the brush with respect to the rotation direction of the charging roller (FIG. 8). However, from the viewpoint of brush durability (brushing or coming off of the brush), it is preferable to contact the tip of the brush.
感光体としては、保護層を有し、該感光体表面のユニバーサル硬さ値(以下HU)が150以上240以下(N/mm2)であり、かつ弾性変形率が44%以上65%以下でなければならない。上記のような感光体を用いることで、感光体表面の機械的劣化が抑制され、表面層の摩耗量、感光体の傷が低減され、感光体の高耐久化が図られる。 The photoreceptor has a protective layer, the universal hardness value (hereinafter HU) of the photoreceptor surface is 150 or more and 240 or less (N / mm 2 ), and the elastic deformation rate is 44% or more and 65% or less. There must be. By using the photoconductor as described above, mechanical deterioration of the surface of the photoconductor is suppressed, the amount of wear on the surface layer and the scratches on the photoconductor are reduced, and high durability of the photoconductor is achieved.
一般的に膜の硬度は外部応力に対する変形量が小さいほど高く、電子写真感光体も当然の如く鉛筆硬度やビッカース硬度が高いものが機械的劣化に対する耐久性が向上すると考えられている。しかしながら、これらの測定により得られる硬度が高いものが必ずしも耐久性の向上を望めたわけではなく、上記の範囲が良好であることが分かった。 In general, the hardness of the film is higher as the amount of deformation with respect to external stress is smaller, and it is considered that the electrophotographic photosensitive member having higher pencil hardness or Vickers hardness naturally improves durability against mechanical deterioration. However, it was found that the high hardness obtained by these measurements did not necessarily improve the durability, and the above range was good.
HUと弾性変形率を切り離してとらえることはできないが、例えばHUが240N/mm2を超えるものであるとき、弾性変形率が44%未満であるとクリーニングブレードや帯電、転写ローラに挟まれた紙粉やトナー等が感光体の弾性力が不足しているが故に、また、弾性変形率が65%より大きいと弾性変形率は高くても弾性変形量は小さくなってしまうが故に、結果として局部的に大きな圧力がかかり傷が発生しやすくなり、感光体の摩耗量も増大してしまう。よって、HUが高いものが必ずしも感光体として最適ではないと考えられる。 Although the HU and the elastic deformation rate cannot be separated, for example, when the HU exceeds 240 N / mm 2 and the elastic deformation rate is less than 44%, the paper sandwiched between the cleaning blade, the charging, and the transfer roller Since the elastic force of the photoconductor is insufficient for powder, toner, etc., and if the elastic deformation rate is larger than 65%, the elastic deformation amount becomes small even if the elastic deformation rate is high. In particular, a large pressure is applied and scratches are easily generated, and the wear amount of the photosensitive member is also increased. Therefore, it is considered that the one with a high HU is not necessarily optimal as the photosensitive member.
また、HUが150N/mm2未満で弾性変形率が65%を超えるものの場合、たとえ弾性変形率が高くても塑性変形量も大きくなってしまいクリーニングブレードや帯電、転写ローラに挟まれた紙粉やトナーが擦られることで削れたり細かい傷が発生し、耐久寿命が短くなってしまう。 Also, if the HU is less than 150 N / mm 2 and the elastic deformation rate exceeds 65%, even if the elastic deformation rate is high, the amount of plastic deformation increases, and the paper dust sandwiched between the cleaning blade, the charging, and the transfer roller If the toner or the toner is rubbed, it will be scraped off or fine scratches will occur, resulting in a shortened durability life.
HU(ユニバーサル硬さ値)及び弾性変形率は、圧子に連続的に荷重をかけ、荷重下での押し込み深さを直読し連続的硬さを求められる微小硬さ測定装置フィシャースコープH100V(Fischer社製)を用いて測定した。圧子は対面角136°のビッカース四角錐ダイヤモンド圧子を使用した。 HU (Universal Hardness Value) and elastic deformation rate are the microhardness measuring device Fischerscope H100V (Fischer, Inc.) that applies continuous load to the indenter and directly reads the indentation depth under the load to obtain continuous hardness. ). The indenter used was a Vickers square pyramid diamond indenter with a face angle of 136 °.
出力チャートの概略を図9に、本発明の電子写真感光体を測定した例を図10に示す。図9は縦軸は荷重(mN)で横軸は押し込み深さh(μm)であり、図10は段階的(各点0.1sの保持時間で273点)に荷重を増加させ6mNまで荷重をかけ、その後同様に段階的に荷重を減少させた結果である。 An outline of the output chart is shown in FIG. 9, and an example in which the electrophotographic photosensitive member of the present invention is measured is shown in FIG. In FIG. 9, the vertical axis represents the load (mN) and the horizontal axis represents the indentation depth h (μm), and FIG. 10 shows the load increased stepwise (273 points with a holding time of 0.1 s for each point) up to 6 mN. This is the result of reducing the load stepwise in the same manner.
本発明の保護層のHU(ユニバーサル硬さ値:以下HUと呼ぶ)は、2mNで押し込んだ時の同荷重下での押し込み深さから下記式(1)によって規定される。
HU=試験荷重(N)/試験荷重でのビッカース圧子の表面積(mm2)
=0.002/26.43h2(N/mm2) (1)
The HU (universal hardness value: hereinafter referred to as HU) of the protective layer of the present invention is defined by the following formula (1) from the indentation depth under the same load when indented at 2 mN.
HU = test load (N) / surface area of Vickers indenter at test load (mm 2 )
= 0.002 / 26.43h 2 (N / mm 2 ) (1)
また、弾性変形率はHUと同様に2mNで押し込んだ圧子が膜に対して行った仕事量(エネルギー)、すなわち圧子の膜に対する荷重の増減によるエネルギーの変化より求めたものであり、下記式(2)からその値は求まる。全仕事量Wt(nW)は図9中のA−B−D−Aで囲まれる面積で表され、弾性変形の仕事量W(nW)はC−B−D−Cで囲まれる面積で表される。
弾性変形率We=W/Wt×100(%) (2)
Similarly to HU, the elastic deformation ratio is obtained from the work amount (energy) performed on the membrane by the indenter pushed at 2 mN, that is, the change in energy due to the increase or decrease of the load on the membrane of the indenter. The value is obtained from 2). The total work Wt (nW) is represented by an area surrounded by A-B-D-A in FIG. 9, and the work W (nW) of elastic deformation is represented by an area surrounded by C-B-D-C. Is done.
Elastic deformation rate We = W / Wt × 100 (%) (2)
上記のような高耐久な感光体を接触帯電による画像形成方法で用いる場合に、感光体表面に付着した放電生成物の影響により、画像流れ、帯電部材の汚染、クリーニングブレードへのダメージが発生しやすいために、それらの放電生成物を除去させることが必要になってくる。 When a highly durable photoconductor as described above is used in an image forming method based on contact charging, image discharge, contamination of the charging member, and damage to the cleaning blade may occur due to the influence of discharge products adhering to the surface of the photoconductor. In order to facilitate, it becomes necessary to remove those discharge products.
そのためには、少なくとも粒子形状が立方体状及び/または直方体状である一次粒子の平均粒径が80nm〜220nmであり、凝集体の粒径が800nm以上の粒子が1個数%以下であるペロブスカイト型結晶の無機微粉体を含有したトナーを用いることが必要である。 For that purpose, a perovskite crystal in which the average particle size of at least primary particles having a cubic shape and / or a rectangular parallelepiped shape is 80 nm to 220 nm, and the number of particles having an aggregate particle size of 800 nm or more is 1% by number or less. It is necessary to use a toner containing the inorganic fine powder.
先に説明したように、特許文献3に開示されているチタン酸ストロンチウムは焼結工程を経て製造されており、粒子の形状が球状、または球状に近い多面体状であるために、摩耗量の少ない感光体を用いた場合、感光体との接触面積が小さく、また形状が球形に近いために、クリーニングブレードから、より、すり抜けやすく、ブレード近傍に滞留しにくいので、帯電生成物の除去には不十分であり、またブレード近傍に滞留しにくいので、ブレードと感光体との間の摩擦力が高くなり、ブレード捲れ、ブレード自体の摩耗、欠けが生じやすくなると推測される。 As described above, strontium titanate disclosed in Patent Document 3 is manufactured through a sintering process, and since the shape of the particles is spherical or polyhedral with a nearly spherical shape, the amount of wear is small. When using a photoconductor, the contact area with the photoconductor is small and the shape is close to a sphere, making it easier to slip through the cleaning blade and less likely to stay near the blade. Since it is sufficient and hardly stays in the vicinity of the blade, it is presumed that the frictional force between the blade and the photosensitive member is increased, and the blade is liable to be bent and worn or chipped.
そこで、粒子形状が立方体状及び/または直方体状であるペロブスカイト型結晶の無機微粉体を用いることで、形状が角張っているため球状に近い多面体状のものと比べてにクリーニングブレードからのすり抜けが生じにくく、帯電部材の汚染による画像不良の発生が抑制され、またブレード近傍に滞留し、また感光体との接触面積も増し、立方体、直方体の稜線が感光体に接触することで、帯電生成物の除去、掻き取りが効果的に行うことが可能になる。 Therefore, by using inorganic fine powder of a perovskite crystal having a cubic shape and / or a rectangular parallelepiped shape, the shape is angular and slipping from the cleaning blade occurs compared to a nearly spherical polyhedral shape. It is difficult to prevent image defects due to contamination of the charging member, stays in the vicinity of the blade, increases the contact area with the photoconductor, and the ridgeline of the cube or cuboid contacts the photoconductor, thereby Removal and scraping can be performed effectively.
しかしながら、粒子形状が立方体状及び/または直方体状であるペロブスカイト型結晶の無機微粉体を用いても、僅かではあるがクリーニングブレードからのすり抜けは生じてしまい、そのような細かい粒子は付着力が高いので、帯電部材への汚染を招く。特に高湿環境下で使用した帯電部材を低湿環境下で使用すると帯電ムラが顕著に現れ、また画像パターン(画像部と非画像部の差)によって汚れにムラが生じ、そのパターンで帯電ムラが発生してしまう。 However, even if the inorganic fine powder of the perovskite type crystal having a cubic shape and / or a rectangular parallelepiped shape is used, a slight slip-through occurs from the cleaning blade, and such fine particles have high adhesion. Therefore, the charging member is contaminated. In particular, when a charging member used in a high humidity environment is used in a low humidity environment, uneven charging appears significantly, and the image pattern (difference between the image portion and non-image portion) causes unevenness in the stain. Will occur.
そのために、上述で説明したような帯電部材の清掃部材を用いることで、帯電部材表面の汚れを散らし、除去することで、表面の汚れ自体、また画像パターンによるムラを低減させ、良好な画像が得られる。 Therefore, by using the charging member cleaning member as described above, the dirt on the surface of the charging member is scattered and removed, so that the surface dirt itself and unevenness due to the image pattern are reduced, and a good image is obtained. can get.
本発明において用いる無機微粉体はペロブスカイト型の結晶を持つものが好ましい。ペロブスカイト型無機微粉体の中でも更に好ましいものは、チタン酸ストロンチウム、チタン酸バリウム、チタン酸カルシウムであるが、その中でもチタン酸ストロンチウムが更に好ましい。 The inorganic fine powder used in the present invention preferably has a perovskite crystal. Among the perovskite inorganic fine powders, more preferable are strontium titanate, barium titanate, and calcium titanate, and among these, strontium titanate is more preferable.
本発明において使用されるペロブスカイト型結晶の無機微粉体は一次粒子の平均粒径が80nm以上220nm以下でなければならず、100nm以上180nm以下であるものが更に好ましい。 The inorganic fine powder of perovskite crystal used in the present invention should have an average primary particle size of 80 nm to 220 nm, more preferably 100 nm to 180 nm.
平均粒径が80nm未満ではクリーナー部における当該粒子の研磨効果が不十分であり、また、クリーナー部からのすり抜けも多くなり、帯電部材の汚染を促進させるので好ましくなく、一方、220nmを超えると、クリーナー部での研磨効果が強すぎるためにドラムに傷が発生したり、またクリーニングブレードでの堰き止め効果が高くなり、ブレードと感光体との潤滑作用が低下するために、ブレードへの負荷が高くなり、ブレードが捲れたり、ブレード自身が欠け、摩耗したりする問題が生じる。 If the average particle size is less than 80 nm, the polishing effect of the particles in the cleaner part is insufficient, and the slip through the cleaner part is also increased, which is not preferable because it promotes contamination of the charging member. Because the polishing effect at the cleaner section is too strong, the drum may be damaged, the damming effect at the cleaning blade will be higher, and the lubrication action between the blade and the photoreceptor will be reduced, so the load on the blade will be reduced. The problem arises that the blade becomes higher and the blade is bent or the blade itself is chipped and worn.
なお、本発明における無機微粉体の粒径については、電子顕微鏡にて5万倍の倍率で撮影した写真から100個の粒径を測定して求めた。 In addition, about the particle size of the inorganic fine powder in this invention, it measured by measuring 100 particle size from the photograph image | photographed with the magnification of 50,000 times with the electron microscope.
なお、立方体状、直方体状である無機微粉体の粒径は、微粉体の形状の中で最も長い長辺の長さ(T1)と最も短い短辺の長さ(S1)としたとき、以下の式を持って無機微粉体の粒径とした(図11参照)。
無機微粉体の粒径=(T1+S1)/2
In addition, the particle size of the inorganic fine powder having a cubic shape and a rectangular parallelepiped shape is as follows when the longest side length (T1) and the shortest short side length (S1) are within the shape of the fine powder. Was used as the particle size of the inorganic fine powder (see FIG. 11).
Particle size of inorganic fine powder = (T1 + S1) / 2
また本発明の無機微粉体中の、粒子形状が立方体状及び/または直方体状であるものの含有率を60個数%以上含有することで更に効率的に帯電生成物の除去が行えるため好ましい。 Further, it is preferable that the content of the inorganic fine powder of the present invention in which the particle shape is cubic and / or rectangular parallelepiped is 60% by number or more because the charged product can be more efficiently removed.
該無機微粉体の立方体状、直方体状の形状は、図12に電子顕微鏡にて5万倍の倍率で撮影した写真を示すような形状を示す。 The cubic and cuboid shape of the inorganic fine powder is a shape as shown in FIG. 12 showing a photograph taken with an electron microscope at a magnification of 50,000 times.
本発明において着色粒子に対するペロブスカイト型無機微粉体の添加量は、0.05質量%以上5質量%以下が好ましく、0.2質量%以上4質量%以下が更に好ましい。 In the present invention, the amount of the perovskite inorganic fine powder added to the colored particles is preferably 0.05% by mass or more and 5% by mass or less, and more preferably 0.2% by mass or more and 4% by mass or less.
0.05質量%未満では放電生成物の除去効果が低減し、5質量%を超えると該無機微粉体の遊離率が高くなり、ブレードからのすり抜けが多くなることで、帯電部材の汚染が発生しやすい傾向になる。 If the amount is less than 0.05% by mass, the effect of removing the discharge product is reduced. If the amount exceeds 5% by mass, the liberation rate of the inorganic fine powder is increased and the slipping from the blade increases, resulting in contamination of the charging member. It tends to be easy to do.
本発明に用いるペロブスカイト型結晶の無機微粉体は、たとえば硫酸チタニル水溶液を加水分解して得た含水酸化チタンスラリーのpHを調整して得たチタニアゾルの分散液に、ストロンチウムの水酸化物を添加して、反応温度まで加温することで合成することができる。該含水酸化チタンスラリーのpHは0.5〜1.0とすることで、良好な結晶化度、および粒径のチタニアゾルが得られる。 The inorganic fine powder of perovskite crystal used in the present invention is obtained by adding strontium hydroxide to a titania sol dispersion obtained by adjusting the pH of a hydrous titanium oxide slurry obtained by hydrolyzing an aqueous solution of titanyl sulfate, for example. Then, it can be synthesized by heating to the reaction temperature. By setting the pH of the hydrous titanium oxide slurry to 0.5 to 1.0, a titania sol having a good crystallinity and a particle size can be obtained.
また、チタニアゾル粒子に吸着しているイオンを除去する目的で、該チタニアゾルの分散液に、例えば、水酸化ナトリウム等のアルカリ性物質を添加することが好ましい。このとき、ナトリウムイオン等を含水酸化チタン表面に吸着させないために、該スラリーのpHを7以上にしないことが好ましい。また、反応温度は60℃〜100℃程度が好ましく、所望の粒度分布を得るためには、昇温速度を30℃/時間以下にすることが好ましく、反応時間は3〜7時間であることが好ましい。 For the purpose of removing ions adsorbed on the titania sol particles, it is preferable to add an alkaline substance such as sodium hydroxide to the dispersion of the titania sol. At this time, it is preferable that the pH of the slurry is not 7 or higher so that sodium ions and the like are not adsorbed on the surface of the hydrous titanium oxide. The reaction temperature is preferably about 60 ° C. to 100 ° C., and in order to obtain a desired particle size distribution, the temperature rising rate is preferably 30 ° C./hour or less, and the reaction time is 3 to 7 hours. preferable.
また、該無機微粉体の結晶構造がペロブスカイト型(3種類の異なる元素で構成された面心立方格子)であることを確認するには、X線回折測定を行うことで確認することができる。 In order to confirm that the crystal structure of the inorganic fine powder is a perovskite type (a face-centered cubic lattice composed of three different elements), it can be confirmed by performing X-ray diffraction measurement.
該無機微粉体は現像特性を考慮し、摩擦帯電極性、環境による摩擦帯電量を制御の点から、微粉体の表面を処理したほうが好ましい。 The inorganic fine powder is preferably treated on the surface of the fine powder from the viewpoint of controlling the triboelectric charge polarity and the triboelectric charge amount depending on the environment in consideration of development characteristics.
また、摩擦帯電量を制御(低下させる)、表面処理によって疎水性を上げることで、帯電部材への付着性も低下させることができ、その分、清掃部材による清掃能力も向上するので好ましい。 Further, by controlling (decreasing) the triboelectric charge amount and increasing the hydrophobicity by surface treatment, it is possible to reduce the adhesion to the charging member, and accordingly, the cleaning ability by the cleaning member is improved accordingly, which is preferable.
表面処理剤としては、カップリング剤やシリコーンオイル、脂肪酸金属塩などの処理剤が挙げられる。 Examples of the surface treatment agent include a treatment agent such as a coupling agent, silicone oil, and fatty acid metal salt.
表面処理を行うことで、例えば、親水基と疎水基を有する化合物であるカップリング剤の場合、親水基側が無機微粉体表面を覆うことで疎水基側が外側になるので、微粉体の疎水化処理がなされ、環境による摩擦帯電量の変動を抑制させることができ、また、アミノ基、フッ素などの官能基を導入したカップリング剤により、摩擦帯電量の制御も容易にできる。 By performing the surface treatment, for example, in the case of a coupling agent that is a compound having a hydrophilic group and a hydrophobic group, the hydrophobic group side becomes the outer side by covering the surface of the inorganic fine powder with the hydrophilic group side. Thus, the fluctuation of the triboelectric charge amount due to the environment can be suppressed, and the triboelectric charge amount can be easily controlled by a coupling agent into which a functional group such as an amino group or fluorine is introduced.
さらに、上述のような表面処理剤で表面を処理することにより、無機微粉体中に含まれるドラム傷の原因となる、遊離している平均粒径よりも小さいかけらなどの微粉を無機微粉体表面に固定する担持作用があるので、ドラム傷の防止効果もあるので好ましい。 Furthermore, by treating the surface with the surface treatment agent as described above, the surface of the inorganic fine powder is reduced to fine particles such as fragments smaller than the free average particle diameter, which cause drum scratches contained in the inorganic fine powder. This is preferable because it has a supporting effect of fixing to the drum, and also has an effect of preventing drum scratches.
また、上述のような表面処理剤の場合には分子レベルでの表面処理のために、該無機微粉体の形状がほとんど変化せず、立方体状、直方体状の形状による掻き取り力が維持されるのでより好ましい。 Further, in the case of the surface treatment agent as described above, the shape of the inorganic fine powder is hardly changed because of the surface treatment at the molecular level, and the scraping force due to the cubic shape and the rectangular parallelepiped shape is maintained. It is more preferable.
カップリング剤としてはチタネート系、アルミニウム系、シラン系カップリング剤等が挙げられ、脂肪酸金属塩としてはステアリン酸亜鉛、ステアリン酸ナトリウム、ステアリン酸カルシウム、ラウリン酸亜鉛、ステアリン酸アルミニウム、ステアリン酸マグネシウムなどが挙げられ、また脂肪酸であるステアリン酸などでも同様の効果が得られる。 Examples of coupling agents include titanate, aluminum, and silane coupling agents. Examples of fatty acid metal salts include zinc stearate, sodium stearate, calcium stearate, zinc laurate, aluminum stearate, and magnesium stearate. The same effect can be obtained with stearic acid, which is a fatty acid.
処理の方法は、処理する表面処理剤などを溶媒中に溶解、分散させ、その中に無機微粉体を添加した、撹拌しながら溶媒を除去して処理する湿式方法や、カップリング剤、脂肪酸金属塩と無機微粉体を直接混合して撹拌しながら処理を行う乾式方法などが挙げられる。 The treatment method includes dissolving and dispersing the surface treatment agent to be treated in a solvent, adding an inorganic fine powder therein, removing the solvent with stirring, a wet method, a coupling agent, and a fatty acid metal. Examples thereof include a dry method in which a salt and an inorganic fine powder are directly mixed and treated with stirring.
また、表面処理については無機微粉体を完全に処理、被覆する必要は無く、効果が得られる範囲で無機微粉体が露出していても良い。つまり表面の処理が不連続に形成されていても良い。 Further, regarding the surface treatment, it is not necessary to completely treat and coat the inorganic fine powder, and the inorganic fine powder may be exposed as long as the effect is obtained. That is, the surface treatment may be formed discontinuously.
感光体の保護層にはフッ素系樹脂粉体を含有している方が好ましい。フッ素系樹脂粉体を含有させることにより、感光体表面の滑り性が増すことでブレードへの負荷が小さくなりブレード欠けやブレード自身の摩耗低減に効果があり、さらに、トナーとの付着性も低減するので、融着にも効果があるので好ましい。 It is preferable that the protective layer of the photoreceptor contains a fluorine resin powder. Inclusion of fluororesin powder increases the slipperiness of the surface of the photoconductor, reducing the load on the blade, reducing blade chipping and blade wear, and reducing adhesion to toner. Therefore, it is preferable because it has an effect on fusion.
フッ素樹脂粉体の含有量は保護層全体の質量中の5〜40質量%であることが好ましい。5%以下であると、滑り性の効果がほとんど見られず、ブレードへの負荷が増し、捲れやすくなり、40%以上では硬化性樹脂の効果を阻害してしまうので膜強度が低下、また感光体が滑りすぎるの、クリーニングブレードも感光体上で滑ってしまい、放電生成物の除去が、特に耐久初期で困難になり、画像流れが生じやすいので好ましくない。さらに、細かい無機微粉体のすり抜けも多くなるので好ましくない。 It is preferable that content of a fluororesin powder is 5-40 mass% in the mass of the whole protective layer. If it is 5% or less, the effect of slipperiness is hardly seen, the load on the blade increases and it becomes easy to squeeze, and if it is 40% or more, the effect of the curable resin is hindered, resulting in a decrease in film strength. Since the body is too slippery, the cleaning blade also slides on the photosensitive member, and it becomes difficult to remove the discharge products, particularly at the initial stage of durability, and image flow is likely to occur, which is not preferable. Furthermore, it is not preferable because fine inorganic fine powder slips through.
さらに、感光体の保護層の表面粗さは、十点平均粗さRzJisで0.1〜1.5μmの範囲の表面粗さが好ましい。表面が粗れていることで、ブレードと保護層との接触面積が低減するので、滑り性が増し、ブレードへの負荷が小さくなりブレード欠けやブレード自身の摩耗低減に効果があるので好ましい。 Further, the surface roughness of the protective layer of the photoreceptor is preferably a surface roughness in the range of 0.1 to 1.5 μm in terms of ten-point average roughness RzJis. The rough surface is preferable because the contact area between the blade and the protective layer is reduced, so that the slipping property is increased, the load on the blade is reduced, and there is an effect of reducing the blade chipping or the blade itself.
Rzjisが0.1μm未満であると、滑り性の効果がほとんど見られず、ブレードへの負荷が増し、捲れやすくなり、1.5μmを超えると、無機微粉体のみならず、トナーのすり抜けが発生しやすくなるので好ましくない。 When Rzjis is less than 0.1 μm, there is almost no sliding effect, the load on the blade increases, and it becomes easy to squeeze, and when it exceeds 1.5 μm, not only inorganic fine powder but also toner slip-through occurs. Since it becomes easy to do, it is not preferable.
表面を粗す方法としては、表面ブラスト処理、保護層中への粗し剤の添加などが挙げられるが、ラッピングテープの番訂を変えることで、表面粗さの制御が容易で、安定的に粗すことが可能な保護層の表面を感光体を回転駆動させながら、500〜4000番のラッピングテープを保護層表面に接触させて、表面の祖面化を行うことが好ましい。 Surface roughening methods include surface blasting and the addition of a roughening agent in the protective layer. By changing the revision of the wrapping tape, the surface roughness can be controlled easily and stably. The surface of the protective layer, which can be roughened, is preferably brought into contact with the surface of the protective layer by rotating the photosensitive member while the photoreceptor is driven to rotate.
表面十点平均粗さRzjisの測定は、JIS B0601(2001)に基づき、サーフコーダーSE−3500(小坂研究所製)にて、カットオフを0.8mm、測定長さを8mmとして測定を行った。 The surface ten-point average roughness Rzjis was measured based on JIS B0601 (2001) using Surfcoder SE-3500 (manufactured by Kosaka Laboratory) with a cut-off of 0.8 mm and a measurement length of 8 mm. .
該帯電部材は、少なくとも感光体に均一に当接させることができる弾性層と、汚れや弾性層からのオイルなどの染み出し防止する点から表面層の2層以上の構成からなり、さらに表面層にはフッ素樹脂が含有されていることが好ましい。 The charging member comprises at least an elastic layer that can be uniformly brought into contact with the photosensitive member, and a surface layer from the viewpoint of preventing dirt and oil from exuding from the elastic layer. Preferably contains a fluororesin.
離型性の高いフッ素樹脂を表面層に用いることで、該無機部粉体の付着力を低下させ、ブラシ清掃部材での散らし、除去効果が高まるので好ましい。 It is preferable to use a highly releasable fluororesin for the surface layer because the adhesion of the inorganic part powder is reduced, and the effect of scattering and removal by the brush cleaning member is increased.
以下に本発明の実施例を具体的に示すが、これらに限られるものではない。まず本発明の画像形成方法に使用される感光体と無機微粉体、トナー、帯電ローラ、清掃部材についての例を示す。なお、実施例中の部は質量部を表す。 Examples of the present invention are specifically shown below, but are not limited thereto. First, examples of the photoreceptor, inorganic fine powder, toner, charging roller, and cleaning member used in the image forming method of the present invention are shown. In addition, the part in an Example represents a mass part.
(感光体製造例1)
直径30mm×357.5mmのアルミニウムシリンダーを支持体とし、それに、以下の材料より構成される塗料を支持体上に浸漬コーティング法で塗布し、140℃で30分熱硬化して、膜厚が18μmの導電層を形成した。
(Photoreceptor Production Example 1)
An aluminum cylinder having a diameter of 30 mm × 357.5 mm is used as a support, and a paint composed of the following materials is applied to the support by a dip coating method and thermally cured at 140 ° C. for 30 minutes, and the film thickness is 18 μm. The conductive layer was formed.
導電性顔料:SnO2コート処理硫酸バリウム 10部
抵抗調節用顔料:酸化チタン 2部
バインダー樹脂:フェノール樹脂 6部
レベリング材:シリコーンオイル 0.001部
溶剤:メタノール、メトキシプロパノール0.2/0.8 15部
次に、この上にN−メトキシメチル化ナイロン3部および共重合ナイロン3部をメタノール65部およびnブタノール30部の混合溶媒に溶解した溶液を浸漬コーティング法で塗布して、膜厚が0.7μmの中間層を形成した。
Conductive pigment: SnO 2 coated
次にCuKα特性X線回折のブラック角2θ±0.2°の7.4°および28.2°に強いピークを有するヒドロキシガリウムフタロシアニン4部、ポリビニルブチラール(商品名:エスレックBX−1、積水化学製)2部およびシクロヘキサノン80部を直径1mmガラスビーズを用いたサンドミル装置で4時間分散した後、酢酸エチル80部を加えて電荷発生層用分散液を調製した。これを浸漬コーティング法で塗布して、膜厚が0.2μmの電荷発生層を形成した。 Next, 4 parts of hydroxygallium phthalocyanine having strong peaks at 7.4 ° and 28.2 ° of black angle 2θ ± 0.2 ° of CuKα characteristic X-ray diffraction, polyvinyl butyral (trade name: ESREC BX-1, Sekisui Chemical) 2 parts) and 80 parts of cyclohexanone were dispersed in a sand mill using 1 mm diameter glass beads for 4 hours, and then 80 parts of ethyl acetate was added to prepare a charge generation layer dispersion. This was applied by a dip coating method to form a charge generation layer having a thickness of 0.2 μm.
次いで、下記構造式のスチリル化合物7部 Next, 7 parts of a styryl compound of the following structural formula
次いで、下記構造式 Next, the following structural formula
(感光体製造例2)
感光体製造例1において表面保護層用の塗料を下記の手順により作製した。
(Photoreceptor Production Example 2)
In Photoconductor Production Example 1, a coating material for the surface protective layer was prepared by the following procedure.
下記記構造式の正孔輸送性化合物32部、 32 parts of a hole transporting compound having the structural formula shown below,
この塗布液を感光体製造例1で作製した4層の感光体上にコーティングし、膜厚3μmとした以外は感光体1と同様の方法で感光体2を作製した。
This coating solution was coated on the four-layered photoreceptor prepared in photoreceptor preparation example 1 to prepare
(感光体製造例3)
感光体製造例1で電子線の線量を25kGyとし、照射後の加熱を行わなかったこと以外は感光体製造例1と同様の感光体3を得た。
(Photoreceptor Production Example 3)
In Photoconductor Production Example 1, the dose of electron beam was set to 25 kGy, and the same photoconductor 3 as in Photoconductor Production Example 1 was obtained except that heating after irradiation was not performed.
(感光体製造例4)
感光体1の保護層表面に、弾性ローラ上に貼り付けた3000番のラッピングテープを当接させ、感光体を回転させながら表面を粗面化処理を施した感光体4を得た。
(Photoreceptor Production Example 4)
A No. 3000 wrapping tape affixed on an elastic roller was brought into contact with the surface of the protective layer of the
(感光体製造例5)
感光体製造例4でラッピングテープを300番に変更した以外は感光体4と同様の感光体5を得た。
(Photoreceptor Production Example 5)
A
(感光体製造例6)
感光体製造例1でポリテトラフルオロエチレン微粒子の添加量を1部とした以外は感光体1と同様の感光体6を得た。
(Photoreceptor Production Example 6)
A photoconductor 6 similar to the
(感光体製造例7)
感光体製造例1でポリテトラフルオロエチレン微粒子の添加量を37部とした以外は感光体1と同様の感光体7を得た。
(Photoreceptor Production Example 7)
A
下記の表に感光体1〜7の弾性変形率、Hu、表面粗さRzjisの値を示す。
The following table shows the values of elastic deformation rate, Hu, and surface roughness Rzjis of the
(ペロブスカイト型無機微粉体の製造例1)
硫酸チタニル水溶液を加水分解して得られた含水酸化チタンを純水で濾液の電気伝導度が2200μS/cmになるまで洗浄した。該含水酸化チタンスラリーにNaOHを添加して吸着している硫酸根をSO3として0.24質量%になるまで洗浄した。次に該含水酸化チタンスラリーに塩酸を添加してスラリーのpHを1.0としてチタニアゾル分散液を得た。該チタニアゾル分散液にNaOHを添加し、分散液のpHを6.0として上澄み液の電気伝導度が120μS/cmになるまで純水を用いてデカンテーションによって洗浄した。得られた含水酸化チタンをX線回折により調べたところアナターゼ型TiO2のピークのみを示した。
(Production Example 1 of Perovskite Type Inorganic Fine Powder)
The hydrous titanium oxide obtained by hydrolyzing the titanyl sulfate aqueous solution was washed with pure water until the electric conductivity of the filtrate reached 2200 μS / cm. NaOH was added to the hydrous titanium oxide slurry, and the sulfate radical adsorbed was washed with SO 3 until it became 0.24% by mass. Next, hydrochloric acid was added to the hydrous titanium oxide slurry to adjust the pH of the slurry to 1.0 to obtain a titania sol dispersion. NaOH was added to the titania sol dispersion, the pH of the dispersion was 6.0, and the supernatant was washed by decantation with pure water until the electrical conductivity of the supernatant reached 120 μS / cm. When the obtained hydrous titanium oxide was examined by X-ray diffraction, only the peak of anatase TiO 2 was shown.
以上のようにして得られた含水率91%のメタチタン酸533g(0.6モル)をSUS製反応容器に入れ、窒素ガスを吹き込み20分間放置し反応容器内を窒素ガス置換した。Sr(OH)2・8H2O(純度95.5%)183.6g(0.66モル)を加え、さらに蒸留水を加えて0.3モル/リットル(SrTiO3換算)、SrO/TiO2モル比1.10のスラリーに調整した。 533 g (0.6 mol) of metatitanic acid having a moisture content of 91% obtained as described above was put into a SUS reaction vessel, and nitrogen gas was blown into the vessel and left for 20 minutes to replace the inside of the reaction vessel with nitrogen gas. 183.6 g (0.66 mol) of Sr (OH) 2.8H 2 O (purity 95.5%) was added, and distilled water was further added to add 0.3 mol / liter (SrTiO 3 equivalent), SrO / TiO 2. The slurry was adjusted to a molar ratio of 1.10.
窒素雰囲気中で該スラリーを90度まで18℃/1時間で昇温し、沸点で3時間反応を行った。反応後40℃まで冷却し、窒素雰囲気下において上澄み液を除去し、2.5リットルの純水を加えてデカンテーションを行うという操作を2回繰り返して洗浄を行った後、ヌッチェで濾過を行った。得られたケーキを110℃の大気中で4時間乾燥した。 The slurry was heated to 90 ° C. at 18 ° C./1 hour in a nitrogen atmosphere, and reacted at the boiling point for 3 hours. After the reaction, the reaction solution is cooled to 40 ° C., the supernatant is removed under a nitrogen atmosphere, and the operation of adding 2.5 liters of pure water and decanting is repeated twice, followed by filtration with Nutsche. It was. The obtained cake was dried in the atmosphere at 110 ° C. for 4 hours.
得られたチタン酸ストロンチウムは、一次粒子の平均径が150nmで粒子形状が立方体状及び/または直方体状であるものの含有率は70個数%であった。このチタン酸ストロンチウムを無機微粉体A−1とする。 The obtained strontium titanate had an average primary particle size of 150 nm and a particle shape of cubic and / or rectangular parallelepiped, and the content ratio was 70% by number. This strontium titanate is designated as inorganic fine powder A-1.
(ペロブスカイト型無機微粉体の製造例2〜5)
製造例1でチタン酸ストロンチウムの反応温度、温度までの昇温速度、反応時間、分散液のpHを調整して、以下の特性をもつペロブスカイト型無機微粉体を作製した。以下の表にまとめる。
(Production Examples 2 to 5 of perovskite type inorganic fine powder)
In Production Example 1, the reaction temperature of strontium titanate, the temperature rise rate to the temperature, the reaction time, and the pH of the dispersion were adjusted to produce a perovskite inorganic fine powder having the following characteristics. The following table summarizes.
(ペロブスカイト型無機微粉体の製造例6)
脂肪酸金属塩であるステアリン酸ナトリウム水溶液(ステアリン酸ナトリウム7部と水100部)中に無機微粉体A−2を100部を添加し、撹拌しながら硫酸アルミニウム水溶液を滴下し、無機微粉体A−2の表面にステアリン酸アルミニウムを析出、吸着させて表面を処理した無機微粉体A−4を作製した。A−4の平均粒径は90nm、立方体状及び/または直方体状の個数%は70%であった。
(Production Example 6 of Perovskite Type Inorganic Fine Powder)
100 parts of inorganic fine powder A-2 is added to an aqueous solution of sodium stearate that is a fatty acid metal salt (7 parts of sodium stearate and 100 parts of water), and an aqueous aluminum sulfate solution is added dropwise with stirring to produce inorganic fine powder A- Inorganic fine powder A-4 was prepared by precipitating and adsorbing aluminum stearate on the surface of No. 2 and treating the surface. The average particle diameter of A-4 was 90 nm, and the number% of cubic and / or rectangular parallelepiped was 70%.
(トナー粒子製造例1)
・スチレンアクリル樹脂 100部
(スチレン−ブチルアクリレート共重合比=78:22)
・磁性体 100部
・サリチル酸金属化合物 2部
・パラフィンワックス 3部
上記を、ヘンシェルミキサーを用いて混合し、二軸押し出し混練機で溶融混練した後、ハンマーミルで粗粉砕し、ジェットミルで微粉砕した後、分級して平均粒径7μmの着色粒子X(トナー粒子)を得た。
(Toner particle production example 1)
Styrene
・ 100 parts of magnetic material ・ 2 parts of salicylic acid metal compound ・ 3 parts of paraffin wax The above components are mixed using a Henschel mixer, melt kneaded using a twin-screw extrusion kneader, coarsely pulverized using a hammer mill, and finely pulverized using a jet mill. Thereafter, classification was performed to obtain colored particles X (toner particles) having an average particle diameter of 7 μm.
(トナー製造例1〜6)
トナー粒子X100部と一次粒径約7nmのシリカ100部にジメチルシリコーンオイル20部で表面処理した疎水性シリカ(BET=130m2/g)1.2部と、無機微粉体A−1、2、3、4、B−1、2をそれぞれ1.5部ヘンシェルミキサーFM10Bにて、外添してトナーC−1〜6を得た。
(Toner Production Examples 1 to 6)
100 parts of toner particles X, 100 parts of silica having a primary particle size of about 7 nm, 1.2 parts of hydrophobic silica (BET = 130 m 2 / g) surface-treated with 20 parts of dimethyl silicone oil, inorganic fine powders A-1, 2, 3, 4 and B-1, 2 were added externally by 1.5 parts Henschel mixer FM10B, respectively, to obtain toners C-1 to C-6.
(トナー製造例7〜9)
トナー製造例1と同様に無機微粉体A−4の添加量を0.04、3.0、6.0部とした以外は製造例1と同様のトナーC7〜9を得た。
(Toner Production Examples 7 to 9)
As in Toner Production Example 1, Toners C7 to C9 were obtained in the same manner as in Production Example 1 except that the amount of inorganic fine powder A-4 added was 0.04, 3.0, and 6.0 parts.
(帯電ローラ例1)
キヤノン(株)社製のGP405に搭載されている表層に酸化スズ分散の帯電ローラ1を用いた。
(Charging roller example 1)
The charging
(帯電ローラ2)
表層としてフッ素樹脂に酸化スズを帯電ローラ1と同様の添加量で分散させた帯電ローラ2を用いた。
(Charging roller 2)
As a surface layer, a charging
(ブラシ清掃部材)
ブラシの繊維として、アクリル樹脂繊維の表面に硫化銅を処理した繊維1とカーボンを分散させたアクリル樹脂繊維2を作製し、それぞれ繊維径を、また植毛部を調整し(例えば1束にするブラシの本数を調整、植毛する位置の間隔を調整するなど)、以下の繊維径、繊維密度のブラシ部材を用意した。
(Brush cleaning member)
As the fibers of the brush, the
<実施例1〜26、比較例1〜11>
本発明の画像形成方法を実施するための画像形成装置として、レーザービームを用いた有機感光体デジタル複写機(キヤノン社製:GP405)を用意した。該装置の概略は、感光体の帯電手段として帯電ローラを備え、帯電ローラの清掃として、清掃部材を保持する保持部材と、清掃部材として不織布のパッド部材を備え、現像手段として感光体上の現像剤と感光体が非接触であって一成分ジャンピング現像方法を採用した一成分現像器を備え、転写手段として帯電ローラを備え、ブレードクリーニング手段、帯電前露光手段を備える。また、感光体帯電器及び、クリーニング手段、感光体は一体型のユニットとなっている。プロセススピードは210mm/sである。該装置を以下のように改造を施した。
<Examples 1 to 26, Comparative Examples 1 to 11>
As an image forming apparatus for carrying out the image forming method of the present invention, an organic photoconductor digital copying machine using a laser beam (manufactured by Canon Inc .: GP405) was prepared. The outline of the apparatus includes a charging roller as a charging unit for the photosensitive member, a holding member for holding a cleaning member for cleaning the charging roller, and a non-woven pad member as a cleaning member, and development on the photosensitive member as a developing unit. A one-component developing device that employs a one-component jumping development method in which the agent and the photosensitive member are not in contact with each other, a charging roller as a transfer means, a blade cleaning means, and a pre-charging exposure means. Further, the photosensitive member charger, the cleaning unit, and the photosensitive member are integrated units. The process speed is 210 mm / s. The device was modified as follows.
帯電ローラの清掃機構部分で、清掃部材を保持する保持部材の備えられている清掃部材を除去し、上記で示したブラシ部材を保持部材に調整して取り付け(帯電ローラにブラシの先端が当接する図7になるように調整した)、また感光体のフランジ部分に清掃部材を備えた保持部材の往復移動を可能にする部材を常時噛み合わせた状態にし、さらにフランジ形状を調整(フランジのカム部分の山の高さを調整)して、清掃部材を保持する部材のブラシ清掃部材の往復移動距離を調整した画像形成方法に変更させた。 At the cleaning mechanism portion of the charging roller, the cleaning member provided with the holding member that holds the cleaning member is removed, and the brush member shown above is adjusted and attached to the holding member (the tip of the brush contacts the charging roller) 7), and a member that allows the reciprocating movement of the holding member provided with the cleaning member to the flange portion of the photosensitive member is always engaged, and the flange shape is further adjusted (the cam portion of the flange). The height of the crest is adjusted) to change to the image forming method in which the reciprocating distance of the brush cleaning member of the member holding the cleaning member is adjusted.
上記の画像形成装置を用いて、以下に示す評価方法に従い評価を行った。 Evaluation was performed using the image forming apparatus according to the following evaluation method.
評価1)
30℃/80%環境下で上記の画像形成装置を用いてA4で印字率6%の画像で5000枚の1枚間欠耐久を行った帯電ローラを用い、帯電ローラ上に付着したチタン酸ストロンチウムの付着量を微小蛍光X線により測定した。微小蛍光X線はEDAX(株)Eagle−IIを用い、添加剤のチタン酸ストロンチウム由来のTiK線と帯電ローラの表層に含有される酸化スズ由来のSnL線の原子%を測定し、それぞれの原子%の比率(Ti/Sn)の値で評価を行った。つまり付着が多いとTiが増し、Snが減るので値は大きくなる。測定は帯電ローラ長手方向に3点(画像域の中央部と両端部付近)を測定し、その平均値を計測して評価を行った。
◎:0以上0.2未満
○:0.2以上0.4未満
〇△:0.4以上0.6未満
△:0.6以上1.0未満
×:1.0以上
Evaluation 1)
A strontium titanate adhering to the charging roller was used using a charging roller that was subjected to intermittent durability of 5,000 sheets with an A4 image at a printing rate of 6% using the above image forming apparatus in an environment of 30 ° C./80%. The amount of adhesion was measured by minute fluorescent X-rays. Micro fluorescent X-rays use EDAX Co., Ltd. Eagle-II, and measure atomic% of TiK line derived from additive strontium titanate and SnL line derived from tin oxide contained in the surface layer of the charging roller. Evaluation was performed with the value of the ratio (% Ti / Sn). That is, if the amount of adhesion is large, Ti increases and Sn decreases and the value increases. The measurement was performed by measuring three points in the longitudinal direction of the charging roller (near the center and both ends of the image area) and measuring the average value for evaluation.
◎: 0 or more and less than 0.2 ○: 0.2 or more and less than 0.4 ○ △: 0.4 or more and less than 0.6 Δ: 0.6 or more and less than 1.0 ×: 1.0 or more
評価2)
クリーニングブレード、現像器、転写ローラを除去し、感光体、帯電ローラ、帯電ローラの清掃部材のみを装着させ、40時間の連続空回転を行い、ブラシのちぎれを以下の評価項目に従い評価を行った。
◎:ちぎれが全くみられない
〇:ちぎれたブラシが1本以上10本未満
〇△:ちぎれたブラシが10本以上50本以下
△:ちぎれたブラシが50本以上100本未満
×:ちぎれたブラシが100本以上
Evaluation 2)
The cleaning blade, the developing device, and the transfer roller were removed, and only the photosensitive member, the charging roller, and the charging roller cleaning member were mounted, and continuous idle rotation for 40 hours was performed. The brush tear was evaluated according to the following evaluation items. .
◎: No tearing is observed. ○: One or more torn brushes and less than ten. ○ △: Ten torn brushes and not more than 50. △: Torn brushes are not less than 50 and less than 100. ×: Broken brush. 100 or more
評価3)
30℃/80%環境下で画像比率10%A4横通紙10万枚耐久を行い、その帯電ローラのみを23℃/5%環境下に48時間放置後、帯電ローラの表面の汚れをクリーニングワイパーのダスパー(小津産業(株)社製)を用いて空拭きで清掃し、23℃/5%環境下において、感光体をGP405の製品の未使用の感光体に交換して、ハーフトーン画像と、一次帯電の印加直流電圧を現像の直流電圧とほぼ同じにして、画像露光を行わないで、ハーフトーン濃度の画像(アナログハーフトーン)の画出しを行い、帯電ローラ表面の損傷による帯電ムラを評価項目に従い評価を行った。
◎:アナログハーフトーンで、スジ、ムラ状の帯電不良の発生はなく、均一な画像が得られた。
○:アナログハーフトーンで僅かにスジ状の帯電不良が発生も、通常のハーフトーン画像では問題のない画像が得られた。
△:アナログハーフトーンでスジ状の帯電不良が発生し、通常のハーフトーン画像でも僅かにスジ状の帯電不良が発生した。
×:アナログハーフトーンでスジ状、ムラ状の帯電不良が発生し、通常のハーフトーン画像、またベタ白画像でも帯電不良によるかぶり画像が発生した。
Evaluation 3)
Endured 100,000 sheets of 10% A4 horizontal paper in 30 ° C / 80% environment and left the charging roller alone in a 23 ° C / 5% environment for 48 hours, and then cleaned the surface of the charging roller with a cleaning wiper. Using a Dasper (made by Ozu Sangyo Co., Ltd.) and cleaning with a dry wipe, and replacing the photoconductor with an unused photoconductor of the GP405 product in a 23 ° C / 5% environment. The applied DC voltage for primary charging is almost the same as the DC voltage for development, and without halftone density image (analog halftone) is produced without image exposure and charging unevenness due to damage to the charging roller surface. Were evaluated according to the evaluation items.
A: Analog halftone, no streak or uneven charging failure occurred, and a uniform image was obtained.
○: A slight streak-like charging failure occurred in the analog halftone, but an image having no problem in a normal halftone image was obtained.
Δ: A streak-like charging failure occurred in the analog halftone, and a slight streak-like charging failure occurred even in a normal halftone image.
X: A streaky or uneven charging failure occurred in the analog halftone, and a fogging image due to a charging failure occurred in a normal halftone image or a solid white image.
評価4)
耐久初期のドラムと、23℃/5%環境下で画像比率2%A4横通紙7万枚耐久を行ったドラムを、32℃/85%環境下で画像比率2%A4横通紙5万枚耐久を行い、1mm2の大きさの平仮名文字画像、100μm2のドット画像の画出しを行い、その画像を50倍の光学顕微鏡を用いて観察し、以下の評価項目に従い評価を行った。
◎:文字、ドットともに再現している。
○:文字は再現しているが、ドットがややにじみ、ぼけているレベル
△:文字がややにじみ、ぼけて、ドットはほとんど再現していないレベル
×:文字、ドットともに再現せず、文字が読めないレベル。
Evaluation 4)
A drum that had an endurance of 70,000 sheets of 2% A4 horizontal paper with an image ratio of 2% in a 23 ° C / 5% environment and 50,000 sheets of an A2 horizontal paper with an image ratio of 2% in a 32 ° C / 85% environment. The sheet was endured, and a hiragana character image having a size of 1 mm 2 and a dot image having a size of 100 μm 2 were drawn. The image was observed using a 50 × optical microscope and evaluated according to the following evaluation items. .
A: Both characters and dots are reproduced.
○: The character is reproduced, but the dot is slightly blurred and blurred △: The character is slightly blurred, blurred, and the dot is hardly reproduced ×: The character and the dot are not reproduced, and the character can be read No level.
評価5)
30℃/80%環境下で画像比率2%A4横連続通紙5万枚耐久を行い、融着画像を以下の評価項目に従い評価を行った。
◎:感光体上、画像上にもほとんど融着の発生は見られない
〇:感光体上に僅かに発生が見られるが、画像上は問題のない良好な画像が得られた。
△:感光体上に発生が確認され、画像もハーフトーンで僅かに見られる程度であった。
×:ベタ黒画像に雨降り状に確認される
Evaluation 5)
Durability of 50,000 sheets of A4 horizontal continuous paper with an image ratio of 2% in a 30 ° C./80% environment was evaluated, and the fused image was evaluated according to the following evaluation items.
A: Almost no fusing is observed on the photoreceptor and the image. O: A slight occurrence is observed on the photoreceptor, but a good image having no problem on the image is obtained.
(Triangle | delta): Generation | occurrence | production was confirmed on the photoconductor and the image was also a grade which is slightly seen with a halftone.
×: Confirmed as raining on a solid black image
評価6)
評価4で耐久したドラムの表面粗さRzjisを測定し、初期と耐久後の表面粗さを比較して、以下の評価項目に従い評価を行った。また表面十点平均粗さRzjisの測定は、JIS B0601(2001)に基づき、サーフコーダーSE−3500(小坂研究所製)にて、カットオフを0.8mm、測定長さを8mmとして測定を行った。
◎:初期と耐久後の粗さの差がRzjisが0.5μm未満
〇:初期と耐久後の粗さの差がRzjisが0.5μm以上1.0μm未満
△:初期と耐久後の粗さの差がRzjisが1.0μm以上2.0μm未満
×:初期と耐久後の粗さの差がRzjisが2.0μm以上
Evaluation 6)
The surface roughness Rzjis of the drum that was durable in
A: Rzjis is less than 0.5 μm in roughness after initial and durability R: Rzjis is more than 0.5 μm and less than 1.0 μm in roughness after initial and durability Δ: Roughness after initial and after durability Difference Rzjis is 1.0 μm or more and less than 2.0 μm ×: Rzjis is 2.0 μm or more in difference between roughness after initial and durability
以下の表に、実施例、比較例に用いられたトナー、ドラム、帯電ローラ、帯電ローラ清掃部材、清掃部材の移動距離、清掃部材の当接時の交差角αを示す。 The following table shows the toner, drum, charging roller, charging roller cleaning member, moving distance of the cleaning member, and crossing angle α when the cleaning member abuts, used in Examples and Comparative Examples.
以下に実施例、比較例の評価結果を示す。 The evaluation results of Examples and Comparative Examples are shown below.
1 感光ドラム
6 一次帯電ローラー
7 現像器
7−1 現像スリーブ
7−2 現像剤撹拌装置
8 転写帯電ローラー
L レーザー光L
3 定着器
4 クリーニング弾性ブレード
2 枠体
5 転写材
9 一次帯電ローラ清掃部材
9−1 ファーブラシローラ型清掃部材
9−2 パッドブラシ型清掃部材
9−3 ブラシシート型清掃部材
DESCRIPTION OF
DESCRIPTION OF SYMBOLS 3
Claims (15)
該感光体表面のユニバーサル硬さ値HUが150以上240以下(N/mm2)であり、かつ弾性変形率が44%以上65%以下であり、
該トナーは、少なくとも結着樹脂及び着色剤を有するトナー粒子と、粒子形状が立方体状及び/または直方体状であって、一次粒子の平均粒径が80nm〜220nmであるペロブスカイト型結晶の無機微粉体とを少なくとも有するトナーであり、
該帯電部材を清掃するための清掃部材が設けられ、該清掃部材が、少なくとも画像形成中は帯電部材に接触し、かつ帯電部材と接触している部分が帯電部材の長手方向に往復移動を行うブラシであり、該ブラシの繊維密度F(本/10mm)と繊維径D(μm)が該ペロブスカイト型結晶の無機微粉体の一次粒子の平均粒径をd(μm)としたとき、以下の式の範囲であることを特徴とする画像形成方法。
−2300×d+680≦F≦−4500×d+1350 かつ
200×d≦D≦600×d A step of bringing a rotatable charging member into contact with a photosensitive member having a photosensitive layer and a protective layer on the support and charging, an electrostatic latent image forming step of forming an electrostatic latent image on the charged photosensitive member, and toner carrying A development process for transferring the toner carried on the body to the electrostatic latent image for visualization, and a toner image formed on the photosensitive body is transferred to a transfer material with or without an intermediate transfer body. In an image forming method comprising a transfer step, a transfer step for electrostatic transfer to a transfer material, and a cleaning step for removing residual transfer toner remaining on the photoreceptor after the transfer step from the photoreceptor.
The universal hardness value HU of the photoreceptor surface is 150 or more and 240 or less (N / mm 2 ), and the elastic deformation rate is 44% or more and 65% or less,
The toner includes toner particles having at least a binder resin and a colorant, and a perovskite crystal inorganic fine powder having a cubic and / or rectangular parallelepiped shape and an average primary particle diameter of 80 nm to 220 nm. A toner having at least
A cleaning member is provided for cleaning the charging member. The cleaning member contacts the charging member at least during image formation, and a portion in contact with the charging member reciprocates in the longitudinal direction of the charging member. When the average particle size of primary particles of the inorganic fine powder of the perovskite crystal is d (μm), the fiber density F of the brush (fibers / 10 mm) and the fiber diameter D (μm) are expressed by the following formula: An image forming method characterized by being in the range.
−2300 × d + 680 ≦ F ≦ −4500 × d + 1350 and 200 × d ≦ D ≦ 600 × d
2.5/d≧T(mm)≧0.2/d 2. The image forming apparatus according to claim 1, wherein the brush in the portion of the cleaning member that is in contact with the charging member has a reciprocating movement distance T (mm) in the longitudinal direction of the charging member within a range of the following formula. Method.
2.5 / d ≧ T (mm) ≧ 0.2 / d
0.01/d≦α(°)≦0.4/d 3. The image forming method according to claim 1, wherein the axis of the cleaning member is in contact with the rotation axis of the charging member at a predetermined crossing angle α which is in the range of the following expression.
0.01 / d ≦ α (°) ≦ 0.4 / d
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005006295A JP2006195154A (en) | 2005-01-13 | 2005-01-13 | Image forming method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005006295A JP2006195154A (en) | 2005-01-13 | 2005-01-13 | Image forming method |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2006195154A true JP2006195154A (en) | 2006-07-27 |
Family
ID=36801289
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005006295A Withdrawn JP2006195154A (en) | 2005-01-13 | 2005-01-13 | Image forming method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2006195154A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008056379A (en) * | 2006-08-29 | 2008-03-13 | Ricoh Elemex Corp | Paper conveying/delivering device |
JP2010210863A (en) * | 2009-03-10 | 2010-09-24 | Konica Minolta Business Technologies Inc | Electrophotographic photoreceptor |
US7853172B2 (en) * | 2007-07-02 | 2010-12-14 | Fuji Xerox Co., Ltd. | Image forming device with aggregation-forming unit that removes adherents |
JP2011232557A (en) * | 2010-04-28 | 2011-11-17 | Kyocera Mita Corp | Charging device and image forming apparatus having the same |
JP2017156409A (en) * | 2016-02-29 | 2017-09-07 | コニカミノルタ株式会社 | Image forming apparatus |
-
2005
- 2005-01-13 JP JP2005006295A patent/JP2006195154A/en not_active Withdrawn
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008056379A (en) * | 2006-08-29 | 2008-03-13 | Ricoh Elemex Corp | Paper conveying/delivering device |
JP4726745B2 (en) * | 2006-08-29 | 2011-07-20 | リコーエレメックス株式会社 | Conveyor / discharge device |
US7853172B2 (en) * | 2007-07-02 | 2010-12-14 | Fuji Xerox Co., Ltd. | Image forming device with aggregation-forming unit that removes adherents |
JP2010210863A (en) * | 2009-03-10 | 2010-09-24 | Konica Minolta Business Technologies Inc | Electrophotographic photoreceptor |
JP2011232557A (en) * | 2010-04-28 | 2011-11-17 | Kyocera Mita Corp | Charging device and image forming apparatus having the same |
JP2017156409A (en) * | 2016-02-29 | 2017-09-07 | コニカミノルタ株式会社 | Image forming apparatus |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2008058463A (en) | Image forming method | |
JP4991374B2 (en) | Image forming method | |
KR100881381B1 (en) | Image holding member and image forming apparatus | |
JP2008268470A (en) | Image forming apparatus | |
JP3979243B2 (en) | Organic photoconductor, image forming method, image forming apparatus, and process cartridge | |
JP3315645B2 (en) | Charging method, charging device, and image recording apparatus using the charging device | |
JP4387864B2 (en) | Image forming method | |
JP2006195154A (en) | Image forming method | |
JP5661413B2 (en) | Image forming method and image forming apparatus | |
US8019249B2 (en) | Charging device, image forming apparatus and method of charging image carrier of image forming apparatus | |
JP5239488B2 (en) | Organic photoreceptor, image forming method, image forming apparatus, and image forming unit | |
JP5013464B2 (en) | Image carrier protecting agent, protective layer forming apparatus, image forming method, image forming apparatus, and process cartridge | |
JP2003195541A (en) | Electrophotographic photoreceptor, process cartridge and electrophotographic device | |
JP2009069342A (en) | Image forming method | |
JP2008129401A (en) | Image forming method | |
JP5594016B2 (en) | Image forming method, electrophotographic photoreceptor | |
JP4445146B2 (en) | Electrostatic latent image liquid developing device | |
JP5267164B2 (en) | Surface polishing method for electrophotographic photosensitive member | |
JP2006195156A (en) | Toner and image forming method | |
JP2006235524A (en) | Image forming method | |
JP2003280251A (en) | Electrophotographic toner and image forming apparatus | |
JP2010256454A (en) | Cleaner, cleaning product, and cleaning brush | |
JP4333511B2 (en) | Image forming method and image forming apparatus | |
JP2003316113A (en) | Electrophotographic device and process cartridge | |
JP2006243331A (en) | Image forming method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20080401 |