Nothing Special   »   [go: up one dir, main page]

JP2006181883A - Image forming apparatus - Google Patents

Image forming apparatus Download PDF

Info

Publication number
JP2006181883A
JP2006181883A JP2004378378A JP2004378378A JP2006181883A JP 2006181883 A JP2006181883 A JP 2006181883A JP 2004378378 A JP2004378378 A JP 2004378378A JP 2004378378 A JP2004378378 A JP 2004378378A JP 2006181883 A JP2006181883 A JP 2006181883A
Authority
JP
Japan
Prior art keywords
exposure
pixel
gradation
exposure amount
image forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004378378A
Other languages
Japanese (ja)
Inventor
Hideki Ishida
英樹 石田
Shingo Yoshida
真悟 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Document Solutions Inc
Original Assignee
Kyocera Mita Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Mita Corp filed Critical Kyocera Mita Corp
Priority to JP2004378378A priority Critical patent/JP2006181883A/en
Priority to US11/320,436 priority patent/US7692814B2/en
Publication of JP2006181883A publication Critical patent/JP2006181883A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Printers Or Recording Devices Using Electromagnetic And Radiation Means (AREA)
  • Exposure Or Original Feeding In Electrophotography (AREA)
  • Control Or Security For Electrophotography (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent density unevenness of an image from generating and to prevent an image quality from worsening because the continuity of an image density is hindered for a photosensitive body in which charging unevenness is present, or a photosensitive body in which also sensitivity unevenness coexists in addition to that, while upsizing and cost increase of an apparatus are avoided. <P>SOLUTION: For each of a plurality of divided regions divided from a photosensitive body drum 1 surface, an exposure source 2 is controlled so that exposure is carried out by an exposure which has an increasing exposure Ea corresponding to a difference between an initial potential of the divided region and a reference initial potential V0 added to an exposure obtained by nearly linearly converting a pixel gradation, in all gradations of the pixel gradation including a gradation 0. Exposure control for the increasing exposure Ea is carried out by increasing an exposure time for each pixel. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は,電子写真方式の画像形成装置に関し,特に,感光体表面の露光感度のムラや帯電のムラによって生じる露光後の電位の過不足を適正に調節する画像形成装置に関するものである。   The present invention relates to an electrophotographic image forming apparatus, and more particularly to an image forming apparatus that appropriately adjusts the excess or deficiency of a post-exposure potential caused by uneven exposure sensitivity or uneven charging on the surface of a photoreceptor.

電子写真方式の画像形成装置(複写機,プリンタ,ファクシミリ装置等)では,帯電装置(帯電手段)により感光体の表面を所定の初期電位まで一様に帯電させ,その帯電済みの感光体表面をレーザ光の走査やLEDアレイ等の露光手段で露光することによって静電潜像を書き込む。
ここで,画像形成が行われる際には,まず,所定の画像処理手段により画像形成対象となる画像データに基づいて画素ごとの濃淡レベルを表す画素階調が決定され,予め帯電装置により帯電済みの感光体の表面を前記画像処理手段により決定された前記画素階調を所定の変換情報に基づいて露光量に変換され(通常は線形変換),これにより得られる露光量に従って露光手段により露光される。
ところで,感光体にはその表層部の膜厚や材料特性のばらつき等に起因する個体差があり,その表面を帯電装置により一定条件で一様に帯電させても,感光体ごとに固有の電位の分布が生じる。これがいわゆる帯電ムラである。また,初期電位が等しい領域各々を同一の露光量で露光しても,必ずしも同じ電位にまで下がるわけではなくばらつきが生じる。即ち,露光量の差異に対する電位低下量の差異の比(傾き)に分布(ムラ)がある状況であり,これがいわゆる感度ムラである。
このような各々固有の帯電ムラや感度ムラを有する感光体の表面の各領域について,前記画素階調から前記露光量への変換を同一の(共通の)変換情報に基づいて行うと,同じ露光量で露光しても領域ごとに露光後の電位が異なってしまい,トナーによって現像される濃度(現像濃度)が本来あるべき濃度に対して過不足が生じ,現像ムラ(濃度ムラ)となって表れる。
一般に,画像の濃淡を複数画素の前記画素階調の配列で表現する面積階調方式で階調表現を行う装置(いわゆるデジタル機)の場合,画像の濃淡を画素単位の濃淡のみで表現する装置(いわゆるアナログ機)に比べ,微小な感度ムラや帯電ムラが画像の濃度ムラとして表れにくいものの,空間周期が比較的大きな帯電ムラが存在する場合,面積階調方式で階調表現を行うデジタル機においても濃度ムラを防ぎきれない。
特に,CMYK(シアン,マゼンタ,イエロー,ブラック)の4色のトナー像を重ねるカラー画像形成装置では,CMYの3色のトナー像を重ねて混色グレーの画像を形成するが,露光後の感光体表面に帯電ムラがあると,CMYのバランスが崩れて均一な混色グレー像が形成されない(濃度ムラが生じる)。
In electrophotographic image forming apparatuses (copiers, printers, facsimile machines, etc.), the surface of the photoreceptor is uniformly charged to a predetermined initial potential by a charging device (charging means), and the charged photoreceptor surface is An electrostatic latent image is written by exposure with exposure means such as laser light scanning or an LED array.
Here, when image formation is performed, first, a pixel gradation representing a gray level for each pixel is determined based on image data to be image formed by a predetermined image processing unit, and charged in advance by a charging device. The pixel gradation determined by the image processing means is converted into an exposure amount based on predetermined conversion information (usually linear conversion), and the surface of the photoconductor is exposed by the exposure means according to the exposure amount obtained thereby. The
By the way, there are individual differences due to variations in film thickness and material characteristics of the surface layer of the photoconductor. Even if the surface is uniformly charged by a charging device under a certain condition, a unique potential is generated for each photoconductor. Distribution occurs. This is so-called charging unevenness. Further, even if each region having the same initial potential is exposed with the same exposure amount, it does not necessarily decrease to the same potential, but causes variations. That is, there is a distribution (unevenness) in the ratio (slope) of the difference in potential drop amount to the difference in exposure amount, which is so-called sensitivity unevenness.
When the conversion from the pixel gradation to the exposure amount is performed based on the same (common) conversion information for each region of the surface of the photoconductor having such inherent charging unevenness and sensitivity unevenness, the same exposure is performed. Even if the exposure is performed in an amount, the potential after exposure varies from region to region, and the density developed by the toner (development density) becomes excessive or insufficient with respect to the original density, resulting in development unevenness (density unevenness). appear.
In general, in the case of an apparatus (so-called digital machine) that performs gradation expression by an area gradation method that expresses the lightness and darkness of an image by the array of pixel gradations of a plurality of pixels, an apparatus that expresses the lightness and darkness of an image only by the lightness and darkness of a pixel unit Compared to (so-called analog machines), even though minute sensitivity unevenness and charging unevenness are less likely to appear as image density unevenness, if there is charging unevenness with a relatively large spatial period, a digital machine that expresses gradation using the area gradation method In this case, uneven density cannot be prevented.
In particular, in a color image forming apparatus that superimposes four color toner images of CMYK (cyan, magenta, yellow, and black), a mixed color gray image is formed by superimposing the three color toner images of CMY. If there is uneven charging on the surface, the CMY balance is lost and a uniform mixed color gray image is not formed (density unevenness occurs).

例えば,特許文献1によれば,露光後の電位に5V以上の電位ムラがあると,濃度ムラが顕著に表れるとされている。このような現象は,特に,いわゆるタンデム式のカラー画像形成装置において顕著である。また,a−Si感光体(感光層がアモルファスシリコンからなる感光体)では,一般にOPC感光体よりも帯電ムラが大きいため,画像の濃度ムラがより顕著となる。かといって,a−Si感光体において,帯電ムラが5V以下であることを品質規格(合格レベル)とすると,歩留まりが著しく悪化して現実的でない。
これに対し,特許文献1には,静電潜像書き込み用の露光前に,初期電位の分布を補正するための補助露光手段を設ける技術が示されている。
また,特許文献2には,感光体の感度情報に基づいて露光量を補正する技術が,特許文献3には,感光体の回転位置ごとに感度ムラを補正する技術が,特許文献4には,感光体の露光位置ごとに感度ムラを補正する技術が,特許文献5には,感光体の感度分布データに従って感度ムラを補正する技術が各々示されている。
特開2003−154706号公報 特開平10−31332号公報 特開2000−162834号公報 特開2004−61860号公報 特開2004−233694号公報
For example, according to Patent Document 1, if there is a potential unevenness of 5 V or more in the potential after exposure, the density unevenness appears remarkably. Such a phenomenon is particularly remarkable in a so-called tandem color image forming apparatus. In addition, since an a-Si photosensitive member (photosensitive member whose photosensitive layer is made of amorphous silicon) generally has larger charging unevenness than an OPC photosensitive member, unevenness in image density becomes more remarkable. However, in the a-Si photosensitive member, if the charging irregularity is 5 V or less as the quality standard (acceptable level), the yield is remarkably deteriorated, which is not realistic.
On the other hand, Patent Document 1 discloses a technique of providing auxiliary exposure means for correcting the distribution of the initial potential before exposure for writing an electrostatic latent image.
Patent Document 2 discloses a technique for correcting the exposure amount based on the sensitivity information of the photoconductor. Patent Document 3 discloses a technique for correcting sensitivity unevenness for each rotational position of the photoconductor. A technique for correcting the sensitivity unevenness for each exposure position of the photosensitive member is disclosed in Patent Document 5, and a technique for correcting the sensitivity unevenness according to the sensitivity distribution data of the photosensitive member is disclosed.
JP 2003-154706 A JP 10-31332 A JP 2000-162834 A JP 2004-61860 A JP 2004-233694 A

しかしながら,特許文献1に示されるように,静電潜像書き込み用の露光手段とは別個に独立した露光手段を設けることは,装置の大型化や高コスト化につながるため,適用が困難な場合が多いという問題点があった。特に,タンデム式のカラー画像形成装置の場合,複数(通常は4つ)の感光体ごとに新たな露光手段を設ける必要が生じ,スペース上及びコスト上の問題がより顕著となる。
また,特許文献2〜5に示される技術は,いずれも感光体の感度ムラを補正するもの,即ち,基準となる感光体の露光特性(露光量と電位低下量との関係)と制御対象となる感光体の露光特性とにおける傾き(露光量の差異に対する電位低下量の差異の比)の相違分を補正するものであるため,帯電済み感光体の露光前の初期電位に分布がある(帯電ムラがある)場合には,その電位分布がそのままオフセットとして残り,画像の濃度ムラが解消されないという問題点があった。
However, as disclosed in Patent Document 1, providing an exposure unit that is independent from the exposure unit for writing an electrostatic latent image leads to an increase in the size and cost of the apparatus, and is difficult to apply. There was a problem that there were many. In particular, in the case of a tandem type color image forming apparatus, it is necessary to provide a new exposure unit for each of a plurality of (usually four) photoconductors, and space and cost problems become more prominent.
The techniques disclosed in Patent Documents 2 to 5 all correct the sensitivity unevenness of the photoconductor, that is, the exposure characteristics (relationship between the exposure amount and the potential decrease amount) of the photoconductor as a reference, and the control target. This is to correct the difference in slope (ratio of the difference in potential drop to the difference in exposure amount) from the exposure characteristics of the photosensitive member, so that there is a distribution in the initial potential of the charged photoreceptor before exposure (charging) In the case of unevenness), the potential distribution remains as an offset as it is, and there is a problem that the density unevenness of the image cannot be resolved.

図8は,帯電ムラと感度ムラとが併存するa−Si感光体における前記画素階調とその画素階調に対応する露光量で露光した後の感光体の電位との関係を表すもの(図中,破線で表す)であり,図8(a)は露光量補正を行わない場合(太い破線g01で表す),同(b)は露光量の感度ムラ補正を行った場合(太い実線g02で表す)の各特性を表す。なお,図中,太い実線(g0)で表す特性は,基準となる(標準的な)露光体の特性(以下,基準特性という)を表す。
ここで,図8(a)に示すグラフは前記画素階調を横軸としているが,前記画素階調から前記露光量への変換(前記個別露光量変換)を,ある一の変換式(係数は固定)或いは変換テーブルに基づいて行う限り,横軸を露光量と見ても等価である。即ち,図8(a)においては,基準となる感光体の特性を表すグラフ線g0と,制御対象となる測定対象である感光体の特性を表すグラフ線g01とは,いずれも同じ変換式(即ち,補正なし)に従って前記画素階調から前記露光量への変換が行われた例であるので,横軸を露光量に置き換えて露光特性(露光量に対する露光後の電位に特性)であるとして見ても等価である。
図8(a)に示すように,一般に,感光体(特に,a−Si感光体)における露光量と露光後の電位との対応を表す露光特性においては,露光量が増大するにつれてほぼ線形的に露光後の電位が下がり,残留電位(最大露光量で露光後に残る電位)への収束領域(露光量の増加に対して電位が低下する傾きがごく緩やとなる範囲)を除く部分ではほぼ線形の露光特性を示す。例えば,図8(a)における測定対象の感光体の露光特性g01においては,前記画素階調をI2としたときの帯電量E2以下の範囲でほぼ線形の露光特性を示し,基準となる感光体の露光特性g0においては,前記画素階調をIs2としたときの帯電量Es2以下の範囲でほぼ線形の露光特性を示している。
また,測定対象の感光体に帯電ムラと感度ムラとが併存する場合,図8(a)に示すように,前記基準露光特性g0との間で,初期電位(露光前の帯電電位,即ち,y切片)の差異(帯電ムラ相当分)と,露光特性の傾きの差異(感度ムラ相当分)とが生じる。このような感光体に対し,露光量の感度ムラ補正(傾きを一致させる補正)を行うと,図8(b)に示すように,帯電ムラに対応する電位差(初期電位の差分)がオフセットとして残り,これが画像の濃度ムラの原因となる。
FIG. 8 shows a relationship between the pixel gradation in the a-Si photosensitive member in which charging unevenness and sensitivity unevenness coexist and the potential of the photosensitive member after exposure with an exposure amount corresponding to the pixel gradation (FIG. 8). 8A shows a case where exposure amount correction is not performed (represented by a thick broken line g01), and FIG. 8B shows a case where exposure amount sensitivity unevenness correction is performed (thick solid line g02). Represent each characteristic. In the figure, the characteristic represented by the thick solid line (g0) represents the characteristic of the reference (standard) exposure object (hereinafter referred to as the reference characteristic).
Here, the graph shown in FIG. 8A has the pixel gradation as the horizontal axis, but the conversion from the pixel gradation to the exposure amount (the individual exposure amount conversion) is a certain conversion formula (coefficient Is fixed) or as long as it is performed based on the conversion table, the horizontal axis is equivalent to the exposure amount. That is, in FIG. 8A, the graph line g0 representing the characteristics of the photoconductor as the reference and the graph line g01 representing the characteristics of the photoconductor as the measurement target to be controlled are both the same conversion formula ( In other words, since the conversion from the pixel gradation to the exposure amount is performed according to (no correction), the horizontal axis is replaced with the exposure amount, and the exposure characteristic (characteristic of the potential after exposure with respect to the exposure amount) is assumed. It is equivalent to see.
As shown in FIG. 8A, in general, the exposure characteristic representing the correspondence between the exposure amount and the potential after exposure on the photosensitive member (particularly, the a-Si photosensitive member) is almost linear as the exposure amount increases. After the exposure, the potential drops after exposure, and the area other than the convergence area (the range where the slope at which the potential decreases with increasing exposure dose) becomes very small is almost the same as the residual potential (the potential remaining after exposure at the maximum exposure dose). Linear exposure characteristics are shown. For example, the exposure characteristic g01 of the photoconductor to be measured in FIG. 8A shows a substantially linear exposure characteristic in a range equal to or less than the charge amount E2 when the pixel gradation is I2, and serves as a reference photoconductor. The exposure characteristic g0 shows a substantially linear exposure characteristic in a range equal to or less than the charge amount Es2 when the pixel gradation is Is2.
Further, in the case where charging unevenness and sensitivity unevenness coexist on the photoconductor to be measured, as shown in FIG. 8A, an initial potential (charging potential before exposure, that is, a charging potential before exposure, that is, between the reference exposure characteristic g0 and A difference in y intercept (corresponding to charging unevenness) and a difference in inclination of exposure characteristics (corresponding to sensitivity unevenness) occur. When exposure unevenness correction (correction for matching the inclinations) is performed on such a photoconductor, as shown in FIG. 8B, a potential difference (initial potential difference) corresponding to charging unevenness is used as an offset. This will cause uneven density in the image.

ところで,感光体上の各位置において,前記画素階調とその画素階調を変換して得られる露光量で露光した後の電位との対応特性(対応関係)を,前記画素階調が0階調である場合(露光がなされない場合)を除く他の全階調の範囲に渡って所定の基準特性に一致させるように前記画素階調から露光量への変換を行う(露光量の決定を行う)ことも考えられる。
図9のグラフg02’は,図8(a)のグラフg0に示した帯電ムラと感度ムラとが並存する感光体表面の露光に際し,0階調を除く全ての画素階調各々を設定して露光した後の電位を所定の基準特性に一致させるように前記画素階調から露光量への変換を行った場合の前記画素階調と露光後の電位との関係を表すグラフである。
しかしながら,図9に示す結果となるような露光量変換を行うと,露光前の初期電位と前記画素階調を1(0を除く最小値)に設定して露光した後の電位とのギャップΔV0が特に大きくなる。このギャップΔV0が大きすぎると,画像を中間調で表現する場合の濃度の連続性が阻害されるため画質が悪化するという問題点があった。
従って,本発明は上記事情に鑑みてなされたものであり,その目的とするところは,装置の大型化や高コスト化を回避しつつ,帯電ムラが存在する感光体やそれに加えて感度ムラも併存する感光体について画像の濃度ムラが発生すること及び画像濃度の連続性を阻害して画質が悪化することを防止できる画像形成装置を提供することにある。
By the way, at each position on the photosensitive member, the correspondence characteristic (correspondence) between the pixel gradation and the potential after exposure with the exposure amount obtained by converting the pixel gradation is expressed as follows. Conversion from the pixel gradation to the exposure amount so as to coincide with a predetermined reference characteristic over a range of all other gradations except for the case of a key (when no exposure is performed) (determination of the exposure amount) To do).
The graph g02 ′ in FIG. 9 sets all pixel gradations except for the 0 gradation when the surface of the photoconductor in which the charging unevenness and the sensitivity unevenness shown in the graph g0 in FIG. It is a graph showing the relationship between the pixel gradation and the potential after exposure when conversion from the pixel gradation to the exposure amount is performed so that the potential after exposure matches a predetermined reference characteristic.
However, when exposure amount conversion is performed so as to obtain the result shown in FIG. 9, the gap ΔV 0 between the initial potential before exposure and the potential after exposure with the pixel gradation set to 1 (minimum value excluding 0). Is particularly large. If the gap ΔV0 is too large, there is a problem that the image quality deteriorates because the density continuity is inhibited when the image is expressed in halftone.
Therefore, the present invention has been made in view of the above circumstances, and the object of the present invention is to avoid the increase in size and cost of the apparatus, and also in the photosensitive member in which charging unevenness exists and in addition to the sensitivity unevenness. An object of the present invention is to provide an image forming apparatus capable of preventing image density unevenness from occurring on a coexisting photoconductor and preventing deterioration in image quality by inhibiting continuity of image density.

上記目的を達成するために本発明は,所定の画像データ,例えば,複写機における原稿からの読み取り画像データやプリンタにおける印刷ジョブ等の画像データに基づいて,画素ごとの濃淡レベルを表す画素階調を画像処理手段により決定し,予め帯電手段により帯電済みの感光体の表面を,前記画像処理手段により決定された前記画素階調を変換して得られる露光量に従って露光手段(静電潜像書き込み用の露光手段)により露光することにより,前記感光体に静電潜像を書き込む画像形成装置に適用されるものであり,前記感光体の表面を複数に分割した分割領域ごとに,その分割領域の初期電位(帯電後かつ露光前の電位)と全ての前記分割領域に共通の基準初期電位との差に応じた差分情報を記憶手段(個別差分情報記憶手段)に記憶しておき,前記画像処理手段により決定された前記画素階調を露光量へ略線形変換して得られる露光量に対し,前記分割領域ごとに前記画素階調が0階調を含む所定範囲である場合において前記差分情報に応じた露光量だけ加算した露光量(以下,加算後露光量という)で前記露光手段による露光がなされるよう制御するものである。
このように,前記分割領域ごとに,その初期電位と前記基準初期電位との差分に応じた露光量の加算(かさ上げ)がなされた前記加算後露光量で露光を行うことにより,帯電ムラ(初期電位の分布)が存在する前記感光体(帯電済みの感光体)について,前記画素階調に対する露光後の電位の特性が,前記基準初期電位を初期電位とする基準特性に近づき又は一致する。その結果,前記感光体表面の位置ごとの露光後電位のばらつきが抑えられ,画像の濃度ムラの発生を極力防止することができる。特に,前記画像処理手段が面積階調方式で階調表現を行うものである場合に,空間周期が比較的大きい帯電ムラが存在しても,それが画像の濃度ムラとなって表れることを防止できる点で好適である。
さらに,従来は露光が行われない前記画素階調が0階調である画素についても,加算補正(前記略線形変換後の露光量に対する補正)される露光量での露光がなされるので,前記画素階調が0階調のときと1階調のときとの露光後電位のギャップ(図9のΔV0)が抑えられるので,中間調濃度の連続性を阻害して画質を悪化させることがない。
しかも,新たな露光手段等を追加することなく,既存の静電潜像書き込み用の露光手段の露光量調節(前記画素階調から露光量への変換の調節)により実現できるので,装置の大型化や高コスト化を招くことがない。
In order to achieve the above object, the present invention provides a pixel gradation representing a gray level for each pixel based on predetermined image data, for example, image data read from an original in a copying machine or image data such as a print job in a printer. Is determined by the image processing means, and the surface of the photosensitive member charged in advance by the charging means is exposed according to the exposure amount obtained by converting the pixel gradation determined by the image processing means (electrostatic latent image writing). For each of the divided areas obtained by dividing the surface of the photosensitive member into a plurality of divided areas. Difference information corresponding to the difference between the initial potential (the potential after charging and before exposure) and the reference initial potential common to all the divided areas is recorded in the storage means (individual difference information storage means). In addition, with respect to the exposure amount obtained by substantially linearly converting the pixel gradation determined by the image processing means into an exposure amount, the pixel gradation is within a predetermined range including 0 gradation for each divided region. In some cases, the exposure unit controls the exposure with the exposure amount added by the exposure amount corresponding to the difference information (hereinafter referred to as the post-addition exposure amount).
In this way, by performing exposure with the post-addition exposure amount in which the exposure amount is added (raised) according to the difference between the initial potential and the reference initial potential for each divided region, charging unevenness ( With respect to the photoconductor (charged photoconductor) having an initial potential distribution), the characteristics of the potential after exposure with respect to the pixel gradation approach or match the reference characteristics having the reference initial potential as the initial potential. As a result, variations in post-exposure potential for each position on the surface of the photoreceptor can be suppressed, and the occurrence of uneven density in the image can be prevented as much as possible. In particular, when the image processing means performs gradation expression by the area gradation method, even if there is a charging unevenness with a relatively large spatial period, it is prevented from appearing as an image unevenness density. It is preferable in that it can be performed.
Furthermore, since exposure is performed with an exposure amount that is additively corrected (correction with respect to the exposure amount after the substantially linear conversion) even for pixels in which the pixel gradation that is not conventionally exposed is 0 gradation, Since the gap in the post-exposure potential (ΔV0 in FIG. 9) between when the pixel gradation is 0 gradation and when it is 1 gradation is suppressed, the continuity of halftone density is not hindered and the image quality is not deteriorated. .
In addition, since it can be realized by adjusting the exposure amount (adjustment of conversion from the pixel gradation to the exposure amount) of the existing exposure unit for writing the electrostatic latent image without adding a new exposure unit, etc. Increase in cost and cost.

さらに,前記分割領域ごとに,前記画素階調を前記露光量へ略線形変換する際の傾きを規定する傾き情報を記憶手段(個別傾き情報記憶手段)に予め記憶しておき,前記画像処理手段により決定された前記画素階調を前記傾き情報に従って略線形変換して得られる露光量に対し,前記差分情報に応じた露光量だけ加算した露光量で前記露光手段による露光がなされるよう制御することも考えられる。
これにより,後述するように,帯電ムラと感度ムラとが併存する感光体について,前記画素階調に対する露光後の電位の特性が,0階調を含む線形特性を示す階調範囲全体に渡って前記基準特性にほぼ一致することになる。その結果,帯電ムラと感度ムラとが併存する感光体において,その表面の位置ごとの露光後電位のばらつきをほぼ無くすことができ,画像の濃度ムラ発生の防止効果をさらに高めることができる。
Further, for each of the divided regions, inclination information that defines an inclination when the pixel gradation is substantially linearly converted to the exposure amount is stored in advance in storage means (individual inclination information storage means), and the image processing means Control is performed so that exposure by the exposure means is performed with an exposure amount obtained by adding an exposure amount corresponding to the difference information to an exposure amount obtained by substantially linearly converting the pixel gradation determined in accordance with the tilt information. It is also possible.
As a result, as will be described later, with respect to a photoconductor in which charging unevenness and sensitivity unevenness coexist, the characteristics of the potential after exposure with respect to the pixel gradation over the entire gradation range showing linear characteristics including 0 gradation. This substantially matches the reference characteristic. As a result, in the photoreceptor in which charging unevenness and sensitivity unevenness coexist, variation in the post-exposure potential for each position on the surface can be almost eliminated, and the effect of preventing the occurrence of image density unevenness can be further enhanced.

ここで,前記差分情報に応じた露光量の制御手段としては,前記露光手段による画素当たりの露光時間を調節することにより前記差分情報に応じた画素当たりの露光量の調節(露光時間制御)を行うことが考えられる。
一般に,LEDアレイ等の前記露光手段では,画素ごとに所定の露光開始指令が発生してから所定周期で連続発生する周期信号が指定されたカウント回数だけ発生するまでの間に露光を行うものが多い。
そのような露光手段を用いる場合,前記露光時間制御としては,例えば,前記画素階調に応じた値(画素階調の大小に対応した値)を前記カウント回数の値として前記露光手段に指定するとともに,前記露光開始指令の発生から1つ目の前記周期信号の発生までの時間を前記差分情報に応じて調節することや,前記画素階調に応じた値に前記差分情報に応じた値を加算した値を前記露光手段に指定する前記カウント回数とすること等により,画素当たりの露光時間を調節することが考えられる。
また,画素ごとに所定の露光開始指令が発生してから所定の露光終了指令が発生するまでの間に露光を行う前記露光手段を用いる場合には,前記露光開始指令の発生から前記露光終了指令の発生までの時間を調節することにより画素当たりの露光時間を調節することも考えられる。
一方,前記傾き情報に応じて変化する露光量の制御(調節)については,前記露光手段における露光強度を調節(発光部に対する供給電力の調節等)することにより行うことが考えられる。
Here, the exposure amount control means according to the difference information includes adjusting the exposure amount per pixel (exposure time control) according to the difference information by adjusting the exposure time per pixel by the exposure means. It is possible to do it.
In general, in the exposure means such as an LED array, the exposure is performed during a period from when a predetermined exposure start command is generated for each pixel until a periodic signal continuously generated at a predetermined period is generated a specified number of times. Many.
When such an exposure means is used, for example, a value corresponding to the pixel gradation (a value corresponding to the magnitude of the pixel gradation) is specified to the exposure means as the value of the count number as the exposure time control. And adjusting the time from generation of the exposure start command to generation of the first periodic signal according to the difference information, or setting a value according to the difference information to a value according to the pixel gradation. It is conceivable to adjust the exposure time per pixel by setting the added value as the number of counts specified to the exposure means.
In addition, when using the exposure means for performing exposure after a predetermined exposure start command is generated for each pixel until a predetermined exposure end command is generated, the exposure end command is generated from the generation of the exposure start command. It is also conceivable to adjust the exposure time per pixel by adjusting the time until occurrence of.
On the other hand, the control (adjustment) of the exposure amount that changes in accordance with the tilt information may be performed by adjusting the exposure intensity in the exposure means (adjustment of power supplied to the light emitting unit, etc.).

また,前記分割領域としては,ドラム状の前記感光体の表面をその軸方向若しくは周方向に複数分割した領域(一次元の分割),或いはその両方向に複数分割した領域(2次元の分割)が考えられる。例えば,1画素の幅或いは高さの単位で分割することや,複数画素分の幅や高さの単位で分割することが考えられる。
ここで,前記露光手段による露光は,前記分割領域の各位置を認識して行う必要があることはいうまでもない。一般に,前記感光体表面の軸方向(即ち,主走査方向)の露光位置については,前記露光手段(或いはその制御手段)において少なくとも画素単位で書き込み位置は認識(検出)されている。一方,前記感光体表面の周方向(副走査方向)の絶対位置については,画像形成に直接的に必要な情報ではないため,前記感光体の回転位置を検出する手段を設ける必要がある。
また,前記感光体がa−Si感光体である場合に,特に帯電ムラが顕著に表れることが多いため,本発明の適用に好適である。具体的にはa−Si感光体は製造上膜厚差によって発生する帯電ムラが膜質差によって発生する感度ムラよりも大きいため,帯電ムラ補正を行うことが有効となる。さらに,露光時間調節を行うことで感度ムラに対しても十分な調整が可能となり,よりベストな調整が実現可能となる。
The divided area includes an area obtained by dividing the surface of the drum-shaped photosensitive member into a plurality of parts in the axial direction or the circumferential direction (one-dimensional division), or a plurality of areas divided in both directions (two-dimensional division). Conceivable. For example, it is conceivable to divide in units of width or height of one pixel, or to divide in units of width or height for a plurality of pixels.
Here, it is needless to say that the exposure by the exposure means needs to be performed by recognizing each position of the divided area. In general, with respect to the exposure position in the axial direction (that is, the main scanning direction) of the surface of the photoreceptor, the writing position is recognized (detected) at least in pixel units in the exposure means (or its control means). On the other hand, since the absolute position in the circumferential direction (sub-scanning direction) of the surface of the photoconductor is not information directly necessary for image formation, it is necessary to provide means for detecting the rotational position of the photoconductor.
In addition, when the photoconductor is an a-Si photoconductor, charging unevenness is particularly noticeable in many cases, which is suitable for application of the present invention. Specifically, in the a-Si photoconductor, the charging unevenness caused by the difference in film thickness is larger than the sensitivity unevenness caused by the film quality difference, so that it is effective to correct the charging unevenness. Furthermore, by adjusting the exposure time, it is possible to sufficiently adjust the sensitivity unevenness, and the best adjustment can be realized.

本発明によれば,感光体の表面を複数に分割した分割領域ごとに,その初期電位と基準初期電位との差分に応じて,前記画素階調が0階調である場合も含めて露光量の加算(かさ上げ)がなされるので,帯電ムラが存在する前記感光体について,その表面位置ごとの露光後電位のばらつきが抑えられ,画像の濃度ムラの発生を防止することができる。
さらに,従来は露光が行われない前記画素階調が0階調である画素についても,初期電位の差分に応じた露光量の加算補正(かさ上げ)がなされるので,前記画素階調が0階調のときと1階調のときとの露光後電位のギャップが抑えられ,中間調濃度の連続性を阻害して画質を悪化させることがない。
しかも,新たな露光手段等を追加することなく,既存の静電潜像書き込み用の露光手段の露光量調節により実現できるので,装置の大型化や高コスト化を招くことがない。
また,前記露光手段における露光時間調節により前記分割領域ごとの初期電位の分布に応じた露光量の加算制御を行うとともに,前記分割領域ごとに,前記画素階調を前記露光量へ略線形変換する際の傾きを規定する傾き情報に基づいて前記露光手段における露光強度を調節する制御も併せて行えば,帯電ムラと感度ムラとが併存する感光体において,前記感光体表面の位置ごとの露光後電位のばらつきをより小さく抑えることができ,画像の濃度ムラ発生の防止効果をさらに高めることができる。
According to the present invention, for each divided area obtained by dividing the surface of the photosensitive member into a plurality of areas, the exposure amount including the case where the pixel gradation is 0 gradation according to the difference between the initial potential and the reference initial potential. Therefore, the unevenness of the post-exposure potential for each surface position of the photoconductor having uneven charging can be suppressed and the occurrence of uneven image density can be prevented.
Further, even for a pixel in which the pixel gradation is 0 gradation which is not conventionally exposed, the exposure correction is added (raised) according to the difference in the initial potential, so the pixel gradation is 0. The gap of the post-exposure potential between the gradation and the gradation is suppressed, and the continuity of the halftone density is not hindered and the image quality is not deteriorated.
In addition, since it can be realized by adjusting the exposure amount of the existing exposure means for writing an electrostatic latent image without adding new exposure means or the like, the apparatus is not increased in size and cost.
Further, the exposure amount is controlled in accordance with the initial potential distribution for each of the divided regions by adjusting the exposure time in the exposure means, and the pixel gradation is substantially linearly converted to the exposure amount for each of the divided regions. If the control for adjusting the exposure intensity in the exposure means is also performed based on the tilt information that defines the tilt at the time, in the photoconductor in which the charging unevenness and the sensitivity nonuniformity coexist, after the exposure for each position of the surface of the photoconductor The variation in potential can be further reduced, and the effect of preventing the occurrence of uneven density in the image can be further enhanced.

以下添付図面を参照しながら,本発明の実施の形態について説明し,本発明の理解に供する。尚,以下の実施の形態は,本発明を具体化した一例であって,本発明の技術的範囲を限定する性格のものではない。
ここに,図1は本発明の実施形態に係る画像形成装置Xの概略断面図,図2は画像形成装置Xの主要部の概略構成を表すブロック図,図3は画像形成装置Xにおける画素階調に対する露光量の制御特性の第1実施例及びそのときの画素階調と露光後の電位との関係の一例を表すグラフ,図4は画像形成装置Xにおける画素階調に対する露光量の制御特性の第2実施例及びそのときの画素階調と露光後の電位との関係の一例を表すグラフ,図5は画像形成装置Xにおける露光時間制御の第1実施例を説明するタイムチャート,図6は画像形成装置Xにおける露光時間制御の第2実施例を説明するタイムチャート,図7は画像形成装置Xにおける露光時間制御の第3実施例を説明するタイムチャート,図8は帯電ムラと感度ムラとが並存する感光体表面における従来の画素階調と露光後の電位との関係の一例を表すグラフ,図9は帯電ムラと感度ムラとが並存する感光体表面の露光に際し0を除く全ての画素階調各々を設定して露光した後の電位を基準特性に一致させるように個別露光量変換を行った場合の画素階調と露光後の電位との関係を表すグラフである。
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings so that the present invention can be understood. The following embodiment is an example embodying the present invention, and does not limit the technical scope of the present invention.
1 is a schematic sectional view of an image forming apparatus X according to an embodiment of the present invention, FIG. 2 is a block diagram showing a schematic configuration of a main part of the image forming apparatus X, and FIG. 3 is a pixel floor in the image forming apparatus X. FIG. 4 is a graph showing an example of the relationship between the first embodiment of the exposure amount control characteristic with respect to the tone and the relationship between the pixel gradation at that time and the potential after exposure, and FIG. 4 shows the exposure amount control characteristic with respect to the pixel gradation in the image forming apparatus X. 5 is a graph showing an example of the relationship between the pixel gradation at that time and the potential after exposure, FIG. 5 is a time chart for explaining the first embodiment of exposure time control in the image forming apparatus X, and FIG. Is a time chart for explaining a second embodiment of exposure time control in the image forming apparatus X, FIG. 7 is a time chart for explaining a third embodiment of exposure time control in the image forming apparatus X, and FIG. Sensitivity that coexists with FIG. 9 is a graph showing an example of the relationship between the conventional pixel gradation on the surface and the potential after exposure, and FIG. 9 sets all the pixel gradations except for 0 when exposing the surface of the photoreceptor where charging unevenness and sensitivity unevenness coexist. 6 is a graph showing the relationship between pixel gradation and the potential after exposure when individual exposure amount conversion is performed so that the potential after exposure is matched with the reference characteristics.

まず,図1に示す断面図を用いて,本発明の実施形態に係る画像形成装置Xの全体構成について説明する。
画像形成装置Xは,ブラック(BK),マゼンダ(M),イエロー(Y),シアン(C),の4色のトナーを用いるタンデム方式の画像形成装置の一例であるプリンタである。
画像形成装置Xは,トナー像を形成し,記録紙に画像形成を行う画像形成部α1,その記録紙を前記画像形成部α1に供給する給紙部α2,及び画像形成の行われた記録紙の排出がなされる排紙部α3を有する。
パーソナルコンピュータ等の外部装置から不図示の通信部により受信された画像情報(印刷ジョブ)は,後述する画像処理部12によりブラック(BK),マゼンダ(M),イエロー(Y),シアン(C),の4色各々に対する画素ごとの濃淡値情報である画素階調に変換される。
First, the overall configuration of the image forming apparatus X according to the embodiment of the present invention will be described using the cross-sectional view shown in FIG.
The image forming apparatus X is a printer that is an example of a tandem type image forming apparatus that uses toner of four colors of black (BK), magenta (M), yellow (Y), and cyan (C).
The image forming apparatus X includes an image forming unit α1 that forms a toner image and forms an image on a recording sheet, a paper feeding unit α2 that supplies the recording sheet to the image forming unit α1, and a recording sheet on which image formation has been performed. Is discharged.
Image information (print job) received from a communication unit (not shown) from an external device such as a personal computer is black (BK), magenta (M), yellow (Y), cyan (C) by an image processing unit 12 to be described later. Are converted into pixel gradations which are grayscale information for each pixel for each of the four colors.

前記画像形成部α1は,上記4色各々の像を担持する4つの感光体ドラム1(ブラック用1BK,マゼンダ用1M,イエロー用1Y,シアン用1C),その感光体ドラム1各々の表面を一様に帯電させる帯電装置3(3BK,3M,3Y,3C),その帯電装置3により予め帯電済みの前記感光体ドラム1各々の表面を後述する画像処理部12により決定される前記画素階調に対応する露光量の光を照射する(露光する)ことにより前記感光体ドラム1に静電潜像を書き込む露光源2(2BK,2M,2Y,2C,露光手段の一例),その静電潜像にトナーを供給することによりトナー像として現像する現像装置5(5BK,5M,5Y,5C),前記感光体ドラム1各々の表面に形成されたトナー像が順次転写され,そのトナー像を記録紙に転写する中間転写ベルト7,記録紙を搬送する搬送ローラ8,記録紙上に転写されたトナー像を加熱定着させる定着装置9,トナー像を記録紙に転写後の前記感光体ドラム1表面の除電を行う除電装置4(4BK,4M,4Y,4C)等を備えて概略構成される。   The image forming unit α1 has four photosensitive drums 1 (1BK for black, 1M for magenta, 1Y for yellow, 1C for cyan) carrying the images of the above four colors, and the surface of each of the photosensitive drums 1 is integrated. The charging device 3 (3BK, 3M, 3Y, 3C) to be charged in this manner, and the surface of each of the photosensitive drums 1 charged in advance by the charging device 3 is set to the pixel gradation determined by the image processing unit 12 described later. An exposure source 2 (2BK, 2M, 2Y, 2C, an example of exposure means) that writes an electrostatic latent image on the photosensitive drum 1 by irradiating (exposing) a corresponding exposure amount of light, and the electrostatic latent image The toner images formed on the surfaces of the developing drums 5 (5BK, 5M, 5Y, 5C) and the photosensitive drums 1 are developed in order to develop toner images by supplying toner to the recording paper. Intermediate transfer belt 7 for transfer, transport roller 8 for transporting the recording paper, fixing device 9 for heating and fixing the toner image transferred on the recording paper, and neutralizing the surface of the photosensitive drum 1 after transferring the toner image to the recording paper. It is schematically configured to include a static eliminating device 4 (4BK, 4M, 4Y, 4C) to be performed.

前記感光体ドラム1は,例えば,高硬度で性状が安定しているため耐久性に優れる一方,感度ムラに加えて帯電ムラが比較的顕著に表れやすいa−Si感光体等である。
前記帯電装置3は,前記感光体ドラム1の表面をその軸方向に沿って一様に帯電させるものであるが,前記感光体ドラム1に帯電ムラがある場合,前記帯電装置3による帯電後(露光前)の電位(初期電位)には分布が生じる。
図1に示す前記露光源2は,前記感光体ドラム1の軸方向(主走査方向)に1画素ごとに複数のLEDが配列されたLEDアレイにより構成されたものの例を示している。この他,前記露光源2は,レーザ光を前記感光体ドラム1の軸方向に走査するレーザスキャン装置等によって構成されたものであってもよい。
前記現像装置5は,前記感光体ドラム1にトナーを供給する現像ローラを備え,その現像ローラに印加された電位(現像バイアス電位)と前記感光体ドラム1表面の電位との電位ギャップに応じて,前記現像ローラ上のトナーが前記感光体ドラム1の面上に引き寄せられ,前記静電潜像がトナー像として顕像化される。
前記給紙部α2は,給紙カセット20,給紙ローラ6等を有して概略構成される。前記給紙カセット20に予め収容された記録紙は,前記給紙ローラ6が回転駆動することにより前記画像形成部α1に搬送される。
前記給紙部α2から送出された記録紙は,前記搬送ローラ8により搬送されつつ,前記中間転写ベルト7からトナー像が転写される。そして,トナー像が転写された記録紙は,前記定着装置9に搬送され,例えば加熱ローラ等により記録紙に加熱定着された後,前記排紙部α3に搬送されて排出される。
The photosensitive drum 1 is, for example, an a-Si photosensitive member that is excellent in durability because of its high hardness and stable properties, while charging unevenness is likely to appear relatively remarkably in addition to sensitivity unevenness.
The charging device 3 uniformly charges the surface of the photosensitive drum 1 along its axial direction. If the photosensitive drum 1 is unevenly charged, Distribution occurs in the potential (initial potential) before exposure.
The exposure source 2 shown in FIG. 1 shows an example in which the exposure source 2 is constituted by an LED array in which a plurality of LEDs are arranged for each pixel in the axial direction (main scanning direction) of the photosensitive drum 1. In addition, the exposure source 2 may be constituted by a laser scanning device or the like that scans laser light in the axial direction of the photosensitive drum 1.
The developing device 5 includes a developing roller that supplies toner to the photosensitive drum 1, and corresponds to a potential gap between a potential (developing bias potential) applied to the developing roller and a potential on the surface of the photosensitive drum 1. The toner on the developing roller is attracted onto the surface of the photosensitive drum 1, and the electrostatic latent image is visualized as a toner image.
The paper feeding unit α2 is roughly configured to include a paper feeding cassette 20, a paper feeding roller 6, and the like. The recording paper previously stored in the paper feed cassette 20 is conveyed to the image forming unit α1 when the paper feed roller 6 is driven to rotate.
The recording paper delivered from the paper feeding unit α2 is transferred by the transfer roller 8 and the toner image is transferred from the intermediate transfer belt 7. Then, the recording paper on which the toner image has been transferred is conveyed to the fixing device 9, and is heated and fixed on the recording paper by, for example, a heating roller, and then conveyed to the paper discharge unit α3 and discharged.

図2は,画像形成装置Xの主要部の概略構成を表すブロック図である。
画像形成装置Xは,前記帯電装置3,前記露光源2,前記現像装置5及び前記除電装置4に加え,MPU及びその周辺装置であるROM,RAM等から構成され,当該画像形成装置Xの各構成要素を制御する制御部10,利用者に対する情報の表示手段であるとともに,利用者の操作に従って情報を入力する手段でもある液晶タッチパネル等の表示操作部11,各種画像処理を行う画像処理部12,EEPROM等の読み書き自在の記憶手段であり各種データを記憶するデータ記憶部13及び前記感光体ドラム1各々の回転方向の位置を検出する回転位置検出部14等を備えている。
前記画像処理部12は,外部装置から不図示の通信制御部を介して入力される所定の画像データ(印刷ジョブ等)に基づいて,トナーの各色について画素ごとの濃淡レベルを表す画素階調をデジタル方式により決定する処理を実行する。
ここで,前記画像処理部12は,前記画像データに基づいて,複数画素からなる画素群(以下,単位画素群という)の単位で,印字する画素(描画画素)の配列,及び印字する画素の前記画素階調を決定する誤差拡散方式やスクリーン方式等の面積階調方式によって画像の濃度階調表現を行う。
前記データ記憶部13には,予め,前記感光体ドラム1各々について,その表面を複数に分割した分割領域ごとに,前記画素階調に基づいて前記露光源2による露光量を制御するために用いる情報として,各分割領域の初期電位と全ての前記分割領域に共通の基準となる初期電位(以下,基準初期電位という)との差(V)を露光量(μJ/cm2)に換算した情報であるかさ上げ露光量(差分情報の一例)とが個別に記憶されている(個別差分情報記憶手段の一例)。その具体的内容については後述する。
ここで,前記分割領域は,例えば,各画素に対応した領域(1画素分の幅(軸方向)×1ライン分の高さ(周方向))の領域や,前記画像処理部12における面積階調方式での画像処理で採用される前記単位画素群に対応した領域とすること等が考えられる。
FIG. 2 is a block diagram illustrating a schematic configuration of a main part of the image forming apparatus X.
The image forming apparatus X includes an MPU and its peripheral devices such as a ROM and a RAM in addition to the charging device 3, the exposure source 2, the developing device 5, and the charge eliminating device 4. A control unit 10 that controls the components, a display operation unit 11 such as a liquid crystal touch panel that is a unit for inputting information according to a user operation, and an image processing unit 12 that performs various types of image processing. , An EEPROM or the like, which is a readable / writable storage means, and includes a data storage unit 13 for storing various data, a rotation position detection unit 14 for detecting the position of each of the photosensitive drums 1 in the rotation direction, and the like.
The image processing unit 12 calculates a pixel gradation representing a gray level for each pixel for each color of toner based on predetermined image data (print job or the like) input from an external device via a communication control unit (not shown). The process determined by the digital method is executed.
Here, based on the image data, the image processing unit 12 arranges pixels to be printed (drawing pixels) in units of a pixel group composed of a plurality of pixels (hereinafter referred to as a unit pixel group) and the pixels to be printed. The density gradation representation of the image is performed by an area gradation method such as an error diffusion method or a screen method for determining the pixel gradation.
The data storage unit 13 is used in advance to control the exposure amount of the exposure source 2 based on the pixel gradation for each of the divided areas obtained by dividing the surface of each of the photosensitive drums 1 into a plurality of areas. As information, information obtained by converting a difference (V) between an initial potential of each divided region and a reference initial potential common to all the divided regions (hereinafter referred to as a reference initial potential) into an exposure amount (μJ / cm 2 ). Are stored separately (an example of individual difference information storage means). The specific contents will be described later.
Here, the divided region is, for example, a region corresponding to each pixel (a width of one pixel (axial direction) × a height of one line (circumferential direction)) or an area floor in the image processing unit 12. A region corresponding to the unit pixel group employed in the image processing in the gradation method may be considered.

そして,前記制御部10は,前記画像処理部12により決定された前記画素階調を取得し,その画素階調と前記かさ上げ露光量とに基づいて前記感光体1ごと,及び前記分割領域ごとに個別に前記露光源2における露光量を制御する(露光量制御手段の一例)。以下,この露光量制御を個別露光量制御という。その結果,前記露光源2各々により,前記個別露光量制御に従った露光量での前記分割領域各々の露光が行われる。
また,前記制御部10は,前記分割領域の各位置(露光位置)を認識して前記露光源2による露光を制御する。
即ち,前記露光源2にLEDアレイを用いる場合,画素ごとにLEDが配列されているので,前記制御部10は,前記感光体ドラム1表面の軸方向(主走査方向)の露光位置については,点灯させるLEDの配列位置(配列番号等)により認識する。
これに対し,前記感光体ドラム1表面の周方向(副走査方向)の露光位置については,前記回転位置検出部14により前記感光体ドラム1表面のいずれの位置が前記露光源2の光照射位置に位置するかを検出し,前記制御部10は,その検出結果を取得することにより認識する。
一方,前記データ記憶部13に,前記分割領域各々の識別情報として,LEDの識別情報(LEDの配列番号等)と前記回転位置検出部14の検出値との組み合わせを記憶しておき,さらにその組み合わせ(前記分割領域各々の識別情報)各々に対応づけて前記かさ上げ露光量を記憶しておく。
さらに,前記制御部10は,これから点灯させようとするLEDの位置(配列番号等)と前記回転位置検出部14の検出結果とに基づいて,前記個別露光量制御に用いる前記かさ上げ露光量を前記データ記憶部13から抽出(検索)して読み出す。
また,前記回転位置検出部14の構成としては,例えば,前記感光体ドラム1の回転軸に回転式のポテンショメータを設けて回転位置を検出する構成や,前記感光体ドラム1の回転軸に突起部等の基準部を設け,その基準部の通過位置を接触型のスイッチやフォトカプラ等により検出し,その検出時点からの経過時間を計時する構成等が考えられる。
なお,前記露光源2としてレーザスキャン装置を用いる場合,前記感光体ドラム1表面の軸方向(主走査方向)の露光位置については,レーザ光の走査に用いられるポリゴンミラーの回転位置を検出することや,或いは,レーザ光が所定の基点位置に偏向されたことが受光素子により検出されてからの経過時間を計時すること等により検出すればよい。
さらに前記制御部10は,所定のクロック信号の分周やカウント等を行うパルス信号制御回路(不図示)を備え,これにより生成された各種の信号を前記露光源2に出力することにより,前記露光源2の露光時間を制御する。これについては後述する。
Then, the control unit 10 acquires the pixel gradation determined by the image processing unit 12, and for each of the photoreceptors 1 and for each divided region based on the pixel gradation and the raised exposure amount. The exposure amount in the exposure source 2 is individually controlled (an example of exposure amount control means). Hereinafter, this exposure amount control is referred to as individual exposure amount control. As a result, each of the divided regions is exposed by the exposure source 2 with the exposure amount according to the individual exposure amount control.
The control unit 10 recognizes each position (exposure position) of the divided area and controls exposure by the exposure source 2.
That is, when an LED array is used for the exposure source 2, the LEDs are arranged for each pixel, so that the control unit 10 determines the exposure position in the axial direction (main scanning direction) of the surface of the photosensitive drum 1. Recognized by the array position (array number, etc.) of the LEDs to be lit.
On the other hand, with respect to the exposure position in the circumferential direction (sub-scanning direction) of the surface of the photosensitive drum 1, any position on the surface of the photosensitive drum 1 by the rotational position detector 14 is the light irradiation position of the exposure source 2. The control unit 10 recognizes by acquiring the detection result.
On the other hand, a combination of LED identification information (LED array number, etc.) and detection value of the rotational position detection unit 14 is stored in the data storage unit 13 as identification information for each of the divided regions. The raised exposure amount is stored in association with each combination (identification information of each divided region).
Further, the control unit 10 determines the raised exposure amount used for the individual exposure amount control based on the position of the LED to be lit (array number, etc.) and the detection result of the rotational position detection unit 14. Data is extracted (searched) from the data storage unit 13 and read out.
The rotational position detector 14 may be configured to detect a rotational position by providing a rotary potentiometer on the rotating shaft of the photosensitive drum 1 or a protrusion on the rotating shaft of the photosensitive drum 1. It is possible to use a configuration in which a reference portion such as is provided, the passing position of the reference portion is detected by a contact-type switch, a photocoupler, or the like, and the elapsed time from the detection time is counted.
When a laser scanning device is used as the exposure source 2, the rotational position of the polygon mirror used for scanning the laser beam is detected for the exposure position in the axial direction (main scanning direction) of the surface of the photosensitive drum 1. Alternatively, it may be detected by measuring the elapsed time after the light receiving element detects that the laser beam has been deflected to the predetermined base position.
Further, the control unit 10 includes a pulse signal control circuit (not shown) that divides and counts a predetermined clock signal, and outputs various signals generated thereby to the exposure source 2, thereby The exposure time of the exposure source 2 is controlled. This will be described later.

次に,前記かさ上げ露光量(差分情報の一例)について説明する。
本画像形成装置Xは,製造段階等において,それに組み込まれた前記感光体ドラム1個々の露光特性を得るための特性評価試験に供される。より具体的には,前記特性評価試験(予めの実測)は,前記帯電装置3により帯電された(帯電済みの)前記感光体ドラム1に対し,前記分割領域ごとに複数の露光量の条件下で前記露光源2による露光が行われるとともに,前記分割領域ごとの露光前の初期電位と露光後の電位とが実測され,前記分割領域各々の露光特性,即ち,露光量と露光後の電位との関係を表す特性(以下,実測露光特性という)が明らかにされる。図8(a)に示す太い破線グラフg0が,そのようにして明らかにされた露光特性の一例である。
ここで,前記分割領域各々の露光特性を測定する方法としては,例えば,前記分割領域各々について,密に露光量を切り替えて露光し,露光後の電位を測定すれば,正確な露光特性を測定できる。その他,図8(a)に示したように,露光特性の傾向(カーブの形)はある程度決まっており,係数のみ変更すれば共通の式で定式化できるのが一般的であるので,1又は複数の代表的な露光量で露光した後の電位を測定した結果に基づいて,露光特性を推定してもよい。
例えば,a−Si感光体ドラムであれば,残留電位は前記感光体ドラム1の表面の位置によらずほぼ一定であるので,初期電位と,前記略線形特性の範囲の1つの露光量で露光した後の電位とを測定すれば,十分な精度で露光特性を推定できる。
Next, the raising exposure amount (an example of difference information) will be described.
The image forming apparatus X is subjected to a characteristic evaluation test for obtaining the exposure characteristics of each of the photosensitive drums 1 incorporated therein in the manufacturing stage. More specifically, the characteristic evaluation test (preliminarily measured) is performed on the photosensitive drum 1 charged (charged) by the charging device 3 under a condition of a plurality of exposure amounts for each divided region. The exposure source 2 performs exposure and the initial potential before exposure and the potential after exposure for each divided region are measured, and the exposure characteristics of each divided region, that is, the exposure amount and the potential after exposure, The characteristics representing the relationship (hereinafter referred to as measured exposure characteristics) are clarified. A thick broken line graph g0 shown in FIG. 8A is an example of the exposure characteristic thus clarified.
Here, as a method for measuring the exposure characteristics of each of the divided areas, for example, the exposure characteristics of each of the divided areas are densely switched and exposed, and the potential after exposure is measured to measure accurate exposure characteristics. it can. In addition, as shown in FIG. 8 (a), the tendency (exposure curve) of the exposure characteristics is determined to some extent, and it is common that it can be formulated by a common equation if only the coefficient is changed. The exposure characteristics may be estimated based on the result of measuring the potential after exposure with a plurality of representative exposure amounts.
For example, in the case of an a-Si photosensitive drum, the residual potential is almost constant regardless of the position of the surface of the photosensitive drum 1, so that the exposure is performed with the initial potential and one exposure amount within the range of the substantially linear characteristic. By measuring the potential after the exposure, the exposure characteristics can be estimated with sufficient accuracy.

<個別露光量制御の第1実施例>
以下,前述した図8及び図3を用いて,a−Si感光体ドラム1の表面におけるある前記分割領域が,図8(a)に示した特性,即ち,帯電ムラと感度ムラとが併存する露光特性(g0)を有する場合を例として,前記個別露光量制御の第1実施例について説明する。
図3(b)は,図8(a)のグラフg01に示した露光特性を有する前記分割領域について,前記個別露光量制御特性(画素階調―露光量特性)の第1実施例を表すグラフであり,図3(a)は,図3(b)の特性に従った前記個別露光量制御を行った場合の前記画素階調と露光後の電位(露光後電位)との関係を表すグラフである。
ここで,図3(b)に一点破線で示す特性(E=k0・I,Eは露光量,Iは画素階調,k0は傾き)は,前記画素階調から露光量への基準となる(標準的な)線形変換特性(以下,基準露光量変換特性という)を表し,図8(a)のグラフg0,g01に示した特性は,前記基準露光量変換特性(傾き=k0,y切片=0)に従った露光量で露光が行われた場合の特性であるとする。
また,図3(b)に実線で示す変換特性(E=k0・I+Ea,但し,Eは露光量,Iは画素階調,k0は傾き,Eaは前記かさ上げ露光量)は,前記個別露光量制御の特性をし,この特性におけるy切片Eaが,前記分割領域ごとに前記かさ上げ露光量として前記データ記憶部13に予め記憶されている。
また,前記かさ上げ露光量Eaは,当該分割領域の露光特性(図8のg01)において,その電位を初期電位Vx0と前記基準初期電位V0との差分(Vx0−V0)だけ降下させるのに必要な露光量Eaである。
<First Example of Individual Exposure Amount Control>
Hereinafter, with reference to FIG. 8 and FIG. 3 described above, the divided region on the surface of the a-Si photosensitive drum 1 has the characteristics shown in FIG. 8A, that is, charging unevenness and sensitivity unevenness. The first embodiment of the individual exposure amount control will be described by taking the case of having the exposure characteristic (g0) as an example.
FIG. 3B is a graph showing a first example of the individual exposure amount control characteristic (pixel gradation-exposure amount characteristic) for the divided region having the exposure characteristic shown in the graph g01 of FIG. 8A. FIG. 3A is a graph showing the relationship between the pixel gradation and the potential after exposure (post-exposure potential) when the individual exposure amount control according to the characteristics of FIG. 3B is performed. It is.
Here, the characteristics (E = k0 · I, E is the exposure amount, I is the pixel gradation, and k0 is the inclination) shown by the one-dot broken line in FIG. 3B is a reference from the pixel gradation to the exposure amount. This represents a (standard) linear conversion characteristic (hereinafter referred to as a reference exposure amount conversion characteristic). The characteristics shown in the graphs g0 and g01 in FIG. 8A are the reference exposure amount conversion characteristics (slope = k0, y intercept). = 0)), it is assumed that the exposure is performed with the exposure amount according to the characteristics.
Also, the conversion characteristics (E = k0 · I + Ea, where E is the exposure amount, I is the pixel gradation, k0 is the inclination, and Ea is the above-mentioned raising exposure amount) indicated by the solid line in FIG. A characteristic of quantity control is obtained, and a y-intercept Ea in this characteristic is stored in advance in the data storage unit 13 as the raised exposure amount for each of the divided areas.
Further, the raised exposure dose Ea is necessary for lowering the potential by the difference (Vx0−V0) between the initial potential Vx0 and the reference initial potential V0 in the exposure characteristics (g01 in FIG. 8) of the divided area. Exposure amount Ea.

図3(b)に示すように,前記制御部10は,所定の制御プログラムを実行することにより,前記画像処理部12により決定された前記画素階調Iを,前記基準露光量変換特性に従って露光量Eへ線形変換して得られる露光量に対し,前記分割領域ごとに0階調を含む前記画素階調の全階調範囲において,前記かさ上げ露光量Ea(即ち,当該分割領域の初期電位と前記基準初期電位との差に応じた露光量)だけ加算した露光量で露光がなされるよう前記露光源2を制御する(露光量制御手段の第1実施例)。
ここで,前記制御部10(露光量制御手段の一例)による露光量制御は,前記画素階調に応じて調節が必要となる露光量及び前記かさ上げ露光量Eaに応じて調節が必要となる露光量の両方を併せて,前記露光源2(露光手段)による画素当たりの露光時間を調節することにより画素当たりの露光量を調節することによって行われる(露光時間制御手段の一例)。これについては後に露光時間制御の実施例を示して詳述する。
このような前記個別露光量制御により前記露光源2を制御した場合,前記画素階調に対する露光後の電位の特性は,図3(a)のグラフgx1のようになる。
図3(b)に示す前記個別露光量制御,即ち,前記分割領域ごとに,その初期電位Vx0と前記基準初期電位V0との差分に応じた露光量Eaの加算(かさ上げ)がなされた露光量で露光が行われ制御をすることにより,図3(a)のグラフgx1に示すように,帯電ムラが存在する前記感光体(帯電済みの感光体)について,前記画素階調に対する露光後の電位の特性が,全体的に前記基準初期電位V0を初期電位とする基準特性g0に近づく。その結果,前記感光体1表面の位置ごとの露光後電位のばらつきが抑えられ,画像の濃度ムラの発生を極力防止することができる。
さらに,従来は露光が行われない前記画素階調が0階調である画素についても,初期電位の差分に応じた前記かさ上げ露光量Eaでの露光がなされるので,前記画素階調が0階調のときと1階調のときとの露光後電位のギャップ(図9のΔV0)が抑えられ,中間調濃度の連続性を阻害して画質を悪化させることがない。
なお,図3に示す例では,前記画素階調が0階調を含む全範囲である場合について,前記かさ上げ露光量に基づく露光量制御を行っているが,前記画素階調が0階調を含む一部の範囲である場合にのみ,前記かさ上げ露光量に基づく露光量補正を行ってもよい。
例えば,図8(a)に示す特性g01のうち,前記画素階調が0階調から略線形特性を示す範囲内の階調である場合にのみ(即ち,露光後の電位が残留電位及びその近傍電位である場合を除く範囲),前記かさ上げ露光量に基づく露光量制御を行うようにしても,前記分割領域各々における露光特性は基準となる露光特性とほぼ一致する。このことは,次の個別露光量制御の第2実施例についても同様である。
As shown in FIG. 3B, the control unit 10 executes a predetermined control program to expose the pixel gradation I determined by the image processing unit 12 according to the reference exposure amount conversion characteristics. With respect to the exposure amount obtained by linear conversion to the amount E, the raised exposure amount Ea (that is, the initial potential of the divided region) in the entire gradation range of the pixel gradation including 0 gradation for each divided region. The exposure source 2 is controlled so that the exposure is performed with the exposure amount added by the exposure amount corresponding to the difference between the reference initial potential and the reference initial potential (first embodiment of the exposure amount control means).
Here, the exposure amount control by the control unit 10 (an example of the exposure amount control means) needs to be adjusted according to the exposure amount that needs to be adjusted according to the pixel gradation and the raised exposure amount Ea. This is performed by adjusting the exposure amount per pixel by adjusting the exposure time per pixel by the exposure source 2 (exposure means) together with the exposure amount (an example of exposure time control means). This will be described in detail later by showing an embodiment of exposure time control.
When the exposure source 2 is controlled by such individual exposure amount control, the characteristics of the potential after exposure with respect to the pixel gradation are as shown by a graph gx1 in FIG.
The individual exposure amount control shown in FIG. 3B, that is, the exposure in which the exposure amount Ea is added (raised) according to the difference between the initial potential Vx0 and the reference initial potential V0 for each divided region. By performing exposure and controlling by the amount, as shown in the graph gx1 in FIG. 3A, the photosensitive member (charged photosensitive member) in which charging unevenness exists has been subjected to the pixel gradation after the exposure. The potential characteristics generally approach the reference characteristic g0 having the reference initial potential V0 as the initial potential. As a result, variations in the post-exposure potential for each position on the surface of the photoreceptor 1 can be suppressed, and the occurrence of uneven density in the image can be prevented as much as possible.
Further, even in the case where the pixel gradation which is conventionally not exposed is 0 gradation, the pixel gradation is 0 because the exposure with the raised exposure amount Ea corresponding to the difference in the initial potential is performed. The gap between the post-exposure potentials (ΔV0 in FIG. 9) between the gradation and the one gradation is suppressed, and the continuity of the halftone density is not hindered and the image quality is not deteriorated.
In the example shown in FIG. 3, the exposure control based on the raised exposure amount is performed when the pixel gradation is the entire range including the 0 gradation, but the pixel gradation is 0 gradation. The exposure amount correction based on the raised exposure amount may be performed only in a part of the range including.
For example, among the characteristics g01 shown in FIG. 8A, only when the pixel gradation is a gradation within a range showing a substantially linear characteristic from the 0 gradation (that is, the potential after exposure is the residual potential and its potential). Even if the exposure amount control based on the raised exposure amount is performed, the exposure characteristics in each of the divided regions substantially coincide with the reference exposure characteristics. The same applies to the second embodiment of the next individual exposure amount control.

<個別露光量制御の第2実施例>
以下,前述した図8及び図4を用いて,a−Si感光体ドラム1の表面におけるある前記分割領域が,図8(a)に示した特性g0を有する場合を例として,前記個別露光量制御の第2実施例について説明する。
図4(b)は,図3(b)と同様に図8(a)のグラフg01に示した露光特性を有する前記分割領域について,前記個別露光量制御の第2実施例の特性を表すグラフであり,図4(a)は,図3(b)の特性に従った前記個別露光量制御を行った場合の前記画素階調と露光後の電位(露光後電位)との関係を表すグラフである。
ここで,図4(b)に一点破線で示す特性は図3(b)の一点破線と同じものを表す。
また,図3(b)に実線で示す変換特性(E=k1・I+Ea,但し,Eは露光量,Iは画素階調,k1は傾き,Eaは前記かさ上げ露光量)は,前記個別露光量制御の特性をし,この特性におけるy切片Eaが,前記分割領域ごとに前記かさ上げ露光量として前記データ記憶部13に予め記憶されている。
また,k1は,前記分割領域各々について,前記画素階調を前記露光量へ線形変換(線形変換に近似する変換を含む)する際の傾きを規定する傾き情報であり,前記データ記憶部13(個別傾き情報記憶手段の一例)に前記分割領域ごとに予め記憶される情報である。
また,前記かさ上げ露光量Eaは,前述したように当該分割領域においてその電位を初期電位Vx0と前記基準初期電位V0との差分(Vx0−V0)だけ降下させるのに必要な露光量Eaである。
ここで,前記制御部10(露光量制御手段の一例)による露光量制御は,前記第1実施例と同様に,前記画素階調に応じて調節が必要となる露光量及び前記かさ上げ露光量Eaに応じて調節が必要となる露光量の両方を併せた分については,前記露光源2(露光手段)による画素当たりの露光時間を調節することにより画素当たりの露光量を調節することによって行われる(露光時間制御手段の一例)。
一方,前記分割領域ごとに前記傾き情報に応じて必要となる露光量の変化分の調節(制御)については,前記露光源2における発光部への供給電力を制御(即ち,パワー変調)して露光強度を調節することにより行う(露光強度制御手段の一例)。
<Second Example of Individual Exposure Control>
The individual exposure amount will be described below with reference to FIGS. 8 and 4 described above, taking as an example the case where a certain divided area on the surface of the a-Si photosensitive drum 1 has the characteristic g0 shown in FIG. A second embodiment of control will be described.
FIG. 4B is a graph showing the characteristics of the second embodiment of the individual exposure amount control for the divided areas having the exposure characteristics shown in the graph g01 of FIG. 8A as in FIG. FIG. 4A is a graph showing the relationship between the pixel gradation and the potential after exposure (post-exposure potential) when the individual exposure amount control according to the characteristics of FIG. 3B is performed. It is.
Here, the characteristic indicated by the dashed line in FIG. 4B represents the same characteristic as the dashed line in FIG.
Also, the conversion characteristics (E = k1 · I + Ea, where E is the exposure amount, I is the pixel gradation, k1 is the inclination, and Ea is the above-mentioned raising exposure amount) indicated by the solid line in FIG. A characteristic of quantity control is obtained, and a y-intercept Ea in this characteristic is stored in advance in the data storage unit 13 as the raised exposure amount for each of the divided areas.
Further, k1 is inclination information that defines an inclination when linearly converting the pixel gradation into the exposure amount (including conversion approximate to linear conversion) for each of the divided areas, and the data storage unit 13 ( This is information stored in advance for each of the divided areas in an example of the individual inclination information storage unit.
Further, as described above, the raised exposure amount Ea is the exposure amount Ea necessary for lowering the potential by the difference (Vx0−V0) between the initial potential Vx0 and the reference initial potential V0 in the divided region. .
Here, the exposure amount control by the control unit 10 (an example of the exposure amount control means) is the exposure amount that needs to be adjusted according to the pixel gradation and the raised exposure amount as in the first embodiment. The amount of exposure that needs to be adjusted according to Ea is adjusted by adjusting the exposure amount per pixel by adjusting the exposure time per pixel by the exposure source 2 (exposure means). (An example of exposure time control means).
On the other hand, for the adjustment (control) of the change in the exposure amount required for each of the divided areas in accordance with the tilt information, the power supplied to the light emitting unit in the exposure source 2 is controlled (ie, power modulation). This is performed by adjusting the exposure intensity (an example of exposure intensity control means).

図4(b)に示すように,前記制御部10は,所定の制御プログラムを実行することにより,前記分割領域ごとに,前記画像処理部12により決定された前記画素階調Iを,前記傾き情報k1に従って線形変換して得られる露光量に対し,前記かさ上げ露光量Ea(即ち,当該分割領域の初期電位と前記基準初期電位との差に応じた露光量)だけ加算した露光量で露光がなされるよう前記露光源2を制御する(露光量制御手段の第2実施例)。
このような前記個別露光量制御により前記露光源2を制御した場合,露光特性における傾きのばらつき,即ち,感度ムラに起因する露光特性のばらつき分が補正されるため,前記画素階調に対する露光後の電位の特性は,図4(a)のグラフgx2のように,基準となる特性g0とほぼ一致する。
その結果,帯電ムラと感度ムラとが併存する感光体ドラム1において,その表面の位置ごとの露光後電位のばらつきをほぼ無くすことができ,画像の濃度ムラ発生の防止効果をさらに高めることができる。
As shown in FIG. 4B, the control unit 10 executes the predetermined control program to change the pixel gradation I determined by the image processing unit 12 for each of the divided areas to the inclination. Exposure is performed with an exposure amount obtained by adding the raised exposure amount Ea (that is, an exposure amount corresponding to the difference between the initial potential of the divided area and the reference initial potential) to the exposure amount obtained by linear conversion according to the information k1. The exposure source 2 is controlled so that the exposure is performed (second embodiment of exposure amount control means).
When the exposure source 2 is controlled by the individual exposure amount control as described above, the variation in inclination in the exposure characteristics, that is, the variation in the exposure characteristics due to the sensitivity unevenness is corrected. The characteristic of the potential substantially coincides with the reference characteristic g0 as shown by a graph gx2 in FIG.
As a result, in the photosensitive drum 1 in which charging unevenness and sensitivity unevenness coexist, variation in the post-exposure potential for each position on the surface can be almost eliminated, and the effect of preventing the occurrence of uneven image density can be further enhanced. .

<露光時間制御の第1実施例>
次に,前記露光量制御の第1実施例又は第2実施例において採用可能な前記制御部10による露光時間制御の第1実施例について説明する。
当該画像形成装置Xが備える前記露光源2は,主走査方向の1画素ごとに1つのLEDランプ(発光部)が配列されたLEDアレイタイプの露光手段である。
図5は,前記制御部10による露光時間制御の第1実施例を説明するタイムチャートを表す。
図5に示すように,前記露光源2には,前記制御部10から,LEDランプごとに(即ち,画素ごとに),所定の露光許可信号Sg1と,パルス信号が1回若しくは連続して発生するカウント信号Sg2と,そのカウント信号Sg2のONからOFFへの変化のカウント回数を指定する設定カウント回数Csとが入力される。
さらに,前記露光源2は,前記制御部10から,LEDランプごと(画素ごと)に,その発光強度(露光強度)を指定する設定露光強度も入力され,当該露光源2が備えるLEDランプへの供給電力調節部の作用により,前記設定露光強度に応じた露光強度(発光強度)での露光を行う。但し,ここでは,説明の便宜上,前記設定露光強度は予め定められた一定の強度に設定されているものとする。即ち,前述の露光量制御の第1実施例(前記傾き情報k1に基づく制御は行わない例)について説明する。
そして,前記露光源2は,前記露光許可信号Sg1が許可状態に変化(ONからOFFへ変化)してから,前記カウント信号Sg2のONからOFFへの変化が前記設定カウント回数Csだけ発生するまでの間(図中,ta+tbの間)にLEDランプを点灯させて露光を行う。
この露光時間制御の第1実施例においては,前記制御部10は,前記露光源2に対し,ON→OFF変化の周期が一定周期である前記カウント信号Sg2を出力し,前記画素階調(ここでは,0〜15の整数)に1を加算した値(画素階調に応じた値の一例)を前記設定カウント回数Csの値として指定(設定)するとともに,前記露光許可信号Sg1が許可状態(OFF)に変化(露光開始指令の発生)してから1つ目の前記カウント信号Sg2の変化(ONからOFF,周期信号の発生に相当)までの時間taを,前記かさ上げ露光量Ea(差分情報の一例)に応じて調節する。これにより,前記露光源2による画素当たりの露光時間を調節する。
なお,前記露光許可信号Sg1のONからOFFへの変化が露光開始指令の発生に相当し,前記カウント信号Sg2のONからOFFへの変化の回数への変化が周期信号の発生に相当する。
<First Example of Exposure Time Control>
Next, a description will be given of a first embodiment of exposure time control by the control unit 10 that can be employed in the first or second embodiment of the exposure amount control.
The exposure source 2 provided in the image forming apparatus X is an LED array type exposure unit in which one LED lamp (light emitting unit) is arranged for each pixel in the main scanning direction.
FIG. 5 is a time chart for explaining a first embodiment of exposure time control by the control unit 10.
As shown in FIG. 5, the exposure source 2 generates a predetermined exposure permission signal Sg1 and a pulse signal once or continuously from the control unit 10 for each LED lamp (that is, for each pixel). The count signal Sg2 to be transmitted and the set count number Cs for specifying the number of counts of the change of the count signal Sg2 from ON to OFF are input.
Further, the exposure source 2 receives a set exposure intensity for designating the light emission intensity (exposure intensity) for each LED lamp (for each pixel) from the control unit 10, so Exposure is performed with an exposure intensity (light emission intensity) corresponding to the set exposure intensity by the action of the supply power adjustment unit. However, here, for convenience of explanation, it is assumed that the set exposure intensity is set to a predetermined constant intensity. That is, the first embodiment of the exposure amount control described above (an example in which control based on the tilt information k1 is not performed) will be described.
Then, after the exposure permission signal Sg1 changes to the permission state (changes from ON to OFF), the exposure source 2 changes from the ON to OFF of the count signal Sg2 until the set count times Cs. During the exposure (between ta + tb in the figure), the LED lamp is turned on to perform exposure.
In the first embodiment of the exposure time control, the control unit 10 outputs the count signal Sg2 whose ON → OFF change period is a constant period to the exposure source 2, and the pixel gradation (here) In this case, a value obtained by adding 1 to an integer of 0 to 15 (an example of a value corresponding to the pixel gradation) is designated (set) as the value of the set count number Cs, and the exposure permission signal Sg1 is in a permission state ( The time ta from the first change of the count signal Sg2 (ON to OFF, which corresponds to the generation of a periodic signal) after the change to (OFF) (exposure start command is generated) to the first exposure signal Ea (difference) Adjust according to the information). Thereby, the exposure time per pixel by the exposure source 2 is adjusted.
The change from ON to OFF of the exposure permission signal Sg1 corresponds to the generation of an exposure start command, and the change to the number of changes in the count signal Sg2 from ON to OFF corresponds to the generation of a periodic signal.

より具体的には,前記制御部10は,画素ごとの露光を行う際に,まず,前記露光源2に対して前記画素階調の値に1を加えた値を前記設定カウント回数Csとして設定するとともに,前記かさ上げ露光量Eaをその値に比例した指標である補正階調(例えば,0〜7の整数)に換算する。図5に示す例は,前記補正階調が3(+3)である場合の例を表す。
次に,前記制御部10は,前記露光源2に出力する前記露光許可信号Sg1をONからOFFへ変化させ(露光開始指令の発生),そこから前記補正階調に比例した時間t1に,所定の遅延時間t0を加算した時間だけ経過した時点を基準時点P01として検知する。この基準時点P01の検知は,例えば,一定周期で変化する不図示のタイミング信号が「前記補正階調の値に相当する回数+前記遅延時間t0に相当する回数」だけ変化することをカウントすること等によって行う。
ここで,前記タイミング信号と前記カウント信号とを,同じクロック信号に基づいて生成した同じ周期の信号とすれば,各信号を生成する回路構成がシンプルとなる。
なお,図5及び後述する図6,図7のタイムチャートに示す前記露光源2への出力信号Sg1,Sg2(制御信号)は,前記制御部10が備える前記パルス信号制御回路により生成される。
More specifically, when performing exposure for each pixel, the control unit 10 first sets a value obtained by adding 1 to the pixel gradation value to the exposure source 2 as the set count number Cs. At the same time, the raised exposure amount Ea is converted into a corrected gradation (for example, an integer of 0 to 7) which is an index proportional to the value. The example shown in FIG. 5 represents an example where the correction gradation is 3 (+3).
Next, the control unit 10 changes the exposure permission signal Sg1 output to the exposure source 2 from ON to OFF (generation of an exposure start command), and then at a predetermined time t1 proportional to the correction gradation. Is detected as a reference time point P01. The detection of the reference time point P01 is, for example, counting that a timing signal (not shown) that changes at a constant period changes by “number of times corresponding to the value of the correction gradation + number of times corresponding to the delay time t0”. Etc.
Here, if the timing signal and the count signal are signals having the same cycle generated based on the same clock signal, the circuit configuration for generating each signal becomes simple.
Note that output signals Sg1 and Sg2 (control signals) to the exposure source 2 shown in the time charts of FIG. 5 and FIGS. 6 and 7 described later are generated by the pulse signal control circuit provided in the control unit 10.

次に,前記制御部10は,前記基準時点P01から,一定周期での前記カウント信号Sg2の変化(ON→OFF)を開始させる。
これにより,前記露光許可信号Sg1が許可状態に変化(露光開始指令の発生)してから1つ目の前記カウント信号Sg2の変化(周期信号の発生)までの時間taが,前記かさ上げ露光量Eaに応じて調節される。
そして,前記露光源2の機能により,前記露光許可信号Sg1が許可状態に変化してから前記基準時点P01までの時間taと,前記基準時点P01から前記画素階調に比例した時間tb(前記画素階調の値×前記カウント信号Sg2の周期)を加算した時間(ta+tb)だけ露光が行われる。
ここで,前記遅延時間t0は,前記露光源2におけるLEDランプの立ち上げロス(発光開始時の動作遅れにより本来あるべき露光量に対して不足する露光量)分の露光量を補うための時間であり,このタイムチャートにおいては,前記遅延時間t0分の露光量は0(ゼロ)とみなされる。従って,露光時間は,実質的には(t1+tb)である。
その結果,図3(b)に示したように,前記分割領域ごとに,前記画素階調を露光量へ線形変換して得られる基準となる露光量(時間tbの間の露光量)に対し,0階調を含む前記画素階調の全階調(全範囲)において前記かさ上げ露光量Eaに応じた露光量(時間t1の間の露光量)だけ加算した露光量で前記露光源2による露光がなされるように露光量制御が行われることになる。
また,図5に示すような露光時間制御を行うとともに,前記制御部10により,前記分割領域ごとに前記傾き係数に比例した露光強度となるように前記設定露光強度を制御すれば,図4(b)に示した露光量制御特性となる。
但しこの場合,前記かさ上げ露光量Eaが同じであっても,前記設定露光強度の変化に相当する分だけ前記補正階調を調節する必要がある。
Next, the control unit 10 starts the change (ON → OFF) of the count signal Sg2 at a constant period from the reference time point P01.
As a result, the time ta from when the exposure permission signal Sg1 is changed to the permitted state (generation of the exposure start command) until the first change of the count signal Sg2 (generation of the periodic signal) is the raised exposure amount. It is adjusted according to Ea.
By the function of the exposure source 2, the time ta from the reference time P01 to the reference time point P01 after the exposure permission signal Sg1 changes to the permission state and the time tb proportional to the pixel gradation from the reference time point P01 (the pixel Exposure is performed for a time (ta + tb) obtained by adding (gradation value × period of the count signal Sg2).
Here, the delay time t0 is a time for supplementing the exposure amount corresponding to the startup loss of the LED lamp in the exposure source 2 (exposure amount that is insufficient with respect to the exposure amount that should originally be due to the operation delay at the start of light emission). In this time chart, the exposure amount for the delay time t0 is regarded as 0 (zero). Therefore, the exposure time is substantially (t1 + tb).
As a result, as shown in FIG. 3B, with respect to the reference exposure amount (exposure amount during time tb) obtained by linearly converting the pixel gradation to the exposure amount for each divided region. , By the exposure source 2 with an exposure amount obtained by adding an exposure amount (exposure amount during time t1) corresponding to the raised exposure amount Ea in all gradations (entire range) of the pixel gradation including 0 gradations. Exposure amount control is performed so that exposure is performed.
If the exposure time control as shown in FIG. 5 is performed and the set exposure intensity is controlled by the control unit 10 so that the exposure intensity is proportional to the inclination coefficient for each of the divided areas, the control unit 10 in FIG. The exposure amount control characteristics shown in b) are obtained.
However, in this case, even if the raising exposure amount Ea is the same, it is necessary to adjust the correction gradation by an amount corresponding to the change in the set exposure intensity.

<露光時間制御の第2実施例>
次に,前記露光量制御の第1実施例又は第2実施例において採用可能な前記制御部10による露光時間制御の第2実施例について説明する。
この露光時間制御の第2実施例における前記露光源2の機能も,同第1実施例における前記露光源2の機能と同じである。
図6は,前記制御部10による露光時間制御の第2実施例を説明するタイムチャートを表す。
この露光時間制御の第2実施例においては,前記制御部10は,前記露光源2に対し,ON→OFF変化の周期が一定周期である前記カウント信号Sg2を出力するとともに,前記画素階調(ここでは,0〜15の整数)に1を加算した値(画素階調に応じた値の一例)に,前記かさ上げ露光量Ea(差分情報の一例)に比例した指標である補正階調の値(差分情報に応じた値の一例)を加算した値を前記設定カウント回数Csとして指定(設定)する。これにより,前記露光源2による画素当たりの露光時間を調節する。
<Second Example of Exposure Time Control>
Next, a description will be given of a second embodiment of the exposure time control by the control unit 10 that can be employed in the first or second embodiment of the exposure amount control.
The function of the exposure source 2 in the second embodiment of the exposure time control is also the same as the function of the exposure source 2 in the first embodiment.
FIG. 6 is a time chart for explaining a second embodiment of the exposure time control by the control unit 10.
In the second embodiment of the exposure time control, the control unit 10 outputs the count signal Sg2 whose ON → OFF change period is a constant period to the exposure source 2, and the pixel gradation ( Here, a correction gradation which is an index proportional to the raised exposure amount Ea (an example of difference information) to a value obtained by adding 1 to an integer of 0 to 15 (an example of a value corresponding to a pixel gradation). A value obtained by adding a value (an example of a value corresponding to difference information) is designated (set) as the set count number Cs. Thereby, the exposure time per pixel by the exposure source 2 is adjusted.

より具体的には,前記制御部10は,画素ごとの露光を行う際に,まず,前記かさ上げ露光量Eaをその値に比例した指標である補正階調(例えば,0〜7の整数)に換算する。図6に示す例は,前記補正階調が2(+2)である場合の例を表す。
さらに前記制御部10は,前記露光源2に対し,前記画素階調に1を加算した値に,前記補正階調の値を加算した値を前記設定カウント回数Csとして設定する。
次に,前記制御部10は,前記露光源2に出力する前記露光許可信号Sg1をONからOFFへ変化させ(露光開始指令の発生),そこから前記遅延時間t0だけ経過した時点を基準時点P02とし,この基準時点P02から一定時間(周期)が経過するこごとに(一定周期で)前記カウント信号Sg2を変化(ON→OFF)させる。この遅延時間t0は,前述の第1実施例における遅延時間と同じ時間である。
これにより,前記露光源2の機能によって,前記露光許可信号Sg1が許可状態に変化(露光開始指令の発生)してから,実質的に,前記補正階調に対応する時間t1に前記画素階調に対応する時間taを加算した時間(ta+tb)だけ露光が行われる。
その結果,図3(b)に示したような露光量制御特性を示す露光量制御が行われることになる。
また,図6に示すような露光時間制御を行うとともに,前記制御部10により,前記分割領域ごとに前記傾き係数に比例した露光強度となるように前記設定露光強度を制御すれば,図4(b)に示した露光量制御特性となる。
但しこの場合も,前記かさ上げ露光量Eaが同じであっても,前記設定露光強度の変化に相当する分だけ前記補正階調を調節する必要がある。
More specifically, when performing exposure for each pixel, the control unit 10 first corrects the raised exposure amount Ea as an index proportional to the correction gradation (for example, an integer of 0 to 7). Convert to. The example shown in FIG. 6 represents an example where the correction gradation is 2 (+2).
Further, the control unit 10 sets a value obtained by adding the value of the correction gradation to the value obtained by adding 1 to the pixel gradation for the exposure source 2 as the set count number Cs.
Next, the control unit 10 changes the exposure permission signal Sg1 to be output to the exposure source 2 from ON to OFF (generation of an exposure start command), and the time when the delay time t0 has elapsed from that is the reference time P02. The count signal Sg2 is changed (ON → OFF) every time a fixed time (cycle) elapses from the reference time point P02 (at a fixed cycle). This delay time t0 is the same as the delay time in the first embodiment.
As a result, the pixel gradation is substantially reduced at time t1 corresponding to the correction gradation after the exposure permission signal Sg1 is changed to the permitted state (generation of an exposure start command) by the function of the exposure source 2. The exposure is performed for the time (ta + tb) obtained by adding the time ta corresponding to.
As a result, the exposure amount control showing the exposure amount control characteristic as shown in FIG. 3B is performed.
If the exposure time control as shown in FIG. 6 is performed and the set exposure intensity is controlled by the control unit 10 so that the exposure intensity is proportional to the slope coefficient for each of the divided areas, FIG. The exposure amount control characteristics shown in b) are obtained.
However, in this case as well, even if the raised exposure amount Ea is the same, it is necessary to adjust the correction gradation by an amount corresponding to the change in the set exposure intensity.

<露光時間制御の第3実施例>
次に,前記露光量制御の第1実施例又は第2実施例において採用可能な前記制御部10による露光時間制御の第3実施例について説明する。
この露光時間制御の第3実施例における前記露光源2の機能も,同第1実施例における前記露光源2の機能と同じである。
図7は,前記制御部10による露光時間制御の第3実施例を説明するタイムチャートを表す。
この露光時間制御の第3実施例においては,各画素の露光を行う際に,前記制御部10は,前記露光源2に対し,前記設定カウント回数Csとして1を設定する。
これにより,前記露光源2は,画素ごとに前記露光許可信号Sg1の変化(ON→OFF,露光開始指令の一例)が発生してから,前記カウント信号Sg2の最小の変化(ON→OFF,露光終了指令の一例)が発生するまでの間に露光を行うことになる。
さらに,前記制御部10は,前記露光許可信号Sg1を露光許可状態(OFF)に変化させた後,その変化から前記遅延時間t0と,前記かさ上げ露光量Eaを露光時間に換算した時間t1と,前記画素階調に対応する時間taとを加算した時間(t0+t1+tb)が経過した時点で変化(ON→OFF)する前記カウント信号Sg2を出力する。
このような前記制御部10の制御により,前記露光許可信号Sg1の変化(露光開始指令の発生)から前記カウント信号Sg2の変化(露光終了指令の発生)までの時間が調節され,これによって画素当たりの露光時間が調節されることになる。
<Third Example of Exposure Time Control>
Next, a description will be given of a third embodiment of the exposure time control by the control unit 10 that can be employed in the first or second embodiment of the exposure amount control.
The function of the exposure source 2 in the third embodiment of the exposure time control is the same as the function of the exposure source 2 in the first embodiment.
FIG. 7 is a time chart for explaining a third embodiment of the exposure time control by the control unit 10.
In the third embodiment of the exposure time control, when the exposure of each pixel is performed, the control unit 10 sets 1 as the set count number Cs for the exposure source 2.
Thereby, the exposure source 2 causes the minimum change (ON → OFF, exposure) of the count signal Sg2 after the change of the exposure permission signal Sg1 (ON → OFF, an example of an exposure start command) occurs for each pixel. Exposure is performed until an example of an end command is generated.
Further, after changing the exposure permission signal Sg1 to the exposure permission state (OFF), the control unit 10 calculates the delay time t0 from the change, and the time t1 obtained by converting the raised exposure amount Ea into the exposure time. The count signal Sg2 that changes (ON → OFF) is output when a time (t0 + t1 + tb) obtained by adding the time ta corresponding to the pixel gradation has elapsed.
By such control of the control unit 10, the time from the change of the exposure permission signal Sg1 (generation of the exposure start command) to the change of the count signal Sg2 (generation of the exposure end command) is adjusted. The exposure time is adjusted.

図7に示す例では,前記制御部10(の前記パルス信号制御回路)により,以下のようにして前記露光許可信号Sg1及び前記カウント信号Sg2が生成される。
即ち,前記制御部10は,十分に短い周期(高周波数)で変化する所定の基準クロック信号Sg00に同期させて,ある基準時点P02に前記露光許可信号Sg1を変化(ON→OFF)させる。
さらに,前記制御部10は,前記基準クロック信号Sg00を分周することにより,前記画素階調の1段階の変化に対応する露光時間の変化幅を変化周期とする画素階調基準信号Sg01を生成する。その際,前記露光許可信号Sg1の変化(ON→OFF)から前記画素階調基準信号Sg01の最初の変化(ON→OFF)までの時間が前記遅延時間t0となるように位相調整がなされる。
そして,前記制御部10は,前記画素階調基準信号の変化(ON→OFF)の回数を,前記画素階調の値+1の回数となるまでカウントし,その時点からさらに,前記基準クロック信号g00の変化の回数を,前記かさ上げ露光量Eaに比例した回数(図7に示す例は9クロック)となるまでカウントし,その時点で前記カウント信号Sg2を変化させる。
これにより,前記露光許可信号Sg1の変化(露光開始指令の発生)から前記カウント信号Sg2の変化(露光終了指令の発生)までの時間が調節され,画素当たりの露光時間が調節される。
また,図7に示すような露光時間制御を行うとともに,前記制御部10により,前記分割領域ごとに前記傾き係数に比例した露光強度となるように前記設定露光強度を制御すれば,図4(b)に示した露光量制御特性となる。
但しこの場合,前記かさ上げ露光量Eaが同じであっても,前記設定露光強度の変化に相当する分だけ,前記基準クロック信号のカウント回数(前記かさ上げ露光量Eaに比例した回数(図7に示す9クロックに相当))を調節する必要がある。
なお,前記露光源2として,レーザスキャン装置を用いる場合であっても,前述した各露光量制御と同様の制御が可能である。
In the example shown in FIG. 7, the exposure permission signal Sg1 and the count signal Sg2 are generated by the controller 10 (the pulse signal control circuit) as follows.
That is, the control unit 10 changes the exposure permission signal Sg1 (ON → OFF) at a certain reference time point P02 in synchronization with a predetermined reference clock signal Sg00 that changes with a sufficiently short period (high frequency).
Further, the control unit 10 divides the reference clock signal Sg00 to generate a pixel gradation reference signal Sg01 having a change period of an exposure time corresponding to a one-step change in the pixel gradation. To do. At that time, the phase adjustment is performed so that the time from the change (ON → OFF) of the exposure permission signal Sg1 to the first change (ON → OFF) of the pixel gradation reference signal Sg01 becomes the delay time t0.
Then, the control unit 10 counts the number of changes (ON → OFF) of the pixel gradation reference signal until the number of pixel gradation values + 1 is reached, and from that time further, the reference clock signal g00 is counted. The number of changes is counted until it reaches a number proportional to the raised exposure amount Ea (9 clocks in the example shown in FIG. 7), and the count signal Sg2 is changed at that time.
Thereby, the time from the change of the exposure permission signal Sg1 (generation of the exposure start command) to the change of the count signal Sg2 (generation of the exposure end command) is adjusted, and the exposure time per pixel is adjusted.
Further, when the exposure time control as shown in FIG. 7 is performed and the set exposure intensity is controlled by the control unit 10 so that the exposure intensity is proportional to the inclination coefficient for each of the divided areas, FIG. The exposure amount control characteristics shown in b) are obtained.
However, in this case, even if the raising exposure amount Ea is the same, the reference clock signal is counted (the number of times proportional to the raising exposure amount Ea (FIG. 7) by the amount corresponding to the change in the set exposure intensity. It is necessary to adjust 9))).
Even when a laser scanning device is used as the exposure source 2, the same control as the above-described exposure amount control is possible.

以上示した実施形態では,前記分割領域を,前記感光体ドラム1表面をそのその軸方向及び周方向の両方に複数分割した領域としたが,これに限るものではない。
例えば,主として前記感光体ドラム1の軸方向若しくは周方向のいずれかの帯電ムラや感度ムラが問題となる場合には,前記分割領域を前記感光体ドラム1の表面をその軸方向にのみ複数分割した領域(前記感光体ドラム1を輪切り状に分割した領域)若しくは周方向にのみ複数分割した領域とすることも考えられる。
また,前記実施形態及び実施例では,前記分割領域ごとの初期電位の前記基準初期電位に対する差分情報として前記かさ上げ露光量Eaを,前記傾き情報として前記画素階調を前記露光量に変換する際の傾きそのものを例に示したが,これに限らず,例えば,それら差分情報や傾きを特定できる情報であれば,他の情報であってもかまわない。例えば,前記基準初期電位に対する各分割領域の初期電位の差分や,それを予め前記補正階調に換算した値等の情報を前記差分情報として前記データ記憶部13に記憶しておくことが考えられる。
同様に,前記画素階調から前記露光量への変換テーブルや,前記画素階調の軸と前記露光量の軸とからなる座標系について傾きを特定する座標情報等を前記傾き情報として前記データ記憶部13に記憶しておくことが考えられる。
In the embodiment described above, the divided region is a region obtained by dividing the surface of the photosensitive drum 1 into a plurality of portions both in the axial direction and in the circumferential direction, but is not limited thereto.
For example, when charging unevenness or sensitivity unevenness mainly in the axial direction or circumferential direction of the photosensitive drum 1 is a problem, the divided region is divided into a plurality of parts only on the surface of the photosensitive drum 1 in the axial direction. It is also conceivable to use a region obtained by dividing the photosensitive drum 1 in a ring shape or a region obtained by dividing the photosensitive drum 1 in the circumferential direction.
In the embodiment and the example, when the raised exposure amount Ea is converted as the difference information of the initial potential of each divided region with respect to the reference initial potential, and the pixel gradation is converted into the exposure amount as the inclination information. However, the present invention is not limited to this. For example, other information may be used as long as it is information that can identify the difference information and the inclination. For example, it is conceivable that information such as the difference between the initial potentials of the respective divided regions with respect to the reference initial potential and a value obtained by converting the difference into the correction gradation in advance is stored in the data storage unit 13 as the difference information. .
Similarly, a conversion table from the pixel gradation to the exposure amount, coordinate information for specifying an inclination with respect to a coordinate system composed of the axis of the pixel gradation and the axis of the exposure amount, etc. are stored as the inclination information in the data storage. It is conceivable to store in the unit 13.

また,以上示した実施形態及び実施例では,前記かさ上げ露光量Eaや前記傾き情報が前記データ記憶部13に予め記憶された画像形成装置Xについて示したが,前記かさ上げ露光量Ea(差分情報の一例)や前記傾き情報を算出する手段を設けた画像形成装置も実施形態として考えられる。
例えば,当該画像形成装置Xに装着された前記感光体ドラム1の前記分割領域各々における露光特性に関する情報及び前記分割領域全てについて共通の基準となる露光特性に関する情報を予め前記データ記憶部13に記憶させておき,その記憶情報に基づいて前記かさ上げ露光量Eaや前記傾き情報k1を算出する手段を設け,その算出結果に基づいて前述したような露光量制御を行うよう構成した画像形成装置も考えられる。この場合,前記分割領域各々における露光特性に関する情報が,前記差分情報や前記傾き情報を含む基礎情報であるということができる。
これにより,画像形成装置の製造段階で,各装置個別に前記かさ上げ露光量や前記傾き情報を算出して記憶させる手間が省ける。
In the embodiments and examples described above, the image forming apparatus X in which the raised exposure amount Ea and the inclination information are stored in advance in the data storage unit 13 is shown. However, the raised exposure amount Ea (difference) An example of information) and an image forming apparatus provided with means for calculating the tilt information are also conceivable as embodiments.
For example, information relating to exposure characteristics in each of the divided areas of the photosensitive drum 1 mounted on the image forming apparatus X and information relating to exposure characteristics serving as a common reference for all the divided areas are stored in the data storage unit 13 in advance. There is also provided an image forming apparatus configured to provide means for calculating the raised exposure amount Ea and the inclination information k1 based on the stored information, and to perform the exposure amount control as described above based on the calculation result. Conceivable. In this case, it can be said that the information regarding the exposure characteristics in each of the divided areas is basic information including the difference information and the inclination information.
Accordingly, it is possible to save the trouble of calculating and storing the raised exposure amount and the tilt information individually for each apparatus at the manufacturing stage of the image forming apparatus.

本発明は,画像形成装置への利用が可能である。   The present invention can be used for an image forming apparatus.

本発明の実施形態に係る画像形成装置Xの概略断面図。1 is a schematic sectional view of an image forming apparatus X according to an embodiment of the present invention. 画像形成装置Xの主要部の概略構成を表すブロック図。2 is a block diagram illustrating a schematic configuration of a main part of the image forming apparatus X. FIG. 画像形成装置Xにおける画素階調に対する露光量の制御特性の第1実施例及びそのときの画素階調と露光後の電位との関係の一例を表すグラフ。6 is a graph showing an example of the relationship between the pixel gradation at that time and the potential after exposure in the first embodiment of the exposure amount control characteristic with respect to the pixel gradation in the image forming apparatus X; 画像形成装置Xにおける画素階調に対する露光量の制御特性の第2実施例及びそのときの画素階調と露光後の電位との関係の一例を表すグラフ。7 is a graph showing an example of the relationship between the pixel gradation at that time and the potential after exposure in the second embodiment of the exposure amount control characteristic with respect to the pixel gradation in the image forming apparatus X. 画像形成装置Xにおける露光時間制御の第1実施例を説明するタイムチャート。3 is a time chart for explaining a first embodiment of exposure time control in the image forming apparatus X; 画像形成装置Xにおける露光時間制御の第2実施例を説明するタイムチャート。7 is a time chart for explaining a second embodiment of exposure time control in the image forming apparatus X. FIG. 画像形成装置Xにおける露光時間制御の第3実施例を説明するタイムチャート。9 is a time chart for explaining a third embodiment of exposure time control in the image forming apparatus X. FIG. 帯電ムラと感度ムラとが並存する感光体表面における従来の画素階調と露光後の電位との関係の一例を表すグラフ。The graph showing an example of the relationship between the conventional pixel gradation and the potential after exposure on the surface of the photoreceptor where charging unevenness and sensitivity unevenness coexist. 帯電ムラと感度ムラとが並存する感光体表面の露光に際し0を除く全ての画素階調各々を設定して露光した後の電位を基準特性に一致させるように個別露光量変換を行った場合の画素階調と露光後の電位との関係を表すグラフ。When the exposure on the surface of the photoconductor in which charging unevenness and sensitivity unevenness coexist, the individual exposure amount conversion is performed so that all pixel gradations except for 0 are set and the potential after exposure is matched with the reference characteristics. The graph showing the relationship between a pixel gradation and the electric potential after exposure.

符号の説明Explanation of symbols

X…本発明の実施形態に係る画像形成装置
1BK,1M,1Y,1C…感光体ドラム
2BK,2M,2Y,2C…露光源
3BK,3M,3Y,3C…帯電装置
4BK,4M,4Y,4C…除電装置
5BK,5M,5Y,5C…現像装置
6…給紙ローラ
7…中間転写ベルト
8…搬送ローラ
9…定着装置
10…制御部
11…表示操作部
12…画像処理部
13…データ記憶部
14…回転位置検出部
X: Image forming apparatuses 1BK, 1M, 1Y, 1C according to embodiments of the present invention: Photosensitive drums 2BK, 2M, 2Y, 2C ... Exposure sources 3BK, 3M, 3Y, 3C ... Charging devices 4BK, 4M, 4Y, 4C ... Static elimination devices 5BK, 5M, 5Y, 5C... Development device 6... Feed roller 7. Intermediate transfer belt 8. Conveyance roller 9. Fixing device 10 Control unit 11 Display operation unit 12 Image processing unit 13 Data storage unit 14: Rotation position detector

Claims (9)

所定の画像データに基づいて画素ごとの濃淡レベルを表す画素階調を決定する画像処理手段と,予め帯電手段により帯電済みの感光体の表面を前記画像処理手段により決定された前記画素階調に応じた露光量で画素ごとに露光することにより前記感光体に静電潜像を書き込む露光手段とを具備する画像形成装置であって,
前記感光体の表面を複数に分割した分割領域ごとに,該分割領域の初期電位と全ての前記分割領域に共通の基準初期電位との差に応じた差分情報を記憶する個別差分情報記憶手段と,
前記画像処理手段により決定された前記画素階調を露光量へ略線形変換して得られる露光量に対し,前記分割領域ごとに前記画素階調が0階調を含む所定範囲である場合において前記差分情報に応じた露光量だけ加算した露光量で前記露光手段による露光がなされるよう制御する露光量制御手段と,
を具備してなることを特徴とする画像形成装置。
An image processing means for determining a pixel gradation representing a light and shade level for each pixel based on predetermined image data; and a surface of the photosensitive member charged in advance by a charging means to the pixel gradation determined by the image processing means. An image forming apparatus comprising: an exposure unit that writes an electrostatic latent image on the photoreceptor by exposing each pixel with a corresponding exposure amount;
Individual difference information storage means for storing difference information according to the difference between the initial potential of the divided area and the reference initial potential common to all the divided areas, for each divided area obtained by dividing the surface of the photosensitive member into a plurality of areas; ,
In the case where the pixel gradation is within a predetermined range including 0 gradation for each of the divided areas with respect to the exposure amount obtained by substantially linearly converting the pixel gradation determined by the image processing unit into an exposure amount. Exposure amount control means for controlling the exposure means to perform exposure with an exposure amount obtained by adding an exposure amount corresponding to the difference information;
An image forming apparatus comprising:
前記露光量制御手段が,前記差分情報に応じて前記露光手段による画素当たりの露光時間を調節することにより画素当たりの露光量を調節する露光時間制御手段を具備してなる請求項1に記載の画像形成装置。   2. The exposure amount control unit according to claim 1, wherein the exposure amount control unit includes an exposure time control unit that adjusts an exposure amount per pixel by adjusting an exposure time per pixel by the exposure unit according to the difference information. Image forming apparatus. 前記露光手段が,画素ごとに所定の露光開始指令が発生してから所定周期で連続発生する周期信号が指定されたカウント回数だけ発生するまでの間に露光を行うものであり,
前記露光時間制御手段が,前記画素階調に応じた値を前記カウント回数の値として前記露光手段に指定するとともに,前記露光開始指令の発生から1つ目の前記周期信号の発生までの時間を前記差分情報に応じて調節することにより画素当たりの露光時間を調節してなる請求項2に記載の画像形成装置。
The exposure means performs exposure after a predetermined exposure start command is generated for each pixel until a periodic signal continuously generated at a predetermined period is generated a specified number of times;
The exposure time control means designates a value according to the pixel gradation as the count number value to the exposure means, and sets a time from generation of the exposure start command to generation of the first periodic signal. The image forming apparatus according to claim 2, wherein an exposure time per pixel is adjusted by adjusting according to the difference information.
前記露光手段が,画素ごとに所定の露光開始指令が発生してから所定周期で連続発生する周期信号が指定されたカウント回数だけ発生するまでの間に露光を行うものであり,
前記露光時間制御手段が,前記画素階調に応じた値に前記差分情報に応じた値を加算した値を前記露光手段に指定する前記カウント回数とすることにより画素当たりの露光時間を調節してなる請求項2に記載の画像形成装置。
The exposure means performs exposure after a predetermined exposure start command is generated for each pixel until a periodic signal continuously generated at a predetermined period is generated a specified number of times;
The exposure time control means adjusts the exposure time per pixel by setting a value obtained by adding a value corresponding to the difference information to a value corresponding to the pixel gradation to the exposure means. The image forming apparatus according to claim 2.
前記露光手段が,画素ごとに所定の露光開始指令が発生してから所定の露光終了指令が発生するまでの間に露光を行うものであり,
前記露光時間制御手段が,前記露光開始指令の発生から前記露光終了指令の発生までの時間を調節することにより画素当たりの露光時間を調節してなる請求項2に記載の画像形成装置。
The exposure means performs exposure after a predetermined exposure start command is generated for each pixel until a predetermined exposure end command is generated;
The image forming apparatus according to claim 2, wherein the exposure time control unit adjusts an exposure time per pixel by adjusting a time from generation of the exposure start command to generation of the exposure end command.
前記分割領域ごとに,前記画素階調を前記露光量へ略線形変換する際の傾きを規定する傾き情報を記憶する個別傾き情報記憶手段を具備し,
前記露光量制御手段が,前記分割領域ごとに前記傾き情報に基づく露光量の変化に応じて前記露光手段における露光強度を調節する露光強度調節手段を具備してなる請求項2〜5のいずれかに記載の画像形成装置。
For each of the divided areas, comprising individual inclination information storage means for storing inclination information defining an inclination when the pixel gradation is substantially linearly converted into the exposure amount;
6. The exposure amount adjusting unit according to claim 2, further comprising an exposure intensity adjusting unit that adjusts an exposure intensity in the exposure unit in accordance with a change in an exposure amount based on the tilt information for each of the divided areas. The image forming apparatus described in 1.
前記分割領域が,ドラム状の前記感光体の表面をその軸方向と周方向との一方又は両方に複数に分割した領域である請求項1〜6のいずれかに記載の画像形成装置。   The image forming apparatus according to claim 1, wherein the divided area is an area obtained by dividing the surface of the drum-shaped photoconductor into one or both of an axial direction and a circumferential direction. 前記感光体がa−Si感光体である請求項1〜7のいずれかに記載の画像形成装置。   The image forming apparatus according to claim 1, wherein the photoconductor is an a-Si photoconductor. 前記画像処理手段が,前記画像データに基づいて複数画素の前記画素階調の配列を決定する面積階調方式で階調表現を行うものである請求項1〜8のいずれかに記載の画像形成装置。   The image formation according to claim 1, wherein the image processing unit performs gradation expression by an area gradation method that determines an array of the pixel gradations of a plurality of pixels based on the image data. apparatus.
JP2004378378A 2004-12-28 2004-12-28 Image forming apparatus Pending JP2006181883A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004378378A JP2006181883A (en) 2004-12-28 2004-12-28 Image forming apparatus
US11/320,436 US7692814B2 (en) 2004-12-28 2005-12-28 Image forming apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004378378A JP2006181883A (en) 2004-12-28 2004-12-28 Image forming apparatus

Publications (1)

Publication Number Publication Date
JP2006181883A true JP2006181883A (en) 2006-07-13

Family

ID=36735333

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004378378A Pending JP2006181883A (en) 2004-12-28 2004-12-28 Image forming apparatus

Country Status (1)

Country Link
JP (1) JP2006181883A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008093835A (en) * 2006-10-06 2008-04-24 Fuji Xerox Co Ltd Print head and image forming apparatus
JP2013228463A (en) * 2012-04-24 2013-11-07 Canon Inc Image forming apparatus
US11036159B2 (en) 2018-11-29 2021-06-15 Canon Kabushiki Kaisha Image forming apparatus for controlling an exposure amount on a surface of a photoconductor

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6349779A (en) * 1986-08-20 1988-03-02 Canon Inc Image density correcting device
JPH08171260A (en) * 1994-12-15 1996-07-02 Canon Inc Electrophotographic device
JPH09236972A (en) * 1996-02-29 1997-09-09 Canon Inc Image forming device
JPH10240004A (en) * 1996-12-27 1998-09-11 Ricoh Co Ltd Image forming device
JPH11240197A (en) * 1998-02-25 1999-09-07 Oki Data Corp Electrophotographic printing apparatus
JPH11265098A (en) * 1998-03-18 1999-09-28 Canon Inc Device and method for image forming
JP2001094782A (en) * 1999-09-27 2001-04-06 Hitachi Ltd Spread division pwm gradation processing unit
JP2001171173A (en) * 1999-12-20 2001-06-26 Sanyo Electric Co Ltd Led display device
JP2002067387A (en) * 2000-09-01 2002-03-05 Canon Inc Image forming device
JP2004061860A (en) * 2002-07-29 2004-02-26 Ricoh Co Ltd Image forming apparatus, sensitivity information acquisition method and copying machine
JP2004160709A (en) * 2002-11-11 2004-06-10 Kyocera Mita Corp Image forming apparatus

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6349779A (en) * 1986-08-20 1988-03-02 Canon Inc Image density correcting device
JPH08171260A (en) * 1994-12-15 1996-07-02 Canon Inc Electrophotographic device
JPH09236972A (en) * 1996-02-29 1997-09-09 Canon Inc Image forming device
JPH10240004A (en) * 1996-12-27 1998-09-11 Ricoh Co Ltd Image forming device
JPH11240197A (en) * 1998-02-25 1999-09-07 Oki Data Corp Electrophotographic printing apparatus
JPH11265098A (en) * 1998-03-18 1999-09-28 Canon Inc Device and method for image forming
JP2001094782A (en) * 1999-09-27 2001-04-06 Hitachi Ltd Spread division pwm gradation processing unit
JP2001171173A (en) * 1999-12-20 2001-06-26 Sanyo Electric Co Ltd Led display device
JP2002067387A (en) * 2000-09-01 2002-03-05 Canon Inc Image forming device
JP2004061860A (en) * 2002-07-29 2004-02-26 Ricoh Co Ltd Image forming apparatus, sensitivity information acquisition method and copying machine
JP2004160709A (en) * 2002-11-11 2004-06-10 Kyocera Mita Corp Image forming apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008093835A (en) * 2006-10-06 2008-04-24 Fuji Xerox Co Ltd Print head and image forming apparatus
JP2013228463A (en) * 2012-04-24 2013-11-07 Canon Inc Image forming apparatus
US11036159B2 (en) 2018-11-29 2021-06-15 Canon Kabushiki Kaisha Image forming apparatus for controlling an exposure amount on a surface of a photoconductor

Similar Documents

Publication Publication Date Title
JP5200379B2 (en) Image forming apparatus, control apparatus, and program
US9897956B2 (en) Image forming apparatus
JP2010266594A (en) Image forming apparatus
JP2007286524A (en) Image forming apparatus
US9933740B2 (en) Image forming apparatus that generates conversion condition based on measurement result and first coefficient, and where chromatic color image is formed after predetermined number of monochrome images, generates conversion condition based on new measurement result and second coefficient
JP2015082066A (en) Image forming apparatus
JP4827417B2 (en) Image forming apparatus
US9091988B2 (en) Image forming apparatus capable of image calibration
JP2007292855A (en) Image correcting method and image forming apparatus
JP4626981B2 (en) Image forming apparatus
JP2011186344A (en) Image forming apparatus and density unevenness correction method
JP4480591B2 (en) Image forming apparatus
JP2006181883A (en) Image forming apparatus
JP4526413B2 (en) Image forming apparatus
JP2007286460A (en) Image correction method and image forming apparatus
US7557960B2 (en) Image forming apparatus
US7692814B2 (en) Image forming apparatus
JP4771691B2 (en) Image forming apparatus
JP4832150B2 (en) Image correction method and image forming apparatus
JP4656934B2 (en) Image forming apparatus
JP2007322745A (en) Image forming apparatus
JP2015087407A (en) Image forming apparatus
JP4575142B2 (en) Image forming apparatus
JP7412942B2 (en) Image forming device
JP2006247903A (en) Image forming device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101022

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101026

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101220

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110412

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110823