Nothing Special   »   [go: up one dir, main page]

JP2006169021A - Multiple oxide, its production method and catalyst for exhaust gas purification - Google Patents

Multiple oxide, its production method and catalyst for exhaust gas purification Download PDF

Info

Publication number
JP2006169021A
JP2006169021A JP2004361289A JP2004361289A JP2006169021A JP 2006169021 A JP2006169021 A JP 2006169021A JP 2004361289 A JP2004361289 A JP 2004361289A JP 2004361289 A JP2004361289 A JP 2004361289A JP 2006169021 A JP2006169021 A JP 2006169021A
Authority
JP
Japan
Prior art keywords
oxide
particles
oxide particles
composite
average particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004361289A
Other languages
Japanese (ja)
Other versions
JP4830293B2 (en
Inventor
Toshio Yamamoto
敏生 山本
Akihiko Suda
明彦 須田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2004361289A priority Critical patent/JP4830293B2/en
Publication of JP2006169021A publication Critical patent/JP2006169021A/en
Application granted granted Critical
Publication of JP4830293B2 publication Critical patent/JP4830293B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Oxygen, Ozone, And Oxides In General (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Catalysts (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To suppress the sintering of a functional oxide easy to be sintered when it is used as a carrier. <P>SOLUTION: The multiple oxide is composed of first oxide grains 1 beforehand subjected to sintering by heat treatment and having a mean grain diameter of ≤100 nm, and second oxide grains 2 composed of an oxide dissimilar to the first oxide grains 1 and carried to the first oxide grains 1, and the mean grain diameter of the second oxide grains 2 after heat treatment at 1,000°C in the air is 1 to 20 nm. Since the first oxide grains 1 beforehand subjected to sintering serves as diffusion barriers, the grain growth of the second oxide grains 2 can be suppressed. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、自動車の排ガス浄化用触媒の担体として有用な複合酸化物とその製造方法、及びその複合酸化物を担体とする排ガス浄化用触媒に関する。   The present invention relates to a composite oxide useful as a carrier for an exhaust gas purification catalyst for automobiles, a method for producing the same, and an exhaust gas purification catalyst using the composite oxide as a carrier.

従来より自動車の排ガス浄化用触媒として、排ガス中のCO及びHCの酸化とNOx の還元とを同時に行って浄化する三元触媒が用いられている。このような三元触媒としては、例えばコーディエライトなどからなる耐熱性ハニカム基材にγ-Al2O3からなる担体層を形成し、その担体層に白金(Pt)やロジウム(Rh)などの貴金属を担持させたものが広く知られている。 As an exhaust gas purifying catalyst conventionally automobiles, three-way catalyst for purifying performing the reduction of the oxidized and NO x CO and HC in the exhaust gas simultaneously is used. As such a three-way catalyst, for example, a carrier layer made of γ-Al 2 O 3 is formed on a heat-resistant honeycomb substrate made of cordierite, and platinum (Pt), rhodium (Rh), etc. are formed on the carrier layer. Those carrying a noble metal are widely known.

排ガス浄化触媒に用いられる担体の条件としては、比表面積が大きく耐熱性が高いことが挙げられ、一般にはγ-Al2O3、SiO2、ZrO2、TiO2などが用いられることが多い。また酸素吸放出能をもつCeO2などの機能性酸化物を用いることで、排ガスの雰囲気変動を緩和することも行われている。さらにCeO2−ZrO2複合酸化物を用いれば、耐熱性が向上し酸素吸放出能の熱安定性が向上することも知られている。 The carrier used for the exhaust gas purification catalyst has a large specific surface area and high heat resistance. In general, γ-Al 2 O 3 , SiO 2 , ZrO 2 , TiO 2 and the like are often used. In addition, by using functional oxides such as CeO 2 having oxygen absorption / release capability, it is also possible to reduce fluctuations in the atmosphere of exhaust gas. Furthermore, it is known that the use of CeO 2 —ZrO 2 composite oxide improves the heat resistance and improves the thermal stability of the oxygen storage / release capability.

ところで直噴ガソリンエンジンの高出力化あるいは高速走行の増加などを背景に、近年の自動車排ガスの温度は 600〜 700℃の高温となっている。しかし従来の触媒においては、実際の排ガス中における耐久性に乏しく、熱によって担体がシンタリングし比表面積が低下することによって浄化性能が低下するという問題がある。また担体のシンタリングに伴って貴金属が粒成長する場合もあり、そうなると浄化性能がさらに低下してしまう。したがって、担体のシンタリングを防止するとともに貴金属の粒成長を抑制することが求められている。   By the way, the temperature of automobile exhaust gas in recent years has become as high as 600-700 ° C against the background of high output of a direct injection gasoline engine or an increase in high-speed driving. However, the conventional catalyst has a problem that the durability in actual exhaust gas is poor, and the purification performance is lowered by the sintering of the carrier due to heat and the specific surface area being lowered. In addition, the noble metal may grow as the carrier is sintered, which further reduces the purification performance. Therefore, it is required to prevent the sintering of the carrier and to suppress the noble metal grain growth.

そこで特開平10−202101号公報には、Ce、Al及びZrの各イオンを含む混合溶液に、アルカリ性溶液と過酸化水素水とを添加して複合酸化物の前駆体が分散した懸濁液を形成し、懸濁液に比表面積の大きなγ-Al2O3を添加し、それを焼成して形成された複合酸化物担持担体が記載されている。この複合酸化物は、CeO2とZrO2の固溶体が Al2O3中に高分散状態で分布し、さらにこの複合酸化物がγ-Al2O3の粒界部に分散している。したがってこの複合酸化物担持担体に貴金属を担持した触媒においては、γ-Al2O3の粒界部に介在する複合酸化物が障壁となり、あるいは複合酸化物中の Al2O3が障壁となり、γ-Al2O3及びCeO2−ZrO2固溶体のシンタリングが抑制されるため、貴金属の粒成長が抑制され耐久性が向上する。 Therefore, JP-A-10-202101 discloses a suspension in which a complex oxide precursor is dispersed by adding an alkaline solution and a hydrogen peroxide solution to a mixed solution containing Ce, Al, and Zr ions. A composite oxide-supported carrier formed by forming and adding γ-Al 2 O 3 having a large specific surface area to the suspension and firing it is described. In this composite oxide, a solid solution of CeO 2 and ZrO 2 is distributed in a highly dispersed state in Al 2 O 3 , and this composite oxide is further dispersed in the grain boundary portion of γ-Al 2 O 3 . Therefore, in the catalyst in which the noble metal is supported on this composite oxide support, the composite oxide interposed in the grain boundary part of γ-Al 2 O 3 becomes a barrier, or Al 2 O 3 in the composite oxide becomes a barrier, Since sintering of γ-Al 2 O 3 and CeO 2 —ZrO 2 solid solution is suppressed, grain growth of noble metal is suppressed and durability is improved.

さらに特開2003−020227号公報には、Zr酸化物と Al2O3との混合物であり、Zr酸化物と Al2O3とがnmスケールで均一に分散した複合酸化物が開示されている。この複合酸化物によれば、互いに固溶しないZr酸化物と Al2O3とが互いの障壁として作用するために、高温時のシンタリングが抑制される。したがってこの複合酸化物に貴金属を担持した触媒においては、高温時のシンタリングが抑制されるため、貴金属の粒成長が抑制され耐久性が向上する。 More JP 2003-020227 discloses a mixture of a Zr oxide and Al 2 O 3, complex oxides are disclosed in which the Zr oxide and Al 2 O 3 are uniformly dispersed in the nm scale . According to this composite oxide, since Zr oxide and Al 2 O 3 that do not form a solid solution act as a mutual barrier, sintering at high temperatures is suppressed. Therefore, in a catalyst in which a noble metal is supported on this composite oxide, sintering at high temperatures is suppressed, so that noble metal grain growth is suppressed and durability is improved.

しかしながらγ-Al2O3は、比表面積が大きくかつ耐熱性にある程度優れているといえども、高温雰囲気におけるシンタリングが避けられず、それに担持されている貴金属にもある程度の粒成長が生じ活性が低下する。 However, although γ-Al 2 O 3 has a large specific surface area and excellent heat resistance to some extent, sintering in a high-temperature atmosphere is inevitable, and some noble metal supported on it has a certain degree of grain growth and activity. Decreases.

そこで、例えば特開平04−122441号公報には、予め熱処理されたアルミナを用いて貴金属を担持させる排ガス浄化用触媒の製造方法が開示されている。この製造方法によれば、アルミナは既に熱処理されているため、得られた排ガス浄化用触媒は高温の排ガスに晒されても熱劣化がほとんど進行しない。したがって貴金属のシンタリングが生じず安定した浄化性能が得られる。   Thus, for example, Japanese Patent Application Laid-Open No. 04-122441 discloses a method for producing an exhaust gas purifying catalyst for supporting a noble metal using preheated alumina. According to this production method, since the alumina has already been heat-treated, the obtained exhaust gas-purifying catalyst hardly undergoes thermal degradation even when exposed to high-temperature exhaust gas. Therefore, no precious metal sintering occurs and stable purification performance is obtained.

ところが、CeO2、CeO2−ZrO2複合酸化物などの機能性酸化物を担体とする場合には、予め熱処理するとシンタリングの程度が大きく、触媒とした場合には活性が大きく低下して実用的でないという問題があった。
特開平10−202101号 特開2003−020227号 特開平04−122441号
However, when a functional oxide such as CeO2, CeO2-ZrO2 composite oxide is used as a support, the degree of sintering is large when heat-treated in advance, and when used as a catalyst, the activity is greatly reduced and is not practical. There was a problem.
JP-A-10-202101 JP2003-020227 JP 04-122441

本発明は、上記事情に鑑みてなされたものであり、シンタリングしやすい機能性酸化物を担体として用いる場合において、そのシンタリングを抑制することを解決すべき課題とする。   This invention is made | formed in view of the said situation, and makes it the problem which should be solved to suppress the sintering, when using the functional oxide which is easy to sinter as a support | carrier.

上記課題を解決する本発明の複合酸化物の特徴は、熱処理により予めシンタリングされた平均粒子径が 100nm以下の第1酸化物粒子と、第1酸化物粒子とは異種の酸化物よりなり第1酸化物粒子に担持された第2酸化物粒子と、からなり、大気中1000℃での熱処理後の第2酸化物粒子の平均粒子径が1〜20nmであることにある。   A feature of the composite oxide of the present invention that solves the above problems is that the first oxide particles having an average particle diameter of 100 nm or less sintered beforehand by heat treatment and the first oxide particles are made of different kinds of oxides. The second oxide particles carried on one oxide particle, and the average particle diameter of the second oxide particles after heat treatment at 1000 ° C. in the atmosphere is 1 to 20 nm.

第1酸化物粒子の平均粒子径は 100nm以下であることが望ましい。また第1酸化物粒子はアルミナであることが望ましい。さらに、第2酸化物粒子はセリウムを含むことが望ましい。   The average particle diameter of the first oxide particles is desirably 100 nm or less. The first oxide particles are preferably alumina. Furthermore, it is desirable that the second oxide particles contain cerium.

そして本発明の複合酸化物を製造する本発明の製造方法の特徴は、第1酸化物を熱処理してシンタリングさせ第1酸化物粒子を調製する熱処理工程と、第1酸化物に含まれる金属とは異種の第2酸化物を湿式法で第1酸化物粒子に担持する担持工程と、を行うことにある。   A feature of the production method of the present invention for producing the composite oxide of the present invention is that the first oxide is heat-treated and sintered to prepare the first oxide particles, and the metal contained in the first oxide. Is to perform a supporting step of supporting a different kind of second oxide on the first oxide particles by a wet method.

担持工程は、第1酸化物粒子の存在下で、第2酸化物を構成する金属イオンを含む溶液から第2酸化物の前駆体を析出させて複合粒子を形成する析出工程と、複合粒子を酸化雰囲気で焼成して第1酸化物粒子に第2酸化物粒子を担持する焼成工程と、を行うことが好ましい。この場合、析出工程は、第2酸化物を構成する金属イオンを含む溶液に第1酸化物粒子を混合し、その後第1酸化物粒子の表面に第2酸化物の前駆体を析出させて複合粒子を形成することが特に望ましい。   The supporting step includes a precipitation step of depositing a precursor of the second oxide from a solution containing metal ions constituting the second oxide in the presence of the first oxide particles to form composite particles; It is preferable to perform a firing step of firing in an oxidizing atmosphere and supporting the second oxide particles on the first oxide particles. In this case, in the precipitation step, the first oxide particles are mixed with the solution containing the metal ions constituting the second oxide, and then the precursor of the second oxide is precipitated on the surface of the first oxide particles, thereby being combined. It is particularly desirable to form particles.

なお析出工程は、溶液のpHを調整することで前駆体を析出させることが望ましい。   In the precipitation step, it is desirable to precipitate the precursor by adjusting the pH of the solution.

また本発明の排ガス浄化用触媒の特徴は、本発明の複合酸化物に触媒金属を担持してなることにある。   A feature of the exhaust gas purifying catalyst of the present invention is that a catalyst metal is supported on the composite oxide of the present invention.

本発明の複合酸化物によれば、第1酸化物粒子の表面に微細な第2酸化物粒子が担持されている。したがって第1酸化物粒子が拡散障壁となるので、第2酸化物粒子の粒成長が抑制され、第2酸化物の機能の低下が抑制される。また第1酸化物粒子は予めシンタリングされているので、それ以上の粒成長が抑制されている。したがって貴金属を担持した排ガス浄化用触媒の場合には、第1酸化物粒子及び第2酸化物粒子に担持されている貴金属の粒成長が抑制されるため、第2酸化物の機能の低下の抑制と貴金属の粒成長の抑制との両者の相乗作用によって耐久後も高い活性が発現される。   According to the composite oxide of the present invention, fine second oxide particles are supported on the surface of the first oxide particles. Therefore, since the first oxide particles serve as a diffusion barrier, the grain growth of the second oxide particles is suppressed, and the deterioration of the function of the second oxide is suppressed. Further, since the first oxide particles are sintered in advance, further grain growth is suppressed. Therefore, in the case of an exhaust gas purifying catalyst supporting a noble metal, the growth of the noble metal supported on the first oxide particles and the second oxide particles is suppressed, so that the decrease in the function of the second oxide is suppressed. A high activity is exhibited even after endurance by the synergistic effect of the control of the growth of the noble metal grains.

そして本発明の複合酸化物の製造方法によれば、上記した優れた特性をもつ複合酸化物を、安定して容易に製造することができる。また第1酸化物粒子の平均粒子径が 100nm以下となるようにシンタリングさせておくことで、第2酸化物前駆体の偏析を特に抑制でき、第2酸化物粒子の分散性が向上する。さらに析出工程において、第1酸化物粒子の存在下で、第2酸化物を構成する金属イオンを含む溶液から第2酸化物前駆体を析出させるようにすれば、第2酸化物前駆体の偏析を効果的に抑制することができ、第2酸化物粒子の分散性がさらに向上する。   According to the method for producing a complex oxide of the present invention, the complex oxide having the above-described excellent characteristics can be produced stably and easily. Further, by sintering so that the average particle diameter of the first oxide particles is 100 nm or less, segregation of the second oxide precursor can be particularly suppressed, and the dispersibility of the second oxide particles is improved. Further, in the precipitation step, if the second oxide precursor is precipitated from the solution containing the metal ions constituting the second oxide in the presence of the first oxide particles, the segregation of the second oxide precursor is performed. Can be effectively suppressed, and the dispersibility of the second oxide particles is further improved.

本発明の複合酸化物は、予めシンタリングされた第1酸化物粒子と、第1酸化物粒子とは異種の酸化物よりなり第1酸化物粒子に担持された第2酸化物粒子と、から構成されている。第1酸化物粒子は、第2酸化物粒子の拡散の障壁となって第2酸化物粒子の粒成長を抑制するものであり、耐熱性に優れた酸化物が望ましく、アルミナが代表的に例示される。また第1酸化物粒子は予め熱処理によってシンタリングしたものであり、アルミナの場合にはγ相を用いることも可能であるが、α相、θ相あるいはδ相のアルミナが好ましい。またランタノイド元素などで安定化された安定化アルミナを用いることもできる。   The composite oxide of the present invention includes first oxide particles that are sintered in advance, and second oxide particles that are formed of different oxides from the first oxide particles and are supported on the first oxide particles. It is configured. The first oxide particles serve as a barrier for diffusion of the second oxide particles and suppress the grain growth of the second oxide particles. An oxide having excellent heat resistance is desirable, and alumina is typically exemplified. Is done. The first oxide particles are sintered in advance by heat treatment, and in the case of alumina, a γ phase can be used, but an α phase, θ phase, or δ phase alumina is preferable. Further, stabilized alumina stabilized with a lanthanoid element or the like can also be used.

第1酸化物粒子は、平均粒子径が 100nm以下であることが好ましい。これにより複合酸化物の製造時に第2酸化物前駆体の偏析を抑制することができ、第2酸化物粒子の分散性が向上する。なお第1酸化物粒子の比表面積は特に制限されないが、第1酸化物粒子のみを1000℃で熱処理した場合の比表面積が50m2/g以上の範囲が最適である。比表面積がこの範囲より小さいと製造時に第2酸化物前駆体が偏析する場合がある。 The first oxide particles preferably have an average particle size of 100 nm or less. Thereby, the segregation of the second oxide precursor can be suppressed during the production of the composite oxide, and the dispersibility of the second oxide particles is improved. The specific surface area of the first oxide particles is not particularly limited, but it is optimum that the specific surface area when only the first oxide particles are heat-treated at 1000 ° C. is 50 m 2 / g or more. If the specific surface area is smaller than this range, the second oxide precursor may segregate during production.

第2酸化物粒子は機能性酸化物として機能するものであり、自動車の排ガス浄化用触媒に用いる場合には、少なくともセリウムを含む酸化物を用いることが望ましい。またセリウムを含む酸化物を第2酸化物とすれば、本発明の効果が最大に発現され、第2酸化物粒子の粒成長による性能劣化を最大に抑制することができる。このような第2酸化物としては、CeO2、CeO2−ZrO2複合酸化物、CeO2−ZrO2−Y2O3複合酸化物、CeO2−ZrO2−Al2O3 複合酸化物などが例示される。 The second oxide particles function as a functional oxide, and when used as an exhaust gas purification catalyst for automobiles, it is desirable to use an oxide containing at least cerium. If the oxide containing cerium is the second oxide, the effect of the present invention is maximized, and the performance deterioration due to the grain growth of the second oxide particles can be suppressed to the maximum. Such second oxide, CeO 2, CeO 2 -ZrO 2 composite oxide, CeO 2 -ZrO 2 -Y 2 O 3 composite oxide, CeO 2 -ZrO 2 -Al 2 O 3 composite oxides Is exemplified.

本発明の複合酸化物においては、大気中1000℃での熱処理後の第2酸化物粒子の平均粒子径が1〜20nmである。このように微細な状態で第1酸化物粒子に担持されていることで、第2酸化物粒子の機能が最大に発現され、触媒とした場合には高い浄化活性が発現される。   In the composite oxide of the present invention, the average particle diameter of the second oxide particles after heat treatment at 1000 ° C. in the atmosphere is 1 to 20 nm. By being supported on the first oxide particles in such a fine state, the function of the second oxide particles is maximized, and when used as a catalyst, high purification activity is exhibited.

第1酸化物粒子と第2酸化物粒子の組成比率は、重量比で第1酸化物粒子:第2酸化物粒子が80:20〜20:80の範囲が好ましい。第2酸化物粒子の組成割合がこれより少ないとその機能の発現が困難となり、実用的な触媒とはならない。また第2酸化物粒子の組成割合がこれより多くなると、第1酸化物粒子の濃度が相対的に少なくなる結果、第2酸化物粒子の粒成長が生じ易くなる。   The composition ratio of the first oxide particles to the second oxide particles is preferably in the range of 80:20 to 20:80 in terms of the weight ratio of the first oxide particles: second oxide particles. If the composition ratio of the second oxide particles is less than this, it will be difficult to develop the function, and the catalyst will not be a practical catalyst. Further, when the composition ratio of the second oxide particles is larger than this, the concentration of the first oxide particles is relatively decreased, and as a result, the second oxide particles are likely to grow.

本発明の複合酸化物の製造方法では、第1酸化物を熱処理してシンタリングさせ第1酸化物粒子を調製する熱処理工程と、第1酸化物に含まれる金属とは異種の第2酸化物を湿式法で第1酸化物粒子に担持する担持工程と、を行っている。   In the method for producing a composite oxide according to the present invention, the first oxide is heat-treated and sintered to prepare the first oxide particles, and the metal contained in the first oxide is different from the second oxide. And a supporting step of supporting the first oxide particles on the wet method.

熱処理条件は、第1酸化物がシンタリングする条件であればよく、アルミナの場合には 600〜1200℃が好ましい。また熱処理雰囲気は、大気中など酸化性雰囲気でもよいし、還元性雰囲気あるいは不活性ガス雰囲気で熱処理することも可能である。   The heat treatment conditions may be any conditions that allow the first oxide to sinter, and 600 to 1200 ° C. is preferable in the case of alumina. The heat treatment atmosphere may be an oxidizing atmosphere such as the air, or may be heat treated in a reducing atmosphere or an inert gas atmosphere.

担持工程は、例えば第1酸化物粒子と第2酸化物粒子とを水中で混合し、それを焼成してもよい。しかしこの場合は、焼成時あるいは触媒としての使用時に第2酸化物粒子が粒成長する恐れがある。そこで、第1酸化物粒子の存在下において、第2酸化物を構成する金属イオンを含む溶液から第2酸化物前駆体を析出させて複合粒子を形成する析出工程を行うことが望ましい。第2酸化物を構成する金属イオンを含む溶液から第2酸化物前駆体を析出させ、そこへ第1酸化物粒子を混合する方法では、上記と同様に焼成時あるいは触媒としての使用時に第2酸化物粒子が粒成長する恐れがある。   In the supporting step, for example, the first oxide particles and the second oxide particles may be mixed in water and fired. In this case, however, the second oxide particles may grow during firing or use as a catalyst. Therefore, it is desirable to perform a precipitation step in which the second oxide precursor is precipitated from a solution containing metal ions constituting the second oxide to form composite particles in the presence of the first oxide particles. In the method of precipitating the second oxide precursor from the solution containing the metal ions constituting the second oxide and mixing the first oxide particles therein, the second oxide is used at the time of firing or use as a catalyst as described above. Oxide particles may grow.

第2酸化物を構成する金属イオンを含む溶液から第2酸化物前駆体を析出させるには、溶液のpHを調整して沈殿を析出させる沈殿法、金属アルコキシドを加水分解するゾルゲル法のいずれも用いることができる。しかしアルコキシド法では原料が高価であること、反応の制御が難しいことから、溶液のpHを調整して沈殿を析出させる方法を採用することが望ましい。   In order to precipitate the second oxide precursor from the solution containing the metal ions constituting the second oxide, both the precipitation method of adjusting the pH of the solution to precipitate the precipitate and the sol-gel method of hydrolyzing the metal alkoxide are used. Can be used. However, since the raw material is expensive in the alkoxide method and it is difficult to control the reaction, it is desirable to adopt a method of adjusting the pH of the solution to precipitate the precipitate.

溶液のpHを調整して第2酸化物前駆体の沈殿を析出させる方法には、例えば以下の3つの方法がある。   There are, for example, the following three methods for adjusting the pH of the solution to cause precipitation of the second oxide precursor.

(1)第2酸化物を構成する金属イオンを含む溶液中に第1酸化物粒子を混合しておき、そのpHを調整する方法。   (1) A method of adjusting the pH by mixing first oxide particles in a solution containing metal ions constituting the second oxide.

(2)第1酸化物粒子とpH調整物質を含む溶液中に、第2酸化物を構成する金属イオンを含む溶液を混合する方法。   (2) A method of mixing a solution containing metal ions constituting the second oxide in a solution containing the first oxide particles and the pH adjusting substance.

(3)第1酸化物粒子を分散させた分散液に、第2酸化物を構成する金属イオンを含む溶液とpH調整物質を含む溶液を同時に混合する方法。   (3) A method of simultaneously mixing a solution containing a metal ion constituting the second oxide and a solution containing a pH adjusting substance in a dispersion in which the first oxide particles are dispersed.

しかし(3)の方法では、得られる複合酸化物における第2酸化物粒子の粒径がやや大きくなる傾向が見られるので、(1)又は(2)の方法を採用することが特に望ましい。   However, in the method (3), since the particle diameter of the second oxide particles in the obtained composite oxide tends to be slightly larger, it is particularly desirable to employ the method (1) or (2).

本発明の製造方法においては、第1酸化物粒子の平均粒子径は 100nm以下であることが特に望ましい。第1酸化物粒子の平均粒子径が 100nmより大きくなると、上記した溶液のpHを調整して沈殿を析出させる場合に第2酸化物前駆体の沈殿に偏析が生じ易く、得られる複合酸化物では第2酸化物粒子の平均粒子径は小さくても分散性が低下する場合がある。そのため、大気中1000℃での熱処理後の第2酸化物粒子の平均粒子径が20nmを超えるようになり、好ましくない。しかし担持工程の方法によっては、 100nmを超える第1酸化物粒子を用いても初期では微細な第2酸化物粒子を担持できる場合があるが、熱処理後には平均粒子径は大きくなってしまう。   In the production method of the present invention, the average particle size of the first oxide particles is particularly preferably 100 nm or less. When the average particle diameter of the first oxide particles is larger than 100 nm, the precipitation of the second oxide precursor is likely to occur when the precipitate is precipitated by adjusting the pH of the above solution. Even if the average particle diameter of the second oxide particles is small, the dispersibility may decrease. For this reason, the average particle diameter of the second oxide particles after heat treatment at 1000 ° C. in the air exceeds 20 nm, which is not preferable. However, depending on the method of the supporting step, even if the first oxide particles exceeding 100 nm are used, the fine second oxide particles may be supported at the initial stage, but the average particle size becomes large after the heat treatment.

本発明の排ガス浄化用触媒は、本発明の複合酸化物に貴金属を担持してなる。貴金属としては、Pt、Rh、Pd、Irなど、従来の排ガス浄化用触媒に用いられているものを用いることができる。貴金属の担持量は、活性とコストの観点から 0.1〜10重量%とすることが好ましい。また貴金属を担持するには、吸着担持法、吸水担持法のいずれも用いることができる。卑金属など他の触媒金属を貴金属と共に担持することができることは言うまでもない。   The exhaust gas purifying catalyst of the present invention comprises a noble metal supported on the composite oxide of the present invention. As the noble metal, those used for conventional exhaust gas purification catalysts such as Pt, Rh, Pd and Ir can be used. The amount of noble metal supported is preferably 0.1 to 10% by weight from the viewpoint of activity and cost. In order to carry a noble metal, either an adsorption carrying method or a water absorbing carrying method can be used. It goes without saying that other catalytic metals such as base metals can be supported together with noble metals.

以下、実施例及び比較例により本発明を具体的に説明する。   Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples.

(実施例1)
1.熱処理工程
γ-Al2O3粉末(比表面積: 140m2/g、平均粒子径:60nm)を大気中にて 900℃で5時間熱処理し、比表面積が 120m2/g、平均粒子径が80nmのアルミナ粉末を調製した。このアルミナ粉末は、大気中にて1000℃で5時間焼成後の比表面積が90m2/gである。
Example 1
1. Heat treatment step γ-Al 2 O 3 powder (specific surface area: 140 m 2 / g, average particle size: 60 nm) is heat-treated in the atmosphere at 900 ° C. for 5 hours to have a specific surface area of 120 m 2 / g and an average particle size of 80 nm. Alumina powder was prepared. This alumina powder has a specific surface area of 90 m 2 / g after firing at 1000 ° C. for 5 hours in the air.

2.担持工程
CeO2として28重量%の濃度の硝酸セリウム水溶液 176.3gと、ZrO2として18重量%の濃度のオキシ硝酸ジルコニウム水溶液 240.0gと、30%過酸化水素水80gと、上記アルミナ粉末32.5gとを、1Lのポリビーカ中で撹拌混合した。
2. Loading process
176.3 g of cerium nitrate aqueous solution with a concentration of 28% by weight as CeO 2 , 240.0 g of zirconium oxynitrate aqueous solution with a concentration of 18% by weight as ZrO 2 , 80 g of 30% hydrogen peroxide water, and 32.5 g of the above alumina powder, Stir and mix in a 1 L polybeaker.

一方、別の3Lのポリビーカにイオン交換水1200gと、25%アンモニア水 500gとを撹拌混合した。これを撹拌しながら、上記混合溶液を10ml/分の速度で滴下し、沈殿物を得た。   On the other hand, 1200 g of ion-exchange water and 500 g of 25% ammonia water were mixed with stirring in another 3 L polybeaker. While stirring this, the above mixed solution was added dropwise at a rate of 10 ml / min to obtain a precipitate.

この沈殿物を濾過・洗浄し、大気中にて 400℃で5時間仮焼成した後、大気中にて 700℃で5時間本焼成し、比表面積が 102m2/gの複合酸化物を得た。 This precipitate was filtered and washed, calcined at 400 ° C. for 5 hours in the air, and then calcined at 700 ° C. for 5 hours in the air to obtain a composite oxide having a specific surface area of 102 m 2 / g. .

この複合酸化物をTEMにて観察したところ、図1に示すように、平均粒子径が80nmのアルミナ粒子1(第1酸化物粒子)と、アルミナ粒子1の表面及び細孔内に担持された平均粒子径が8nmのCeO2−ZrO2固溶体粒子2(第2酸化物粒子)とから構成されていた。 When this composite oxide was observed with a TEM, as shown in FIG. 1, alumina particles 1 (first oxide particles) having an average particle diameter of 80 nm were supported on the surfaces and pores of the alumina particles 1. It was composed of CeO 2 —ZrO 2 solid solution particles 2 (second oxide particles) having an average particle size of 8 nm.

(実施例2)
1.熱処理工程
実施例1と同様に行い、比表面積が 120m2/g、平均粒子径が80nmのアルミナ粉末を調製した。
(Example 2)
1. Heat treatment step Alumina powder having a specific surface area of 120 m 2 / g and an average particle size of 80 nm was prepared in the same manner as in Example 1.

2.担持工程
CeO2として28重量%の濃度の硝酸セリウム水溶液 176.3gと、ZrO2として18重量%の濃度のオキシ硝酸ジルコニウム水溶液 240.0gと、30%過酸化水素水80gとを、1Lのポリビーカ中で撹拌混合した。
2. Loading process
Stir and mix 176.3 g of cerium nitrate aqueous solution with a concentration of 28 wt% as CeO 2 , 240.0 g of zirconium oxynitrate aqueous solution with a concentration of 18 wt% as ZrO 2 and 80 g of 30% hydrogen peroxide solution in a 1 L polybeaker. did.

また別に、3Lのポリビーカにイオン交換水1200gと、上記アルミナ粉末32.5gと、25%アンモニア水 500gとを撹拌混合した。これを撹拌しながら、上記混合溶液を10ml/分の速度で滴下し、沈殿物を得た。   Separately, 1200 g of ion-exchanged water, 32.5 g of the alumina powder, and 500 g of 25% aqueous ammonia were mixed with stirring in a 3 L polybeaker. While stirring this, the above mixed solution was added dropwise at a rate of 10 ml / min to obtain a precipitate.

この沈殿物を濾過・洗浄し、大気中にて 400℃で5時間仮焼成した後、大気中にて 700℃で5時間本焼成し、比表面積が 103m2/gの複合酸化物を得た。この複合酸化物をTEMにて観察したところ、平均粒子径が80nmのアルミナ粒子と、アルミナ粒子の表面及び細孔内に担持された平均粒子径が10nmのCeO2−ZrO2固溶体粒子とから構成されていた。 This precipitate was filtered and washed, calcined at 400 ° C. for 5 hours in the air, and then calcined at 700 ° C. for 5 hours in the air to obtain a composite oxide having a specific surface area of 103 m 2 / g. . When this composite oxide was observed by TEM, it was composed of alumina particles with an average particle diameter of 80 nm and CeO 2 -ZrO 2 solid solution particles with an average particle diameter of 10 nm supported on the surface and pores of the alumina particles. It had been.

(実施例3)
1.熱処理工程
実施例1と同様に行い、比表面積が 120m2/g、平均粒子径が80nmのアルミナ粉末を調製した。
(Example 3)
1. Heat treatment step Alumina powder having a specific surface area of 120 m 2 / g and an average particle size of 80 nm was prepared in the same manner as in Example 1.

2.担持工程
CeO2として28重量%の濃度の硝酸セリウム水溶液 176.3gと、ZrO2として18重量%の濃度のオキシ硝酸ジルコニウム水溶液 240.0gと、30%過酸化水素水80gとを、1Lのポリビーカ中で撹拌混合した。
2. Loading process
Stir and mix 176.3 g of cerium nitrate aqueous solution with a concentration of 28 wt% as CeO 2 , 240.0 g of zirconium oxynitrate aqueous solution with a concentration of 18 wt% as ZrO 2 and 80 g of 30% hydrogen peroxide solution in a 1 L polybeaker. did.

また別の1Lのポリビーカで、イオン交換水 200gと、25%アンモニア水 140gとを撹拌混合した。   In another 1 L polybeaker, 200 g of ion exchange water and 140 g of 25% ammonia water were mixed with stirring.

さらに別の3Lのポリビーカに、イオン交換水1200gと、上記アルミナ粉末32.5gを撹拌混合した。これを撹拌しながら、上記2種類の混合溶液をそれぞれ別々に撹拌しながら、10ml/分の速度で同時に滴下し、沈殿物を得た。   Furthermore, 1200 g of ion-exchange water and 32.5 g of the alumina powder were mixed with stirring in another 3 L polybeaker. While stirring this, the above two mixed solutions were added dropwise simultaneously at a rate of 10 ml / min while separately stirring to obtain a precipitate.

この沈殿物を濾過・洗浄し、大気中にて 400℃で5時間仮焼成した後、大気中にて 700℃で5時間本焼成し、比表面積が 102m2/gの複合酸化物を得た。この複合酸化物をTEMにて観察したところ、平均粒子径が80nmのアルミナ粒子と、アルミナ粒子の表面及び細孔内に担持された平均粒子径が12nmのCeO2−ZrO2固溶体粒子とから構成されていた。 This precipitate was filtered and washed, calcined at 400 ° C. for 5 hours in the air, and then calcined at 700 ° C. for 5 hours in the air to obtain a composite oxide having a specific surface area of 102 m 2 / g. . When this composite oxide was observed by TEM, it was composed of alumina particles having an average particle diameter of 80 nm and CeO 2 —ZrO 2 solid solution particles having an average particle diameter of 12 nm supported on the surface and pores of the alumina particles. It had been.

(比較例1)
1.熱処理工程
γ-Al2O3の種類を変えたこと以外は実施例1と同様に行い、比表面積が 110m2/g、平均粒子径が 200nmのアルミナ粉末を調製した。このアルミナ粉末は、大気中にて1000℃で5時間焼成後の比表面積が84m2/gである。
(Comparative Example 1)
1. Heat treatment step Alumina powder having a specific surface area of 110 m 2 / g and an average particle diameter of 200 nm was prepared except that the kind of γ-Al 2 O 3 was changed. This alumina powder has a specific surface area of 84 m 2 / g after calcination at 1000 ° C. for 5 hours in the air.

2.担持工程
上記アルミナ粉末を用いたこと以外は実施例1と同様に行い、比表面積が98m2/gの複合酸化物を得た。得られた複合酸化物をTEMにて観察したところ、平均粒子径が 200nmのアルミナ粒子と、アルミナ粒子の表面及び細孔内に担持された平均粒子径が18nmのCeO2−ZrO2固溶体粒子とから構成されていた。
2. Supporting Step Except that the above alumina powder was used, the same procedure as in Example 1 was performed to obtain a composite oxide having a specific surface area of 98 m 2 / g. When the obtained composite oxide was observed with a TEM, alumina particles having an average particle diameter of 200 nm and CeO 2 —ZrO 2 solid solution particles having an average particle diameter of 18 nm supported on the surface and pores of the alumina particles were obtained. Consisted of.

(比較例2)
アルミナ粉末を用いず、したがって熱処理工程を行わなかったこと以外は実施例1と同様である。
(Comparative Example 2)
Example 1 is the same as Example 1 except that no alumina powder was used and therefore no heat treatment step was performed.

得られたCeO2−ZrO2固溶体は、比表面積が65m2/g、平均粒子径が22nmであった。 The obtained CeO 2 —ZrO 2 solid solution had a specific surface area of 65 m 2 / g and an average particle size of 22 nm.

(比較例3)
1.熱処理工程
γ-Al2O3の種類を変えたこと以外は実施例1と同様に行い、比表面積が 120m2/g、平均粒子径が80nmのアルミナ粉末を調製した。このアルミナ粉末は、大気中にて1000℃で5時間焼成後の比表面積が90m2/gである。
(Comparative Example 3)
1. Heat treatment step Alumina powder having a specific surface area of 120 m 2 / g and an average particle diameter of 80 nm was prepared in the same manner as in Example 1 except that the kind of γ-Al 2 O 3 was changed. This alumina powder has a specific surface area of 90 m 2 / g after firing at 1000 ° C. for 5 hours in the air.

2.担持工程
CeO2として28重量%の濃度の硝酸セリウム水溶液 176.3gと、ZrO2として18重量%の濃度のオキシ硝酸ジルコニウム水溶液 240.0gと、30%過酸化水素水80gと、上記アルミナ粉末32.5gと、イオン交換水1200gと、を撹拌混合した。
2. Loading process
176.3 g of cerium nitrate aqueous solution with a concentration of 28 wt% as CeO 2 , 240.0 g of zirconium oxynitrate aqueous solution with a concentration of 18 wt% as ZrO 2 , 80 g of 30% hydrogen peroxide water, 32.5 g of the above alumina powder, ions Then, 1200 g of exchange water was mixed with stirring.

そこへ25%アンモニア水 500gを素早く入れて撹拌して沈殿物を得たこと以外は実施例1と同様に行い、比表面積が 106m2/gの複合酸化物を得た。得られた複合酸化物をTEMにて観察したところ、平均粒子径が80nmのアルミナ粒子と、平均粒子径が10nmのCeO2−ZrO2固溶体粒子とからなり、CeO2−ZrO2固溶体粒子は単独で存在するものもあればアルミナ粒子に担持されているものもあり、分散が均一とはいえなかった。 A composite oxide having a specific surface area of 106 m 2 / g was obtained in the same manner as in Example 1 except that 500 g of 25% aqueous ammonia was quickly added and stirred to obtain a precipitate. The resulting composite oxide was observed by TEM, and alumina particles having an average particle size of 80 nm, an average particle diameter composed of a CeO 2 -ZrO 2 solid solution particles of 10nm, CeO 2 -ZrO 2 solid solution particles alone In some cases, the particles were supported on alumina particles, and the dispersion was not uniform.

<試験・評価>
実施例及び比較例で調製された各複合酸化物を、大気中1000℃で5時間熱処理し、その後の比表面積とアルミナ粒子及びCeO2−ZrO2固溶体粒子の平均粒子径とを測定した。結果表1に示す。なお表1には、熱処理前の比表面積と平均粒子径を初期値として示している。
<Test and evaluation>
Each composite oxide prepared in Examples and Comparative Examples was heat-treated in air at 1000 ° C. for 5 hours, and then the specific surface area and average particle diameters of alumina particles and CeO 2 —ZrO 2 solid solution particles were measured. Results are shown in Table 1. Table 1 shows the specific surface area and average particle diameter before heat treatment as initial values.

Figure 2006169021
Figure 2006169021

各比較例の複合酸化物は、1000℃での熱処理後にCeO2−ZrO2固溶体粒子の粒成長が著しく20nmを超えているのに対し、各実施例の複合酸化物ではCeO2−ZrO2固溶体粒子の粒成長の度合いが小さく抑制されていることがわかる。またアルミナ粒径は、熱処理後も変化していない。 In the composite oxide of each comparative example, the grain growth of CeO 2 —ZrO 2 solid solution particles significantly exceeds 20 nm after heat treatment at 1000 ° C., whereas in the composite oxide of each example, CeO 2 —ZrO 2 solid solution It can be seen that the degree of grain growth of the particles is suppressed to be small. Also, the alumina particle size does not change after the heat treatment.

すなわち比較例1では、アルミナ粒子の平均粒径が 200nmと大きいために、沈殿析出時にCeO2−ZrO2固溶体の前駆体が偏析し、1000℃での熱処理時にアルミナ粒子上の担持密度が高い部位において粒成長が進行したものと推察される。 That is, in Comparative Example 1, since the average particle diameter of the alumina particles is as large as 200 nm, the CeO 2 —ZrO 2 solid solution precursor segregates during precipitation, and the supported density on the alumina particles is high during the heat treatment at 1000 ° C. It is inferred that the grain growth has progressed.

また比較例2では、アルミナ粒子が介在しないためにCeO2−ZrO2固溶体が自由に移動でき、そのため1000℃での熱処理時に粒成長したものと推察される。 Further, in Comparative Example 2, since no alumina particles are present, the CeO 2 —ZrO 2 solid solution can move freely, and therefore, it is presumed that the grains grew during the heat treatment at 1000 ° C.

さらに比較例3では、CeO2−ZrO2固溶体の分散度合いが不均一であるために、1000℃での熱処理時に粒成長したものと推察される。 Further, in Comparative Example 3, since the degree of dispersion of the CeO 2 —ZrO 2 solid solution is non-uniform, it is presumed that grains grew during heat treatment at 1000 ° C.

しかし各実施例では、平均粒子径が 100nm以下のアルミナ粒子を用いて前駆体沈殿を析出させているため偏析が抑制される。また、アルミナ粒子が拡散障壁となってCeO2−ZrO2固溶体どうしの粒成長が抑制される。さらにアルミナ粒子は予めシンタリングされているので、それ以上のシンタリングが抑制される。これらの相乗作用によって、CeO2−ZrO2固溶体粒子の粒成長が抑制されたものと考えられる。 However, in each example, segregation is suppressed because the precursor precipitate is precipitated using alumina particles having an average particle diameter of 100 nm or less. In addition, alumina particles serve as a diffusion barrier, and grain growth between CeO 2 —ZrO 2 solid solutions is suppressed. Further, since the alumina particles are sintered in advance, further sintering is suppressed. It is considered that the grain growth of CeO 2 —ZrO 2 solid solution particles was suppressed by these synergistic actions.

したがって各実施例の複合酸化物を担体として貴金属を担持してなる触媒においては、担体のシンタリングが抑制されているため、それに伴う貴金属の粒成長も抑制される。これにより耐久後も高い浄化活性が発現される。   Therefore, in the catalyst formed by supporting the noble metal using the composite oxide of each example as a support, sintering of the support is suppressed, and the accompanying noble metal grain growth is also suppressed. Thereby, high purification activity is exhibited even after endurance.

次に、各実施例及び各比較例の複合酸化物粉末に所定濃度のジニトロジアミン白金溶液の所定量を含浸させ、蒸発乾固後 300℃で3時間焼成してPtを担持した。Ptの担持量は1重量%である。これを定法にて 0.5〜1mmのペレットとし、ペレット触媒を調製した。   Next, the composite oxide powders of each Example and each Comparative Example were impregnated with a predetermined amount of a dinitrodiamine platinum solution having a predetermined concentration, evaporated and dried, and then fired at 300 ° C. for 3 hours to carry Pt. The amount of Pt supported is 1% by weight. This was made into pellets of 0.5 to 1 mm by a conventional method to prepare a pellet catalyst.

得られた各ペレット触媒をそれぞれ固定床流通式反応装置に配置し、表2に示すモデルガスをリーンガス5分とリッチガス5分で交互にSV=15,000 h-1で流しながら、それぞれ入りガス温度1000℃で5時間保持する耐久試験を行った。 Each of the obtained pellet catalysts was placed in a fixed bed flow reactor, and the model gas shown in Table 2 was flowed alternately at a rate of SV = 15,000 h -1 for 5 minutes for lean gas and 5 minutes for rich gas. An endurance test was carried out at 5 ° C. for 5 hours.

Figure 2006169021
Figure 2006169021

Figure 2006169021
Figure 2006169021

そして耐久試験後の各ペレット触媒に、表3に示すストイキ定常モデルガスを流しながら、 100℃から 500℃まで12℃/分で昇温し、その間のC3H6浄化率を測定した。そしてC3H6の50%浄化温度を求め、結果を表4に示す。 Then, while flowing the stoichiometric steady model gas shown in Table 3 to each pellet catalyst after the durability test, the temperature was raised from 100 ° C. to 500 ° C. at 12 ° C./min, and the C 3 H 6 purification rate during that time was measured. Then, the 50% purification temperature of C 3 H 6 was determined, and the results are shown in Table 4.

Figure 2006169021
Figure 2006169021

表4より、各実施例の触媒は各比較例の触媒に比べて耐久試験後の浄化活性が高いことがわかり、これはCeO2−ZrO2固溶体粒子の粒成長が抑制され、担体のシンタリングが抑制されたことによる効果であることが明らかである。 From Table 4, it can be seen that the catalyst of each example has higher purification activity after the endurance test than the catalyst of each comparative example, which suppresses the grain growth of CeO 2 —ZrO 2 solid solution particles, and supports sintering. It is clear that the effect is due to the suppression.

本発明の複合酸化物は、酸化触媒、三元触媒、NOx 選択還元触媒、NOx 吸蔵還元触媒、水素生成触媒など、各種触媒に利用することができる。 The composite oxide of the present invention can be used for various catalysts such as an oxidation catalyst, a three-way catalyst, a NO x selective reduction catalyst, a NO x storage reduction catalyst, and a hydrogen generation catalyst.

本発明の一実施例の複合酸化物を示す説明図である。It is explanatory drawing which shows the complex oxide of one Example of this invention.

符号の説明Explanation of symbols

1:アルミナ粒子(第1酸化物粒子)
2:CeO2−ZrO2固溶体粒子(第2酸化物粒子)
1: Alumina particles (first oxide particles)
2: CeO 2 —ZrO 2 solid solution particles (second oxide particles)

Claims (12)

熱処理により予めシンタリングされた第1酸化物粒子と、該第1酸化物粒子とは異種の酸化物よりなり該第1酸化物粒子に担持された第2酸化物粒子と、からなり、大気中1000℃での熱処理後の該第2酸化物粒子の平均粒子径が1〜20nmであることを特徴とする複合酸化物。   The first oxide particles pre-sintered by heat treatment and the first oxide particles are composed of different oxides and the second oxide particles supported on the first oxide particles. A composite oxide, wherein the second oxide particles after heat treatment at 1000 ° C have an average particle diameter of 1 to 20 nm. 前記第1酸化物粒子の平均粒子径は 100nm以下である請求項1に記載の複合酸化物。   2. The composite oxide according to claim 1, wherein an average particle diameter of the first oxide particles is 100 nm or less. 前記第1酸化物粒子はアルミナである請求項1又は請求項2に記載の複合酸化物。   The composite oxide according to claim 1, wherein the first oxide particles are alumina. 前記第2酸化物粒子はセリウムを含む請求項1〜3のいずれかに記載の複合酸化物。   The composite oxide according to claim 1, wherein the second oxide particles contain cerium. 第1酸化物を熱処理してシンタリングさせ第1酸化物粒子を調製する熱処理工程と、
該第1酸化物に含まれる金属とは異種の第2酸化物を湿式法で該第1酸化物粒子に担持する担持工程と、を行うことを特徴とする複合酸化物の製造方法。
A heat treatment step of preparing a first oxide particle by heat treating and sintering the first oxide;
And a supporting step of supporting a second oxide different from the metal contained in the first oxide on the first oxide particles by a wet method.
前記第1酸化物粒子の平均粒子径は 100nm以下である請求項5に記載の複合酸化物の製造方法。   The method for producing a composite oxide according to claim 5, wherein the average particle diameter of the first oxide particles is 100 nm or less. 前記第1酸化物粒子はアルミナである請求項5又は請求項6に記載の複合酸化物の製造方法。   The method for producing a composite oxide according to claim 5, wherein the first oxide particles are alumina. 前記第2酸化物はセリウムを含む請求項5〜7のいずれかに記載の複合酸化物の製造方法。   The method for producing a complex oxide according to claim 5, wherein the second oxide contains cerium. 前記担持工程は、前記第1酸化物粒子の存在下で、前記第2酸化物を構成する金属イオンを含む溶液から前記第2酸化物の前駆体を析出させて複合粒子を形成する析出工程と、
該複合粒子を酸化雰囲気で焼成して該第1酸化物粒子に第2酸化物粒子を担持する焼成工程と、を行う請求項5〜8のいずれかに記載の複合酸化物の製造方法。
The supporting step includes a precipitation step of depositing a precursor of the second oxide from a solution containing metal ions constituting the second oxide to form composite particles in the presence of the first oxide particles. ,
The method for producing a composite oxide according to any one of claims 5 to 8, wherein the composite particles are fired in an oxidizing atmosphere to carry the second oxide particles on the first oxide particles.
前記析出工程は、前記第2酸化物を構成する金属イオンを含む溶液に前記第1酸化物粒子を混合し、その後前記第1酸化物粒子の表面に前記第2酸化物の前駆体を析出させて複合粒子を形成する請求項9に記載の複合酸化物の製造方法。   In the precipitation step, the first oxide particles are mixed in a solution containing metal ions constituting the second oxide, and then the precursor of the second oxide is precipitated on the surface of the first oxide particles. The method for producing a composite oxide according to claim 9, wherein the composite particles are formed. 前記析出工程は、前記溶液のpHを調整することで前記前駆体を析出させる請求項9又は請求項10に記載の複合酸化物の製造方法。   11. The method for producing a complex oxide according to claim 9, wherein the precipitation step precipitates the precursor by adjusting a pH of the solution. 請求項1〜4のいずれかに記載の複合酸化物に触媒金属を担持してなることを特徴とする排ガス浄化用触媒。   An exhaust gas purifying catalyst, comprising a composite oxide according to any one of claims 1 to 4 supporting a catalytic metal.
JP2004361289A 2004-12-14 2004-12-14 Composite oxide, method for producing the same, and catalyst for purification of exhaust gas Expired - Fee Related JP4830293B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004361289A JP4830293B2 (en) 2004-12-14 2004-12-14 Composite oxide, method for producing the same, and catalyst for purification of exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004361289A JP4830293B2 (en) 2004-12-14 2004-12-14 Composite oxide, method for producing the same, and catalyst for purification of exhaust gas

Publications (2)

Publication Number Publication Date
JP2006169021A true JP2006169021A (en) 2006-06-29
JP4830293B2 JP4830293B2 (en) 2011-12-07

Family

ID=36670167

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004361289A Expired - Fee Related JP4830293B2 (en) 2004-12-14 2004-12-14 Composite oxide, method for producing the same, and catalyst for purification of exhaust gas

Country Status (1)

Country Link
JP (1) JP4830293B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008004452A1 (en) * 2006-07-06 2008-01-10 Cataler Corporation Oxygen storage material
JP2011144083A (en) * 2010-01-15 2011-07-28 Toyota Motor Corp Method for manufacturing single-nanoparticle-supporting compound, single-nanoparticle-supporting compound obtained by the method
JP2011245416A (en) * 2010-05-26 2011-12-08 Daihatsu Motor Co Ltd Catalyst for cleaning exhaust gas and method for producing the catalyst
KR101336595B1 (en) 2011-09-27 2013-12-05 희성촉매 주식회사 A catalyst for purifying exhaust gas with bimodal size distribution of supports
EP2059339B1 (en) 2006-08-31 2021-11-24 Rhodia Operations Composition with high reducibility made of a nanometric cerium oxide on a support, method of preparation and use as catalyst
WO2022137910A1 (en) * 2020-12-24 2022-06-30 三井金属鉱業株式会社 Composite oxide and method for producing same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5626547A (en) * 1979-08-11 1981-03-14 Toyota Motor Corp Manufacture of catalyst support
JPH04122441A (en) * 1990-09-12 1992-04-22 Toyota Motor Corp Preparation of catalyst for cleaning exhaust gas
JP2003047849A (en) * 2001-08-09 2003-02-18 Nissan Motor Co Ltd Catalyst and method for cleaning exhaust gas
JP2005193179A (en) * 2004-01-08 2005-07-21 Toyota Central Res & Dev Lab Inc Inorganic oxide powder, catalyst carrier and catalyst

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5626547A (en) * 1979-08-11 1981-03-14 Toyota Motor Corp Manufacture of catalyst support
JPH04122441A (en) * 1990-09-12 1992-04-22 Toyota Motor Corp Preparation of catalyst for cleaning exhaust gas
JP2003047849A (en) * 2001-08-09 2003-02-18 Nissan Motor Co Ltd Catalyst and method for cleaning exhaust gas
JP2005193179A (en) * 2004-01-08 2005-07-21 Toyota Central Res & Dev Lab Inc Inorganic oxide powder, catalyst carrier and catalyst

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008004452A1 (en) * 2006-07-06 2008-01-10 Cataler Corporation Oxygen storage material
US8993475B2 (en) 2006-07-06 2015-03-31 Cataler Corporation Oxygen storage material
EP2059339B1 (en) 2006-08-31 2021-11-24 Rhodia Operations Composition with high reducibility made of a nanometric cerium oxide on a support, method of preparation and use as catalyst
JP2011144083A (en) * 2010-01-15 2011-07-28 Toyota Motor Corp Method for manufacturing single-nanoparticle-supporting compound, single-nanoparticle-supporting compound obtained by the method
JP2011245416A (en) * 2010-05-26 2011-12-08 Daihatsu Motor Co Ltd Catalyst for cleaning exhaust gas and method for producing the catalyst
KR101336595B1 (en) 2011-09-27 2013-12-05 희성촉매 주식회사 A catalyst for purifying exhaust gas with bimodal size distribution of supports
WO2022137910A1 (en) * 2020-12-24 2022-06-30 三井金属鉱業株式会社 Composite oxide and method for producing same
EP4269351A4 (en) * 2020-12-24 2024-06-26 Mitsui Mining & Smelting Co., Ltd. Composite oxide and method for producing same

Also Published As

Publication number Publication date
JP4830293B2 (en) 2011-12-07

Similar Documents

Publication Publication Date Title
JP4006976B2 (en) Composite oxide powder, method for producing the same and catalyst
JP4165442B2 (en) Metal oxide particles, production method thereof, and exhaust gas purification catalyst
EP1946834B1 (en) Catalyst carrier particle, exhaust gas purifying catalyst, and methods for producing those
JP4265626B2 (en) Catalyst carrier particles, method for producing the same, and exhaust gas purification catalyst
EP2698197A1 (en) Exhaust gas-purifying catalyst
JP7187654B2 (en) Exhaust gas purification catalyst composition and automobile exhaust gas purification catalyst
JP2006055748A (en) Manufacturing method for catalyst
JP5078125B2 (en) Exhaust gas purification catalyst and regeneration method thereof
JP2013166130A (en) Exhaust gas cleaning three way catalyst
JP2009119430A (en) Low-temperature oxidation catalyst, its production method and exhaust-gas cleaning method using the catalyst
JP4830293B2 (en) Composite oxide, method for producing the same, and catalyst for purification of exhaust gas
JP2005313028A (en) Exhaust gas cleaning catalyst and its manufacturing method
JP5616382B2 (en) Oxidation catalyst and exhaust gas purification method using the same
JP4730947B2 (en) Method for regenerating exhaust gas purification catalyst
JP2006043683A (en) Catalyst carrier and its manufacturing method and catalyst for cleaning exhaust gas
JP3766568B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
JPH10277389A (en) Catalyst for cleaning exhaust gas
JP3860929B2 (en) Exhaust gas purification catalyst, method for producing the same, and exhaust gas purification method
JP2019147090A (en) Three-dimensional catalyst for exhaust gas purification and manufacturing method therefor, and catalyst for integrated structure type exhaust gas purification
JP4775953B2 (en) Exhaust gas purification catalyst and regeneration method thereof
JP2006224086A (en) Catalyst carrier, its production method, and exhaust gas treatment catalyst
JP3882422B2 (en) Method for producing exhaust gas purification catalyst
JP4677779B2 (en) Composite oxide and exhaust gas purification catalyst
JP4547607B2 (en) Exhaust gas purification catalyst
JP4775954B2 (en) Exhaust gas purification catalyst and regeneration method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071019

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110628

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110823

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110905

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140930

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140930

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140930

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees