Nothing Special   »   [go: up one dir, main page]

JP2006161937A - Liquefied gas supply method - Google Patents

Liquefied gas supply method Download PDF

Info

Publication number
JP2006161937A
JP2006161937A JP2004353488A JP2004353488A JP2006161937A JP 2006161937 A JP2006161937 A JP 2006161937A JP 2004353488 A JP2004353488 A JP 2004353488A JP 2004353488 A JP2004353488 A JP 2004353488A JP 2006161937 A JP2006161937 A JP 2006161937A
Authority
JP
Japan
Prior art keywords
heating means
gas
container
flow rate
liquefied gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004353488A
Other languages
Japanese (ja)
Inventor
Yuzo Koda
勇蔵 幸田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2004353488A priority Critical patent/JP2006161937A/en
Publication of JP2006161937A publication Critical patent/JP2006161937A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem that liquefied gas is liable to be reliquefied in a supply system pipe during greatly changing its flow amount, particularly, suddenly reducing it when cleaning a device while supplying the liquefied gas being gasified. <P>SOLUTION: This liquefied gas supply method comprises using a first heating means for increasing the temperature of a container to gasify the liquefied gas filled in the container, passing gas via a diluted gas mixer connected to the container with a first pipe having a second heating means and a mixed gas flow amount detecting means through at least one of a plurality of branch valves connected to the flow amount detecting means with a second pipe having a third heating means, and introducing the gas to a plurality of portions of a vacuum treatment device via at least one of a plurality of third pipes connected to the plurality of branch valves, respectively. The quantity of heat generated by each of the first heating means, the second heating means and the third heating means is controlled depending on a value measured by the gas flow amount detecting means or on the number of the plurality of branch valves being opened. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、シランガス等を使った高周波プラズマCVD法等の薄膜形成工程において、放電空間周辺部材表面や排気ダクト、排気配管内壁等へ堆積残留してしまうポリシラン等の副生成物を除去する為のクリーニング工程において、クリーニングガスとして液化ガスを使用する液化ガス供給方法に関する。   The present invention is for removing a by-product such as polysilane which remains deposited on the surface of the peripheral member of the discharge space, the exhaust duct, the exhaust pipe inner wall, etc., in a thin film forming process such as a high-frequency plasma CVD method using silane gas or the like. The present invention relates to a liquefied gas supply method using a liquefied gas as a cleaning gas in a cleaning process.

シランガスを含む混合ガスを使ったプラズマCVD装置の放電炉内において生成される副生成物、主にポリシラン等を除去する手段として、ドライエッチングによるクリーニング方法では、7B族元素を含んだガス、例えばCF4やNF3等のガスを処理装置内へ導入しプラズマを生起させることで前記ガスを励起、分解しクリーニングを行っていた。しかしながらこの方法ではプラズマ放電領域、すなわち電力印加電極から離れた個所にある部材のクリーニングは困難であった。 As a means for removing by-products generated mainly in a discharge furnace of a plasma CVD apparatus using a mixed gas containing silane gas, mainly polysilane, etc., in a cleaning method by dry etching, a gas containing a 7B group element, for example, CF A gas such as 4 or NF 3 was introduced into the processing apparatus and plasma was generated to excite, decompose, and clean the gas. However, with this method, it has been difficult to clean the member in the plasma discharge region, that is, at a position away from the power application electrode.

この問題を解決するためのプラズマ放電に依存しないクリーニング方法として、7B族元素を含む反応性が高いガスとしてClF3等のガスを使いプラズマレスなクリーニング方法が行われている(例えば、特許文献1、2を参照)。この方法は、電極から離れた場所であってもガスに触れる場所であればクリーニングが進行し、前記ポリシランを除去できるという優れたクリーニング方法であった。さらに、プラズマレスなクリーニング方法においては、部材の温度上昇による問題は発生しにくい為これに起因した部材のダメージを抑えることが可能であり、部材保護の為に別途冷却手段等を設けることで構成が複雑になるといった問題も少なく運用面でも利点が大きいことから、プラズマを使ったクリーニング方法に比べて優れているといえる。 As a cleaning method that does not depend on plasma discharge to solve this problem, a plasmaless cleaning method using a gas such as ClF 3 as a highly reactive gas containing a group 7B element has been performed (for example, Patent Document 1). 2). This method was an excellent cleaning method in which the cleaning progresses as long as it is in contact with gas even if it is away from the electrode, and the polysilane can be removed. Furthermore, in the plasmaless cleaning method, problems due to temperature rise of the members are unlikely to occur, so it is possible to suppress damage to the members due to this, and it is configured by separately providing cooling means etc. for member protection Therefore, it can be said that it is superior to the cleaning method using plasma.

ところでClF3は、沸点が11.8℃程度で常温で液体を呈し容器に充填されたものも液体でかつ充填圧力は0.05MPa程度(計器指示値)と低圧である。従って真空装置に流量制御しながら導入する為には一旦ガス化した方が取り扱い易く、そのガス化手段として電熱ヒーター、温風、温水等の熱源を用いて充填容器自体を加熱し液温を上昇させてガス化させることが一般的であった。前記熱源の発生熱量の制御手段は熱電対等の温度測定子の指示値を使ったPID制御等の温調が一般的であった。また、別の例としては、ガス化した圧力を検知してその値に応じて熱源の発生熱量を調整する方法が行われている(例えば、特許文献3を参照)。 By the way, ClF 3 has a boiling point of about 11.8 ° C., is liquid at room temperature, and is filled in a container. The filling pressure is about 0.05 MPa (instrument indication value) and a low pressure. Therefore, it is easier to handle gasification once it is introduced into the vacuum device while controlling the flow rate. As the gasification means, using a heat source such as an electric heater, hot air, or hot water, the filling container itself is heated to raise the liquid temperature. In general, the gasification is performed. As a means for controlling the amount of heat generated by the heat source, temperature control such as PID control using an indication value of a temperature probe such as a thermocouple is generally used. As another example, a method of detecting the gasified pressure and adjusting the amount of heat generated by the heat source according to the value is performed (for example, see Patent Document 3).

さらに別の加熱制御手法として、一旦ガス化させたClF3が再液化することを防止する為に、ガス流の下流方向に沿って次第に温度が高くなるような温度勾配を持たせるように加熱手段を設けることが行われていた(例えば、特許文献4を参照)。 As another heating control method, in order to prevent re-liquefaction of once gasified ClF 3 , heating means is provided so that a temperature gradient gradually increases along the downstream direction of the gas flow. (For example, refer patent document 4).

特開平1−231936号公報JP-A-1-231936 特開平2−77579号公報Japanese Patent Laid-Open No. 2-77579 特開2002−228093号公報JP 2002-228093 A 特許第2909364号公報Japanese Patent No. 2909364

しかしながら、ClF3は沸点が室温以下であること、液を加熱してもガス化された圧力が高々0.2MPa程度にしか上がらないことから、容器や供給配管の温度を一定に管理したとしても、供給配管内圧が少し変動した(上がる)場合や、さらにはN2等のガスで希釈して使うには、希釈ガスを大量に流す場合が多いため相対的に希釈ガスの圧力が高めの設定となりその圧力変動の影響を受け易く液化も起こり易い。例えばクリーニング工程中にClF3の総流量を一定値にして流す場合には、特に圧力変動を起こすことなく流れているため、従来の手法を使えば比較的十分な効果が得られていた。しかし、実際の装置クリーニング工程の運用状況を鑑みると、ある一式の供給系から複数の箇所に複数の分岐配管を介してClF3を供給しながらクリーニングを行う場合が多い。この複数の供給箇所として例えば10箇所供給するとした場合、毎回のクリーニング工程において開始時から終了時にわたって終始10箇所に供給を継続するとは限らない。というのはクリーニング工程の途中でクリーニングが終わったことを何かしらの手段で判断し、そういった箇所は工程途中であっても供給を順次停止させるといった運用もあった。なぜなら、ClF3が分解して発生するHClやHFといったガスは強い腐食性を呈し、被クリーニング物が除去された状態を過ぎて流し続けることは、装置構成部品特に金属部品等に不要なダメージを与えてしまうからであり、比較的耐食性を有するステンレス材やアルミ材についても必要最小限の曝露時間で管理するに越したことはないという理由である。さらには、ClF3は安価とはいえず、材料コスト削減の観点からも不要に垂れ流すことがないような運用が要求される面も理由である。こうした背景に基づいた運用では、上述の通り、複数の供給箇所の数をクリーニング工程の最中に適宜減らしていくような変更手順が日常的に行われていたが故に、必然的に配管内圧力が急減する等、大きく変動するような状況が頻発していたといえる。このように供給要求量が時間的に変化していく場合、特に段階的に減少していく場合どのようなことが起こっているのか考察してみると、ClF3の供給側では供給要求量が急減することでガス化させる為に印加されている加熱熱量が相対的に過剰になる時間が発生していた。これは、従来の熱電対等を使った温度制御手段やガス化圧力を検知し熱量調整する制御手段では、制御系の応答性が乏しいことが起因していた。前者に関しては例えば容器壁面や液体自体の温度を計測したとしても、印加熱量に対する温度指示値の応答性低く、時間軸で数分乃至十数分以上の時間差が発生していた。後者に関しては前者に対して応答性は向上し優位性はあったものの、やはり印加熱量に対応して容器あるいは液温が上昇しそれに対応した液量がガス化された後圧力として反映されるステップを経ることを考えると時間軸で数分程度の時間差は発生せざるを得なかった。 However, ClF 3 has a boiling point of room temperature or lower, and even if the liquid is heated, the gasified pressure can only rise to about 0.2 MPa at most. When the supply pipe internal pressure slightly fluctuates (increases), or when diluted with a gas such as N 2 , a large amount of dilution gas is often flowed, so the dilution gas pressure is relatively high. Therefore, it is easily affected by the pressure fluctuation and liquefaction easily occurs. For example, when the total flow rate of ClF 3 is flown at a constant value during the cleaning process, the flow is not particularly caused, so that a relatively sufficient effect can be obtained by using the conventional method. However, in view of the actual operation status of the apparatus cleaning process, cleaning is often performed while supplying ClF 3 from a set of supply systems to a plurality of locations via a plurality of branch pipes. If, for example, 10 places are supplied as the plurality of supply places, the supply is not always continued from the start to the end in every cleaning process. This is because it was judged by some means that the cleaning was completed in the middle of the cleaning process, and the supply was sequentially stopped even in the middle of the process. This is because gases such as HCl and HF generated by the decomposition of ClF 3 exhibit strong corrosive properties, and continuing to flow past the state where the object to be cleaned is removed may cause unnecessary damage to device components, particularly metal components. This is because there is no reason to manage the stainless steel and aluminum materials having relatively corrosion resistance with the minimum exposure time. Furthermore, ClF 3 is not inexpensive, and is also from the viewpoint that it is required to be operated so as not to flow unnecessarily from the viewpoint of material cost reduction. In operation based on such a background, as described above, a change procedure for reducing the number of a plurality of supply points as appropriate during the cleaning process is routinely performed. It can be said that there were frequent fluctuations such as sudden declines. In this way, when the supply request amount changes with time, particularly when it decreases in a stepwise manner, when the supply request amount of ClF 3 is considered, There was a time when the amount of heating heat applied for gasification was relatively excessive due to the rapid decrease. This is because the temperature control means using a conventional thermocouple and the control means for detecting the gasification pressure and adjusting the heat quantity have poor control system responsiveness. Regarding the former, for example, even if the temperature of the container wall surface or the liquid itself is measured, the response of the temperature indication value with respect to the applied heat amount is low, and a time difference of several minutes to ten or more minutes occurs on the time axis. Regarding the latter, although the responsiveness is improved and superior to the former, the container or the liquid temperature rises corresponding to the applied heat amount, and the corresponding liquid amount is reflected as the pressure after being gasified Considering that, a time difference of about several minutes on the time axis had to occur.

時間差が大きい場合どういうことが起こっているかというと、投入された熱量とそれに見合ったガス化されるべき液量との間にアンバランスが生じており、本来ガス化に消費されるべき熱量が過剰となる結果、その過剰熱量の行き場所は容器温度や液温等の上昇に使われてしまっていた。このことは、従来例でもあるようなガスの流れ下流方向に沿って次第に温度を高くすべきといった望ましい状況を覆してしまう結果となり、すなわち上流側で温度が高くなってしまうような箇所が発生し再液化を余儀なくされることを意味する。   What happens when the time difference is large is that there is an imbalance between the amount of heat input and the amount of liquid to be gasified, and the amount of heat that should be consumed for gasification is excessive. As a result, the place where the excess amount of heat was used was used to raise the container temperature and liquid temperature. This results in overturning the desirable situation where the temperature should be gradually increased along the downstream direction of the gas flow, which is also a conventional example, that is, a location where the temperature becomes higher on the upstream side occurs. It means being forced to re-liquefy.

したがって、配管内で再液化させないように制御しながら安定して長時間流し続けるには、従来の手法すなわちガス化圧力や温度勾配等の加熱制御だけでは不十分であることが判明した。すなわち急激な圧力変動が生じても、特に供給要求量が急減する場合であっても、その圧力変化をより積極的に検知した上で、できるだけ迅速に加熱手段によって印加される加熱熱量の制御に反映させることが可能な供給手段の実現が望まれていた。   Therefore, it has been found that the conventional method, that is, heating control such as gasification pressure and temperature gradient, is not sufficient to keep it flowing stably for a long time while controlling so as not to reliquefy in the pipe. In other words, even when sudden pressure fluctuations occur, especially when supply requirements are suddenly reduced, it is possible to control the amount of heating heat applied by the heating means as quickly as possible after detecting the pressure change more positively. Realization of supply means that can be reflected has been desired.

上記に示す従来の問題点を解決するために、本発明者は以下に示す手段を見出した。
即ち本発明は、容器に充填された液化ガスを、該容器を昇温する為の第1の加熱手段を使ってガス化し、該ガスを前記容器と第2の加熱手段を有する第1の配管により接続された希釈ガス混合器および混合ガス流量検出手段を経由させ、該混合ガス流量検出手段と第3の加熱手段を有する第2の配管により接続された複数の分岐バルブのうち少なくとも1つ以上を開けて通過させ、該複数の分岐バルブにそれぞれ接続された複数の第3の配管のうち少なくとも1つ以上を経由させて真空処理装置の複数の箇所へガスを導入する液化ガス供給方法において、前記第1の加熱手段の発生熱量を前記混合ガス流量検出手段の計測値に応じて制御することを特徴とする。
また本発明は、容器に充填された液化ガスを、該容器を昇温する為の第1の加熱手段を使ってガス化し、該ガスを前記容器と第2の加熱手段を有する第1の配管により接続された希釈ガス混合器および混合ガス流量検出手段を経由させ、該混合ガス流量検出手段と第3の加熱手段を有する第2の配管により接続された複数の分岐バルブのうち少なくとも1つ以上を開けて通過させ、該複数の分岐バルブにそれぞれ接続された複数の第3の配管のうち少なくとも1つ以上を経由させて真空処理装置の複数の箇所へガスを導入する液化ガス供給方法において、前記第2の加熱手段の発生熱量を前記混合ガス流量検出手段の計測値に応じて制御することを特徴とする。
また本発明は、容器に充填された液化ガスを、該容器を昇温する為の第1の加熱手段を使ってガス化し、該ガスを前記容器と第2の加熱手段を有する第1の配管により接続された希釈ガス混合器および混合ガス流量検出手段を経由させ、該混合ガス流量検出手段と第3の加熱手段を有する第2の配管により接続された複数の分岐バルブのうち少なくとも1つ以上を開けて通過させ、該複数の分岐バルブにそれぞれ接続された複数の第3の配管のうち少なくとも1つ以上を経由させて真空処理装置の複数の箇所へガスを導入する液化ガス供給方法において、前記第3の加熱手段の発生熱量を前記混合ガス流量検出手段の計測値に応じて制御することを特徴とする。
さらに本発明は、容器に充填された液化ガスを、該容器を昇温する為の第1の加熱手段を使ってガス化し、該ガスを前記容器と第2の加熱手段を有する第1の配管により接続された希釈ガス混合器および混合ガス流量検出手段を経由させ、該混合ガス流量検出手段と第3の加熱手段を有する第2の配管により接続された複数の分岐バルブのうち少なくとも1つ以上を開けて通過させ、該複数の分岐バルブにそれぞれ接続された複数の第3の配管のうち少なくとも1つ以上を経由させて真空処理装置の複数の箇所へガスを導入する液化ガス供給方法において、前記第3の加熱手段の発生熱量を前記複数の分岐バルブのうち開いている数に応じて制御することを特徴とする。
In order to solve the conventional problems described above, the present inventors have found the following means.
That is, the present invention gasifies the liquefied gas filled in the container using the first heating means for raising the temperature of the container, and the first piping having the container and the second heating means. At least one of a plurality of branch valves connected by a second pipe having a mixed gas flow rate detecting means and a third heating means via a dilution gas mixer and a mixed gas flow rate detecting means connected by In the liquefied gas supply method of introducing gas to a plurality of locations of the vacuum processing apparatus via at least one or more of the plurality of third pipes respectively connected to the plurality of branch valves. The amount of heat generated by the first heating unit is controlled in accordance with a measurement value of the mixed gas flow rate detection unit.
According to the present invention, the liquefied gas filled in the container is gasified using the first heating means for raising the temperature of the container, and the gas is first pipe having the container and the second heating means. At least one of a plurality of branch valves connected by a second pipe having a mixed gas flow rate detecting means and a third heating means via a dilution gas mixer and a mixed gas flow rate detecting means connected by In the liquefied gas supply method of introducing gas to a plurality of locations of the vacuum processing apparatus via at least one or more of the plurality of third pipes respectively connected to the plurality of branch valves. The amount of heat generated by the second heating unit is controlled in accordance with a measurement value of the mixed gas flow rate detection unit.
According to the present invention, the liquefied gas filled in the container is gasified using the first heating means for raising the temperature of the container, and the gas is first pipe having the container and the second heating means. At least one of a plurality of branch valves connected by a second pipe having a mixed gas flow rate detecting means and a third heating means via a dilution gas mixer and a mixed gas flow rate detecting means connected by In the liquefied gas supply method of introducing gas to a plurality of locations of the vacuum processing apparatus via at least one or more of the plurality of third pipes respectively connected to the plurality of branch valves. The amount of heat generated by the third heating unit is controlled in accordance with a measurement value of the mixed gas flow rate detection unit.
Further, according to the present invention, the liquefied gas filled in the container is gasified using a first heating means for raising the temperature of the container, and the gas is first pipe having the container and the second heating means. At least one or more of a plurality of branch valves connected by a second pipe having a mixed gas flow rate detecting means and a third heating means via a dilution gas mixer and a mixed gas flow rate detecting means connected by In the liquefied gas supply method of introducing gas to a plurality of locations of the vacuum processing apparatus via at least one or more of the plurality of third pipes respectively connected to the plurality of branch valves. The amount of heat generated by the third heating unit is controlled according to the number of the plurality of branch valves that are open.

本発明の手法を用いることで、液化ガスをガス化させつつ供給しながら装置クリーニングを行う際、流量を大きく変動させる場合、特に急減させる場合において供給系配管内で再液化を防止することが可能となる結果、クリーニングガスの有効利用、装置部材損傷の低減が達成され運用コスト面、装置ダウンタイム削減等の効果がある。   By using the method of the present invention, it is possible to prevent reliquefaction in the supply system pipe when the apparatus cleaning is performed while supplying the liquefied gas while gasifying, when the flow rate is greatly changed, particularly when the flow rate is rapidly decreased. As a result, effective use of the cleaning gas and reduction of damage to the device members are achieved, and there are effects such as operation costs and reduction of device downtime.

図1に本発明の液化ガス供給方法の一例を示す。
液化ガス充填容器100には第1の加熱手段101が設置され第1の制御電源111に接続されている。加熱手段としてはフレキシブルなシースヒーター式のバンドヒーターを容器導体部外周に巻いて使用したが、他の方法としては非接触で加熱可能なハロゲンランプ加熱や温風加熱、さらには容器周囲にパイプを巻き温水を送って加熱する等の手段が考えられるが、加熱手段と容器の密着性等も含め応答性を重視した構成であれば特にこれらに限定されない。液化ガスとしてはClF3が適当であるが、ポリシラン等のシリコン系副生成物をクリーニング可能な化合物であれば良く特にこれに限られるものではない。
FIG. 1 shows an example of the liquefied gas supply method of the present invention.
The liquefied gas filling container 100 is provided with a first heating means 101 and connected to a first control power supply 111. As a heating means, a flexible sheath heater type band heater was wound around the outer periphery of the container conductor. However, other methods include halogen lamp heating and hot air heating that can be heated in a non-contact manner, and pipes around the container. Means such as heating by feeding the wound hot water are conceivable, but there is no particular limitation as long as it is a structure that emphasizes responsiveness including the adhesion between the heating means and the container. As the liquefied gas, ClF 3 is suitable, but is not particularly limited as long as it is a compound capable of cleaning silicon-based byproducts such as polysilane.

液化ガス充填容器100には第2の加熱手段102を有する第1の配管105の一端が接続され、他端は流量検出手段104の入口に接続されている。流量検出手段としては、流量調整機能も併せ持つマスフローコントローラーを使用したが、他にはマスフローメーター等であっても良く、流量値をリアルタイムに計測可能で値を外部出力可能な手段であれば特にこれらに限定されない。   One end of the first pipe 105 having the second heating means 102 is connected to the liquefied gas filling container 100, and the other end is connected to the inlet of the flow rate detecting means 104. As the flow rate detection means, a mass flow controller that also has a flow rate adjustment function was used. However, a mass flow meter or the like may be used in addition to these, and any means that can measure the flow rate value in real time and output the value externally can be used. It is not limited to.

流量検出手段104の入口部分には、N2充填容器120から希釈ガス配管121が合流しており、不図示の混合制御手段を使って、N2ガス流量およびClF3希釈比を適宜設定可能である。希釈ガスとしてはアルゴン、ヘリウム等でも良く水分を含まない不活性なガスであれば特に限定されない。 A dilution gas pipe 121 is joined from the N 2 filling container 120 to the inlet portion of the flow rate detection means 104, and the N 2 gas flow rate and the ClF 3 dilution ratio can be appropriately set by using a mixing control means (not shown). is there. The diluent gas may be argon, helium or the like, and is not particularly limited as long as it is an inert gas that does not contain moisture.

第3の加熱手段103を有する第2の配管106の一端は流量検出手段104の出口に接続され、他端は10系統に分岐しており、分岐後の配管にはそれぞれ自動弁で構成された複数の分岐バルブ131〜140が設置され、その下流側において不図示であるが複数の供給箇所141〜150へ接続されガスを供給する。   One end of the second pipe 106 having the third heating means 103 is connected to the outlet of the flow rate detecting means 104, the other end is branched into 10 systems, and the branched pipes are each configured by an automatic valve. A plurality of branch valves 131 to 140 are installed and connected to a plurality of supply points 141 to 150 (not shown) on the downstream side thereof to supply gas.

配管の加熱手段としては、容器加熱手段と同様な手段を用いれば良いが、容器に比べ形状が凸凹しているためより密着性を確保すべく配管と加熱手段との間に熱伝導性が良好なアルミニウム性の金属ウールや合成シリコン樹脂系のペースト材等を充填しても良い。   The pipe heating means may be the same as the container heating means, but the heat conductivity between the pipe and the heating means is good to ensure better adhesion because the shape is uneven compared to the container. An aluminum metal wool or a synthetic silicon resin paste material may be filled.

複数の分岐バルブ131〜140の開閉状態を制御する為のバルブ制御系114が設置されている。統括制御系115に対して、流量検出手段104からは流量値を、バルブ制御系114からは開バルブ数を、それぞれ制御信号線116を介してリアルタイムに情報入力され、それらの情報を元に予め決められた制御ルーチンに則り、第1の制御電源111、第2の制御電源112、第3の制御電源113に対して指令を送り、第1の加熱手段101、第2の加熱手段102、第3の加熱手段103の制御に反映させることが可能である。制御ルーチンとしては、例えば、開バルブ率(=〔開バルブ数〕/〔全分岐バルブ数〕)が一定で流量検出手段の流量値を10%減少させたときには加熱手段発熱量を5%減少させるといった重み付けを行ったり、一方、流量検出手段の流量値を一定値とし開バルブ率が15%減少したときには加熱手段発熱量を5%減少させるといった重み付けを行ったり、さらには流量値が5%、開バルブ率が5%同時に減少した場合には、加熱手段発熱量を12%減少させるといったことを行えば良いが、各々の度合いとしては一意的には決まらず、設置された場所の環境(温度、湿度、空調運転状況、加熱配管の長さ、キャビネットの大きさ、ミキシングボックスの大きさ)等の個々の事例に応じた前提条件を元に確認実験を行い、最適な制御パラメータを個々に選定すれば良く特に上記の値に限定されるものではない。   A valve control system 114 for controlling the open / closed state of the plurality of branch valves 131 to 140 is installed. Information is input to the overall control system 115 in real time via the control signal line 116 and the flow rate value from the flow rate detection means 104 and the number of open valves from the valve control system 114, respectively. In accordance with the determined control routine, a command is sent to the first control power supply 111, the second control power supply 112, and the third control power supply 113, and the first heating means 101, the second heating means 102, This can be reflected in the control of the three heating means 103. As a control routine, for example, when the open valve ratio (= [number of open valves] / [number of all branch valves]) is constant and the flow rate value of the flow rate detection means is reduced by 10%, the heating means heat generation amount is reduced by 5%. On the other hand, when the flow rate value of the flow rate detection means is a constant value and the open valve rate is reduced by 15%, the heating means heat generation amount is reduced by 5%, and the flow rate value is 5%. If the open valve rate decreases simultaneously by 5%, the heating means heat generation may be reduced by 12%, but the degree of each is not uniquely determined, and the environment (temperature) Confirmation experiments based on preconditions according to individual cases such as humidity, air conditioning operation status, heating pipe length, cabinet size, and mixing box size) If selected data to individual well is not particularly limited to the above values.

本発明の液化ガス供給方法に関し、以下に具体的に例を挙げて記述をするが、本発明の主旨はなんらこれらの記述に限定されるものではない。   The liquefied gas supply method of the present invention will be described below with specific examples, but the gist of the present invention is not limited to these descriptions.

[実施例1]
図1に示す供給方法を使い、第1、第2、第3の加熱手段のそれぞれの発生熱量の制御方法を以下に示す実験1及び実験2の手法に変えた場合において、ClF3(N2で20%に希釈したもの)混合ガス流量を50,000cm3/min(normal)設定して、分岐バルブ131〜140を全て開けた状態にし複数の供給箇所141〜150全てにガスを流して定常状態を維持しながらクリーニングを10分続けた後、流量検出手段104の流量設定機能を使って流量設定値を半分の値に操作することで流量を急減させて10分クリーニングを続けた場合に供給配管内部に再液化が発生するかどうかを比較した。液化確認方法は、ガスを流すことを一旦停止させた後、第1の配管および第2の配管の内部を真空引きし、1Paに到達するまでの時間が5分以上かかった場合には液化が発生したと判断した。
[Example 1]
When the supply method shown in FIG. 1 is used and the method for controlling the amount of heat generated by each of the first, second, and third heating means is changed to the method of Experiment 1 and Experiment 2 shown below, ClF 3 (N 2 The mixture gas flow rate is set to 50,000 cm 3 / min (normal), all the branch valves 131 to 140 are opened, and the gas is allowed to flow through all of the supply points 141 to 150 in a steady state. Supplied when the cleaning is continued for 10 minutes while maintaining the state, and then the flow rate setting value of the flow rate detection means 104 is used to operate the flow rate setting value to a half value to rapidly reduce the flow rate and continue cleaning for 10 minutes It was compared whether reliquefaction occurred inside the pipe. In the liquefaction confirmation method, after the gas flow is temporarily stopped, the inside of the first pipe and the second pipe is evacuated, and it takes 5 minutes or more to reach 1 Pa. Judged that it occurred.

(実験1)
第1の加熱手段、第2の加熱手段、第3の加熱手段のそれぞれの発生熱量制御に流量検知手段104の値が半減した時点で、予め実験により確認されている発生熱量変更(100%出力→60%出力へ変更)を行い熱量制御に反映させた。
(実験2)
第1の加熱手段、第2の加熱手段、第3の加熱手段のそれぞれの発生熱量制御に熱電対を使ったPID温度制御を行った。
実験1及び実験2における再液化の判定結果を表1に示す。
(Experiment 1)
When the value of the flow rate detection means 104 is halved in the control of the heat generation amount of each of the first heating means, the second heating means, and the third heating means, the generated heat quantity change (100% output) confirmed in advance by experiments → changed to 60% output) and reflected in the heat control.
(Experiment 2)
PID temperature control using a thermocouple was performed to control the amount of heat generated by each of the first heating means, the second heating means, and the third heating means.
Table 1 shows the determination results of reliquefaction in Experiment 1 and Experiment 2.

Figure 2006161937
Figure 2006161937

以上の結果から、本発明を用いた実験1の手法によればガス流量が急減した場合においても再液化を防止できるという効果が実証された。   From the above results, it was demonstrated that the method of Experiment 1 using the present invention can prevent reliquefaction even when the gas flow rate is suddenly reduced.

[実施例2]
図1に示す供給方法を使い、第1、第2、第3の加熱手段のそれぞれの発生熱量の制御方法を以下に示す実験3及び実験4の手法に変えた場合において、ClF3(N2で20%に希釈したもの)混合ガス流量を50,000cm3/min(normal)設定して、分岐バルブ131〜140を全て開けた状態にし複数の供給箇所141〜150全てにガスを流して定常状態を維持しながらクリーニングを10分続けた後、分岐バルブ131〜140のうち132、134、136、138、140の5個のバルブを閉めることで流量を急減させて10分クリーニングを続けた場合に配管内部に再液化が発生するかどうかを比較した。液化確認方法は、ガスを流すことを一旦停止させた後、第1の配管および第2の配管の内部を真空引きし、1Paに到達するまでの時間が5分以上かかった場合には液化が発生したと判断した。
[Example 2]
In the case where the supply method shown in FIG. 1 is used and the control method of the heat generation amount of each of the first, second, and third heating means is changed to the method of Experiment 3 and Experiment 4 shown below, ClF 3 (N 2 The mixture gas flow rate is set to 50,000 cm 3 / min (normal), all the branch valves 131 to 140 are opened, and the gas is allowed to flow through all of the supply points 141 to 150 in a steady state. When cleaning is continued for 10 minutes while maintaining the state, and the flow rate is rapidly reduced by closing five valves 132, 134, 136, 138, 140 among the branch valves 131 to 140, and cleaning is continued for 10 minutes. We compared whether reliquefaction occurred inside the pipe. In the liquefaction confirmation method, after the gas flow is temporarily stopped, the inside of the first pipe and the second pipe is evacuated, and it takes 5 minutes or more to reach 1 Pa. Judged that it occurred.

(実験3)
第1の加熱手段、第2の加熱手段、第3の加熱手段のそれぞれの発生熱量制御に分岐バルブの開バルブ数が半減した時点で、予め実験により確認されている発生熱量変更(100%出力→65%出力へ変更)を行い熱量制御に反映させた。
(実験4)
第1の加熱手段、第2の加熱手段、第3の加熱手段のそれぞれの発生熱量制御に熱電対を使ったPID温度制御を行った。
実験3及び実験4における再液化の判定結果を表2に示す。
(Experiment 3)
When the number of open valves of the branch valve is halved to control the amount of heat generated by each of the first heating means, the second heating means, and the third heating means, the amount of generated heat that has been confirmed in advance by experiments (100% output) → changed to 65% output) and reflected in the heat control.
(Experiment 4)
PID temperature control using a thermocouple was performed to control the amount of heat generated by each of the first heating means, the second heating means, and the third heating means.
Table 2 shows the determination results of reliquefaction in Experiment 3 and Experiment 4.

Figure 2006161937
Figure 2006161937

以上の結果から、本発明を用いた実験3の手法によればガス流量が急減した場合においても再液化を防止できるという効果が実証された。   From the above results, it was demonstrated that the method of Experiment 3 using the present invention can prevent reliquefaction even when the gas flow rate is suddenly reduced.

本発明を説明する為の液化ガス供給配管図である。It is a liquefied gas supply piping diagram for explaining the present invention.

符号の説明Explanation of symbols

100 液化ガス充填容器
101 第1の加熱手段
102 第2の加熱手段
103 第3の加熱手段
104 混合ガス流量検出手段
105 第1の配管
106 第2の配管
111 第1の制御電源
112 第2の制御電源
113 第3の制御電源
114 バルブ制御系
115 統括制御系
116 制御信号線
120 N2充填容器
121 希釈ガス配管
131〜140 複数の分岐バルブ
141〜150 複数の供給箇所
DESCRIPTION OF SYMBOLS 100 Liquefied gas filling container 101 1st heating means 102 2nd heating means 103 3rd heating means 104 Mixed gas flow rate detection means 105 1st piping 106 2nd piping 111 1st control power supply 112 2nd control Power supply 113 Third control power supply 114 Valve control system 115 Overall control system 116 Control signal line 120 N 2 filling container 121 Dilution gas piping 131-140 Multiple branch valves 141-150 Multiple supply locations

Claims (4)

容器に充填された液化ガスを、該容器を昇温する為の第1の加熱手段を使ってガス化し、該ガスを前記容器と第2の加熱手段を有する第1の配管により接続された希釈ガス混合器および混合ガス流量検出手段を経由させ、該混合ガス流量検出手段と第3の加熱手段を有する第2の配管により接続された複数の分岐バルブのうち少なくとも1つ以上を開けて通過させ、該複数の分岐バルブにそれぞれ接続された複数の第3の配管のうち少なくとも1つ以上を経由させて真空処理装置の複数の箇所へガスを導入する液化ガス供給方法において、前記第1の加熱手段の発生熱量を前記混合ガス流量検出手段の計測値に応じて制御することを特徴とする液化ガス供給方法。   The liquefied gas filled in the container is gasified by using the first heating means for raising the temperature of the container, and the gas is diluted by the first pipe having the container and the second heating means. Passing through the gas mixer and the mixed gas flow rate detection means, at least one of the plurality of branch valves connected by the second pipe having the mixed gas flow rate detection means and the third heating means is opened and passed. In the liquefied gas supply method for introducing gas into a plurality of locations of the vacuum processing apparatus via at least one of the plurality of third pipes respectively connected to the plurality of branch valves, the first heating A liquefied gas supply method characterized in that the amount of heat generated by the means is controlled in accordance with the measured value of the mixed gas flow rate detecting means. 容器に充填された液化ガスを、該容器を昇温する為の第1の加熱手段を使ってガス化し、該ガスを前記容器と第2の加熱手段を有する第1の配管により接続された希釈ガス混合器および混合ガス流量検出手段を経由させ、該混合ガス流量検出手段と第3の加熱手段を有する第2の配管により接続された複数の分岐バルブのうち少なくとも1つ以上を開けて通過させ、該複数の分岐バルブにそれぞれ接続された複数の第3の配管のうち少なくとも1つ以上を経由させて真空処理装置の複数の箇所へガスを導入する液化ガス供給方法において、前記第2の加熱手段の発生熱量を前記混合ガス流量検出手段の計測値に応じて制御することを特徴とする液化ガス供給方法。   The liquefied gas filled in the container is gasified by using the first heating means for raising the temperature of the container, and the gas is diluted by the first pipe having the container and the second heating means. Passing through the gas mixer and the mixed gas flow rate detection means, at least one of the plurality of branch valves connected by the second pipe having the mixed gas flow rate detection means and the third heating means is opened and passed. In the liquefied gas supply method of introducing gas into a plurality of locations of the vacuum processing apparatus via at least one of the plurality of third pipes respectively connected to the plurality of branch valves, the second heating A liquefied gas supply method characterized in that the amount of heat generated by the means is controlled in accordance with the measured value of the mixed gas flow rate detecting means. 容器に充填された液化ガスを、該容器を昇温する為の第1の加熱手段を使ってガス化し、該ガスを前記容器と第2の加熱手段を有する第1の配管により接続された希釈ガス混合器および混合ガス流量検出手段を経由させ、該混合ガス流量検出手段と第3の加熱手段を有する第2の配管により接続された複数の分岐バルブのうち少なくとも1つ以上を開けて通過させ、該複数の分岐バルブにそれぞれ接続された複数の第3の配管のうち少なくとも1つ以上を経由させて真空処理装置の複数の箇所へガスを導入する液化ガス供給方法において、前記第3の加熱手段の発生熱量を前記混合ガス流量検出手段の計測値に応じて制御することを特徴とする液化ガス供給方法。   The liquefied gas filled in the container is gasified by using the first heating means for raising the temperature of the container, and the gas is diluted by the first pipe having the container and the second heating means. Passing through the gas mixer and the mixed gas flow rate detection means, at least one of the plurality of branch valves connected by the second pipe having the mixed gas flow rate detection means and the third heating means is opened and passed. In the liquefied gas supply method of introducing gas into a plurality of locations of the vacuum processing apparatus via at least one of the plurality of third pipes respectively connected to the plurality of branch valves, the third heating A liquefied gas supply method characterized in that the amount of heat generated by the means is controlled in accordance with the measured value of the mixed gas flow rate detecting means. 容器に充填された液化ガスを、該容器を昇温する為の第1の加熱手段を使ってガス化し、該ガスを前記容器と第2の加熱手段を有する第1の配管により接続された希釈ガス混合器および混合ガス流量検出手段を経由させ、該混合ガス流量検出手段と第3の加熱手段を有する第2の配管により接続された複数の分岐バルブのうち少なくとも1つ以上を開けて通過させ、該複数の分岐バルブにそれぞれ接続された複数の第3の配管のうち少なくとも1つ以上を経由させて真空処理装置の複数の箇所へガスを導入する液化ガス供給方法において、前記第3の加熱手段の発生熱量を前記複数の分岐バルブのうち開いている数に応じて制御することを特徴とする液化ガス供給方法。   The liquefied gas filled in the container is gasified by using the first heating means for raising the temperature of the container, and the gas is diluted by the first pipe having the container and the second heating means. Passing through the gas mixer and the mixed gas flow rate detection means, at least one of the plurality of branch valves connected by the second pipe having the mixed gas flow rate detection means and the third heating means is opened and passed. In the liquefied gas supply method of introducing gas into a plurality of locations of the vacuum processing apparatus via at least one of the plurality of third pipes respectively connected to the plurality of branch valves, the third heating A liquefied gas supply method characterized in that the amount of heat generated by the means is controlled according to the number of the plurality of branch valves that are open.
JP2004353488A 2004-12-07 2004-12-07 Liquefied gas supply method Withdrawn JP2006161937A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004353488A JP2006161937A (en) 2004-12-07 2004-12-07 Liquefied gas supply method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004353488A JP2006161937A (en) 2004-12-07 2004-12-07 Liquefied gas supply method

Publications (1)

Publication Number Publication Date
JP2006161937A true JP2006161937A (en) 2006-06-22

Family

ID=36664187

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004353488A Withdrawn JP2006161937A (en) 2004-12-07 2004-12-07 Liquefied gas supply method

Country Status (1)

Country Link
JP (1) JP2006161937A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008286303A (en) * 2007-05-17 2008-11-27 Nec Electronics Corp Liquefied gas supplying system and supplying method
KR101049151B1 (en) * 2008-12-10 2011-07-14 한국가스공사연구개발원 Liquefied gas mixing device
JP2012197948A (en) * 2012-07-23 2012-10-18 Renesas Electronics Corp Liquefied gas supplying method and controller for liquefied gas supplying system
CN106764413A (en) * 2017-01-20 2017-05-31 佛山市汽车燃气有限公司 A kind of gas station of the emergent gasification function of band
CN112050074A (en) * 2020-09-03 2020-12-08 河南省日立信股份有限公司 C5-PFK gas mixing preparation device and method based on weighing and partial pressure combined method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008286303A (en) * 2007-05-17 2008-11-27 Nec Electronics Corp Liquefied gas supplying system and supplying method
US8117851B2 (en) 2007-05-17 2012-02-21 Renesas Electronics Corporation Liquified gas supply system and method thereof
KR101049151B1 (en) * 2008-12-10 2011-07-14 한국가스공사연구개발원 Liquefied gas mixing device
JP2012197948A (en) * 2012-07-23 2012-10-18 Renesas Electronics Corp Liquefied gas supplying method and controller for liquefied gas supplying system
CN106764413A (en) * 2017-01-20 2017-05-31 佛山市汽车燃气有限公司 A kind of gas station of the emergent gasification function of band
CN112050074A (en) * 2020-09-03 2020-12-08 河南省日立信股份有限公司 C5-PFK gas mixing preparation device and method based on weighing and partial pressure combined method

Similar Documents

Publication Publication Date Title
KR102230543B1 (en) Substrate processing apparatus, injector, and substrate processing method
JP6947914B2 (en) Annealing chamber under high pressure and high temperature
US20120015525A1 (en) Method of cleaning a thin film forming apparatus, thin film forming method, and thin film forming apparatus
JP5528374B2 (en) Gas decompression supply device, cylinder cabinet including the same, valve box, and substrate processing apparatus
US8183158B2 (en) Semiconductor processing apparatus and method for using same
KR101743339B1 (en) Film forming method and film forming device
TW200815703A (en) Vaporizer/supplier of material and automatic pressure regulator for use therein
JP2008066535A (en) Substrate processing method, substrate processing apparatus, program and program storage medium
US20140290575A1 (en) Source gas supply unit, film forming apparatus and source gas supply method
TW201739953A (en) Substrate processing apparatus, gas supply method, substrate processing method, and film forming method
JP2019132371A (en) Liquefied gas supply apparatus and liquefied gas supply method
JP2006161937A (en) Liquefied gas supply method
JPS6312336A (en) Method of supplying very high purity gas and its supplying system
JP5179339B2 (en) Mixed gas supply method and mixed gas supply device
JP2011052314A (en) Gas supply system
JP5912597B2 (en) Fluid carbon dioxide supply device and method
JP2008248395A (en) Plasma treating apparatus and pressure control method of plasma treating apparatus
US20180087182A1 (en) Film growth apparatus, film growth method and maintenance method of film growth apparatus
JP2022185393A (en) Semiconductor manufacturing device and temperature control method
JP4686157B2 (en) Cleaning method for film forming apparatus
JP2009194006A (en) Gas transportation route and semiconductor processing apparatus using the same
JP2005079123A (en) Cleaning method of depositing equipment
US20240175127A1 (en) Processing apparatus and processing method
JP6994960B2 (en) Liquid level detection device, liquid level detection method, and plating processing device
JPH1154491A (en) Gas supply method

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080304