Nothing Special   »   [go: up one dir, main page]

JP2006161659A - Refrigerating cycle device - Google Patents

Refrigerating cycle device Download PDF

Info

Publication number
JP2006161659A
JP2006161659A JP2004353489A JP2004353489A JP2006161659A JP 2006161659 A JP2006161659 A JP 2006161659A JP 2004353489 A JP2004353489 A JP 2004353489A JP 2004353489 A JP2004353489 A JP 2004353489A JP 2006161659 A JP2006161659 A JP 2006161659A
Authority
JP
Japan
Prior art keywords
refrigerant
pressure
pressure side
compression element
side compression
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004353489A
Other languages
Japanese (ja)
Inventor
Kazuhiro Endo
和広 遠藤
Hirokatsu Kosokabe
弘勝 香曽我部
Takeshi Kono
雄 幸野
Hiroaki Matsushima
弘章 松嶋
Akihiko Ishiyama
明彦 石山
Yuugo Mukai
有吾 向井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Appliances Inc
Original Assignee
Hitachi Ltd
Hitachi Home and Life Solutions Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Home and Life Solutions Inc filed Critical Hitachi Ltd
Priority to JP2004353489A priority Critical patent/JP2006161659A/en
Priority to CN 200510129541 priority patent/CN1786477B/en
Publication of JP2006161659A publication Critical patent/JP2006161659A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Control Of Positive-Displacement Pumps (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)
  • Compressor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a refrigerating cycle device having high performance and high reliability and capable of controlling the intermediate pressure of a two-stage compressor. <P>SOLUTION: The refrigerating cycle device having a compressor, which performs two-stage compression on a low-pressure side and a high-pressure side, has a refrigerant circuit for connecting a first heat exchanger for exchanging the heat between the refrigerant discharged from a high-pressure side compressing element of the compressor, a pressure reduction device for reducing the pressure of the refrigerant from the first heat exchanger and a second heat exchanger for exchanging the heat between the reduced-pressure refrigerant to each other through a refrigerant flow passage, and a refrigerant quantity control unit for controlling quantity of the refrigerant compressed by a low-pressure side compressing element and sucked to the high-pressure side compressing element. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、2段圧縮機を用いた冷凍サイクル装置に関する。   The present invention relates to a refrigeration cycle apparatus using a two-stage compressor.

冷凍サイクル装置、例えば冷凍空調装置や給湯装置に用いられるヒートポンプ装置は、一般に圧縮機を備えていて、その圧縮機として2段圧縮機を使用するものがある。   A heat pump apparatus used in a refrigeration cycle apparatus, for example, a refrigeration air conditioner or a hot water supply apparatus, generally includes a compressor, and there is one that uses a two-stage compressor as the compressor.

そのような冷凍サイクル装置に用いられる圧縮機の吸入圧力および吐出圧力は、装置の運転条件により変化し、当然、吐出圧力と吸入圧力の比である圧力比も変化する。特に、圧縮機として低圧側圧縮要素と高圧側圧縮要素をもつ2段圧縮機を用いる場合、前述の吸入圧力および吐出圧力はそれぞれ低圧側圧縮要素の吸入圧力(低圧側吸入圧力)、高圧側圧縮要素の吐出圧力(高圧側吐出圧力)となる。   The suction pressure and discharge pressure of the compressor used in such a refrigeration cycle apparatus vary depending on the operating conditions of the apparatus, and naturally the pressure ratio, which is the ratio of the discharge pressure and the suction pressure, also varies. In particular, when a two-stage compressor having a low pressure side compression element and a high pressure side compression element is used as the compressor, the suction pressure and the discharge pressure described above are the suction pressure (low pressure side suction pressure) of the low pressure side compression element and the high pressure side compression, respectively. This is the discharge pressure of the element (high-pressure discharge pressure).

この2段圧縮機の低圧側圧縮要素の吐出圧力(低圧側吐出圧力)、または高圧側圧縮要素の吸入圧力(高圧側吸入圧力)は、以下に述べる関係および仮定により、概略値を算出することができる。   The discharge pressure of the low-pressure side compression element (low-pressure side discharge pressure) or the suction pressure of the high-pressure side compression element (high-pressure side suction pressure) of this two-stage compressor should be calculated based on the relationship and assumption described below. Can do.

低圧側圧縮要素と高圧側圧縮要素のそれぞれのシリンダ容積と吸入ガス比容積の関係は、以下で表わせる。   The relationship between the cylinder volume and the suction gas specific volume of each of the low pressure side compression element and the high pressure side compression element can be expressed as follows.

vs1 = etav1・Vth1・N / G1 ………(1)
vs2 = etav2・Vth2・N / G2 ………(2)
ここで、vsは吸入ガス比容積、etavは体積効率、Vthはシリンダ容積、Nは圧縮機回転速度、Gは冷媒質量流量、添字12はそれぞれ低圧側圧縮要素、高圧側圧縮要素を示す。
v s1 = eta v1・ V th1・ N / G 1 ……… (1)
v s2 = eta v2・ V th2・ N / G 2 ……… (2)
Where v s is the suction gas specific volume, eta v is the volumetric efficiency, V th is the cylinder volume, N is the compressor rotational speed, G is the refrigerant mass flow rate, subscripts 1 and 2 are the low-pressure side compression element and high-pressure side compression, respectively. Indicates an element.

また、ガスの圧縮を「pvk = 一定」の断熱変化と仮定し(p:圧力、v:ガス比容積、k:断熱指数)、低圧側圧縮要素の吐出ガス状態と高圧側圧縮要素の吸入ガス状態が同一と仮定すると、以下が成り立つ。 In addition, assuming that the compression of gas is an adiabatic change with “pv k = constant” (p: pressure, v: gas specific volume, k: adiabatic index), the discharge gas state of the low-pressure compression element and the suction of the high-pressure compression element Assuming that the gas state is the same, the following holds:

Ps1vs1 k = Ps2vs2 k ………(3)
ここで、Ps1、vs1はそれぞれ低圧側圧縮要素の吸入圧力、吸入ガス比容積を示し、Ps2、vs2は高圧側圧縮要素の吸入圧力、吸入ガス比容積を示す。
P s1 v s1 k = P s2 v s2 k (3)
Here, P s1 and v s1 indicate the suction pressure and suction gas specific volume of the low pressure side compression element, respectively, and P s2 and v s2 indicate the suction pressure and suction gas specific volume of the high pressure side compression element, respectively.

上記の3式よりvs1、vs2を消去すると、高圧側吸入圧力Ps2と低圧側吸入圧力Ps1とは以下の関係が成り立つ。 If v s1 and v s2 are eliminated from the above three equations, the following relationship holds between the high-pressure side suction pressure P s2 and the low-pressure side suction pressure P s1 .

Ps2 = Ps1((etav1 / etav2)・(Vth1 / Vth2)・(G2 / G1))k ………(4)
低圧側圧縮要素の吐出口と高圧側圧縮要素の吸入口との間で外部との冷媒の流出入がないと仮定すると、低圧側圧縮要素の冷媒質量流量G1と高圧側圧縮要素の冷媒質量流量G2は同一となり、また、低圧側圧縮要素の体積効率etav1と高圧側圧縮要素の体積効率etav2がほぼ同一と仮定すると、高圧側吸入圧力Ps2と低圧側吸入圧力Ps1との関係は以下で表わせる。
P s2 = P s1 ((eta v1 / eta v2 ) ・ (V th1 / V th2 ) ・ (G 2 / G 1 )) k ……… (4)
Assuming that there is no inflow and outflow of the refrigerant with the outside between the low-pressure side outlet of the compression element and a suction port of the high pressure side compression element, the refrigerant mass in the refrigerant mass flow rate G 1 and the high pressure side compression element of the low-pressure side compression element flow rate G 2 is made the same, also when the volumetric efficiency eta v2 volumetric efficiency eta v1 and the high pressure side compression element of the low-pressure side compression element is assumed substantially the same as, the high-pressure side suction pressure P s2 and the low-pressure side suction pressure P s1 The relationship can be expressed as:

Ps2 ≒ Ps1(Vth1 / Vth2)k ………(5)
すなわち、高圧側吸入圧力Ps2は、低圧側吸入圧力Ps1の約(Vth1 / Vth2)k倍となる。Vth1、Vth2は低圧側圧縮要素および高圧側圧縮要素のシリンダ容積であるので、(Vth1 / Vth2)は一定値である。また、断熱指数kの運転条件による変化は小さい。したがって、高圧側吸入圧力Ps2は、低圧側吸入圧力Ps1の約定数倍となる。なお、(5)式において、高圧側吸入圧力Ps2が圧縮機の吐出圧力Pd(高圧側吐出圧力)より大きい場合は、Ps2 = Pdとする。
P s2 ≒ P s1 (V th1 / V th2 ) k (5)
That is, the high-pressure side suction pressure P s2 is approximately (V th1 / V th2 ) k times the low-pressure side suction pressure P s1 . Since V th1 and V th2 are cylinder volumes of the low-pressure side compression element and the high-pressure side compression element, (V th1 / V th2 ) is a constant value. Further, the change of the adiabatic index k due to the operating conditions is small. Therefore, the high-pressure side suction pressure P s2 is approximately a constant multiple of the low-pressure side suction pressure P s1 . In the equation (5), when the high-pressure side suction pressure P s2 is larger than the discharge pressure P d (high-pressure side discharge pressure) of the compressor, P s2 = P d .

このような2段圧縮機は、単段圧縮機と比較して、各段毎の圧力比および圧力差が小さくなることにより、各圧縮要素の荷重および作動室の漏れが低減され、効率が向上する。   Compared with a single-stage compressor, such a two-stage compressor reduces the pressure ratio and pressure difference at each stage, thereby reducing the load on each compression element and leakage in the working chamber, and improving efficiency. To do.

低圧側圧縮要素の吐出圧力と吸入圧力との比率(低圧側圧縮要素の圧力比)と高圧側圧縮要素の吐出圧力と吸入圧力との比率(高圧側圧縮要素の圧力比)の関係、または、低圧側圧縮要素の吐出圧力と吸入圧力との差圧(低圧側圧縮要素の差圧)と高圧側圧縮要素の吐出圧力と吸入圧力との差圧(高圧側圧縮要素の差圧)の関係を適切に設定することにより、効率向上を図ることができる。   The relationship between the ratio of the discharge pressure and the suction pressure of the low pressure side compression element (pressure ratio of the low pressure side compression element) and the ratio of the discharge pressure of the high pressure side compression element and the suction pressure (pressure ratio of the high pressure side compression element), or The relationship between the differential pressure between the discharge pressure of the low-pressure side compression element and the suction pressure (differential pressure of the low-pressure side compression element) and the differential pressure between the discharge pressure of the high-pressure side compression element and the suction pressure (differential pressure of the high-pressure side compression element) The efficiency can be improved by appropriately setting.

特開平10−141270号公報Japanese Patent Laid-Open No. 10-141270

しかし、運転条件により、2段圧縮機の吸入圧力(低圧側吸入圧力)および吐出圧力(高圧側吐出圧力)は変化し、また、その圧力比も変化する。高圧側吸入圧力Ps2は低圧側吸入圧力Ps1が決まれば、(5)式により、ほぼ自動的に決まってしまう。 However, the suction pressure (low pressure side suction pressure) and the discharge pressure (high pressure side discharge pressure) of the two-stage compressor change depending on the operating conditions, and the pressure ratio also changes. If the low-pressure side suction pressure P s1 is determined, the high-pressure side suction pressure P s2 is almost automatically determined by the equation (5).

そのため、運転条件によっては、低圧側圧縮要素の圧力比と高圧側圧縮要素の圧力比、または、低圧側圧縮要素の差圧と高圧側圧縮要素の差圧との関係が最適点から大きくずれ、上記の2段圧縮機本来の特長を生かせない場合が生ずる。   Therefore, depending on the operating conditions, the pressure ratio of the low-pressure side compression element and the pressure ratio of the high-pressure side compression element, or the relationship between the differential pressure of the low-pressure side compression element and the differential pressure of the high-pressure side compression element greatly deviates from the optimum point, There is a case where the original features of the two-stage compressor cannot be utilized.

特に、冷凍サイクル装置が低負荷で低圧力比運転された場合、その2段圧縮機の低圧側吐出圧力(高圧側吸入圧力とほぼ同等)が圧縮機の吐出圧力(高圧側吐出圧力)まで到達してしまう。すると高圧側圧縮要素では圧縮仕事がされず、ガス冷媒がただ作動室を流通するのみなので、入力したエネルギーが無駄な仕事となる。つまり単段圧縮機より効率が低下するという問題が生じる。   In particular, when the refrigeration cycle apparatus is operated at a low load and a low pressure ratio, the low-pressure discharge pressure (approximately equal to the high-pressure suction pressure) of the two-stage compressor reaches the compressor discharge pressure (high-pressure discharge pressure). Resulting in. Then, the compression work is not performed in the high-pressure side compression element, and the gas refrigerant simply circulates through the working chamber, so that the input energy becomes useless work. That is, there arises a problem that the efficiency is lower than that of the single stage compressor.

この問題に対して特許文献1では、低圧力比運転時に、低圧側圧縮要素の実質的な吸入気体容積が減少するように、圧縮室の実効容積を制御するため、低圧側圧縮要素の圧縮室と吸入側とを連通する吸入バイパス通路とそれを開閉する吸入バイパス弁開閉装置からなる制御手段を開示する。   In order to deal with this problem, in Patent Document 1, in order to control the effective volume of the compression chamber so that the substantial suction gas volume of the low-pressure side compression element decreases during low pressure ratio operation, the compression chamber of the low-pressure side compression element is used. And a suction bypass valve opening / closing device for opening and closing the suction bypass passage communicating with the suction side.

これは、低圧側圧縮要素に設けた吸入バイパス通路とそれを開閉する吸入バイパス弁開閉装置により、低圧力比運転時に、前述の(5)式において、低圧側圧縮要素のシリンダ容積Vth1を減少させたことに相当し、これにより、高圧側吸入圧力Ps2を低下させたものである。 This is because the cylinder volume V th1 of the low-pressure side compression element is reduced in the above-described equation (5) by operating the low-pressure ratio operation by the suction bypass passage provided in the low-pressure side compression element and the suction bypass valve opening / closing device that opens and closes it. This corresponds to the reduction of the high-pressure side suction pressure P s2 .

したがって、低圧側吐出圧力(高圧側吸入圧力とほぼ同等)が吐出圧力に接近することを防止することができる。そして、低圧側圧縮要素と高圧側圧縮要素における圧縮負荷が接近し、圧縮機入力の低減が図られる。   Therefore, it is possible to prevent the low-pressure side discharge pressure (approximately the same as the high-pressure side suction pressure) from approaching the discharge pressure. And the compression load in a low pressure side compression element and a high pressure side compression element approaches, and reduction of a compressor input is aimed at.

しかしながら、特許文献1では以下に述べる課題があった。この従来技術では、ローリングピストン型ロータリ2段圧縮機の低圧側圧縮要素のシリンダ圧縮室にバイパス穴が設けられ、圧縮室と吸入側とを連通する吸入バイパス通路とそれを開閉する吸入バイパス弁を備える。   However, Patent Document 1 has the following problems. In this prior art, a bypass hole is provided in a cylinder compression chamber of a low-pressure side compression element of a rolling piston type rotary two-stage compressor, and a suction bypass passage that connects the compression chamber and the suction side and a suction bypass valve that opens and closes the suction bypass passage are provided. Prepare.

ピストンがシリンダ内を回転するのに伴って、低圧側圧縮要素の吸入室容積が増加し吸入作用を行う一方、圧縮室容積が減少し圧縮作用、その後吐出作用を行う。   As the piston rotates in the cylinder, the suction chamber volume of the low-pressure compression element increases and performs a suction action, while the compression chamber volume decreases and performs a compression action and then a discharge action.

圧力比が設定値以下の低圧力比運転時、吸入バイパス弁が開かれ、ピストンがシリンダ圧縮室内でバイパス穴を通過するまでは、実質的な圧縮作用が行われず、冷媒ガスがバイパス通路を介して、低圧側圧縮要素の吸入側に還流する。そして、ピストンがバイパス穴を通過後に実質的な圧縮作用が開始する。   During low pressure ratio operation where the pressure ratio is less than the set value, the suction bypass valve is opened and no substantial compression action is performed until the piston passes through the bypass hole in the cylinder compression chamber, and the refrigerant gas passes through the bypass passage. Thus, the refrigerant returns to the suction side of the low-pressure side compression element. And substantial compression action starts after a piston passes a bypass hole.

したがって、ピストンがシリンダ圧縮室内でバイパス穴を通過するまで、低圧側圧縮要素は、圧縮作用を行わず、ポンプ作用を行い、そのポンプ作用により圧縮室から送出された冷媒ガスは吸入側に戻され、再び低圧側圧縮要素に吸入される。よって、この区間は無駄な仕事がされていることになり、この分圧縮機の入力が増加するという問題が特許文献1にはあった。   Therefore, until the piston passes through the bypass hole in the cylinder compression chamber, the low-pressure side compression element does not perform the compression action but performs the pump action, and the refrigerant gas sent out from the compression chamber by the pump action returns to the suction side. Then, it is again sucked into the low pressure side compression element. Therefore, this section is performing useless work, and Patent Document 1 has a problem that the input of the compressor increases accordingly.

また、ローリングピストン型ロータリ圧縮機は、ピストンがシリンダ内を一回転する間に圧縮作用と吐出作用を行うため、特許文献1に開示の従来技術では、ピストンがバイパス穴を通過後に圧縮作用が開始することになり、冷媒ガスが吐出圧力に達する回転角度も遅れ、よって、短い回転角度の間で吐出作用を行わなければならない。したがって、単位時間当たりに吐出ポートを通過する冷媒流量が増加し、これが吐出流路損失の増加となり、この分も圧縮機の入力が増加するという問題があった。   In addition, since the rolling piston type rotary compressor performs a compression action and a discharge action while the piston rotates once in the cylinder, in the conventional technique disclosed in Patent Document 1, the compression action starts after the piston passes the bypass hole. Therefore, the rotation angle at which the refrigerant gas reaches the discharge pressure is also delayed, and therefore the discharge action must be performed between short rotation angles. Therefore, the flow rate of the refrigerant passing through the discharge port per unit time increases, which increases the discharge flow path loss, and there is a problem that the input of the compressor increases by this amount.

したがって、特許文献1に開示の従来技術では、低圧力比運転時、低圧側吐出圧力が高圧側吐出圧力に接近することを防止し、低圧側圧縮要素と高圧側圧縮要素における圧縮負荷を近接し、圧縮機入力の低減を図っているが、上記問題が解決されていない。   Therefore, in the prior art disclosed in Patent Document 1, the low pressure side discharge pressure is prevented from approaching the high pressure side discharge pressure during low pressure ratio operation, and the compression loads in the low pressure side compression element and the high pressure side compression element are brought close to each other. Although the compressor input is reduced, the above problem has not been solved.

本発明の目的は、低圧側圧縮要素から吐出された冷媒を吸込む高圧側圧縮要素を備えた2段圧縮機を備え、高性能・高信頼性の冷凍サイクル装置を提供することにある。   An object of the present invention is to provide a high-performance and high-reliability refrigeration cycle apparatus including a two-stage compressor including a high-pressure side compression element that sucks refrigerant discharged from a low-pressure side compression element.

上記目的を達成するために、本発明の冷凍サイクル装置は、密閉容器の中に収納された電動要素とこの電動要素によって駆動される低圧側圧縮要素と高圧側圧縮要素とを備えた圧縮機と、前記高圧側圧縮要素から吐出された冷媒の熱交換を行う第1の熱交換器と、この第1の熱交換器からの冷媒の圧力を下げる減圧装置と、減圧された冷媒の熱交換を行う第2の熱交換器とがそれぞれ冷媒流路を介して接続して、前記第2の熱交換器からの冷媒を前記圧縮機の低圧側圧縮要素に吸込む冷媒回路と、前記低圧側圧縮要素で圧縮されて前記高圧側圧縮要素に吸入される冷媒量を調節する冷媒量調節部と、を有するものである。   To achieve the above object, a refrigeration cycle apparatus according to the present invention includes an electric element housed in a sealed container, a compressor including a low-pressure side compression element and a high-pressure side compression element that are driven by the electric element. A first heat exchanger that performs heat exchange of the refrigerant discharged from the high-pressure side compression element, a decompression device that lowers the pressure of the refrigerant from the first heat exchanger, and heat exchange of the decompressed refrigerant A refrigerant circuit that is connected to each of the second heat exchangers through a refrigerant flow path and sucks the refrigerant from the second heat exchanger into the low-pressure side compression element of the compressor; and the low-pressure side compression element And a refrigerant amount adjusting unit that adjusts the amount of refrigerant that is compressed by the high pressure side compression element and sucked into the high pressure side compression element.

また上記目的を達成するために、本発明の他の冷凍サイクル装置は、密閉容器の中に収納された電動要素とこの電動要素によって駆動される低圧側圧縮要素と高圧側圧縮要素とを備えた圧縮機と、前記高圧側圧縮要素から吐出された冷媒の熱交換を行う第1の熱交換器と、この第1の熱交換器からの冷媒の圧力を下げる第1の減圧装置と、減圧された冷媒の熱交換をする第2の熱交換器とがそれぞれ冷媒流路を介して接続し、前記第2の熱交換器からの冷媒を前記圧縮機の低圧側圧縮要素に吸込む冷媒回路と、前記低圧側圧縮要素で圧縮された冷媒を前記第1の減圧装置と前記第2の熱交換器との間の冷媒流路に連絡させる中間冷媒流路と、その中間冷媒流路からの冷媒と連通する第2の減圧装置と、前記第1若しくは/及び第2の減圧装置を制御して前期高圧側圧縮要素に吸入される冷媒量を調節する制御部と、を有するものである。   In order to achieve the above object, another refrigeration cycle apparatus of the present invention includes an electric element housed in a sealed container, a low-pressure side compression element and a high-pressure side compression element driven by the electric element. A compressor, a first heat exchanger that performs heat exchange of the refrigerant discharged from the high-pressure side compression element, and a first pressure reducing device that lowers the pressure of the refrigerant from the first heat exchanger; And a second heat exchanger for exchanging heat of the refrigerant connected to each other via a refrigerant flow path, and a refrigerant circuit for sucking the refrigerant from the second heat exchanger into the low-pressure side compression element of the compressor, An intermediate refrigerant flow path for communicating the refrigerant compressed by the low-pressure side compression element to a refrigerant flow path between the first pressure reducing device and the second heat exchanger; and a refrigerant from the intermediate refrigerant flow path; Second pressure reducing device in communication with the first or / and second pressure reducing device A control unit for adjusting the amount of the refrigerant is controlled to be sucked into the year the high pressure side compression element, and has a.

上記構成に加えて、前記第2の減圧装置は、前記中間冷媒流路上に設けられていてもよい。   In addition to the above configuration, the second decompression device may be provided on the intermediate refrigerant flow path.

また上記構成に加えて、前記第2の減圧装置は、前記中間冷媒流路と接続する冷媒流路上であって、その前記中間冷媒流路との接続部よりも冷媒の流れの下流に設けられていてもよい。   Further, in addition to the above configuration, the second decompression device is provided on the refrigerant flow path connected to the intermediate refrigerant flow path and downstream of the refrigerant flow from the connection portion with the intermediate refrigerant flow path. It may be.

また上記構成に加えて、前記第2の減圧装置は、前記高圧側圧縮要素の吸入圧力又は前記低圧側圧縮要素の吐出圧力に応じて作動するようにしてもよい。   Further, in addition to the above configuration, the second pressure reducing device may be operated according to the suction pressure of the high pressure side compression element or the discharge pressure of the low pressure side compression element.

また上記構成に加えて、前記第2の減圧装置は、前記高圧側圧縮要素の吐出温度と前記低圧側圧縮要素の吐出温度との差に応じて作動するようにしてもよい。   In addition to the above configuration, the second pressure reducing device may operate according to a difference between a discharge temperature of the high-pressure side compression element and a discharge temperature of the low-pressure side compression element.

また上記構成に加えて、前記中間冷媒流路は、前記低圧側圧縮要素で圧縮された冷媒が熱交換する第3の熱交換器を有してもうよい。さらに、前記第1の熱交換器と前記第3の熱交換器は、それぞれを流れる冷媒が共通の流体との間で熱交換する構成を有しても良い。   In addition to the above configuration, the intermediate refrigerant flow path may further include a third heat exchanger for exchanging heat with the refrigerant compressed by the low pressure side compression element. Furthermore, the first heat exchanger and the third heat exchanger may have a configuration in which the refrigerant flowing through each of them exchanges heat with a common fluid.

本発明によれば、2段圧縮機を備えた冷凍サイクル装置の性能を向上させ、また信頼性を高めることができる。   ADVANTAGE OF THE INVENTION According to this invention, the performance of the refrigerating-cycle apparatus provided with the two-stage compressor can be improved, and reliability can be improved.

本発明の冷凍サイクル装置は、密閉容器の中に収納された電動要素とその電動要素によって駆動される低圧側圧縮要素と高圧側圧縮要素とを備えた圧縮機と、その圧縮機の高圧側圧縮要素から吐出された冷媒の熱交換を行う第1の熱交換器と、その第1の熱交換器からの冷媒の圧力を下げる減圧装置と、減圧された冷媒と熱交換する第2の熱交換器とがそれぞれ冷媒流路を介して接続する冷媒回路と、前記低圧側圧縮要素で圧縮された冷媒が前記高圧側圧縮要素に吸入される冷媒量を調節する冷媒量調節部と、を有するものである。   A refrigeration cycle apparatus according to the present invention includes an electric element housed in an airtight container, a compressor including a low-pressure side compression element and a high-pressure side compression element driven by the electric element, and a high-pressure side compression of the compressor A first heat exchanger for exchanging heat of the refrigerant discharged from the element, a decompression device for reducing the pressure of the refrigerant from the first heat exchanger, and a second heat exchange for exchanging heat with the decompressed refrigerant A refrigerant circuit that is connected to each other through a refrigerant flow path, and a refrigerant amount adjusting unit that adjusts the amount of refrigerant that is compressed by the low-pressure side compression element into the high-pressure side compression element. It is.

図1を用いて説明する冷凍サイクル装置は、本発明の一実施形態であるヒートポンプ式給湯機であり、冷媒として二酸化炭素を用いたものである。   The refrigeration cycle apparatus described with reference to FIG. 1 is a heat pump type water heater that is an embodiment of the present invention, and uses carbon dioxide as a refrigerant.

図1の装置において、圧縮機10は密閉容器13内に二つの圧縮要素(低圧側圧縮要素11、高圧側圧縮要素12)を有している。低圧側圧縮要素11、高圧側圧縮要素12は密閉容器13内に収納された電動要素(図示せず)によって駆動される。   In the apparatus of FIG. 1, the compressor 10 has two compression elements (a low pressure side compression element 11 and a high pressure side compression element 12) in an airtight container 13. The low pressure side compression element 11 and the high pressure side compression element 12 are driven by an electric element (not shown) housed in the hermetic container 13.

低圧側圧縮要素11の吸入通路11aは密閉容器13を貫通し、蒸発器32の出口と接続している。低圧側圧縮要素11の第1吐出通路11bと第2吐出通路11b’とは、密閉容器13内と連通している。言い換えると第1吐出通路11bと第2吐出通路11b’は密閉容器13に開放している。   The suction passage 11 a of the low-pressure side compression element 11 passes through the sealed container 13 and is connected to the outlet of the evaporator 32. The first discharge passage 11 b and the second discharge passage 11 b ′ of the low pressure side compression element 11 communicate with the inside of the sealed container 13. In other words, the first discharge passage 11 b and the second discharge passage 11 b ′ are open to the sealed container 13.

高圧側圧縮要素12の吸入通路12aは密閉容器13を貫通し、第2吐出通路11b’及び熱交換器20の第2冷媒通路22と接続している。高圧側圧縮要素12の吐出通路12bは、熱交換器20の第1冷媒通路21と接続している。   The suction passage 12 a of the high-pressure side compression element 12 passes through the sealed container 13 and is connected to the second discharge passage 11 b ′ and the second refrigerant passage 22 of the heat exchanger 20. The discharge passage 12 b of the high pressure side compression element 12 is connected to the first refrigerant passage 21 of the heat exchanger 20.

低圧側圧縮要素11で圧縮されたガス冷媒の流れを説明する。低圧側圧縮要素11で圧縮されたガス冷媒は、第1吐出通路11bを介して密閉容器13内に放出される。密閉容器13内のがス冷媒は、第2吐出通路11b’に流入する。このとき、密閉容器13内の圧力は低圧側圧縮要素11の吐出圧力と同等である。   The flow of the gas refrigerant compressed by the low pressure side compression element 11 will be described. The gas refrigerant compressed by the low pressure side compression element 11 is discharged into the sealed container 13 through the first discharge passage 11b. The refrigerant in the sealed container 13 flows into the second discharge passage 11b '. At this time, the pressure in the sealed container 13 is equal to the discharge pressure of the low-pressure compression element 11.

低圧側圧縮要素11の第2吐出通路11b’を流れる冷媒ガスは吸入通路12aとの接続部で二つの流れに分岐される。   The refrigerant gas flowing through the second discharge passage 11b 'of the low-pressure side compression element 11 is branched into two flows at the connection portion with the suction passage 12a.

一方の流れは、高圧側圧縮要素12の吸入通路12aを介して高圧側圧縮要素12に吸込まれる。高圧側圧縮要素12でガス冷媒は更に圧縮されて高圧ガス冷媒となり、吐出通路12bに吐出される。その高圧のガス冷媒は吐出通路12bを介して熱交換器20の第1冷媒通路21に流れ込む。   One flow is sucked into the high-pressure compression element 12 via the suction passage 12 a of the high-pressure compression element 12. The gas refrigerant is further compressed by the high pressure side compression element 12 to become a high pressure gas refrigerant, and is discharged to the discharge passage 12b. The high-pressure gas refrigerant flows into the first refrigerant passage 21 of the heat exchanger 20 through the discharge passage 12b.

他方の流れは、吸入通路12aを介して熱交換器20の第2冷媒通路22に流れ込み、一旦は分かれた冷媒流が第1の減圧装置の下流にある冷媒流路において合流する中間冷媒流路となる。   The other flow flows into the second refrigerant passage 22 of the heat exchanger 20 through the suction passage 12a, and the intermediate refrigerant flow path where the divided refrigerant flows merge in the refrigerant flow path downstream of the first decompression device. It becomes.

次に、熱交換器20について説明する。熱交換器20は、第1冷媒通路21と、第2冷媒通路22及び水通路23を有する。第1冷媒通路21と水通路23、および第2冷媒通路22と水通路23が熱交換可能に接触構造を備える。   Next, the heat exchanger 20 will be described. The heat exchanger 20 includes a first refrigerant passage 21, a second refrigerant passage 22, and a water passage 23. The first refrigerant passage 21 and the water passage 23, and the second refrigerant passage 22 and the water passage 23 are provided with a contact structure so that heat exchange is possible.

第1冷媒通路21は、入口側は吐出通路12bと接続し、出口側は第1の減圧装置である第1膨張弁30と管路を介して接続する。水通路23とは、水通路23の入口部分から出口部分まで熱交換可能に接触する流路構造を第1冷媒通路21を備える。水通路23への水の供給は、図1の矢印の方向に行われる。つまり冷媒の流れと対向する向きに水の流れが方向付けられている。   The inlet side of the first refrigerant passage 21 is connected to the discharge passage 12b, and the outlet side is connected to the first expansion valve 30 serving as a first pressure reducing device via a pipe line. The water passage 23 includes a first refrigerant passage 21 having a flow path structure that contacts the water passage 23 from the inlet portion to the outlet portion so as to allow heat exchange. Water is supplied to the water passage 23 in the direction of the arrow in FIG. That is, the flow of water is directed in a direction opposite to the flow of the refrigerant.

第2冷媒通路22は、第1冷媒通路21と比較して、水通路23の出口側部分と熱交換しない流路構造を備える。第2冷媒通路22は、その入口側が低圧側圧縮要素11の第2吐出通路11b’と、吸入通路12aを介して連通し、その出口側が第2の減圧装置である第2膨張弁31と管路を介して接続する。この第2冷媒通路22を流れるガス冷媒は、水通路23を流れる水と熱交換して第2膨張弁31に流れる。   Compared to the first refrigerant passage 21, the second refrigerant passage 22 has a flow path structure that does not exchange heat with the outlet side portion of the water passage 23. The second refrigerant passage 22 communicates with the second discharge passage 11b ′ of the low-pressure compression element 11 through the suction passage 12a on the inlet side, and the second expansion passage 31 serving as the second decompression device on the outlet side of the second refrigerant passage 22 Connect through the road. The gas refrigerant flowing through the second refrigerant passage 22 exchanges heat with the water flowing through the water passage 23 and flows to the second expansion valve 31.

本実施形態では、熱交換器20の第1冷媒通路21は第1膨張弁30と連通し、第2冷媒通路22は第2膨張弁31と連通する。そして第1膨張弁30を通過した冷媒と、第2膨張弁31とを通過した冷媒とが混合した後、その混合された冷媒が蒸発器32に流入する。また、第2膨張弁31を通過する冷媒が無ければ第1膨張弁30を通過した冷媒だけが蒸発器32に流入することになる。各膨張弁の開度に応じた冷媒の流れについての詳細は後述する。   In the present embodiment, the first refrigerant passage 21 of the heat exchanger 20 communicates with the first expansion valve 30, and the second refrigerant passage 22 communicates with the second expansion valve 31. After the refrigerant that has passed through the first expansion valve 30 and the refrigerant that has passed through the second expansion valve 31 are mixed, the mixed refrigerant flows into the evaporator 32. If there is no refrigerant passing through the second expansion valve 31, only the refrigerant that has passed through the first expansion valve 30 flows into the evaporator 32. Details of the flow of the refrigerant according to the opening of each expansion valve will be described later.

蒸発器32で熱交換した冷媒は、吸入通路11aを経て低圧側圧縮要素11に吸入される。送風機33は蒸発器32に空気を送風し、蒸発器32は冷媒と空気との熱交換を行う。   The refrigerant having exchanged heat with the evaporator 32 is sucked into the low-pressure compression element 11 through the suction passage 11a. The blower 33 blows air to the evaporator 32, and the evaporator 32 performs heat exchange between the refrigerant and the air.

次に、図1における制御系について説明する。まず、第1制御装置50は、蒸発器32における過熱度を制御する制御装置であり、第2制御装置51は、高圧側圧縮要素12と低圧側圧縮要素11からの冷媒ガス吐出温度差を制御する制御装置である。   Next, the control system in FIG. 1 will be described. First, the first control device 50 is a control device that controls the degree of superheat in the evaporator 32, and the second control device 51 controls the refrigerant gas discharge temperature difference from the high pressure side compression element 12 and the low pressure side compression element 11. It is a control device.

蒸発温度センサ40は蒸発器32の冷媒伝熱管(図示せず)表面に接触して設けられ、近似的に冷媒の蒸発温度Teを検知する。また、低圧側吸入温度センサ41は、圧縮機10の低圧側圧縮要素11の吸入通路11aである配管表面に接触して設けられ、近似的に低圧側圧縮要素11の吸入ガス冷媒温度Ts1を検知する。 Evaporation temperature sensor 40 is a refrigerant heat transfer tubes of the evaporator 32 (not shown) provided in contact with the surface, approximately detecting the evaporation temperature T e of the refrigerant. Further, the low-pressure side suction temperature sensor 41 is provided in contact with the pipe surface, which is the suction passage 11a of the low-pressure side compression element 11 of the compressor 10, and approximates the suction gas refrigerant temperature T s1 of the low-pressure side compression element 11. Detect.

低圧側吐出温度センサ42は低圧側圧縮要素11の吐出通路11b’である配管表面に接触して設けられ、近似的に低圧側圧縮要素11の吐出ガス冷媒温度Td1を検知する。また、高圧側吐出温度センサ43は高圧側圧縮要素12の吐出通路12bである配管表面に接触して設けられ、近似的に高圧側圧縮要素12の吐出ガス冷媒温度Td2を検知する。 The low-pressure side discharge temperature sensor 42 is provided in contact with the pipe surface which is the discharge passage 11b ′ of the low-pressure side compression element 11, and approximately detects the discharge gas refrigerant temperature Td1 of the low-pressure side compression element 11. Further, the high pressure side discharge temperature sensor 43 is provided in contact with the pipe surface which is the discharge passage 12b of the high pressure side compression element 12, and detects the discharge gas refrigerant temperature Td2 of the high pressure side compression element 12 approximately.

第1制御器50は温度センサ41によって検出される吸入ガス温度Ts1と温度センサ40によって検出される蒸発温度Teの差である過熱度の大きさを、第1膨張弁30の開閉度により制御する。例えば、目標過熱度が5℃と設定された場合、第1制御器50は、過熱度が目標過熱度となるように第1膨張弁30の開閉度を制御する。 The first controller 50 the amount of superheat is the difference between the evaporation temperature T e detected by the intake gas temperature T s1 and the temperature sensor 40 detected by the temperature sensor 41, the opening degree of the first expansion valve 30 Control. For example, when the target superheat degree is set to 5 ° C., the first controller 50 controls the degree of opening and closing of the first expansion valve 30 so that the superheat degree becomes the target superheat degree.

第2制御器51は温度センサ43によって検知される高圧側吐出温度Td2と温度センサ42によって検知される低圧側吐出温度Td1の差である高圧側と低圧側の吐出温度差(Td2 − Td1)の大きさを、第2膨張弁31の開度により制御する。例えば、図2に示すように目標吐出温度差(Td2 − Td1)を高圧側吐出温度Td2と低圧側吸入温度Ts1の差(Td2 − Ts1)の一次関数として設定し、吐出温度差が目標値となるように第2制御器51は第2膨張弁31の弁開閉度を制御する。 The second controller 51 detects the difference between the high-pressure side and low-pressure side discharge temperatures (T d2 −), which is the difference between the high-pressure side discharge temperature T d2 detected by the temperature sensor 43 and the low-pressure side discharge temperature T d1 detected by the temperature sensor 42. The magnitude of T d1 ) is controlled by the opening of the second expansion valve 31. For example, as shown in FIG. 2, the target discharge temperature difference (T d2 −T d1 ) is set as a linear function of the difference between the high pressure side discharge temperature T d2 and the low pressure side suction temperature T s1 (T d2 −T s1 ). The second controller 51 controls the valve opening / closing degree of the second expansion valve 31 so that the temperature difference becomes the target value.

本実施形態では、ヒートポンプ式給湯機の冷媒として二酸化炭素を用い、高圧側圧縮要素12のシリンダ容積は、低圧側圧縮要素のシリンダ容積の60%に設定されている。   In the present embodiment, carbon dioxide is used as the refrigerant of the heat pump type hot water heater, and the cylinder volume of the high pressure side compression element 12 is set to 60% of the cylinder volume of the low pressure side compression element.

以上のように構成するヒートポンプ式給湯機の高圧力比運転時と低圧力比運転時での冷凍サイクルの動作について説明する。   The operation of the refrigeration cycle during the high pressure ratio operation and the low pressure ratio operation of the heat pump type water heater configured as described above will be described.

図3にヒートポンプ式給湯機の2段圧縮機が高圧力比運転を行う時の冷媒流れの説明図である。例えば、冬期の圧力条件として吸入圧力、吐出圧力及び圧力比をそれぞれ、吸入圧力(低圧側吸入圧力)Ps1 = 3.5MPa、吐出圧力(高圧側吐出圧力)Pd = 10MPaで圧力比Pd / Ps1 = 2.9とする。 FIG. 3 is an explanatory diagram of the refrigerant flow when the two-stage compressor of the heat pump type hot water heater performs a high pressure ratio operation. For example, the suction pressure, discharge pressure and pressure ratio as winter pressure conditions are the suction pressure (low-pressure side suction pressure) P s1 = 3.5 MPa, the discharge pressure (high-pressure side discharge pressure) P d = 10 MPa, and the pressure ratio P d / Let P s1 = 2.9.

この時、高圧側圧縮要素12と低圧側圧縮要素11との吐出温度差(Td2 − Td1)が図2に示した目標値となるように、第2膨張弁31を制御して弁は全閉状態となる。この場合、低圧側圧縮要素11の冷媒流量G1と高圧側圧縮要素12の冷媒流量G2は同一である。 At this time, the second expansion valve 31 is controlled so that the discharge temperature difference (T d2 −T d1 ) between the high pressure side compression element 12 and the low pressure side compression element 11 becomes the target value shown in FIG. Fully closed state. In this case, the refrigerant flow rate G 2 of the refrigerant flow rate G 1 and the high pressure side compression element 12 of the low pressure side compression element 11 are the same.

また、低圧側圧縮要素11の体積効率etav1と高圧側圧縮要素12の体積効率etav2をほぼ同一と仮定し、高圧側圧縮要素と低圧側圧縮要素のシリンダ容積比Vth2 / Vth1 = 0.6、断熱指数k = 1.3を用いると、前出の(4)式より高圧側吸入圧力はPs2 = 6.8MPaとなる。この時、低圧側圧縮要素11の圧力比Ps2 / Ps1 = 1.9、高圧側圧縮要素12の圧力比Pd / Ps2 = 1.5、また、低圧側圧縮要素11の圧力差Ps2 − Ps1 = 3.3MPa、高圧側圧縮要素12の圧力差Pd − Ps2 = 3.2MPaとなる。 Further, assuming that the volumetric efficiency eta v1 of the low pressure side compression element 11 and the volumetric efficiency eta v2 of the high pressure side compression element 12 are substantially the same, the cylinder volume ratio V th2 / V th1 = 0.6 of the high pressure side compression element and the low pressure side compression element. When the adiabatic index k = 1.3 is used, the high-pressure side suction pressure is P s2 = 6.8 MPa from the above equation (4). At this time, the pressure ratio P s2 / P s1 of the low pressure side compression element 11 is 1.9, the pressure ratio P d / P s2 of the high pressure side compression element 12 is 1.5, and the pressure difference P s2 −P s1 of the low pressure side compression element 11 = 3.3 MPa, and the pressure difference P d −P s2 of the high pressure side compression element 12 is 3.2 MPa.

よって、各圧縮要素の圧力比及び圧力差が接近し、各圧縮要素の荷重及び作動室の漏れが低減され、圧縮機の効率が向上する。   Therefore, the pressure ratio and pressure difference of each compression element approach, the load of each compression element and the leakage of the working chamber are reduced, and the efficiency of the compressor is improved.

図4は図1のヒートポンプ式給湯機の2段圧縮機が低圧力比運転を行う時の冷媒流れの説明図である。例えば、夏期の圧力条件として吸入圧力、吐出圧力及び圧力比をそれぞれ、吸入圧力(低圧側吸入圧力)Ps1 = 5.6MPa、吐出圧力(高圧側吐出圧力)Pd = 10Mpa、そして圧力比Pd / Ps1= 1.8とする。 FIG. 4 is an explanatory view of the refrigerant flow when the two-stage compressor of the heat pump type hot water heater of FIG. 1 performs the low pressure ratio operation. For example, the suction pressure, discharge pressure, and pressure ratio for summer pressure conditions are suction pressure (low pressure suction pressure) P s1 = 5.6 MPa, discharge pressure (high pressure discharge pressure) P d = 10 MPa, and pressure ratio P d / P s1 = 1.8.

この時、高圧側圧縮要素13と低圧側圧縮要素11の吐出温度差(Td2 − Td1)が図2に示した目標値となるように、第2膨張弁31を制御して、弁は低圧側圧縮要素11から高圧側圧縮要素12へ流れる冷媒の約25%を熱交換器20の第2冷媒通路に流通させる。したがって、冷媒流量比G2 / G1 = 0.75である。 At this time, the second expansion valve 31 is controlled so that the discharge temperature difference (T d2 −T d1 ) between the high pressure side compression element 13 and the low pressure side compression element 11 becomes the target value shown in FIG. About 25% of the refrigerant flowing from the low pressure side compression element 11 to the high pressure side compression element 12 is circulated through the second refrigerant passage of the heat exchanger 20. Therefore, the refrigerant flow ratio G 2 / G 1 = 0.75.

また、体積効率の比率etav1 / etav2 = 1.0を仮定し、シリンダ容積比Vth2 / Vth1 = 0.6、断熱指数k = 1.3を用いると、(4)式より高圧側吸入圧力はPs2 = 7.5MPaとなる。この時、低圧側圧縮要素11の圧力比Ps2 / Ps1 = 1.3、高圧側圧縮要素12の圧力比Pd / Ps2 = 1.3、また、低圧側圧縮要素11の圧力差Ps2 − Ps1 = 1.9MPa、高圧側圧縮要素12の圧力差Pd − Ps2 = 2.5MPaとなる。 Also, assuming a volumetric efficiency ratio of eta v1 / eta v2 = 1.0, and using a cylinder volume ratio V th2 / V th1 = 0.6 and an adiabatic index k = 1.3, the high-pressure side suction pressure is P s2 = 7.5MPa. At this time, the pressure ratio P s2 / P s1 = 1.3 of the low pressure side compression element 11, the pressure ratio P d / P s2 = 1.3 of the high pressure side compression element 12, and the pressure difference P s2 −P s1 of the low pressure side compression element 11 = 1.9 MPa, the pressure difference P d −P s2 of the high pressure side compression element 12 is 2.5 MPa.

よって、各圧縮要素の圧力比及び圧力差が接近し、各圧縮要素の荷重及び作動室の漏れが低減され、圧縮機の効率が向上する。   Therefore, the pressure ratio and pressure difference of each compression element approach, the load of each compression element and the leakage of the working chamber are reduced, and the efficiency of the compressor is improved.

ここで、低圧力比運転時、低圧側圧縮要素11の吐出通路11b’の冷媒を分岐する手段がない場合、冷媒流量比G2 / G1 = 1.0であり、(4)式より、高圧側吸入圧力はPs2 = 10.9MPaとなる。 Here, at the time of low pressure ratio operation, when there is no means for branching the refrigerant in the discharge passage 11b ′ of the low pressure side compression element 11, the refrigerant flow rate ratio G 2 / G 1 = 1.0. The suction pressure is P s2 = 10.9 MPa.

この値は吐出圧力Pd = 10MPaより高くなるため、Ps2 = Pdとなる。したがって、低圧側圧縮要素11のみで圧縮機の吐出圧力まで到達し、高圧側圧縮要素12では、圧縮仕事がされない。すなわち、ガス冷媒がただ作動室を流通するのみで、無駄な仕事がされており、単段圧縮機より効率が低下する。 Since this value is higher than the discharge pressure P d = 10 MPa, P s2 = P d . Therefore, only the low pressure side compression element 11 reaches the discharge pressure of the compressor, and the high pressure side compression element 12 does not perform compression work. In other words, the gas refrigerant simply circulates in the working chamber, and is performing a useless work, and the efficiency is lower than that of the single-stage compressor.

したがって、本実施形態により、この課題の解決を図ることができる。また、低圧側圧縮要素の圧縮室の冷媒を吸入側にバイパスさせる従来技術では、圧縮機が圧縮仕事の他に冷媒をバイパスさせるためのポンプ仕事が余計に必要なのに対して、本発明はポンプ仕事等の余計な動力を必要としないため、より効率的である。   Therefore, this embodiment can solve this problem. Further, in the prior art in which the refrigerant in the compression chamber of the low-pressure side compression element is bypassed to the suction side, the compressor requires an extra pump work for bypassing the refrigerant in addition to the compression work, whereas the present invention provides a pump work. It is more efficient because it does not require extra power.

また、本実施形態のように、熱交換器20の第2冷媒通路22に流入する冷媒は低圧側圧縮後の吐出ガスのため、高圧側圧縮後の吐出ガスである第1冷媒通路21に流入する冷媒より低温である。   Further, as in the present embodiment, since the refrigerant flowing into the second refrigerant passage 22 of the heat exchanger 20 is the discharge gas after the low-pressure side compression, it flows into the first refrigerant passage 21 that is the discharge gas after the high-pressure side compression. The temperature is lower than that of the refrigerant.

例えば、低圧側吸入圧力Ps1 = 5.6MPa、低圧側吸入温度Ts1 = 24℃、高圧側吸入圧力Ps2 = 7.5MPa、吐出圧力Pd = 10MPで断熱圧縮を仮定すると、低圧側吐出温度Td1 = 46℃、高圧側吐出温度Td2 = 68℃となる。 For example, assuming adiabatic compression with low-pressure side suction pressure P s1 = 5.6 MPa, low-pressure side suction temperature T s1 = 24 ° C, high-pressure side suction pressure P s2 = 7.5 MPa, discharge pressure P d = 10 MP, low-pressure side discharge temperature T d1 = 46 ° C, high-pressure side discharge temperature T d2 = 68 ° C.

熱交換器20の第1冷媒通路21は水通路23の入口から出口まで全体にわたって対向流となるように配置されているのに対して、第2冷媒通路22は水通路23の入口から途中まで対向流となるように配置されている。   The first refrigerant passage 21 of the heat exchanger 20 is disposed so as to face the entire flow from the inlet to the outlet of the water passage 23, whereas the second refrigerant passage 22 extends from the inlet of the water passage 23 to the middle. It arrange | positions so that it may become a counterflow.

そのため、第1冷媒通路21に流入した高温の冷媒(例えば68℃)は、水通路23内を流れる水を加熱しながら温度が低下し、第2冷媒通路22入口付近で、第2冷媒通路22入口の冷媒温度(例えば46℃)と同等となる。その後、第1冷媒通路21内の冷媒と第2冷媒通路22内の冷媒は同等の温度レベルで水通路23内の水を加熱し、温度が同様に低下する。したがって、同じ位置での二つの冷媒通路21と22内の冷媒温度を同等レベルとなるように第2冷媒通路を配置したため、冷媒と水との熱交換を効率的に行うことができる。   Therefore, the temperature of the high-temperature refrigerant (for example, 68 ° C.) that has flowed into the first refrigerant passage 21 decreases while heating the water flowing in the water passage 23, and the second refrigerant passage 22 is near the inlet of the second refrigerant passage 22. It becomes equivalent to the refrigerant temperature at the inlet (for example, 46 ° C.). Thereafter, the refrigerant in the first refrigerant passage 21 and the refrigerant in the second refrigerant passage 22 heat the water in the water passage 23 at the same temperature level, and the temperature similarly decreases. Therefore, since the second refrigerant passage is arranged so that the refrigerant temperatures in the two refrigerant passages 21 and 22 at the same position are at the same level, heat exchange between the refrigerant and water can be performed efficiently.

以上の構成および動作により、2段圧縮機の中間圧力である高圧側圧縮要素の吸入圧力を適正に制御することができ、圧力比に関わらず高効率な運転を図ることができる。   With the above configuration and operation, the suction pressure of the high-pressure side compression element, which is the intermediate pressure of the two-stage compressor, can be appropriately controlled, and high-efficiency operation can be achieved regardless of the pressure ratio.

図5の構成は、図1の構成に圧縮機密閉容器13内の圧力を検知する圧力センサ44を付加したものである。図5において、図1と同等部分には同一符号を付し、その説明は省略する。   The configuration of FIG. 5 is obtained by adding a pressure sensor 44 that detects the pressure in the compressor hermetic container 13 to the configuration of FIG. 5, parts that are the same as those in FIG. 1 are given the same reference numerals, and descriptions thereof are omitted.

冷媒として用いる二酸化炭素は、臨界点の温度が31℃と低く、ヒートポンプ装置および冷凍空調装置の冷凍サイクルに適用した場合は、臨界点を横切る遷臨界冷凍サイクルとなる。   Carbon dioxide used as a refrigerant has a critical point temperature as low as 31 ° C., and when applied to a refrigeration cycle of a heat pump device and a refrigeration air conditioner, it becomes a transcritical refrigeration cycle crossing the critical point.

超臨界状態では樹脂等の高分子材料の溶出が問題となり、水分が存在した場合にはさらに溶出が促進され樹脂材料の著しい劣化を引き起こす恐れがある。圧縮機10の密閉容器13内には、圧縮要素11、12を駆動する電動要素(図示せず)が収納されており、電動要素には樹脂材料が使用されている。したがって、本実施例では、密閉容器13内の圧力を臨界圧力以下に保つことにより、電動要素の樹脂材料の劣化防止を図る。   In the supercritical state, elution of a polymer material such as a resin becomes a problem, and when water is present, elution is further promoted and there is a possibility that the resin material is significantly deteriorated. An electric element (not shown) for driving the compression elements 11 and 12 is accommodated in the sealed container 13 of the compressor 10, and a resin material is used for the electric element. Therefore, in the present embodiment, the resin material of the electric element is prevented from being deteriorated by keeping the pressure in the sealed container 13 below the critical pressure.

二酸化炭素の臨界圧力は約7.4MPaである。ヒートポンプ式給湯機の運転時、圧力センサ44は圧縮機の密閉容器内圧力を検知する。圧縮機の低圧である吸入圧力(低圧側吸入圧力)と高圧である吐出圧力(高圧側吐出圧力)に対して、密閉容器内圧力は低圧側吐出圧力および高圧側吸入圧力と同等の中間圧力となっている。第2制御器51は、圧力センサ44で検知した中間圧力が臨界圧力より低い上限圧力、例えば、7.0MPa以下で高圧側と低圧側の吐出温度差(Td2 − Td1)が前出の図2に示した目標値となるように、第2膨張弁31を制御する。 The critical pressure of carbon dioxide is about 7.4MPa. During operation of the heat pump type water heater, the pressure sensor 44 detects the pressure in the hermetic container of the compressor. For the suction pressure (low pressure suction pressure), which is a low pressure of the compressor, and the discharge pressure (high pressure discharge pressure), which is a high pressure, the pressure in the sealed container is an intermediate pressure equivalent to the low pressure discharge pressure and the high pressure suction pressure. It has become. The second controller 51 has an upper limit pressure where the intermediate pressure detected by the pressure sensor 44 is lower than the critical pressure, for example, 7.0 MPa or less, and the discharge temperature difference (T d2 −T d1 ) between the high pressure side and the low pressure side is the above figure. The second expansion valve 31 is controlled so that the target value shown in FIG.

図3での説明と同じ高圧力比運転条件では、吸入圧力(低圧側吸入圧力)Ps1 = 3.5MPa、吐出圧力(高圧側吐出圧力)Pd = 10MPaで第2膨張弁31が全閉状態となり、高圧側吸入圧力(密閉容器内圧力と同等)は、実施例1と同じ、上限圧力7.0MPaより低いPs2 = 6.8MPaとなる。 Under the same high pressure ratio operation conditions as described in FIG. 3, the second expansion valve 31 is fully closed when the suction pressure (low-pressure side suction pressure) P s1 = 3.5 MPa and the discharge pressure (high-pressure side discharge pressure) P d = 10 MPa. Thus, the high-pressure side suction pressure (equivalent to the pressure in the sealed container) is P s2 = 6.8 MPa, which is the same as in Example 1 and is lower than the upper limit pressure 7.0 MPa.

一方、図4での説明と同じ低圧力比運転条件の吸入圧力(低圧側吸入圧力)Ps1 = 5.6MPa、吐出圧力(高圧側吐出圧力)Pd = 10MPaでは、高圧側と低圧側の吐出温度差(Td2 − Td1)制御を行うと、実施例1のように中間圧力が7.5MPaとなり、上限値7.0MPaを超えてしまうため、圧力センサ44で検知した中間圧力が上限値7.0MPaとなるように膨張弁31が制御される。このとき、(4)式から計算すると、低圧側圧縮要素11から高圧側圧縮要素12へ流れる冷媒の約29%が熱交換器20の第2冷媒通路に流通される。 On the other hand, when the suction pressure (low-pressure side suction pressure) P s1 = 5.6 MPa and discharge pressure (high-pressure side discharge pressure) P d = 10 MPa under the same low pressure ratio operation conditions as described in FIG. When the temperature difference (T d2 −T d1 ) control is performed, the intermediate pressure becomes 7.5 MPa as in the first embodiment and exceeds the upper limit of 7.0 MPa. Therefore, the intermediate pressure detected by the pressure sensor 44 is higher than the upper limit of 7.0 MPa. The expansion valve 31 is controlled so that At this time, when calculated from the equation (4), approximately 29% of the refrigerant flowing from the low pressure side compression element 11 to the high pressure side compression element 12 is circulated through the second refrigerant passage of the heat exchanger 20.

したがって、圧縮機10の密閉容器13内の圧力を臨界圧力以下に保持することができるため、密閉容器13内に収納された電動要素等の樹脂材料の超臨界溶出による劣化防止を図り、信頼性を向上させることができる。   Therefore, since the pressure in the sealed container 13 of the compressor 10 can be kept below the critical pressure, deterioration due to supercritical elution of the resin material such as an electric element housed in the sealed container 13 is prevented, and reliability is improved. Can be improved.

また、圧縮機の密閉容器内圧力を臨界圧力以下に抑えたため、密閉容器の耐圧を低くでき、コスト低減化を図ることができる。   Moreover, since the pressure in the sealed container of the compressor is suppressed to a critical pressure or less, the pressure resistance of the sealed container can be lowered, and the cost can be reduced.

図6の構成は、図1の構成に2段圧縮機の中間冷却器を付加したものである。図6において、図1と同等部分には同一符号を付し、その説明は省略する。   The configuration of FIG. 6 is obtained by adding an intermediate cooler of a two-stage compressor to the configuration of FIG. 6, parts that are the same as those in FIG. 1 are given the same reference numerals, and descriptions thereof are omitted.

熱交換器20’において、第1冷媒通路21は水通路23の入口から出口まで全体にわたって対向流となるように配置されている。   In the heat exchanger 20 ′, the first refrigerant passage 21 is disposed so as to face the entire flow from the inlet to the outlet of the water passage 23.

第2冷媒通路中間冷却部24aは、その入口が圧縮機10の低圧側圧縮要素11の第2吐出通路11b’と接続している。また、中間冷却部24aは、水通路23の中間部に位置して、対向流となる水と熱交換可能に配置されている。   The inlet of the second refrigerant passage intermediate cooling portion 24 a is connected to the second discharge passage 11 b ′ of the low pressure side compression element 11 of the compressor 10. Moreover, the intermediate cooling part 24a is located in the intermediate part of the water passage 23, and is arrange | positioned so that heat exchange with the water used as a counterflow is possible.

また、第2冷媒通路バイパス冷却部24bは水通路23の入口側で対向流熱交換可能に配置されている。第2冷媒通路中間冷却部24aの出口での二つの分岐は、一方が高圧側圧縮要素12の吸入通路12aと接続し、他方は第2冷媒通路バイパス冷却部24bの入口側と接続している。さらにまた、第2冷媒通路バイパス冷却部24bの出口は第2膨張弁31を介して、蒸発器32の入口と接続している。   Further, the second refrigerant passage bypass cooling part 24b is arranged on the inlet side of the water passage 23 so as to be able to exchange heat with the counterflow. One of the two branches at the outlet of the second refrigerant passage intermediate cooling portion 24a is connected to the suction passage 12a of the high-pressure side compression element 12, and the other is connected to the inlet side of the second refrigerant passage bypass cooling portion 24b. . Furthermore, the outlet of the second refrigerant passage bypass cooling unit 24 b is connected to the inlet of the evaporator 32 via the second expansion valve 31.

この時、圧縮機10の低圧側圧縮要素11にて低圧から中間圧まで圧縮され、温度の上昇したガス冷媒は、熱交換器20’の第2冷媒通路中間冷却部24aで水通路23内の水と熱交換を行い冷却される。したがって、高圧側圧縮要素12の入口冷媒温度が低下するため、単位質量当りの理論断熱圧縮仕事が減少し、ヒートポンプ式給湯機の消費電力の低減を図ることができる。   At this time, the gas refrigerant compressed from the low pressure to the intermediate pressure by the low pressure side compression element 11 of the compressor 10 and the temperature rising is stored in the water passage 23 by the second refrigerant passage intermediate cooling portion 24a of the heat exchanger 20 ′. It is cooled by exchanging heat with water. Therefore, since the refrigerant temperature at the inlet of the high pressure side compression element 12 is lowered, the theoretical adiabatic compression work per unit mass is reduced, and the power consumption of the heat pump type hot water heater can be reduced.

また、図1を用いて詳述したように、第2膨張弁31を制御することにより、2段圧縮機の中間圧力を適正に制御することで、運転圧力比に関わらず高効率な運転を図ることができる。   Further, as described in detail with reference to FIG. 1, by controlling the second expansion valve 31, the intermediate pressure of the two-stage compressor is appropriately controlled, so that highly efficient operation can be performed regardless of the operation pressure ratio. Can be planned.

図7は本発明の一実施形態に係るヒートポンプ式暖房機の概略を示す冷凍サイクル構成図である。その構成は、図1の実施例の構成における水−冷媒熱交換器から空気−冷媒熱交換器に変更したものである。図7において、図1と同等部分には同一符号を付し、その説明は省略する。   FIG. 7 is a refrigeration cycle configuration diagram illustrating an outline of a heat pump heater according to an embodiment of the present invention. The configuration is changed from the water-refrigerant heat exchanger in the configuration of the embodiment of FIG. 1 to the air-refrigerant heat exchanger. 7, parts that are the same as those in FIG. 1 are given the same reference numerals, and descriptions thereof are omitted.

主ガス冷却器60の入口は圧縮機10の高圧側圧縮要素12の吐出通路12bと接続し、主ガス冷却器60の出口は第1膨張弁30と接続している。また、中間冷却器61の入口は圧縮機10の低圧側圧縮要素11の第2吐出通路11b’と接続し、中間冷却器61の出口は二つに分岐し、片方は高圧側圧縮要素12の吸入通路12aと接続し、他方はバイパスガス冷却器62の入口と接続している。さらにまた、バイパスガス冷却器62の出口は第2膨張弁31を介して、蒸発器32の入口と接続している。   The inlet of the main gas cooler 60 is connected to the discharge passage 12 b of the high pressure side compression element 12 of the compressor 10, and the outlet of the main gas cooler 60 is connected to the first expansion valve 30. Further, the inlet of the intermediate cooler 61 is connected to the second discharge passage 11 b ′ of the low pressure side compression element 11 of the compressor 10, the outlet of the intermediate cooler 61 is branched into two, one side of the high pressure side compression element 12. The other side is connected to the inlet of the bypass gas cooler 62. Furthermore, the outlet of the bypass gas cooler 62 is connected to the inlet of the evaporator 32 via the second expansion valve 31.

冷却器60、61、62は相対的に冷媒温度が高い順に配置されており、ガス冷媒は送風機63により送風される空気と擬似的に対向流となるように効率的な熱交換を図ることができる。   The coolers 60, 61, 62 are arranged in the order of relatively high refrigerant temperatures, and the gas refrigerant can be efficiently exchanged heat so that it becomes a pseudo counter flow with the air blown by the blower 63. it can.

また、図1を用いて詳述したように、第2膨張弁31を制御することにより、2段圧縮機の中間圧力を適正に制御することができ、運転圧力比に関わらず高効率な運転を図ることができる。   Further, as described in detail with reference to FIG. 1, by controlling the second expansion valve 31, the intermediate pressure of the two-stage compressor can be appropriately controlled, and the highly efficient operation is performed regardless of the operation pressure ratio. Can be achieved.

さらにまた、図6の実施形態と同様に、2段圧縮機の中間冷却器を行うことにより、ヒートポンプ式暖房機の消費電力の低減を図ることができる。   Furthermore, similarly to the embodiment of FIG. 6, the power consumption of the heat pump heater can be reduced by performing the intermediate cooler of the two-stage compressor.

2段圧縮機を用いた冷凍サイクル装置として、ヒートポンプ式給湯機及び暖房機に本発明の一実施形態を適用した例について述べたが、2段圧縮機を用いた冷凍装置にも同様に適用できる。   Although the example which applied one Embodiment of this invention to the heat pump type water heater and the heater was described as a refrigeration cycle apparatus using a two-stage compressor, it can be similarly applied to a refrigeration apparatus using a two-stage compressor. .

また、圧縮機の吸入通路内冷媒と膨張弁前の通路内冷媒を熱交換させる内部熱交換器については説明しなかったが、機器の効率向上、水または空気の加熱温度の上昇を目的として、内部熱交換器を設けてもよい。   In addition, the internal heat exchanger that exchanges heat between the refrigerant in the suction passage of the compressor and the refrigerant in the passage before the expansion valve has not been described, but for the purpose of improving the efficiency of the device and increasing the heating temperature of water or air, An internal heat exchanger may be provided.

図8の構成は、図1の熱交換器として適用可能な他の熱交換器を適用したものである。図8の構成において、図1と同等部分には同一符号を付し、その説明は省略する。   The configuration of FIG. 8 is obtained by applying another heat exchanger applicable as the heat exchanger of FIG. In the configuration of FIG. 8, the same components as those in FIG.

図8の熱交換器20について説明する。熱交換器20は、複数の管路からなる第1冷媒通路21と、第2冷媒通路22及び水通路23を有する。   The heat exchanger 20 in FIG. 8 will be described. The heat exchanger 20 includes a first refrigerant passage 21 including a plurality of pipes, a second refrigerant passage 22 and a water passage 23.

図9に各通路の位置関係を示したように、第1冷媒通路21と水通路23、および第2冷媒通路22と水通路23が熱交換可能に接触構造を持つ。   9, the first refrigerant passage 21 and the water passage 23, and the second refrigerant passage 22 and the water passage 23 have a contact structure so that heat exchange is possible.

第1冷媒通路21と吐出通路12bとの接続は、第1冷媒通路21の入口部に設けられた分配器(詳細図示せず)を介して行われる。第1冷媒通路21の出口部は、複数の配管を合流させた管路となす。この管路が一つに合流した第1冷媒通路21の出口部は、第1の減圧装置である第1膨張弁30と接続する。   The first refrigerant passage 21 and the discharge passage 12b are connected via a distributor (not shown in detail) provided at the inlet of the first refrigerant passage 21. The exit portion of the first refrigerant passage 21 is a conduit that joins a plurality of pipes. The outlet of the first refrigerant passage 21 where the pipes merge together is connected to the first expansion valve 30 that is a first decompression device.

第2冷媒通路22は第1冷媒通路21と比較して、水通路23の出口側部分と熱交換しない流路構造とした。第1冷媒通路21は第1膨張弁30と連通し、第1膨張弁30は第2の減圧装置である第2膨張弁31と連通する。   Compared to the first refrigerant passage 21, the second refrigerant passage 22 has a flow path structure that does not exchange heat with the outlet side portion of the water passage 23. The first refrigerant passage 21 communicates with the first expansion valve 30, and the first expansion valve 30 communicates with a second expansion valve 31 that is a second decompression device.

第2冷媒通路22の出口は第1膨張器30と第2の減圧装置である第2膨張器31間の配管と接続する。   The outlet of the second refrigerant passage 22 is connected to a pipe between the first expander 30 and the second expander 31 that is the second decompression device.

したがって、第2冷媒通路22を通過する冷媒があれば、第1膨張弁30を通過した冷媒と混合した後、第2膨張弁31を介して蒸発器32に流入する。   Therefore, if there is a refrigerant that passes through the second refrigerant passage 22, it mixes with the refrigerant that has passed through the first expansion valve 30, and then flows into the evaporator 32 via the second expansion valve 31.

図8のヒートポンプ式給湯機における高圧力比運転時と低圧力比運転時での冷凍サイクルの動作について説明する。   The operation of the refrigeration cycle in the high pressure ratio operation and the low pressure ratio operation in the heat pump type hot water heater of FIG. 8 will be described.

例えば、冬期に運転を行った場合の圧力条件として、図3での説明と同様に、吸入圧力(低圧側吸入圧力)Ps1 = 3.5MPa、吐出圧力(高圧側吐出圧力)Pd = 10MPaで圧力比Pd / Ps1 = 2.9とする。この時、高圧側と低圧側の吐出温度差(Td2 − Td1)が図3に示した目標値となるように、第2膨張弁31が制御される。このとき、圧縮機13内の圧力と第1膨張弁30の出口の圧力はほぼ同一になり第2冷媒流路22には冷媒が流れない。 For example, as the pressure conditions when operating in winter, as in the description of FIG. 3, the suction pressure (low pressure suction pressure) P s1 = 3.5 MPa and the discharge pressure (high pressure discharge pressure) P d = 10 MPa. The pressure ratio P d / P s1 = 2.9. At this time, the second expansion valve 31 is controlled so that the discharge temperature difference (T d2 −T d1 ) between the high pressure side and the low pressure side becomes the target value shown in FIG. At this time, the pressure in the compressor 13 and the pressure at the outlet of the first expansion valve 30 are substantially the same, and no refrigerant flows through the second refrigerant flow path 22.

したがって、低圧側圧縮要素11の冷媒流量G1と高圧側圧縮要素12の冷媒流量G2は同一である。また、低圧側圧縮要素11の体積効率etav1と高圧側圧縮要素12の体積効率etav2をほぼ同一と仮定し、高圧側圧縮要素と低圧側圧縮要素のシリンダ容積比Vth2 / Vth1 = 0.6、断熱指数k = 1.3を用いると、前出の(4)式より高圧側吸入圧力はPs2 = 6.8MPaとなる。 Thus, refrigerant flow rate G 2 of the refrigerant flow rate G 1 and the high pressure side compression element 12 of the low pressure side compression element 11 are the same. Further, assuming that the volumetric efficiency eta v1 of the low pressure side compression element 11 and the volumetric efficiency eta v2 of the high pressure side compression element 12 are substantially the same, the cylinder volume ratio V th2 / V th1 = 0.6 of the high pressure side compression element and the low pressure side compression element. When the adiabatic index k = 1.3 is used, the high-pressure side suction pressure is P s2 = 6.8 MPa from the above equation (4).

この時、低圧側圧縮要素11の圧力比Ps2 / Ps1 = 1.9、高圧側圧縮要素12の圧力比Pd / Ps2 = 1.5、また、低圧側圧縮要素11の圧力差Ps2 − Ps1 = 3.3MPa、高圧側圧縮要素12の圧力差Pd − Ps2 = 3.2MPaとなる。 At this time, the pressure ratio P s2 / P s1 of the low pressure side compression element 11 is 1.9, the pressure ratio P d / P s2 of the high pressure side compression element 12 is 1.5, and the pressure difference P s2 −P s1 of the low pressure side compression element 11 = 3.3 MPa, and the pressure difference P d −P s2 of the high pressure side compression element 12 is 3.2 MPa.

よって、各圧縮要素の圧力比及び圧力差が接近し、各圧縮要素の荷重及び作動室の漏れが低減され、圧縮機の効率が向上する。   Therefore, the pressure ratio and pressure difference of each compression element approach, the load of each compression element and the leakage of the working chamber are reduced, and the efficiency of the compressor is improved.

一方、夏期に運転を行った場合、図4での条件と同様に、圧力条件として、吸入圧力(低圧側吸入圧力)Ps1 = 5.6MPa、吐出圧力(高圧側吐出圧力)Pd = 10MPaで圧力比Pd / Ps1= 1.8とする。 On the other hand, when operating in the summer, the pressure conditions are as follows: suction pressure (low-pressure side suction pressure) P s1 = 5.6 MPa, discharge pressure (high-pressure side discharge pressure) P d = 10 MPa. The pressure ratio P d / P s1 = 1.8.

この時、高圧側と低圧側の吐出温度差(Td2 − Td1)が図2に示した目標値となるように、第2膨張弁31が制御される。すると、第1膨張弁出口圧力は低圧側圧縮要素11の出口圧力より低くなり、冷媒の約25%が熱交換器20の第2冷媒通路に流通するようになる。 At this time, the second expansion valve 31 is controlled so that the discharge temperature difference (T d2 −T d1 ) between the high pressure side and the low pressure side becomes the target value shown in FIG. Then, the first expansion valve outlet pressure becomes lower than the outlet pressure of the low pressure side compression element 11, and about 25% of the refrigerant flows through the second refrigerant passage of the heat exchanger 20.

したがって、冷媒流量比G2 / G1 = 0.75である。また、体積効率の比率etav1 / etav2 = 1.0を仮定し、シリンダ容積比Vth2 / Vth1 = 0.6、断熱指数k = 1.3を用いると、(4)式より高圧側吸入圧力はPs2 = 7.5MPaとなる。 Therefore, the refrigerant flow ratio G 2 / G 1 = 0.75. Also, assuming a volumetric efficiency ratio of eta v1 / eta v2 = 1.0, and using a cylinder volume ratio V th2 / V th1 = 0.6 and an adiabatic index k = 1.3, the high-pressure side suction pressure is P s2 = 7.5MPa.

この時、低圧側圧縮要素11の圧力比Ps2 / Ps1 = 1.3、高圧側圧縮要素12の圧力比Pd / Ps2 = 1.3、また、低圧側圧縮要素11の圧力差Ps2 − Ps1 = 1.9MPa、高圧側圧縮要素12の圧力差Pd − Ps2 = 2.5MPaとなる。 At this time, the pressure ratio P s2 / P s1 = 1.3 of the low pressure side compression element 11, the pressure ratio P d / P s2 = 1.3 of the high pressure side compression element 12, and the pressure difference P s2 −P s1 of the low pressure side compression element 11 = 1.9 MPa, the pressure difference P d −P s2 of the high pressure side compression element 12 is 2.5 MPa.

よって、各圧縮要素の圧力比及び圧力差が接近し、各圧縮要素の荷重及び作動室の漏れが低減され、圧縮機の効率が向上する。   Therefore, the pressure ratio and pressure difference of each compression element approach, the load of each compression element and the leakage of the working chamber are reduced, and the efficiency of the compressor is improved.

本実施形態のように、熱交換器20を水通路23に対し複数の第1冷媒流路21と第2冷媒流路22を熱交換可能に接触させた構造をとることにより、水と冷媒の非接触長さを短くでき熱交換性能を向上できる。さらに、水流路23を楕円の管で構成すると、水と管の接触面積を大きくでき伝熱性能が向上し、ヒートポンプ式給湯機の効率を向上できる。一方、二酸化炭素のような熱交換器内が超臨界状態で、放熱により温度が低下する冷媒では、水と冷媒の流れ方向を逆にすることにより水と冷媒の温度差が平均化され熱交換性能を向上できる。   As in the present embodiment, the heat exchanger 20 has a structure in which the plurality of first refrigerant flow paths 21 and the second refrigerant flow paths 22 are in contact with the water passage 23 so that heat exchange is possible. Non-contact length can be shortened and heat exchange performance can be improved. Furthermore, if the water flow path 23 is comprised by an elliptical pipe | tube, the contact area of water and a pipe | tube can be enlarged, heat-transfer performance improves, and the efficiency of a heat pump type hot water heater can be improved. On the other hand, in refrigerants such as carbon dioxide where the heat exchanger has a supercritical state and the temperature decreases due to heat dissipation, the temperature difference between the water and the refrigerant is averaged by reversing the flow direction of the water and the refrigerant. Performance can be improved.

本実施形態における冷凍サイクル装置は、低圧側圧縮要素と高圧側圧縮要素を有する2段圧縮機と、冷却媒体を加熱する熱交換器と、減圧装置と、蒸発器とが接続され高圧側側が超臨界圧力となり、減圧装置として直列接続した第1減圧装置と第2減圧装置を備え、低圧側圧縮要素の出口と第1減圧装置と第2減圧装置の間を接続した第2吐出通路を備えることにより高圧側圧縮要素入口圧力を常に適正に制御でき、高効率な冷凍サイクル装置、例えばヒートポンプ装置または冷凍空調装置を提供できる。   The refrigeration cycle apparatus in the present embodiment includes a two-stage compressor having a low-pressure side compression element and a high-pressure side compression element, a heat exchanger that heats a cooling medium, a decompression device, and an evaporator, and the high-pressure side is super A first pressure reducing device and a second pressure reducing device connected in series as pressure reducing devices, and a second discharge passage connecting the outlet of the low pressure side compression element and the first pressure reducing device and the second pressure reducing device; Thus, the inlet pressure of the high pressure side compression element can always be properly controlled, and a highly efficient refrigeration cycle apparatus, for example, a heat pump apparatus or a refrigeration air conditioner can be provided.

図10の構成は熱交換器20が空気を冷却媒体とした冷凍空調装置に本発明を適用したものである。また第2の減圧装置としてキャピラリチューブ31bを備えたものである。図10において、図1と同等部分には同一符号を付し、その説明は省略する。   In the configuration of FIG. 10, the present invention is applied to a refrigerating and air-conditioning apparatus in which the heat exchanger 20 uses air as a cooling medium. In addition, a capillary tube 31b is provided as a second decompression device. 10, parts that are the same as those in FIG. 1 are given the same reference numerals, and explanation thereof is omitted.

熱交換器20は空気を冷却媒体とした。より詳細には図11に示したように、高圧側圧縮要素12と吸入通路12aを介して接続する第1冷媒流路21は、空気流の下流に、第1冷媒流路入口部21aを、そして空気流の上流に、第1減圧装置である第1膨張弁30と接続する第1冷媒流路出口部21bとを有する。   The heat exchanger 20 uses air as a cooling medium. More specifically, as shown in FIG. 11, the first refrigerant flow path 21 connected to the high pressure side compression element 12 via the suction passage 12a has a first refrigerant flow path inlet 21a downstream of the air flow, And it has the 1st refrigerant | coolant flow path exit part 21b connected with the 1st expansion valve 30 which is a 1st pressure reduction apparatus upstream of an air flow.

第2冷媒流路22は、低圧側圧縮要素11からの圧縮ガスが導かれる第2吐出通路11b’と接続する第2冷媒流路入口部22aと、第1膨張弁30と第2減圧装置であるキャピラリチューブ31bとの間の配管と接続する第2冷媒流路出口部22bとを有する。また熱交換器20は、伝熱促進用のフィン20aをも備える。   The second refrigerant flow path 22 includes a second refrigerant flow path inlet 22a connected to the second discharge passage 11b 'through which the compressed gas from the low pressure side compression element 11 is guided, the first expansion valve 30, and the second pressure reducing device. It has the 2nd refrigerant | coolant flow path exit part 22b connected with piping between a certain capillary tube 31b. The heat exchanger 20 also includes fins 20a for promoting heat transfer.

キャピラリチューブ31bの抵抗は次のように設定される。すなわち、夏季条件等の低圧力比で運転されたときに、温度センサ41とによって検出される吸入ガス温度Ts1と、温度センサ40によって検出される蒸発温度Teとの差である過熱度が、所定の温度、例えば5℃になるように第1膨張弁30を制御したときに、低圧側側圧縮機出口部の圧力が所定の値になる抵抗に設定される。 The resistance of the capillary tube 31b is set as follows. That is, when it is operated at a low pressure ratio, such as summer conditions, and the suction gas temperature T s1 detected by the temperature sensor 41, the degree of superheat is the difference between the evaporation temperature T e detected by the temperature sensor 40 When the first expansion valve 30 is controlled so as to have a predetermined temperature, for example, 5 ° C., the pressure at the low pressure side compressor outlet is set to a predetermined value.

例えば吸込み圧力Ps1 = 5.6MPa、吐出圧力(高圧側吐出圧力)Pd = 10MPaで高圧側吸入圧力がPs2 = 7.5Mpaになる抵抗に設定される。 For example, the suction pressure P s1 = 5.6 MPa, the discharge pressure (high-pressure side discharge pressure) P d = 10 MPa, and the high-pressure side suction pressure is set to a resistance at which P s2 = 7.5 MPa.

以上の構成とすることにより、冬季のように圧力比の大きな運転条件では図7に示す構成と同様に、第2冷媒流路22にはほとんど冷媒が流れずに、低圧側圧縮要素11から吐出された冷媒は高圧側圧縮要素12に吸込まれる。   With the above configuration, under the operating conditions with a large pressure ratio such as in winter, almost no refrigerant flows into the second refrigerant flow path 22 and is discharged from the low pressure side compression element 11 as in the configuration shown in FIG. The refrigerant thus drawn is sucked into the high pressure side compression element 12.

そして冷媒は高圧側圧縮要素12で圧縮されて更に高圧になり、第1冷媒流路入口部21aで分岐して熱交換器20内に入る。   Then, the refrigerant is compressed by the high-pressure side compression element 12 to become a higher pressure, and is branched at the first refrigerant flow path inlet 21 a and enters the heat exchanger 20.

高圧の冷媒は第1冷媒流路21を流れ、熱交換器20で空気を加熱することにより冷却され、第1冷媒流路出口部21bで再び一つの冷媒流となって熱交換器20から流出する。   The high-pressure refrigerant flows through the first refrigerant flow path 21, is cooled by heating the air in the heat exchanger 20, and flows out of the heat exchanger 20 as a single refrigerant flow again at the first refrigerant flow path outlet 21b. To do.

熱交換器20の第1冷媒流路21で熱交換した冷媒は、第1膨張弁30及びキャピラリチューブ31で減圧されたのち、蒸発器32で蒸発して圧縮機13に戻る。   The refrigerant heat-exchanged in the first refrigerant flow path 21 of the heat exchanger 20 is depressurized by the first expansion valve 30 and the capillary tube 31 and then evaporated by the evaporator 32 and returns to the compressor 13.

このようなサイクルの条件下では、第2冷媒流路22には冷媒が流れないが、第1冷媒流路21と第2冷媒流路22がフィン20aを共有しているために、第2冷媒流路22近傍のフィン20bも第1冷媒流路21の伝熱促進として働き、効率の低下は少ない。   Under such a cycle condition, the refrigerant does not flow through the second refrigerant flow path 22, but the first refrigerant flow path 21 and the second refrigerant flow path 22 share the fins 20a. The fins 20b in the vicinity of the flow path 22 also work as heat transfer enhancement in the first refrigerant flow path 21, and there is little decrease in efficiency.

既に説明したような夏季における圧力比の小さい運転条件では、図7の構成と同様の動作を行う。すなわち、キャピラリチューブ31bの抵抗設定が高圧側圧縮要素12入口圧力が適正になるように設定されているため、低圧側圧縮要素11から出た冷媒の一部が第2冷媒流路22を通る。   Under the operation conditions with a small pressure ratio in summer as already described, the same operation as the configuration of FIG. 7 is performed. That is, since the resistance of the capillary tube 31 b is set so that the inlet pressure of the high-pressure side compression element 12 becomes appropriate, a part of the refrigerant that has come out of the low-pressure side compression element 11 passes through the second refrigerant flow path 22.

第2冷媒流路22に流入した冷媒ガスは空気に対して放熱し、第1冷媒流路21から流出して低温になった冷媒と、第1膨張弁30の出口で合流する。そしてキャピラリチューブ31b、蒸発器40を経て圧縮機13に冷媒ガスは戻る。   The refrigerant gas that has flowed into the second refrigerant flow path 22 dissipates heat to the air, and merges with the refrigerant that has flowed out of the first refrigerant flow path 21 and has reached a low temperature, at the outlet of the first expansion valve 30. Then, the refrigerant gas returns to the compressor 13 through the capillary tube 31b and the evaporator 40.

以上のように、図10の構成では、第1膨張弁30とキャピラリチューブ31bの間に第2冷媒流路22を接続することにより、第1膨張弁30の出口では常に高圧側圧縮要素の出口圧力より低くでき、高圧側圧縮要素が有効に作用し効率を向上できる。   As described above, in the configuration of FIG. 10, the second refrigerant flow path 22 is connected between the first expansion valve 30 and the capillary tube 31b, so that the outlet of the high pressure side compression element is always at the outlet of the first expansion valve 30. The pressure can be made lower than the pressure, and the high-pressure side compression element works effectively to improve the efficiency.

また、冷却媒体として空気を用いた場合には、第1冷媒流路21及び第2冷媒流路22の入口部を風下に、第1冷媒流路21及び第2冷媒流路22の出口部を風上側に設けることにより、超臨界状態のガス冷媒は風下から風上に向けて温度が下がり、空気は風上から風下に向けて温度が上昇するため、熱交換効率が向上する。   When air is used as the cooling medium, the inlet portions of the first refrigerant passage 21 and the second refrigerant passage 22 are leeward, and the outlet portions of the first refrigerant passage 21 and the second refrigerant passage 22 are By providing on the windward side, the temperature of the gas refrigerant in the supercritical state decreases from the leeward to the windward, and the temperature of the air increases from the leeward to the leeward, so that the heat exchange efficiency is improved.

さらに、本実施形態では膨張弁が1つとなり、制御が容易にできる。また本実施形態では温度センサ41によって検出される吸入ガス温度Ts1と、温度センサ40によって検出される蒸発温度Teとの温度差である過熱度で制御を行っているが、高圧側圧縮要素出口の温度で制御しても良い。この場合、温度センサも一つですむ。 Furthermore, in this embodiment, there is only one expansion valve, and control can be facilitated. Also the suction gas temperature T s1 detected by the temperature sensor 41 in the present embodiment, control is performed in the superheat is a temperature difference between the evaporation temperature T e detected by the temperature sensor 40, the high pressure side compression element You may control by the temperature of an exit. In this case, only one temperature sensor is required.

本発明の一実施形態に係るヒートポンプ式給湯機の概略を示す冷凍サイクル構成図である。It is a refrigerating cycle block diagram which shows the outline of the heat pump type water heater which concerns on one Embodiment of this invention. 目標吐出温度差と、高圧側圧縮要素の吐出温度と低圧側圧縮要素の吸入温度との温度差の関係を示す図である。It is a figure which shows the relationship of the temperature difference of the target discharge temperature difference, the discharge temperature of a high pressure side compression element, and the suction temperature of a low pressure side compression element. 図1のヒートポンプ式給湯機の2段圧縮機が高圧力比運転を行う時の冷媒流れの説明図である。It is explanatory drawing of a refrigerant | coolant flow when the two-stage compressor of the heat pump type water heater of FIG. 1 performs high pressure ratio operation. 図1のヒートポンプ式給湯機の2段圧縮機が低圧力比運転を行う時の冷媒流れの説明図である。It is explanatory drawing of a refrigerant | coolant flow when the two-stage compressor of the heat pump type water heater of FIG. 1 performs a low pressure ratio operation. 本発明の他の実施形態に係るヒートポンプ式給湯機の概略を示す冷凍サイクル構成図である。It is a refrigerating cycle block diagram which shows the outline of the heat pump type water heater which concerns on other embodiment of this invention. 本発明の更に他の実施形態に係るヒートポンプ式給湯機の概略を示す冷凍サイクル構成図である。It is a refrigerating cycle block diagram which shows the outline of the heat pump type water heater which concerns on other embodiment of this invention. 本発明の一実施形態に係るヒートポンプ式暖房機の概略を示す冷凍サイクル構成図である。It is a refrigerating cycle block diagram which shows the outline of the heat pump type heater based on one Embodiment of this invention. 本発明の他の実施形態に係るヒートポンプ式給湯機の概略を示す冷凍サイクル構成図である。It is a refrigerating cycle block diagram which shows the outline of the heat pump type water heater which concerns on other embodiment of this invention. 図8に示した熱交換器の断面図である。It is sectional drawing of the heat exchanger shown in FIG. 本発明の更に他の実施形態に係る冷凍空調装置の概略を示す冷凍サイクル構成図である。It is a refrigerating cycle block diagram which shows the outline of the refrigerating air conditioning apparatus which concerns on further another embodiment of this invention. 図10に示す熱交換器の構成図である。It is a block diagram of the heat exchanger shown in FIG.

符号の説明Explanation of symbols

10…圧縮機、
11…低圧側圧縮要素、
11a…低圧側圧縮要素の吸入通路、
11b、11b’…低圧側圧縮要素の吐出通路、
12…高圧側圧縮要素、
12a…高圧側圧縮要素の吸入通路、
12b…高圧側圧縮要素の吐出通路
13…密閉容器、
20、20’…熱交換器、
21…第1冷媒通路
22、24a、24b…第2冷媒通路、
23…水通路、
30…第1膨張弁、
31…第2膨張弁、
32…蒸発器、
33、63…送風機、
40…蒸発温度センサ、
41…低圧側吸入温度センサ、
42…低圧側吐出温度センサ、
43…高圧側吐出温度センサ、
44…密閉容器内圧力センサ、
50…第1制御器、
51…第2制御器、
60、61、62…冷却器。
10 ... Compressor,
11 ... Low pressure side compression element,
11a: suction passage of the low pressure side compression element,
11b, 11b '... discharge passage of the low pressure side compression element,
12 ... high pressure side compression element,
12a ... suction passage of the high pressure side compression element,
12b: Discharge passage 13 of the high pressure side compression element ... Sealed container,
20, 20 '... heat exchanger,
21 ... 1st refrigerant path 22, 24a, 24b ... 2nd refrigerant path,
23 ... Water passage,
30 ... first expansion valve,
31 ... second expansion valve,
32 ... Evaporator,
33, 63 ... blower,
40 ... Evaporation temperature sensor,
41 ... Low-pressure side suction temperature sensor,
42 ... Low pressure side discharge temperature sensor,
43 ... High-pressure side discharge temperature sensor,
44 ... Pressure sensor in sealed container,
50 ... 1st controller,
51. Second controller,
60, 61, 62 ... cooler.

Claims (8)

密閉容器の中に収納された電動要素とこの電動要素によって駆動される低圧側圧縮要素と高圧側圧縮要素とを備えた圧縮機と、前記高圧側圧縮要素から吐出された冷媒の熱交換を行う第1の熱交換器と、この第1の熱交換器からの冷媒の圧力を下げる減圧装置と、減圧された冷媒の熱交換を行う第2の熱交換器とがそれぞれ冷媒流路を介して接続して、前記第2の熱交換器からの冷媒を前記圧縮機の低圧側圧縮要素に吸込む冷媒回路と、前記低圧側圧縮要素で圧縮されて前記高圧側圧縮要素に吸入される冷媒量を調節する冷媒量調節部と、を有する冷凍サイクル装置。   A compressor provided with an electric element housed in a hermetic container, a low-pressure side compression element and a high-pressure side compression element driven by the electric element, and heat exchange of the refrigerant discharged from the high-pressure side compression element A first heat exchanger, a decompression device that lowers the pressure of the refrigerant from the first heat exchanger, and a second heat exchanger that performs heat exchange of the decompressed refrigerant via the refrigerant flow path, respectively. A refrigerant circuit that sucks refrigerant from the second heat exchanger into the low-pressure side compression element of the compressor, and a refrigerant amount that is compressed by the low-pressure side compression element and sucked into the high-pressure side compression element. A refrigeration cycle apparatus comprising: a refrigerant amount adjusting unit for adjusting. 密閉容器の中に収納された電動要素とこの電動要素によって駆動される低圧側圧縮要素と高圧側圧縮要素とを備えた圧縮機と、前記高圧側圧縮要素から吐出された冷媒の熱交換を行う第1の熱交換器と、この第1の熱交換器からの冷媒の圧力を下げる第1の減圧装置と、減圧された冷媒の熱交換をする第2の熱交換器とがそれぞれ冷媒流路を介して接続し、前記第2の熱交換器からの冷媒を前記圧縮機の低圧側圧縮要素に吸込む冷媒回路と、前記低圧側圧縮要素で圧縮された冷媒を前記第1の減圧装置と前記第2の熱交換器との間の冷媒流路に連絡させる中間冷媒流路と、その中間冷媒流路からの冷媒と連通する第2の減圧装置と、前記第1若しくは/及び第2の減圧装置を制御して前期高圧側圧縮要素に吸入される冷媒量を調節する制御部と、を有する冷凍サイクル装置。   A compressor provided with an electric element housed in a hermetic container, a low-pressure side compression element and a high-pressure side compression element driven by the electric element, and heat exchange of the refrigerant discharged from the high-pressure side compression element The first heat exchanger, the first pressure reducing device for reducing the pressure of the refrigerant from the first heat exchanger, and the second heat exchanger for exchanging heat of the reduced pressure refrigerant respectively A refrigerant circuit that sucks the refrigerant from the second heat exchanger into the low-pressure side compression element of the compressor, the refrigerant compressed by the low-pressure side compression element, and the first decompressor An intermediate refrigerant passage communicating with the refrigerant passage between the second heat exchanger, a second decompression device communicating with the refrigerant from the intermediate refrigerant passage, and the first or / and the second decompression Control unit that controls the amount of refrigerant sucked into the high-pressure side compression element by controlling the device , The refrigeration cycle device having a. 請求項2において、前記第2の減圧装置は、前記中間冷媒流路上に設けられている冷凍サイクル装置。   3. The refrigeration cycle apparatus according to claim 2, wherein the second decompression device is provided on the intermediate refrigerant flow path. 請求項2において、前記第2の減圧装置は、前記中間冷媒流路と接続する冷媒流路上であって、その前記中間冷媒流路との接続部よりも冷媒の流れの下流に設けられている冷凍サイクル装置。   In Claim 2, The said 2nd pressure reduction apparatus is provided on the refrigerant | coolant flow path connected with the said intermediate | middle refrigerant flow path, Comprising: The downstream of the flow of a refrigerant | coolant rather than the connection part with the said intermediate | middle refrigerant | coolant flow path. Refrigeration cycle equipment. 請求項2において、前記第2の減圧装置は、前記高圧側圧縮要素の吸入圧力又は前記低圧側圧縮要素の吐出圧力に応じて作動する冷凍サイクル装置。   3. The refrigeration cycle apparatus according to claim 2, wherein the second pressure reducing device operates in accordance with a suction pressure of the high pressure side compression element or a discharge pressure of the low pressure side compression element. 請求項2において、前記第2の減圧装置は、前記高圧側圧縮要素の吐出温度と前記低圧側圧縮要素の吐出温度との差に応じて作動する冷凍サイクル装置。   3. The refrigeration cycle apparatus according to claim 2, wherein the second decompression device operates according to a difference between a discharge temperature of the high-pressure side compression element and a discharge temperature of the low-pressure side compression element. 請求項2において、前記中間冷媒流路は、前記低圧側圧縮要素で圧縮された冷媒が熱交換する第3の熱交換器を有する冷凍サイクル装置。   3. The refrigeration cycle apparatus according to claim 2, wherein the intermediate refrigerant flow path includes a third heat exchanger that exchanges heat between the refrigerant compressed by the low-pressure side compression element. 請求項7において、前記第1の熱交換器と前記第3の熱交換器は、それぞれを流れる冷媒が共通の流体との間で熱交換する冷凍サイクル装置。
8. The refrigeration cycle apparatus according to claim 7, wherein the first heat exchanger and the third heat exchanger exchange heat between the refrigerant flowing through each common fluid.
JP2004353489A 2004-12-07 2004-12-07 Refrigerating cycle device Pending JP2006161659A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004353489A JP2006161659A (en) 2004-12-07 2004-12-07 Refrigerating cycle device
CN 200510129541 CN1786477B (en) 2004-12-07 2005-12-06 Refrigeration circulating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004353489A JP2006161659A (en) 2004-12-07 2004-12-07 Refrigerating cycle device

Publications (1)

Publication Number Publication Date
JP2006161659A true JP2006161659A (en) 2006-06-22

Family

ID=36663955

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004353489A Pending JP2006161659A (en) 2004-12-07 2004-12-07 Refrigerating cycle device

Country Status (2)

Country Link
JP (1) JP2006161659A (en)
CN (1) CN1786477B (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012504220A (en) * 2008-09-29 2012-02-16 キャリア コーポレイション Control of the flash tank economizer cycle
JP2012207842A (en) * 2011-03-29 2012-10-25 Fujitsu General Ltd Heat pump apparatus
JP2013015082A (en) * 2011-07-04 2013-01-24 Fujitsu General Ltd Two-stage compression rotary compressor
JP2016532053A (en) * 2013-08-26 2016-10-13 グリー エレクトリック アプライアンシズ,インコーポレイテッド オブ ヂューハイ Multistage centrifugal compressor and air conditioning unit
JP2018115566A (en) * 2017-01-16 2018-07-26 株式会社富士通ゼネラル Rotary Compressor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011055444A1 (en) * 2009-11-06 2011-05-12 三菱電機株式会社 Heat pump device, two-stage compressor, and method of operating heat pump device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003013875A (en) * 2001-06-29 2003-01-15 Sanyo Electric Co Ltd Two-stage compression type compressor and refrigerating device using it
JP2003269804A (en) * 2002-03-13 2003-09-25 Sanyo Electric Co Ltd Refrigerant circuit device
JP2004101107A (en) * 2002-09-11 2004-04-02 Sanyo Electric Co Ltd Transition critical refrigerant cycle apparatus
JP2004293813A (en) * 2003-03-25 2004-10-21 Sanyo Electric Co Ltd Refrigerant cycle device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08145507A (en) * 1994-11-24 1996-06-07 Sanyo Electric Co Ltd Refrigerant flow control valve and refrigerating equipment using refrigerant flow control valve
JP2001091071A (en) * 1999-09-24 2001-04-06 Sanyo Electric Co Ltd Multi-stage compression refrigerating machine
EP1215449A4 (en) * 1999-09-24 2005-01-19 Sanyo Electric Co Multi-stage compression refrigerating device
JP4641683B2 (en) * 2001-09-04 2011-03-02 三洋電機株式会社 Refrigeration cycle equipment

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003013875A (en) * 2001-06-29 2003-01-15 Sanyo Electric Co Ltd Two-stage compression type compressor and refrigerating device using it
JP2003269804A (en) * 2002-03-13 2003-09-25 Sanyo Electric Co Ltd Refrigerant circuit device
JP2004101107A (en) * 2002-09-11 2004-04-02 Sanyo Electric Co Ltd Transition critical refrigerant cycle apparatus
JP2004293813A (en) * 2003-03-25 2004-10-21 Sanyo Electric Co Ltd Refrigerant cycle device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012504220A (en) * 2008-09-29 2012-02-16 キャリア コーポレイション Control of the flash tank economizer cycle
US9951974B2 (en) 2008-09-29 2018-04-24 Carrier Corporation Flash tank economizer cycle control
JP2012207842A (en) * 2011-03-29 2012-10-25 Fujitsu General Ltd Heat pump apparatus
JP2013015082A (en) * 2011-07-04 2013-01-24 Fujitsu General Ltd Two-stage compression rotary compressor
JP2016532053A (en) * 2013-08-26 2016-10-13 グリー エレクトリック アプライアンシズ,インコーポレイテッド オブ ヂューハイ Multistage centrifugal compressor and air conditioning unit
JP2018115566A (en) * 2017-01-16 2018-07-26 株式会社富士通ゼネラル Rotary Compressor

Also Published As

Publication number Publication date
CN1786477B (en) 2011-11-16
CN1786477A (en) 2006-06-14

Similar Documents

Publication Publication Date Title
JP4959800B2 (en) Operation control method of refrigeration cycle apparatus
EP1467158B1 (en) Refrigeration cycle apparatus
US10794620B2 (en) Air-conditioning apparatus
JP4375171B2 (en) Refrigeration equipment
US10352593B2 (en) Gas heat-pump system
EP1489367A1 (en) Refrigerating cycle device
US10208987B2 (en) Heat pump with an auxiliary heat exchanger for compressor discharge temperature control
CN107366621B (en) Rolling rotor compressor with three-stage air supplement and air conditioning system
JP5375919B2 (en) heat pump
CN103597296A (en) Freezing cycle
JP2006071174A (en) Refrigerating device
JP2011080634A (en) Refrigerating cycle device and hot-water heating device
WO2016147389A1 (en) Heat pump system
JP4273493B2 (en) Refrigeration air conditioner
CN102434995A (en) R32 air-cooling cold water heat pump unit adopting EVI (Economizer Vapor Injection) compressor
JP2006258330A (en) Refrigerating plant
JP4736727B2 (en) Heat pump water heater
CN109579358A (en) A kind of heat pump system with Semiconductors At Low Temperatures compensation economizer
CN105485949A (en) Refrigerating system and control method thereof
CN209484880U (en) One kind is risen again formula heat pump system
JP2006161659A (en) Refrigerating cycle device
KR101446768B1 (en) Geothermal Heat Pump System
WO2018097124A1 (en) Air conditioning device
CN106705496A (en) Micro-channel air conditioner and control method thereof
JP2007051841A (en) Refrigeration cycle device

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Effective date: 20060515

Free format text: JAPANESE INTERMEDIATE CODE: A7424

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20061005

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070604

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080619

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080709

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20090212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100803

A521 Written amendment

Effective date: 20100929

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110215

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111108