JP2006159069A - Exhaust gas cleaning system - Google Patents
Exhaust gas cleaning system Download PDFInfo
- Publication number
- JP2006159069A JP2006159069A JP2004352918A JP2004352918A JP2006159069A JP 2006159069 A JP2006159069 A JP 2006159069A JP 2004352918 A JP2004352918 A JP 2004352918A JP 2004352918 A JP2004352918 A JP 2004352918A JP 2006159069 A JP2006159069 A JP 2006159069A
- Authority
- JP
- Japan
- Prior art keywords
- exhaust gas
- catalyst
- cell wall
- thickness
- gas purification
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Catalysts (AREA)
- Exhaust Gas After Treatment (AREA)
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
Abstract
Description
本発明は、排気ガス浄化システムに係り、更に詳細には、特にリーン雰囲気で運転され、排気ガスの空間速度が大きいディーゼルエンジンに用いると好適な排気ガス浄化システム、これに用いる蓄熱効果に優れた三元酸化触媒に関する。 The present invention relates to an exhaust gas purification system, and more particularly, an exhaust gas purification system suitable for use in a diesel engine that is operated in a lean atmosphere and has a large exhaust gas space velocity, and has an excellent heat storage effect. It relates to a three-way oxidation catalyst.
従来より、ガソリンエンジンに用いられる排気ガス浄化用触媒においては、触媒成分を早期に活性化させるため昇温性能を向上させるという観点から、ハニカム担体のセル壁厚みや触媒成分のコート層厚みを薄くするということが提案されている。
このような排気ガス浄化用触媒を、主にリーン雰囲気で運転され、排気ガスの空間速度が大きいディーゼルエンジンに適用した場合には、昇温性能は優れるが、排気ガスの空間速度が大きいため、例えば減速時などにおいて触媒温度が触媒成分の活性化温度より著しく低下し、トータルとして排気ガスの転化率を十分に向上させることができなかった。
Conventionally, in exhaust gas purifying catalysts used for gasoline engines, the cell wall thickness of the honeycomb carrier and the coating layer thickness of the catalyst component are reduced from the viewpoint of improving the temperature rise performance in order to activate the catalyst component early. It has been proposed to do.
When such an exhaust gas purification catalyst is applied to a diesel engine that is mainly operated in a lean atmosphere and has a large exhaust gas space velocity, the temperature rise performance is excellent, but the exhaust gas space velocity is large, For example, during deceleration, the catalyst temperature is significantly lower than the activation temperature of the catalyst component, and the exhaust gas conversion rate cannot be sufficiently improved as a whole.
そこで、始動時のリタードや空気過剰率の制御等のエンジン制御などによって、触媒温度の低下を改善することが提案されている(例えば、特許文献1参照。)。
なお、従来のディーゼルエンジンの排気ガス浄化システムとしては、排気ガス流路の上流側に酸化触媒を配置し、下流側にNOx浄化触媒を配置したシステムが提案されている。
As a conventional exhaust gas purification system for a diesel engine, a system has been proposed in which an oxidation catalyst is disposed on the upstream side of the exhaust gas passage and a NOx purification catalyst is disposed on the downstream side.
しかしながら、上記特許文献1に記載の従来技術においては、触媒温度が高められたことにより、若干の窒素酸化物(NOx)の転化率の向上効果は見られたものの、トレードオフの関係にある炭化水素(HC)の排出量が増加することにより転化率が低下するため、エンジン制御による転化率の向上には限界があった。
また、上記特許文献2に記載の従来技術においても、排気ガスの転化率を十分に向上させることができないという問題があった。
However, in the prior art described in the above-mentioned Patent Document 1, although a slight improvement effect of the conversion rate of nitrogen oxide (NOx) was observed due to the increase in the catalyst temperature, carbonization in a trade-off relationship. As the amount of hydrogen (HC) discharged increases, the conversion rate decreases, so there is a limit to improving the conversion rate by engine control.
Further, the prior art described in Patent Document 2 also has a problem that the exhaust gas conversion rate cannot be sufficiently improved.
本発明は、このような従来技術の有する課題に鑑みてなされたものであり、その目的とするところは、リーン雰囲気で運転され、排気ガスの空間速度が高いディーゼルエンジンに用いると好適な排気ガス浄化システム及びこれに用いる蓄熱効果に優れた三元酸化触媒を提供することにある。 The present invention has been made in view of such problems of the prior art, and the object of the present invention is to operate exhaust gas in a lean atmosphere and to use exhaust gas suitable for a diesel engine having a high exhaust gas space velocity. An object of the present invention is to provide a purification system and a three-way oxidation catalyst having an excellent heat storage effect.
本発明者らは、上記目的を達成するため鋭意研究を重ねた結果、排気ガス流路の上流側に所定の三元酸化触媒を配置し、下流側にNOxトラップ機能及びHCトラップ機能を備える排気ガス浄化用触媒を配置した排気ガス浄化システムを構築することなどにより、上記目的を達成できることを見出し、本発明を完成するに至った。 As a result of intensive studies to achieve the above object, the present inventors have arranged a predetermined three-way oxidation catalyst on the upstream side of the exhaust gas flow path, and an exhaust having a NOx trap function and an HC trap function on the downstream side. It has been found that the above object can be achieved by constructing an exhaust gas purification system in which a gas purification catalyst is arranged, and the present invention has been completed.
即ち、本発明の排気ガス浄化システムは、ディーゼルエンジンの排気ガス流路に配置されて用いられ、排気ガス流れ方向に対して上流側に三元酸化触媒を有し、下流側にNOxトラップ機能及びHCトラップ機能を備える排気ガス浄化用触媒を有する排気ガス浄化システムであり、かかる三元酸化触媒が、モノリス担体のセル壁上に三元酸化触媒を含有する触媒コート層が形成されて成り、該セル壁厚みと該セル壁上に形成される触媒コート層厚みの最薄部における合計厚みが50〜650μmであるものである。 That is, the exhaust gas purification system of the present invention is arranged and used in the exhaust gas flow path of a diesel engine, has a three-way oxidation catalyst on the upstream side with respect to the exhaust gas flow direction, and has a NOx trap function on the downstream side. An exhaust gas purification system having an exhaust gas purification catalyst having an HC trap function, wherein the ternary oxidation catalyst is formed by forming a catalyst coat layer containing a ternary oxidation catalyst on a cell wall of a monolith support, The total thickness at the thinnest part of the cell wall thickness and the thickness of the catalyst coat layer formed on the cell wall is 50 to 650 μm.
本発明によれば、排気ガス流路の上流側に所定の三元酸化触媒を配置し、下流側にNOxトラップ機能及びHCトラップ機能を備える排気ガス浄化用触媒を配置することなどとしたため、リーン雰囲気で運転され、排気ガスの空間速度が高いディーゼルエンジンに用いると好適な排気ガス浄化システム及びこれに用いる蓄熱効果に優れた三元酸化触媒を提供することができる。 According to the present invention, since a predetermined three-way oxidation catalyst is disposed upstream of the exhaust gas flow path, and an exhaust gas purification catalyst having a NOx trap function and an HC trap function is disposed downstream, the lean An exhaust gas purification system suitable for use in a diesel engine that is operated in an atmosphere and has a high exhaust gas space velocity, and a three-way oxidation catalyst excellent in the heat storage effect used therefor can be provided.
以下、本発明の排気ガス浄化システムについて説明する。
上述の如く、本発明の排気ガス浄化システムは、ディーゼルエンジンの排気ガス流路に配置されて用いられ、排気ガス流れ方向に対して上流側に三元酸化触媒を有し、下流側にNOxトラップ機能及びHCトラップ機能を備える排気ガス浄化用触媒を有する排気ガス浄化システムであり、かかる三元酸化触媒が、モノリス担体のセル壁上に三元酸化触媒を含有する触媒コート層が形成されて成り、該セル壁厚みと該セル壁上に形成される触媒コート層厚みの最薄部における合計厚みが50〜650μmであるものである。
ここで、「三元酸化触媒」とは、酸化機能を備える酸化触媒や三元触媒をいう。
Hereinafter, the exhaust gas purification system of the present invention will be described.
As described above, the exhaust gas purification system of the present invention is arranged and used in the exhaust gas flow path of a diesel engine, has a three-way oxidation catalyst on the upstream side with respect to the exhaust gas flow direction, and has a NOx trap on the downstream side. An exhaust gas purification system having an exhaust gas purification catalyst having an HC trap function and an HC trap function, wherein the three-way oxidation catalyst is formed by forming a catalyst coat layer containing the three-way oxidation catalyst on the cell wall of the monolith support. The total thickness at the thinnest part of the cell wall thickness and the thickness of the catalyst coat layer formed on the cell wall is 50 to 650 μm.
Here, the “three-way oxidation catalyst” refers to an oxidation catalyst or a three-way catalyst having an oxidation function.
このような構成とすることにより、リーン雰囲気で運転され、排気ガスの空間速度が速いディーゼルエンジンに用いた場合に、排気ガスの転化率を向上させることができる。
即ち、本発明の排気ガス浄化システムに用いられる三元酸化触媒は、上述したようにモノリス担体のセル壁(リブ)上に三元酸化触媒を含有する触媒コート層が形成されて成り、該セル壁厚みと該セル壁上に形成される触媒コート層厚みの最薄部における合計厚みが50〜650μmであり、合計厚みは、150〜600μmであることがより好ましく、300〜600μmであることが特に好ましい。
With such a configuration, when used in a diesel engine that is operated in a lean atmosphere and has a high exhaust gas space velocity, the conversion rate of the exhaust gas can be improved.
That is, the ternary oxidation catalyst used in the exhaust gas purification system of the present invention is formed by forming the catalyst coat layer containing the ternary oxidation catalyst on the cell wall (rib) of the monolith support as described above. The total thickness at the thinnest part of the wall thickness and the thickness of the catalyst coat layer formed on the cell wall is 50 to 650 μm, and the total thickness is more preferably 150 to 600 μm, and preferably 300 to 600 μm. Particularly preferred.
上記のようにセル壁厚みと該セル壁上に形成される触媒コート層厚みの最薄部における合計厚みを上記範囲とすることによって、触媒の蓄熱効果を高めることができ、下流側に配置されるNOxトラップ機能及びHCトラップ機能を備える排気ガス浄化用触媒の触媒温度の低下を抑制することが可能となる。更に、三元触媒自体における排気ガス、特にHC転化率を向上させることができ、発熱反応であるため、下流側に配置される排気ガス浄化用触媒の触媒温度を向上させることもできる。
つまり、下流側に配置される排気ガス浄化用触媒の触媒温度の低下を抑制し、更には触媒温度を向上させることができ、これによって、排気ガス浄化システムのトータルとしての排気ガスの転化率を向上させることが可能となる。
合計厚みが50μm未満の場合には、十分な蓄熱効果を発揮することができず、また650μmを超える場合には、排気ガス流路に目詰まりが発生し排気ガスの転化率の向上が阻害される可能性が高い。
By making the total thickness at the thinnest part of the cell wall thickness and the thickness of the catalyst coat layer formed on the cell wall as described above within the above range, the heat storage effect of the catalyst can be enhanced and it is arranged downstream. It is possible to suppress a decrease in the catalyst temperature of the exhaust gas purifying catalyst having the NOx trap function and the HC trap function. Furthermore, the exhaust gas in the three-way catalyst itself, in particular, the HC conversion rate can be improved, and since it is an exothermic reaction, the catalyst temperature of the exhaust gas purifying catalyst arranged on the downstream side can also be improved.
In other words, it is possible to suppress a decrease in the catalyst temperature of the exhaust gas purification catalyst disposed on the downstream side, and further improve the catalyst temperature, thereby increasing the total exhaust gas conversion rate of the exhaust gas purification system. It becomes possible to improve.
If the total thickness is less than 50 μm, a sufficient heat storage effect cannot be exhibited. If the total thickness exceeds 650 μm, the exhaust gas passage is clogged, and the improvement of the exhaust gas conversion rate is hindered. There is a high possibility.
また、三元酸化触媒としては三元触媒を用いることが、排気ガスの転化率の向上の観点から望ましい。本発明に用いる三元酸化触媒は、蓄熱材としての機能を有するγアルミナやδアルミナ、更にはこれらの耐熱性を向上させるジルコニアやチタニアを含有していてもよく、β−ゼオライトやZSM、ZSM5などのゼオライトを含有していてもよい。
更に、セラミックス製でセル形状が多角形のモノリス担体を用いることによって、金属製モノリス担体の場合と比較して、蓄熱効果が高く、モノリス担体と触媒コート層との密着性を高めることができる。
なお、セラミックス製であり且つセル形状が多角形であるモノリス担体の最薄部は、通常は、多角形セルにおける隣接する頂点間の中央部分であり、本明細書中においては特に「フラット部」という。
更にまた、エンジン始動時にリタード等のエンジン制御を行うことにより、コールドHCの転化率を向上させることもできる。
Moreover, it is desirable to use a three-way catalyst as the three-way oxidation catalyst from the viewpoint of improving the exhaust gas conversion rate. The ternary oxidation catalyst used in the present invention may contain γ-alumina and δ-alumina having a function as a heat storage material, and may further contain zirconia and titania that improve their heat resistance, and β-zeolite, ZSM, ZSM5 And other zeolites.
Furthermore, by using a monolithic carrier made of ceramic and having a polygonal cell shape, the heat storage effect is higher than in the case of a metal monolithic carrier, and the adhesion between the monolithic carrier and the catalyst coat layer can be improved.
The thinnest part of the monolithic carrier made of ceramics and having a polygonal cell shape is usually the central part between adjacent vertices in the polygonal cell, and in this specification, in particular, the “flat part” That's it.
Furthermore, the conversion rate of the cold HC can be improved by performing engine control such as retard when starting the engine.
本発明において、用いる三元触媒のセル壁厚みと該セル壁上に形成される触媒コート層厚みの最薄部における合計厚みに対するフラット部における触媒コート層厚みが、50%以上であることが好ましく、60%以上であることがより好ましく、70%以上であることが特に好ましい。
50%未満の場合には、上述した発熱反応で得られる熱を十分に蓄熱することができない場合があり好ましくない。
In the present invention, the thickness of the catalyst coat layer in the flat portion relative to the total thickness in the thinnest portion of the cell wall thickness of the three-way catalyst used and the thickness of the catalyst coat layer formed on the cell wall is preferably 50% or more. 60% or more is more preferable, and 70% or more is particularly preferable.
If it is less than 50%, the heat obtained by the above-described exothermic reaction may not be sufficiently stored, which is not preferable.
また、本発明に用いられる排気ガス浄化用触媒は、NOxトラップ機能及びHCトラップ機能を備えていれば特に限定されるものではなく、従来公知のものを利用できる。
例えば、コート層第1層にHCトラップ機能を有するコート層を配置し、第2層にNOxトラップ機能を有するコート層を配置した触媒や、本発明による三元機能付き触媒の後方触媒に、前段にNOxトラップ機能、後段にHCトラップ機能を有する触媒を配置、又は前段にHCトラップ機能、後段にNOxトラップ機能を有する触媒を配置したタンデム触媒でも同様の効果を得ることが可能である。
The exhaust gas purifying catalyst used in the present invention is not particularly limited as long as it has a NOx trap function and an HC trap function, and a conventionally known catalyst can be used.
For example, a catalyst in which a coat layer having an HC trap function is arranged in the first layer and a coat layer having a NOx trap function is arranged in the second layer, or a rear catalyst of the catalyst with a three-way function according to the present invention, It is possible to obtain the same effect with a tandem catalyst in which a catalyst having an NOx trap function and a catalyst having an HC trap function are arranged in the rear stage, or a catalyst having an HC trap function in the former stage and a catalyst having the NOx trap function in the rear stage.
更に、本発明に用いられる排気ガス浄化用触媒は、排気ガス浄化用触媒をコートするモノリス担体については、特に限定されるものではないが、例えばセラミック製であり且つ多角形のセル形状を有するモノリス担体に、上記のような積層構造を有する場合には、NOxトラップ機能及びHCトラップ機能の双方を効果的に奏するという観点から、例えばリブ厚みと触媒コート層厚みのフラット部における合計厚みが50〜300μmであることが好ましく、50〜200μmであることがより好ましく、50〜150μmであることが特に好ましい。
即ち、本発明の排気ガス浄化システムにおいては、特に、下流側に配置される排気ガス浄化用触媒に対して、上流側に配置される三元触媒の方が合計厚みが厚いこと、換言すれば触媒の蓄熱効果が高いことが望ましい。
Further, the exhaust gas purifying catalyst used in the present invention is not particularly limited with respect to the monolith carrier that coats the exhaust gas purifying catalyst, but it is, for example, a monolith made of ceramic and having a polygonal cell shape. In the case where the support has a laminated structure as described above, for example, the total thickness in the flat portion of the rib thickness and the thickness of the catalyst coat layer is 50 to 50 from the viewpoint of effectively performing both the NOx trap function and the HC trap function. It is preferably 300 μm, more preferably 50 to 200 μm, and particularly preferably 50 to 150 μm.
That is, in the exhaust gas purification system of the present invention, in particular, the total thickness of the three-way catalyst arranged on the upstream side is thicker than the exhaust gas purification catalyst arranged on the downstream side, in other words, It is desirable that the heat storage effect of the catalyst is high.
以下、本発明を実施例及び比較例に基づいて更に詳細に説明するが、本発明は、これら実施例に限定されるものではない。 EXAMPLES Hereinafter, although this invention is demonstrated further in detail based on an Example and a comparative example, this invention is not limited to these Examples.
[三元触媒の作製]
(実施例1)
Ce3mol%を含むアルミナ粉末(Al97mol%)に、硝酸パラジウム水溶液を含浸或いは高速撹拌中で噴霧し、150℃で24時間乾燥した後、400℃で1時間、次いで、600℃で1時間焼成し、Pd担持アルミナ粉末(粉末a)を得た。この粉末aのPd濃度は4.0%であった。
La1mol%とZr32mol%含有セリウム酸化物粉末(Ce67mol%)に、硝酸パラジウム水溶液を含浸或いは高速撹拌中で噴霧し、150℃で24時間乾燥した後、400℃で1時間、次いで600℃で1時間焼成し、Pd担持セリウム酸化物粉末(粉末b)を得た。この粉末bのPd濃度は2.0%であった。
[Production of three-way catalyst]
Example 1
Alumina powder containing 3 mol% of Ce (Al 97 mol%) was impregnated with an aqueous solution of palladium nitrate or sprayed with high-speed stirring, dried at 150 ° C. for 24 hours, calcined at 400 ° C. for 1 hour, and then calcined at 600 ° C. for 1 hour. Pd-supported alumina powder (powder a) was obtained. The Pd concentration of this powder a was 4.0%.
A cerium oxide powder containing 1 mol% La and 32 mol% Zr (Ce 67 mol%) is impregnated with an aqueous palladium nitrate solution or sprayed with high-speed stirring, dried at 150 ° C. for 24 hours, then 400 ° C. for 1 hour, then 600 ° C. for 1 hour. Firing was performed to obtain Pd-supported cerium oxide powder (powder b). The Pd concentration of this powder b was 2.0%.
上記Pd担持アルミナ粉末(粉末a)314g、Pd担持セリウム酸化物粉末(粉末b)314g、硝酸酸性アルミナゾル320g(ベーマイトアルミナ10%に10%の硝酸を添加することによって得られたゾルでAl2O3換算で32g)及び炭酸バリウム51.5g(BaOとして40g)を純水2000gを磁性ボールミルに投入し、混合粉砕して、スラリー液を得た。このスラリー液をモノリス担体(セル数:400セル/4ミル、リブ厚さ:104μm)に付着させ、空気流にてセル内の余剰のスラリーを取り除いて乾燥し、400℃で1時間焼成し、コート層重量150g/Lを塗布し、フラット部における触媒コート層厚み70μmの本発明に用いる三元触媒Aを得た。
図1(a)は、得られた三元触媒Aの1つのセル壁(リブ)10上に触媒コート層20が形成された状態を示す概念図である。
The Pd-carried alumina powder (Powder a) 314 g, Pd supported cerium oxide powder (Powder b) 314 g, sol obtained by adding 10% nitric acid to nitric acid alumina sol 320 g (10% boehmite alumina Al 2 O 3 g of 32 g) and 51.5 g of barium carbonate (40 g as BaO) were added to 2000 g of pure water in a magnetic ball mill, mixed and ground to obtain a slurry liquid. This slurry liquid was attached to a monolith support (cell number: 400 cells / 4 mil, rib thickness: 104 μm), excess slurry in the cells was removed by air flow, dried, and fired at 400 ° C. for 1 hour. A coat layer weight of 150 g / L was applied to obtain a three-way catalyst A for use in the present invention having a catalyst coat layer thickness of 70 μm in the flat part.
FIG. 1A is a conceptual diagram showing a state in which a
(実施例2)
三元触媒Aの作製方法と同様にスラリー液を作製し、モノリス担体(セル数:400セル/10ミル、リブ厚さ:260μm)にコート層重量150g/Lを塗布した以外は三元触媒Aの作製方法と同様に作製し、フラット部における触媒コート層厚み320μmの本発明に用いる三元触媒Bを得た。
図1(b)は、得られた三元触媒Bの1つのセル壁(リブ)10上に触媒コート層20が形成された状態を示す概念図である。
(Example 2)
A three-way catalyst A was prepared except that a slurry liquid was prepared in the same manner as the three-way catalyst A, and a coating layer weight of 150 g / L was applied to a monolith support (number of cells: 400 cells / 10 mil, rib thickness: 260 μm). The three-way catalyst B used in the present invention having a catalyst coat layer thickness of 320 μm in the flat part was obtained.
FIG. 1B is a conceptual diagram showing a state in which a
(実施例3)
更に、実施例1で用いた金属濃度を1/3にした粉末を用いた事以外は三元触媒Aの作製方法と同様に、スラリー液を作製し、モノリス担体(セル数:400セル/4ミル、リブ厚さ:104μm)にコート層重量450g/Lを塗布し、コート量を3倍とした事以外は三元触媒Aの作製方法と同様に作製し、フラット部における触媒コート層厚み500μmの本発明に用いる三元触媒Cを得た。
図1(a)は、得られた三元触媒Xの1つのセル壁(リブ)上に触媒コート層20が形成された状態を示す概念図である。
(Example 3)
Further, a slurry liquid was prepared in the same manner as the method for preparing the three-way catalyst A except that the powder having a metal concentration of 1/3 used in Example 1 was used, and a monolith carrier (cell number: 400 cells / 4 mil) was prepared. Rib thickness: 104 μm), a coating layer weight of 450 g / L was applied, and the coating amount was tripled, and the same was prepared as in the three-way catalyst A, and the catalyst coating layer thickness in the flat part was 500 μm. A three-way catalyst C used in the present invention was obtained.
FIG. 1A is a conceptual diagram showing a state in which a
[酸化触媒の作製]
(実施例4)
Ce3mol%を含むアルミナ粉末(Al97mol%)に、硝酸白金水溶液を含浸或いは高速撹拌中で噴霧し、150℃で24時間乾燥した後、400℃で1時間、次いで、600℃で1時間焼成し、Pt担持アルミナ粉末(粉末c)を得た。この粉末cのPt濃度は4.0%であった。
La1mol%とZr32mol%含有セリウム酸化物粉末(Ce67mol%)に、硝酸白金水溶液を含浸或いは高速撹拌中で噴霧し、150℃で24時間乾燥した後、400℃で1時間、次いで600℃で1時間焼成し、Pt担持セリウム酸化物粉末(粉末d)を得た。この粉末dのPt濃度は2.0%であった。
[Production of oxidation catalyst]
Example 4
Alumina powder containing 3 mol% of Ce (Al 97 mol%) was impregnated with a platinum nitrate aqueous solution or sprayed at high speed stirring, dried at 150 ° C. for 24 hours, calcined at 400 ° C. for 1 hour, and then calcined at 600 ° C. for 1 hour. Pt-supported alumina powder (powder c) was obtained. The Pt concentration of this powder c was 4.0%.
A cerium oxide powder containing 1 mol% La and 32 mol% Zr (Ce 67 mol%) is impregnated with a platinum nitrate aqueous solution or sprayed with high-speed stirring, dried at 150 ° C. for 24 hours, then at 400 ° C. for 1 hour, and then at 600 ° C. for 1 hour. Firing was performed to obtain Pt-supported cerium oxide powder (powder d). The Pt concentration of this powder d was 2.0%.
上記Pt担持アルミナ粉末(粉末c)314g、Pt担持セリウム酸化物粉末(粉末d)314g、硝酸酸性アルミナゾル320g(ベーマイトアルミナ10%に10%の硝酸を添加することによって得られたゾルでAl2O3換算で32g)及び炭酸バリウム51.5g(BaOとして40g)を純水2000gを磁性ボールミルに投入し、混合粉砕して、スラリー液を得た。このスラリー液をモノリス担体(セル数:400セル/4ミル、リブ厚さ:104μm)に付着させ、空気流にてセル内の余剰のスラリーを取り除いて乾燥し、400℃で1時間焼成し、コート層重量150g/Lを塗布し、フラット部における触媒コート層厚み70μmの本発明に用いる酸化触媒Dを得た。
図1(a)は、得られた酸化触媒の1つのセル壁(リブ)10上に触媒コート層20が形成された状態を示す概念図である。
なお、図1(c)は、従来の触媒の1つのセル壁(リブ)10上に触媒コート層20が形成された状態を示す概念図である。
The Pt-carried alumina powder (Powder c) 314 g, Pt supported cerium oxide powder (Powder d) 314 g, sol obtained by adding 10% nitric acid to nitric acid alumina sol 320 g (10% boehmite alumina Al 2 O 3 g of 32 g) and 51.5 g of barium carbonate (40 g as BaO) were added to 2000 g of pure water in a magnetic ball mill, mixed and ground to obtain a slurry liquid. This slurry liquid was attached to a monolith support (cell number: 400 cells / 4 mil, rib thickness: 104 μm), excess slurry in the cells was removed by air flow, dried, and fired at 400 ° C. for 1 hour. A coating layer weight of 150 g / L was applied to obtain an oxidation catalyst D used in the present invention having a catalyst coating layer thickness of 70 μm in the flat part.
FIG. 1A is a conceptual diagram showing a state in which a
FIG. 1C is a conceptual diagram showing a state in which a
[排気ガス浄化用触媒]
GSA(幾何学表面積)が20〜50cm2/cm3のモノリスハニカム担体に、第1層目としてゼオライトをコートし、第2層目として、貴金属とアルカリ金属又はアルカリ土類金属化合物とを含む触媒成分をコートし、触媒担体1L当たり換算で第1層のゼオライトのコート量が100〜300g、第2層の触媒成分のコート量が150〜400g、アルカリ金属又はアルカリ土類金属化合物が金属原子換算で0.1〜0.6モル、貴金属が1〜10gである排気ガス浄化用触媒Eを作製した。
[Exhaust gas purification catalyst]
A catalyst comprising a monolith honeycomb carrier having a GSA (geometric surface area) of 20 to 50 cm 2 / cm 3 coated with zeolite as a first layer and a noble metal and an alkali metal or alkaline earth metal compound as a second layer Coat the components, 100 to 300 g of the first layer zeolite is converted to 100 to 300 g per 1 L of the catalyst carrier, 150 to 400 g of the second layer catalyst component is converted to metal atoms in terms of alkali metal or alkaline earth metal compound Thus, an exhaust gas purifying catalyst E having 0.1 to 0.6 mol and noble metal of 1 to 10 g was prepared.
[性能評価]
上記得られた三元触媒A、B及びCと、酸化触媒Dと、排気ガス浄化用触媒Eを用いて、排気ガス浄化システムを構築した。即ち、図2は、排気ガス浄化システムの性能評価に用いたエンジンシステムの構成を示す概略図である。図2中の触媒位置1に三元触媒Aを配置し、触媒位置2に排気ガス浄化用触媒Eを配置して排気ガス浄化システムを構築した。これを排気ガス浄化システムA(実施例5)とした。
また、三元触媒Aをそれぞれ三元触媒B、三元触媒C又は酸化触媒Dに換えて、排気ガス浄化システムを構築し、それぞれ排気ガス浄化システムB(実施例6)、排気ガス浄化システムC(実施例7)、又は排気ガス浄化システムD(実施例8)とした。
[Performance evaluation]
An exhaust gas purification system was constructed using the obtained three-way catalysts A, B, and C, an oxidation catalyst D, and an exhaust gas purification catalyst E. That is, FIG. 2 is a schematic diagram showing the configuration of the engine system used for performance evaluation of the exhaust gas purification system. The exhaust gas purification system was constructed by arranging the three-way catalyst A at the catalyst position 1 in FIG. 2 and the exhaust gas purification catalyst E at the catalyst position 2. This was designated as an exhaust gas purification system A (Example 5).
Further, an exhaust gas purification system is constructed by replacing the three-way catalyst A with the three-way catalyst B, the three-way catalyst C, or the oxidation catalyst D, respectively, and the exhaust gas purification system B (Example 6) and the exhaust gas purification system C, respectively. Example 7 or exhaust gas purification system D (Example 8) was used.
下記条件で耐久後、排気ガス浄化システムAと排気ガス浄化システムDのAbag(250−505)及びBbag(506−1347)のNOx転化率を測定した。得られた結果を表1に示す。
また、同条件で耐久後、排気ガス浄化システムAと排気ガス浄化システムBの始動後0〜160秒間のNOx転化率を測定した。得られた結果を表2に示す。
After endurance under the following conditions, the NOx conversion rates of Abag (250-505) and Bbag (506-1347) of exhaust gas purification system A and exhaust gas purification system D were measured. The obtained results are shown in Table 1.
Further, after endurance under the same conditions, the NOx conversion rate was measured for 0 to 160 seconds after the exhaust gas purification system A and the exhaust gas purification system B were started. The obtained results are shown in Table 2.
(耐久条件)
・エンジン排気量 3000cc
・燃料 軽油(Class1)
・触媒入口ガス温度 700℃
・耐久時間 50時間
(性能評価条件)
・触媒容量 三元触媒 :1L
酸化触媒 :1L
排気ガス浄化用触媒:1L
・車両性能試験 日産自動車株式会社製 V型6気筒 3.3Lエンジン
(Endurance conditions)
-Engine displacement 3000cc
・ Fuel Light oil (Class 1)
・ Catalyst inlet gas temperature 700 ℃
-Endurance time 50 hours (performance evaluation conditions)
・ Catalyst capacity Three-way catalyst: 1L
Oxidation catalyst: 1L
Exhaust gas purification catalyst: 1L
・ Vehicle performance test Nissan Motor Co., Ltd. V type 6 cylinder 3.3L engine
表1より、本発明の範囲に属する排気ガス浄化システムAと、排気ガス浄化システムDを比較すると、三元酸化触媒として三元触媒を用いる方が、NOx転化率が優れていることが分かる。
また、表2より、排気ガス浄化システムAと排気ガス浄化システムBを比較することによって、リブ厚みを厚くする場合に比べて触媒コート層厚みを厚くする方が蓄熱効果をより向上させ、NOx転化率を向上させることが分かる。
From Table 1, when comparing the exhaust gas purification system A belonging to the scope of the present invention and the exhaust gas purification system D, it can be seen that the NOx conversion rate is better when the three-way catalyst is used as the three-way oxidation catalyst.
Further, from Table 2, by comparing the exhaust gas purification system A and the exhaust gas purification system B, the heat storage effect is further improved by increasing the catalyst coat layer thickness compared with the case of increasing the rib thickness, and NOx conversion It can be seen that the rate is improved.
10 リブ
20 触媒コート層
10
Claims (6)
上記三元酸化触媒は、モノリス担体のセル壁上に三元酸化触媒を含む触媒コート層が形成されて成り、該セル壁厚みと該セル壁上に形成される触媒コート層厚みの最薄部における合計厚みが50〜650μmであることを特徴とする排気ガス浄化システム。 An exhaust gas purification catalyst that is disposed in an exhaust gas flow path of a diesel engine, has a three-way oxidation catalyst on the upstream side in the exhaust gas flow direction, and has a NOx trap function and an HC trap function on the downstream side. An exhaust gas purification system comprising:
The ternary oxidation catalyst is formed by forming a catalyst coat layer containing a ternary oxidation catalyst on a cell wall of a monolith support, and the cell wall thickness and the thinnest part of the catalyst coat layer thickness formed on the cell wall The exhaust gas purification system is characterized in that the total thickness in is 50 to 650 μm.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004352918A JP2006159069A (en) | 2004-12-06 | 2004-12-06 | Exhaust gas cleaning system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004352918A JP2006159069A (en) | 2004-12-06 | 2004-12-06 | Exhaust gas cleaning system |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2006159069A true JP2006159069A (en) | 2006-06-22 |
Family
ID=36661653
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004352918A Pending JP2006159069A (en) | 2004-12-06 | 2004-12-06 | Exhaust gas cleaning system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2006159069A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008023483A (en) * | 2006-07-24 | 2008-02-07 | Toyota Central Res & Dev Lab Inc | Catalyst for purifying exhaust gas, its manufacturing method and its regenerating method |
JP2008023482A (en) * | 2006-07-24 | 2008-02-07 | Toyota Central Res & Dev Lab Inc | Catalyst for purifying exhaust gas, its manufacturing method and its regenerating method |
JP2008105027A (en) * | 2006-10-23 | 2008-05-08 | Haldor Topsoe As | Method and apparatus for purification of exhaust gas from compression ignition engine |
JP2011252464A (en) * | 2010-06-03 | 2011-12-15 | Denso Corp | Exhaust gas cleaning apparatus |
-
2004
- 2004-12-06 JP JP2004352918A patent/JP2006159069A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008023483A (en) * | 2006-07-24 | 2008-02-07 | Toyota Central Res & Dev Lab Inc | Catalyst for purifying exhaust gas, its manufacturing method and its regenerating method |
JP2008023482A (en) * | 2006-07-24 | 2008-02-07 | Toyota Central Res & Dev Lab Inc | Catalyst for purifying exhaust gas, its manufacturing method and its regenerating method |
JP2008105027A (en) * | 2006-10-23 | 2008-05-08 | Haldor Topsoe As | Method and apparatus for purification of exhaust gas from compression ignition engine |
JP2011252464A (en) * | 2010-06-03 | 2011-12-15 | Denso Corp | Exhaust gas cleaning apparatus |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5232401B2 (en) | Exhaust gas purification catalyst | |
JP5807782B2 (en) | Exhaust gas purification catalyst | |
JP4838258B2 (en) | Exhaust gas purification catalyst | |
US8337791B2 (en) | Exhaust gas purification catalyst, exhaust gas purification apparatus using the same and exhaust gas purification method | |
KR100781670B1 (en) | A catalyst without rh or with the minimum rh for purifying exhaust gases from engine | |
US8039418B2 (en) | Exhaust gas-purifying catalyst | |
KR101059807B1 (en) | Exhaust gas purification catalyst | |
JP6864677B2 (en) | Exhaust gas purification catalyst | |
JP5910833B2 (en) | Exhaust gas purification catalyst | |
EP2407238A1 (en) | Exhaust gas purifying catalyst, exhaust gas purifying apparatus using same, and method for purifying exhaust gas | |
US7056859B2 (en) | Catalyst for purifying exhaust gases | |
JPWO2017213105A1 (en) | Exhaust gas purification catalyst | |
WO2015079908A1 (en) | Exhaust gas purification catalyst | |
JPWO2017203863A1 (en) | Three-way catalyst for purification of gasoline engine exhaust gas | |
JP6735912B2 (en) | Exhaust gas purification catalyst and exhaust gas purification method using the same | |
JP2006192357A (en) | Catalyst for exhaust gas purification | |
JP3827143B2 (en) | Exhaust gas purification catalyst | |
JP2009000648A (en) | Exhaust gas cleaning catalyst | |
JP7288331B2 (en) | Exhaust gas purification catalyst device | |
JP2006205050A (en) | Catalyst for cleaning exhaust gas | |
JP2006159069A (en) | Exhaust gas cleaning system | |
JP5328133B2 (en) | Exhaust gas purification catalyst | |
JP3748202B2 (en) | Exhaust gas purification catalyst | |
JP4980987B2 (en) | Exhaust gas purification catalyst | |
JP4503314B2 (en) | Exhaust gas purification catalyst |