Nothing Special   »   [go: up one dir, main page]

JP2006154622A - Pattern forming material and pattern forming method - Google Patents

Pattern forming material and pattern forming method Download PDF

Info

Publication number
JP2006154622A
JP2006154622A JP2004348428A JP2004348428A JP2006154622A JP 2006154622 A JP2006154622 A JP 2006154622A JP 2004348428 A JP2004348428 A JP 2004348428A JP 2004348428 A JP2004348428 A JP 2004348428A JP 2006154622 A JP2006154622 A JP 2006154622A
Authority
JP
Japan
Prior art keywords
light
pattern forming
forming material
pattern
photosensitive layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004348428A
Other languages
Japanese (ja)
Inventor
Shinichiro Serizawa
慎一郎 芹澤
Yoshiharu Sasaki
義晴 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP2004348428A priority Critical patent/JP2006154622A/en
Priority to PCT/JP2005/021598 priority patent/WO2006059534A1/en
Priority to TW094141994A priority patent/TW200628989A/en
Publication of JP2006154622A publication Critical patent/JP2006154622A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • G03F7/028Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with photosensitivity-increasing substances, e.g. photoinitiators
    • G03F7/029Inorganic compounds; Onium compounds; Organic compounds having hetero atoms other than oxygen, nitrogen or sulfur
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • G03F7/028Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with photosensitivity-increasing substances, e.g. photoinitiators
    • G03F7/029Inorganic compounds; Onium compounds; Organic compounds having hetero atoms other than oxygen, nitrogen or sulfur
    • G03F7/0295Photolytic halogen compounds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • G03F7/028Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with photosensitivity-increasing substances, e.g. photoinitiators
    • G03F7/031Organic compounds not covered by group G03F7/029

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Materials For Photolithography (AREA)
  • Photosensitive Polymer And Photoresist Processing (AREA)
  • Manufacturing Of Printed Circuit Boards (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a pattern forming material having improved optical characteristics, and to provide a pattern forming apparatus and forming method which enable distortion of an image provided on the pattern forming material to be suppressed and a permanent pattern free from defects, such as a wiring pattern to be efficiently formed with high definition. <P>SOLUTION: The pattern forming material has a photosensitive layer on a support having a synthetic resin film containing fine particles, and exhibits a total light transmittance of ≥80% when light having a wavelength of 405 nm is illuminated, wherein a diffusion angle which is the angle between the light axis of the illuminated light and diffusive light is within 2°, and the proportion of diffusive light energy to illuminated light energy at the diffusion angle of 1.5° is within 1%. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、ドライ・フィルム・レジスト(DFR)等に好適なパターン形成材料及び該パターン形成材料を用いたパターン形成方法に関する。   The present invention relates to a pattern forming material suitable for dry film resist (DFR) and the like and a pattern forming method using the pattern forming material.

従来より、配線パターンなどの永久パターンを形成するに際して、支持体上に感光性樹脂組成物を塗布、乾燥することにより感光層を形成させたパターン形成材料が用いられている。前記永久パターンの形成方法としては、例えば、前記永久パターンが形成される銅張積層板等の基体上に、前記パターン形成材料を積層させて積層体を形成し、該積層体における前記感光層に対して露光を行い、該感光層を現像してパターンを形成させ、その後エッチング処理等を行うことにより前記永久パターンが形成される。   Conventionally, when forming a permanent pattern such as a wiring pattern, a pattern forming material in which a photosensitive resin composition is formed on a support by applying and drying a photosensitive resin composition has been used. As a method for forming the permanent pattern, for example, a laminate is formed by laminating the pattern forming material on a substrate such as a copper clad laminate on which the permanent pattern is formed, and the photosensitive layer in the laminate is formed on the photosensitive layer. The permanent pattern is formed by exposing to light, developing the photosensitive layer to form a pattern, and then performing an etching process or the like.

近年では、前記永久パターンの高精細化が進むに伴い、前記パターン形成材料に対しても高感度で転写不良を生じさせない性能が強く要求されている。前記パターン形成材料は、製造時の操作性を向上させるために、前記感光層が積層される支持体中に粒子を配合し、前記支持体表面に微細な突起を形成する方法が用いられている。しかし、前記粒子の配合によって前記支持体の透明度の低下や、露光光の散乱が生じ、高精細なパターンが得られなくなるという問題がある。   In recent years, as the permanent pattern is highly refined, there is a strong demand for the pattern forming material that has high sensitivity and does not cause transfer defects. For the pattern forming material, in order to improve operability during production, a method is used in which particles are blended in a support on which the photosensitive layer is laminated, and fine protrusions are formed on the surface of the support. . However, the blending of the particles causes a problem that the transparency of the support is lowered and exposure light is scattered, and a high-definition pattern cannot be obtained.

この問題に対して、前記支持体(支持フィルム)の表層に粒子径が一定範囲の微粒子を含有させることにより、優れた解像度と操作性とを有するパターン形成材料が提案されている(例えば、特許文献1参照)。しかし、この場合、前記支持体と含有させる粒子との屈折率の関係を規定することによる前記パターン形成材料の解像度と操作性の両立については、何ら開示されていない。   In response to this problem, a pattern forming material having excellent resolution and operability has been proposed by incorporating fine particles with a particle diameter in a certain range in the surface layer of the support (support film) (for example, patents). Reference 1). However, in this case, there is no disclosure about compatibility between the resolution and the operability of the pattern forming material by defining the relationship between the refractive index of the support and the particles to be contained.

よって、パターン形成材料の操作性を損なうことなく、配線パターン等の永久パターンを高精細に、かつ、効率よく形成可能なパターン形成材料、並びに該パターン形成材料を備えたパターン形成装置及び前記パターン形成材料を用いたパターン形成方法は未だ提供されておらず、更なる改良開発が望まれているのが現状である。   Therefore, a pattern forming material capable of efficiently and efficiently forming a permanent pattern such as a wiring pattern without impairing the operability of the pattern forming material, a pattern forming apparatus including the pattern forming material, and the pattern forming A pattern forming method using a material has not been provided yet, and further improvement and development are desired.

WO00/079344号公報WO00 / 079344

本発明は、かかる現状に鑑みてなされたものであり、従来における前記諸問題を解決し、以下の目的を達成することを課題とする。即ち、本発明は、波長405nmの全光線透過率が80%以上であり、かつ照射する前記光の光軸と拡散光とのなす角である拡散角度が2度以内であり、また、拡散角度が、1.5度における照射光エネルギー(mJ/cm)に対する拡散光エネルギー(mJ/cm)が、1%以内にあり、更に、微粒子を含有する合成樹脂製フィルムからなる支持体の該微粒子の少なくとも1種の屈折率と、該合成樹脂製フィルムの屈折率とが一定の数値範囲であることにより、前記パターン形成材料の製造時の操作性を損なうことなく、欠陥のない配線パターン等の永久パターンを高精細に、かつ、効率よく形成可能なパターン形成材料、並びに該パターン形成材料を備えたパターン形成装置及び前記パターン形成材料を用いたパターン形成方法を提供することを目的とする。 This invention is made | formed in view of this present condition, and makes it a subject to solve the said various problems in the past, and to achieve the following objectives. That is, in the present invention, the total light transmittance at a wavelength of 405 nm is 80% or more, the diffusion angle formed by the optical axis of the light to be irradiated and the diffused light is within 2 degrees, and the diffusion angle However, the diffusion light energy (mJ / cm 2 ) with respect to the irradiation light energy (mJ / cm 2 ) at 1.5 ° is within 1%, and the support of the support made of a synthetic resin film containing fine particles By having at least one refractive index of the fine particles and the refractive index of the synthetic resin film in a certain numerical range, a wiring pattern having no defects without impairing operability during the production of the pattern forming material A pattern forming material capable of efficiently forming a permanent pattern with high definition and efficiency, a pattern forming apparatus provided with the pattern forming material, and a pattern forming method using the pattern forming material The purpose is to provide.

前記課題を解決するための手段としては、以下の通りである。即ち、
<1> 光を照射する場合における全光線透過率が80%以上であり、かつ照射する前記光の光軸と拡散光とのなす角である拡散角度が2度以内である支持体上に、感光性樹脂組成物からなる感光層を有することを特徴とするパターン形成材料である。
該<1>に記載のパターン形成材料においては、前記支持体が、全光線透過率80%以上を有し、かつ照射する前記光の光軸と拡散光のなす角である拡散角度が2度以内であることにより、前記支持体側から前記感光層に対して露光し、現像した場合に、優れた形状のパターンが形成される。
<2> 照射する光の波長が、405nmである前記<1>に記載のパターン形成材料である。
<3> 拡散角度が、1.5度における照射光エネルギー(mJ/cm)に対する拡散光エネルギー(mJ/cm)が、1%以内にある前記<1>から<2>のいずれかに記載のパターン形成材料である。
<4> 支持体が、不活性粒子を含むポリエステルフィルムからなり、前記不活性粒子が、平均粒子径0.01〜2μmの粒子である前記<1>から<3>のいずれかに記載のパターン形成材料である。
該<4>に記載のパターン形成材料においては、支持体に含まれる微粒子の平均粒子径が所定範囲であることにより、支持体の操作性と透明性とが両立する。
<5> 支持体上に感光層及び保護フィルムをこの順に積層した前記<1>から<4>のいずれかに記載のパターン形成材料である。
<6> 支持体が、二軸延伸されてなる前記<1>から<5>のいずれかに記載のパターン形成材料である。
<7> 支持体が、積層体であり、該積層体における各層を形成する複数種の組成物のうち、少なくとも2種が互いに異なる前記<1>から<6>のいずれかに記載のパターン形成材料である。
該<7>に記載のパターン形成材料においては、該積層体の各層を構成する樹脂組成物及び含有する前記微粒子のいずれかが異なるため、前記積層体の態様を目的に応じて適宜選択することができる。
<8> 支持体の感光層が積層される面の算術平均粗さ(Ra)が、0.3以下であり、かつ、支持体の少なくとも感光層が積層されない面の算術平均粗さ(Ra)が、0.02〜0.5μmである前記<1>から<7>のいずれかに記載のパターン形成材料である。
<9> 支持体の少なくとも感光層が積層されない面の表面に帯電防止剤を含有し、該表面の表面抵抗が、温度10℃、相対湿度35%の環境下において、1×1018Ω/□以下である前記<1>から<8>のいずれかに記載のパターン形成材料である。
<10> 支持体の感光層が積層されていない面の摩擦係数が、0.3〜1.0である前記<1>から<9>のいずれかに記載のパターン形成材料である。
該<10>に記載のパターン形成材料では、摩擦係数が上記範囲にあるので、搬送工程において取り扱いが良好となる。前記静摩擦係数が、0.3未満であると、滑りやすく、ロールでの巻き取りが均一にできない場合があり、一方摩擦係数が1.0を超えると、塗布あるいは加工での搬送工程でシワを生ずることがある。
<11> 感光層が、重合性化合物を含み、該重合性化合物がウレタン基及びアリール基の少なくともいずれかを有するモノマーを含む前記<1>から<10>のいずれかに記載のパターン形成材料である。
<12> 感光層が、光重合開始剤を含み、該光重合開始剤がハロゲン化炭化水素誘導体、ヘキサアリールビイミダゾール、オキシム誘導体、有機過酸化物、チオ化合物、ケトン化合物、芳香族オニウム塩及びメタロセン類から選択される少なくとも1種を含む前記<1>から<11>のいずれかに記載のパターン形成材料である。
<13> 感光層が、バインダーと、重合性化合物と、光重合開始剤とを含む前記<1>から<12>のいずれかに記載のパターン形成材料である。
<14> バインダーが、酸性基を有する前記<13>に記載のパターン形成材料である。
<15> バインダーが、ビニル共重合体である前記<13>から<14>のいずれかに記載のパターン形成材料である。
<16> バインダーの酸価が、70〜250(mgKOH/g)である前記<13>から<15>のいずれかに記載のパターン形成材料である。
<17> 感光層が、バインダーを30〜90質量%含有し、重合性化合物を5〜60質量%含有し、光重合開始剤を0.1〜30質量%含有する前記<1>から<16>のいずれかに記載のパターン形成材料である。
<18> 感光層の厚みが、1〜100μmである前記<1>から<17>のいずれかに記載のパターン形成材料である。
<19> パターン形成材料が、長尺状であり、ロール状に巻かれてなる前記<1>から<18>のいずれかに記載のパターン形成材料である。
<20> パターン形成材料における感光層上に保護フィルムを形成する前記<1>から<19>のいずれかに記載のパターン形成材料である。
<21> 前記<1>から<20>のいずれかに記載のパターン形成材料を備えており、光を照射可能な光照射手段と、該光照射手段からの光を変調し、前記パターン形成材料における感光層に対して露光を行う光変調手段とを少なくとも有することを特徴とするパターン形成装置である。
該<21>に記載のパターン形成装置においては、前記光照射手段が、前記光変調手段に向けて光を照射する。前記光変調手段が、前記光照射手段から受けた光を変調する。前記光変調手段により変調した光が前記感光層に対して露光される。例えば、その後、前記感光層を現像すると、高精細なパターンが形成される。
<22> 前記<1>から<21>のいずれかに記載のパターン形成材料における感光層に対し、露光を行うことを特徴とするパターン形成方法である。
該<22>に記載のパターン形成方法においては、前記露光が前記パターン形成材料に対して行われる。例えば、その後、前記感光層を現像すると、高精細なパターンが形成される。
<23> 感光層が、被処理基体上に積層された後、光照射手段からの光を受光し出射する描素部をn個有する光変調手段により、前記光照射手段からの光を変調させた後、前記描素部における出射面の歪みによる収差を補正可能な非球面を有するマイクロレンズを配列したマイクロレンズアレイを通した光で、露光される前記<22>に記載のパターン形成方法である。
<24> 基体上にパターン形成材料を加熱及び加圧の少なくともいずれかを行いながら積層し、露光する前記<22>から<23>のいずれかに記載のパターン形成方法である。
<25> 露光が、形成するパターン情報に基づいて像様に行われる前記<22>から<24>のいずれかに記載のパターン形成方法である。
<26> 露光が、形成するパターン情報に基づいて制御信号を生成し、該制御信号に応じて変調させた光を用いて行われる前記<22>から<25>のいずれかに記載のパターン形成方法である。
該<26>に記載のパターン形成方法においては、形成するパターン形成情報に基づいて制御信号が生成され、該制御信号に応じて光が変調される。
<27> 露光が、光を照射する光照射手段と、形成するパターン情報に基づいて前記光照射手段から照射される光を変調させる光変調手段とを用いて行われる前記<22>から<26>のいずれかに記載のパターン形成方法である。
<28> 露光が、光変調手段により光を変調させた後、前記光変調手段における描素部の出射面の歪みによる収差を補正可能な非球面を有するマイクロレンズを配列したマイクロレンズアレイを通して行われる前記<22>から<27>のいずれかに記載のパターン形成方法である。
該<28>に記載のパターン形成方法においては、前記光変調手段により変調した光が、前記マイクロレンズアレイにおける前記非球面を通ることにより、前記描素部における出射面の歪みによる収差が補正される。この結果、パターン形成材料上に結像させる像の歪みが抑制され、該パターン形成材料への露光が極めて高精細に行われる。例えば、その後、前記感光層を現像すると、極めて高精細なパターンが形成される。
<29> 非球面が、トーリック面である前記<28>に記載のパターン形成方法である。
該<29>に記載のパターン形成方法においては、前記非球面がトーリック面であることにより、前記描素部における放射面の歪みによる収差が効率よく補正され、パターン形成材料上に結像させる像の歪みが効率よく抑制される。この結果、前記パターン形成材料への露光が極めて高精細に行われる。例えば、その後、前記感光層を現像すると、極めて高精細なパターンが形成される。
<30> 露光が、アパーチャアレイを通して行われる前記<22>から<29>のいずれかに記載のパターン形成方法である。
該<30>に記載のパターン形成方法においては、露光が前記アパーチャアレイを通して行われることにより、消光比が向上する。この結果、露光が極めて高精細に行われる。例えば、その後、前記感光層を現像すると、極めて高精細なパターンが形成される。
<31> 露光が、露光光と感光層とを相対的に移動させながら行われる前記<22>から<30>のいずれかに記載のパターン形成方法である。
該<31>に記載のパターン形成方法においては、前記変調させた光と前記感光層とを相対的に移動させながら露光することにより、露光が高速に行われる。例えば、その後、前記感光層を現像すると、高精細なパターンが形成される。
<32> 露光が、感光層の一部の領域に対して行われる前記<22>から<31>のいずれかに記載のパターン形成方法である。
<33> 露光が行われた後、感光層の現像を行う前記<22>から<32>のいずれかに記載のパターン形成方法である。
該<33>に記載のパターン形成方法においては、前記露光が行われた後、前記感光層を現像することにより、高精細なパターンが形成される。
<34> 現像が行われた後、永久パターンの形成を行う前記<22>から<33>のいずれかに記載のパターン形成方法である。
<35> 永久パターンが、配線パターンであり、該永久パターンの形成がエッチング処理及びメッキ処理の少なくともいずれかにより行われる前記<34>に記載のパターン形成方法である。
Means for solving the problems are as follows. That is,
<1> On a support that has a total light transmittance of 80% or more in the case of irradiating light, and a diffusion angle that is an angle formed by the optical axis of the irradiating light and the diffused light is within 2 degrees, A pattern forming material having a photosensitive layer made of a photosensitive resin composition.
In the pattern forming material according to <1>, the support has a total light transmittance of 80% or more, and a diffusion angle which is an angle formed by an optical axis of the light to be irradiated and diffused light is 2 degrees. Therefore, when the photosensitive layer is exposed and developed from the support side, a pattern having an excellent shape is formed.
<2> The pattern forming material according to <1>, wherein the wavelength of light to be irradiated is 405 nm.
<3> diffusion angle, diffused light energy to the irradiated light energy at 1.5 ° (mJ / cm 2) (mJ / cm 2), wherein is within 1% <1> or <2> It is a pattern formation material of description.
<4> The pattern according to any one of <1> to <3>, wherein the support is made of a polyester film containing inert particles, and the inert particles are particles having an average particle diameter of 0.01 to 2 μm. Forming material.
In the pattern forming material according to <4>, the operability and transparency of the support are compatible when the average particle diameter of the fine particles contained in the support is in a predetermined range.
<5> The pattern forming material according to any one of <1> to <4>, wherein a photosensitive layer and a protective film are laminated in this order on a support.
<6> The pattern forming material according to any one of <1> to <5>, wherein the support is biaxially stretched.
<7> The pattern formation according to any one of <1> to <6>, wherein the support is a laminate, and at least two of the plurality of compositions forming each layer in the laminate are different from each other. Material.
In the pattern forming material according to <7>, since any one of the resin composition constituting each layer of the laminate and the fine particles contained therein is different, the aspect of the laminate is appropriately selected according to the purpose. Can do.
<8> The arithmetic average roughness (Ra) of the surface on which the photosensitive layer of the support is laminated is 0.3 or less, and the arithmetic average roughness (Ra) of the surface of the support on which at least the photosensitive layer is not laminated. Is the pattern forming material according to any one of <1> to <7>, wherein 0.02 to 0.5 μm.
<9> An antistatic agent is included on at least the surface of the support on which the photosensitive layer is not laminated, and the surface resistance of the surface is 1 × 10 18 Ω / □ in an environment where the temperature is 10 ° C. and the relative humidity is 35%. The pattern forming material according to any one of <1> to <8>, wherein:
<10> The pattern forming material according to any one of <1> to <9>, wherein the coefficient of friction of the surface of the support on which the photosensitive layer is not laminated is 0.3 to 1.0.
In the pattern forming material according to <10>, since the friction coefficient is in the above range, the handling is good in the transporting process. If the coefficient of static friction is less than 0.3, it may be slippery and winding with a roll may not be uniform. On the other hand, if the coefficient of friction exceeds 1.0, wrinkles may occur in the conveying process during coating or processing. May occur.
<11> The pattern forming material according to any one of <1> to <10>, wherein the photosensitive layer includes a polymerizable compound, and the polymerizable compound includes a monomer having at least one of a urethane group and an aryl group. is there.
<12> The photosensitive layer contains a photopolymerization initiator, and the photopolymerization initiator is a halogenated hydrocarbon derivative, hexaarylbiimidazole, oxime derivative, organic peroxide, thio compound, ketone compound, aromatic onium salt, and The pattern forming material according to any one of <1> to <11>, including at least one selected from metallocenes.
<13> The pattern forming material according to any one of <1> to <12>, wherein the photosensitive layer includes a binder, a polymerizable compound, and a photopolymerization initiator.
<14> The pattern forming material according to <13>, wherein the binder has an acidic group.
<15> The pattern forming material according to any one of <13> to <14>, wherein the binder is a vinyl copolymer.
<16> The pattern forming material according to any one of <13> to <15>, wherein the binder has an acid value of 70 to 250 (mgKOH / g).
<17> The photosensitive layer contains 30 to 90% by mass of a binder, 5 to 60% by mass of a polymerizable compound, and 0.1 to 30% by mass of a photopolymerization initiator. > The pattern forming material according to any one of the above.
<18> The pattern forming material according to any one of <1> to <17>, wherein the photosensitive layer has a thickness of 1 to 100 μm.
<19> The pattern forming material according to any one of <1> to <18>, wherein the pattern forming material has a long shape and is wound in a roll shape.
<20> The pattern forming material according to any one of <1> to <19>, wherein a protective film is formed on the photosensitive layer in the pattern forming material.
<21> The pattern forming material according to any one of <1> to <20>, wherein the pattern forming material is capable of irradiating light, and modulates light from the light irradiating means. And a light modulation means for exposing the photosensitive layer in the pattern forming apparatus.
In the pattern forming apparatus according to <21>, the light irradiation unit irradiates light toward the light modulation unit. The light modulation unit modulates light received from the light irradiation unit. The light modulated by the light modulating means is exposed to the photosensitive layer. For example, when the photosensitive layer is subsequently developed, a high-definition pattern is formed.
<22> A pattern forming method, wherein the photosensitive layer in the pattern forming material according to any one of <1> to <21> is exposed.
In the pattern forming method according to <22>, the exposure is performed on the pattern forming material. For example, when the photosensitive layer is subsequently developed, a high-definition pattern is formed.
<23> After the photosensitive layer is laminated on the substrate to be processed, the light from the light irradiation unit is modulated by the light modulation unit having n pixel parts that receive and emit light from the light irradiation unit. After that, the pattern forming method according to <22>, wherein the pattern forming method is exposed to light passing through a microlens array in which microlenses having aspherical surfaces capable of correcting aberration due to distortion of the exit surface in the pixel portion are exposed. is there.
<24> The pattern forming method according to any one of <22> to <23>, wherein the pattern forming material is laminated on the substrate while being heated and pressurized and exposed.
<25> The pattern forming method according to any one of <22> to <24>, wherein the exposure is performed imagewise based on pattern information to be formed.
<26> The pattern formation according to any one of <22> to <25>, wherein the exposure is performed using a light generated by generating a control signal based on pattern information to be formed and modulated in accordance with the control signal Is the method.
In the pattern forming method according to <26>, a control signal is generated based on pattern formation information to be formed, and light is modulated in accordance with the control signal.
<27> From <22> to <26, wherein the exposure is performed using light irradiation means for irradiating light and light modulation means for modulating light emitted from the light irradiation means based on pattern information to be formed. > The pattern forming method according to any one of the above.
<28> Exposure is performed through a microlens array in which microlenses having aspherical surfaces capable of correcting aberrations due to distortion of the exit surface of the picture element portion in the light modulator after the light is modulated by the light modulator. The pattern forming method according to any one of <22> to <27>.
In the pattern forming method according to <28>, the light modulated by the light modulation unit passes through the aspheric surface in the microlens array, so that the aberration due to the distortion of the exit surface in the pixel portion is corrected. The As a result, distortion of the image formed on the pattern forming material is suppressed, and exposure to the pattern forming material is performed with extremely high definition. For example, when the photosensitive layer is subsequently developed, an extremely fine pattern is formed.
<29> The pattern forming method according to <28>, wherein the aspherical surface is a toric surface.
In the pattern forming method according to <29>, since the aspherical surface is a toric surface, aberration due to distortion of the radiation surface in the pixel portion is efficiently corrected, and an image formed on the pattern forming material is formed. Is efficiently suppressed. As a result, the pattern forming material is exposed with extremely high definition. For example, when the photosensitive layer is subsequently developed, an extremely fine pattern is formed.
<30> The pattern forming method according to any one of <22> to <29>, wherein the exposure is performed through an aperture array.
In the pattern forming method according to <30>, the extinction ratio is improved by performing exposure through the aperture array. As a result, the exposure is performed with extremely high definition. For example, when the photosensitive layer is subsequently developed, an extremely fine pattern is formed.
<31> The pattern forming method according to any one of <22> to <30>, wherein the exposure is performed while relatively moving the exposure light and the photosensitive layer.
In the pattern forming method according to <31>, exposure is performed at high speed by performing exposure while relatively moving the modulated light and the photosensitive layer. For example, when the photosensitive layer is subsequently developed, a high-definition pattern is formed.
<32> The pattern forming method according to any one of <22> to <31>, wherein the exposure is performed on a partial region of the photosensitive layer.
<33> The pattern forming method according to any one of <22> to <32>, wherein the photosensitive layer is developed after the exposure.
In the pattern forming method according to <33>, a high-definition pattern is formed by developing the photosensitive layer after the exposure.
<34> The pattern forming method according to any one of <22> to <33>, wherein a permanent pattern is formed after development.
<35> The pattern formation method according to <34>, wherein the permanent pattern is a wiring pattern, and the formation of the permanent pattern is performed by at least one of an etching process and a plating process.

本発明によると、従来における問題を解決することができ、波長405nmの光を照射する場合における全光線透過率が80%以上であり、かつ照射する前記光の光軸と拡散光とのなす角である拡散角度が2度以内であり、また、拡散角度が、1.5度における照射光エネルギー(mJ/cm)に対する拡散光エネルギー(mJ/cm)が、1%以内にあり、更に微粒子を含有する合成樹脂製フィルムを有する支持体上に、少なくとも感光層を有し、該微粒子の少なくとも1種の屈折率と、合成樹脂製フィルムの屈折率とが一定の数値範囲であることにより、前記パターン形成材料の操作性を損なうことなく、欠陥のない配線パターン等の永久パターンを高精細に、かつ、効率よく形成可能なパターン形成材料、並びに該パターン形成材料を備えた形成装置及び前記パターン形成材料を用いたパターン形成方法を提供することができる。 According to the present invention, the conventional problem can be solved, the total light transmittance when irradiating light with a wavelength of 405 nm is 80% or more, and the angle formed by the optical axis of the irradiating light and the diffused light is within the diffusion angle of 2 degrees is, also, the diffusion angle is diffused light energy to the irradiated light energy at 1.5 degrees (mJ / cm 2) (mJ / cm 2), located in within 1%, further By having at least a photosensitive layer on a support having a synthetic resin film containing fine particles, and at least one refractive index of the fine particles and a refractive index of the synthetic resin film are in a certain numerical range. A pattern forming material capable of forming a permanent pattern such as a wiring pattern having no defect with high definition and efficiency without impairing the operability of the pattern forming material, and the pattern formation A forming apparatus including a material and a pattern forming method using the pattern forming material can be provided.

−パターン形成材料−
本発明のパターン形成材料は、支持体及び該支持体上に積層される感光層からなり、必要に応じて適宜選択したその他の層などを有してもよい。
-Pattern forming material-
The pattern forming material of the present invention comprises a support and a photosensitive layer laminated on the support, and may have other layers appropriately selected as necessary.

――光学的特性――
前記光学的特性としては、特に制限はなく、目的に応じて適宜選択することができ、波長405nmの光を照射する場合における前記パターン形成材料の全光線透過率が80%以上であることが好ましく、85%以上がより好ましく、87%以上が特に好ましい。
前記全光線透過率が、80%未満となると、前記感光層に到達するエネルギーが減少し、露光量不足となったり、前記パターン形成材料内での光散乱量が増加し、解像性の低下を招いたりすることがある。
更に照射する前記光の光軸と拡散光とのなす角である拡散角度が2度以内であることが好ましく、1.5度以下がより好ましく、1度以下が特に好ましい。更に前記拡散角度1.5度における照射光エネルギー(mJ/cm)に対する拡散光エネルギー(mJ/cm)が、1%以内にあることが好ましく、0.5%以下がより好ましい。
前記拡散角度が2度を超えると、露光の際に線幅が所定の幅より広がってしまうなど、解像性が低下し、高精細のパターン形成が得られ難い。前記拡散光エネルギーが前記照射光エネルギーに対して1%を超えた場合も同様に高精細なパターン形成が得られ難い。
--Optical characteristics--
The optical characteristics are not particularly limited and may be appropriately selected depending on the purpose. The total light transmittance of the pattern forming material when irradiating light with a wavelength of 405 nm is preferably 80% or more. 85% or more is more preferable, and 87% or more is particularly preferable.
When the total light transmittance is less than 80%, the energy reaching the photosensitive layer decreases, the exposure amount becomes insufficient, the amount of light scattering in the pattern forming material increases, and the resolution decreases. May be invited.
Further, the diffusion angle that is an angle formed by the optical axis of the light to be irradiated and the diffused light is preferably within 2 degrees, more preferably 1.5 degrees or less, and particularly preferably 1 degree or less. Further, the diffused light energy to light energy at the diffusion angle 1.5 ° (mJ / cm 2) (mJ / cm 2), preferably in the within 1%, more preferably 0.5% or less.
When the diffusion angle exceeds 2 degrees, the line width is wider than a predetermined width at the time of exposure, for example, the resolution is lowered and it is difficult to obtain a high-definition pattern. Similarly, when the diffused light energy exceeds 1% with respect to the irradiation light energy, it is difficult to obtain a high-definition pattern.

前記パターン形成材料に対し405nmの光を照射する場合における該支持体のヘイズ値(入射光軸から2.5度以上外れた光の百分率)としては、10%以下が好ましく、7%以下がより好ましく、5%以下が更に好ましく、3%以下が特に好ましく、1%以下が最も好ましい。なお、前記拡散角度と前記ヘイズ値は、多少重なる部分はあるが、互いに別個の値であり、両者の相関関係は認められない。即ち、ヘイズ値は、屈折率により影響を受け、前記パターン形成材料に含まれる粒子の量によりヘイズ値が変化するが、透過する光がどのように拡散するかという拡散角度については、特に粒子の形状や大きさによって変化するので別個の値となる。
前記ヘイズ値が、10%を超えると、前記感光層内の光散乱量が増加し、解像性が低下すると共に、レジスト形状が劣ることがある。
The haze value (percentage of light deviating 2.5 degrees or more from the incident optical axis) when the pattern forming material is irradiated with 405 nm light is preferably 10% or less, more preferably 7% or less. It is preferably 5% or less, more preferably 3% or less, and most preferably 1% or less. Note that the diffusion angle and the haze value are somewhat different from each other, but there is no correlation between them. That is, the haze value is affected by the refractive index, and the haze value varies depending on the amount of particles contained in the pattern forming material. The diffusion angle of how the transmitted light is diffused is particularly Since it varies depending on the shape and size, it becomes a separate value.
When the haze value exceeds 10%, the amount of light scattering in the photosensitive layer increases, resolution may deteriorate, and the resist shape may be inferior.

前記全光線透過率の測定方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、積分球と、405nmの光を照射可能な分光光度計(例えば、島津製作所社製、UV−2400)とを用いて測定する方法が挙げられる。
前記ヘイズ値の測定方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、以下に説明する方法が挙げられる。
まず、(1)前記全光線透過率の測定方法において、前記積分球を使用しない以外は前記全光線透過率の測定方法と同様にして平行光線透過率を測定する。次に、(2)次計算式、前記全光線透過率−前記平行光線透過率、から求められる拡散光透過率を計算し、(3)次計算式、前記拡散光透過率/前記全光線透過率×100、から前記ヘイズ値を求めることができる。
The method for measuring the total light transmittance is not particularly limited and may be appropriately selected depending on the intended purpose. , UV-2400).
There is no restriction | limiting in particular as a measuring method of the said haze value, According to the objective, it can select suitably, For example, the method demonstrated below is mentioned.
First, (1) in the total light transmittance measurement method, the parallel light transmittance is measured in the same manner as the total light transmittance measurement method except that the integrating sphere is not used. Next, the diffuse light transmittance calculated from (2) the following calculation formula, the total light transmittance-the parallel light transmittance, is calculated, and (3) the following calculation formula, the diffuse light transmittance / the total light transmission. The haze value can be obtained from the rate × 100.

また、前記パターン形成材料の酸素透過率としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、温度23℃及び相対湿度50%の条件下で、200cc/m・day・atm以下が好ましく、150cc/m・day・atm以下がより好ましい。
前記酸素透過率が、200cc/m・day・atmを超えると、前記感光層の保存性が低下し、解像性及び現像性等に変化が生じることがある。
The oxygen permeability of the pattern forming material is not particularly limited and may be appropriately selected depending on the intended purpose. For example, it is 200 cc / m 2 · day under conditions of a temperature of 23 ° C. and a relative humidity of 50%. · Atm or less is preferable, and 150 cc / m 2 · day · atm or less is more preferable.
When the oxygen permeability exceeds 200 cc / m 2 · day · atm, the preservability of the photosensitive layer is lowered, and resolution and developability may be changed.

前記パターン形成材料の拡散角度及び拡散光エネルギーの測定方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、レーザなどの光源を用いて、光を前記パターン形成材料に照射し、透過した光をセンサーにより受光して、透過した平行光線と拡散光とがなす角度を測定すると同時に拡散光エネルギーの量を測定する方法などが挙げられる。   The method for measuring the diffusion angle and diffused light energy of the pattern forming material is not particularly limited and can be appropriately selected according to the purpose. For example, the light is applied to the pattern forming material using a light source such as a laser. Examples include a method of measuring the amount of diffused light energy at the same time as measuring the angle formed by the transmitted parallel light beam and the diffused light by receiving the irradiated and transmitted light with a sensor.

――支持体――
前記支持体は、積層された各感光層などを支持するものであり、感光層を剥離可能、かつ光学的特性が良好であり、表面の平滑性が良好であれば特に制限はなく、目的に応じて適宜選択することができる。
--Support body--
The support is to support each laminated photosensitive layer and the like, and is not particularly limited as long as the photosensitive layer can be peeled off, has good optical characteristics, and has good surface smoothness. It can be appropriately selected depending on the case.

―――材料―――
前記支持体の材料としては、光学的特性がよく、機械的強度があれば、特に制限はなく、目的に応じて適宜選択することができ、例えば、合成樹脂製フィルムからなり、微粒子、帯電防止剤などその他の成分を含んでいてもよい。
---material---
The material of the support is not particularly limited as long as it has good optical characteristics and mechanical strength, and can be appropriately selected according to the purpose. For example, the support is made of a synthetic resin film, fine particles, antistatic Other components such as an agent may be included.

――――合成樹脂製フィルム――――
前記合成樹脂製フィルムとしては、特に制限はなく、目的に応じて適宜選択することができ、透明であるものが好ましく、例えば、ポリエステル樹脂製フィルムが好ましく、少なくとも2種類のポリエステル組成物が積層されてなる二軸配向ポリエステルフィルムであることが特に好ましい。
―――― Synthetic resin film ――――
The synthetic resin film is not particularly limited and can be appropriately selected depending on the purpose, and is preferably transparent. For example, a polyester resin film is preferable, and at least two kinds of polyester compositions are laminated. A biaxially oriented polyester film is particularly preferred.

前記ポリエステル樹脂としては、例えば、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリ(メタ)アクリル酸エステル共重合体、ポリ(メタ)アクリル酸アルキルエステル、ポリエチレン−2,6−ナフタレート、ポリテトラメチレンテレフタレート、ポリテトラメチレン−2,6−ナフタレート等が挙げられる。これらは、1種単独で使用してもよく、2種以上を併用してもよい。   Examples of the polyester resin include polyethylene terephthalate, polyethylene naphthalate, poly (meth) acrylic acid ester copolymer, poly (meth) acrylic acid alkyl ester, polyethylene-2,6-naphthalate, polytetramethylene terephthalate, and polytetramethylene. And methylene-2,6-naphthalate. These may be used alone or in combination of two or more.

前記ポリエステル樹脂以外の樹脂としては、例えば、ポリプロピレン、ポリエチレン、三酢酸セルロース、二酢酸セルロース、ポリ塩化ビニル、ポリビニルアルコール、ポリカーボネート、ポリスチレン、セロファン、ポリ塩化ビニリデン共重合体、ポリアミド、ポリイミド、塩化ビニル・酢酸ビニル共重合体、ポリテトラフロロエチレン、ポリトリフロロエチレン、セルロース系樹脂、ナイロン樹脂などが挙げられる。これらは、1種単独で使用してもよく、2種以上を併用してもよい。   Examples of the resin other than the polyester resin include polypropylene, polyethylene, cellulose triacetate, cellulose diacetate, polyvinyl chloride, polyvinyl alcohol, polycarbonate, polystyrene, cellophane, polyvinylidene chloride copolymer, polyamide, polyimide, vinyl chloride, Examples include vinyl acetate copolymer, polytetrafluoroethylene, polytrifluoroethylene, cellulose resin, and nylon resin. These may be used alone or in combination of two or more.

前記合成樹脂製フィルムは1層からなるものであってもよく、2層以上の層からなるものであってもよい。2層以上の層からなる場合、感光層から最も遠くに位置する層に前記微粒子を含有させることが好ましい。   The synthetic resin film may be composed of one layer or may be composed of two or more layers. In the case of two or more layers, the fine particles are preferably contained in the layer farthest from the photosensitive layer.

また、前記合成樹脂製フィルムは、機械的強度特性及び光学的特性の観点から二軸配向ポリエステルフィルムであることが好ましい。
前記二軸配向ポリエステルフィルムの二軸配向方法は、特に制限はなく、目的に応じて適宜選択することができる。例えば、前記ポリエステル樹脂をシート状に溶融押出し、急冷して未延伸フィルムをつくり、該未延伸フィルムを二軸延伸する際に延伸温度を85〜145℃、縦方向及び横方向の延伸倍率を2.6〜4.0倍とし、必要に応じて二軸延伸した後のフィルムを150〜210℃で熱固定することにより調製することができる。
前記二軸延伸は、未延伸フィルムを縦方向又は横方向に延伸して一軸延伸フィルムとし、次いで該一軸延伸フィルムを横方向又は縦方向に延伸することによる逐次二軸延伸法であってもよく、該未延伸フィルムを縦方向及び横方向に同時に延伸する同時二軸延伸法であってもよい。また、前記二軸延伸フィルムは必要に応じて縦方向及び横方向の少なくともいずれかの方向に更に延伸することができる。
The synthetic resin film is preferably a biaxially oriented polyester film from the viewpoint of mechanical strength characteristics and optical characteristics.
There is no restriction | limiting in particular in the biaxial orientation method of the said biaxially-oriented polyester film, According to the objective, it can select suitably. For example, the polyester resin is melt-extruded into a sheet and rapidly cooled to form an unstretched film. When the unstretched film is biaxially stretched, the stretching temperature is 85 to 145 ° C., and the stretching ratio in the longitudinal and transverse directions is 2. It can be prepared by heat-fixing the film after biaxial stretching as necessary at a temperature of from 0.6 to 4.0 times at 150 to 210 ° C.
The biaxial stretching may be a sequential biaxial stretching method in which an unstretched film is stretched in the longitudinal direction or the transverse direction to form a uniaxially stretched film, and then the uniaxially stretched film is stretched in the transverse direction or the longitudinal direction. A simultaneous biaxial stretching method in which the unstretched film is stretched simultaneously in the machine direction and the transverse direction may be used. The biaxially stretched film can be further stretched in at least one of the longitudinal direction and the transverse direction as necessary.

前記合成樹脂製フィルムの屈折率は、1.5〜1.7が好ましく、1.55〜1.65がより好ましい。
前記合成樹脂製フィルムの屈折率は、屈折計(例えば、アタゴ株式会社製 アッペ等)を使用し、光源にナトリウムランプを用いて測定することができる。前記屈折率は、フィルム面内の最大屈折率をηγ、直角方向の屈折率をηβ及び厚み方向の屈折率をηαとし、下記の式で求められる平均屈折率n1として求めることができる。
n1=(ηγ+ηβ+ηα)/3
The refractive index of the synthetic resin film is preferably 1.5 to 1.7, more preferably 1.55 to 1.65.
The refractive index of the synthetic resin film can be measured using a refractometer (for example, Upe manufactured by Atago Co., Ltd.) and using a sodium lamp as a light source. The refractive index can be obtained as an average refractive index n1 obtained by the following equation, where ηγ is the maximum refractive index in the film plane, ηβ is the refractive index in the perpendicular direction, and ηα is the refractive index in the thickness direction.
n1 = (ηγ + ηβ + ηα) / 3

――――微粒子――――
前記支持体中に含有させる微粒子としては、前記合成樹脂製フィルムの屈折率との差が0.3以下である必要があり、例えば、屈折率が1.3〜1.9の微粒子が好ましく、1.5〜1.7の微粒子がより好ましい。
前記微粒子の屈折率は、外挿法、ベッケ線法、液浸法など公知の方法で測定することができる。
―――― Fine particle ――――
As the fine particles to be contained in the support, the difference from the refractive index of the synthetic resin film needs to be 0.3 or less. For example, fine particles having a refractive index of 1.3 to 1.9 are preferable. A fine particle of 1.5 to 1.7 is more preferred.
The refractive index of the fine particles can be measured by a known method such as an extrapolation method, a Becke line method, or an immersion method.

前記微粒子の平均粒子径としては、0.01〜2.0μmが好ましく、0.01〜1.5μmがより好ましく、0.01〜1.0μmが特に好ましい。
前記微粒子の平均粒子径が、0.01μm未満であると、前記パターン形成材料の搬送性が悪化することがあり、搬送性を得るために前記微粒子を多量に含有させることによって、前記支持体のヘイズ値が上昇することがある。また、前記微粒子の平均粒子径が2.0μmを超えると、露光光の散乱によって解像度が低下することがある。
また、前記微粒子が前記合成樹脂製フィルム中で形成する凝集体の径としては、5μm以下が好ましく、2μmがより好ましく、1μm以下が特に好ましい。
The average particle size of the fine particles is preferably 0.01 to 2.0 μm, more preferably 0.01 to 1.5 μm, and particularly preferably 0.01 to 1.0 μm.
When the average particle diameter of the fine particles is less than 0.01 μm, the transportability of the pattern forming material may be deteriorated, and by adding a large amount of the fine particles in order to obtain the transportability, The haze value may increase. On the other hand, when the average particle diameter of the fine particles exceeds 2.0 μm, the resolution may be lowered due to scattering of exposure light.
The diameter of the aggregate formed by the fine particles in the synthetic resin film is preferably 5 μm or less, more preferably 2 μm, and particularly preferably 1 μm or less.

前記微粒子としては、例えば、架橋ポリマー粒子;炭酸カルシウム、リン酸カルシウム、シリカ、カオリン、タルク、二酸化チタン、アルミナ、硫酸バリウム、フッ化カルシウム、フッ化リチウム、ゼオライト、硫化モリブデン等の無機粒子;ヘキサメチレンビスベヘンアミド、ヘキサメチレンビスステアリルアミド、N,N′−ジステアリルテレフタルアミド、シリコーン、シュウ酸カルシウム等の有機粒子;ポリエステル重合時に生成させる析出粒子、等が挙げられ、これらの中でもシリカ、炭酸カルシウム、ヘキサメチレンビスベヘンアミドが好ましい。   Examples of the fine particles include crosslinked polymer particles; inorganic particles such as calcium carbonate, calcium phosphate, silica, kaolin, talc, titanium dioxide, alumina, barium sulfate, calcium fluoride, lithium fluoride, zeolite, and molybdenum sulfide; hexamethylenebis Organic particles such as behenamide, hexamethylenebisstearylamide, N, N'-distearyl terephthalamide, silicone, calcium oxalate; precipitated particles generated during polyester polymerization, etc. Among these, silica, calcium carbonate, Hexamethylene bisbehenamide is preferred.

前記析出粒子とは、例えば、エステル交換触媒としてアルカリ金属又はアルカリ土類金属化合物を用いた系を、常法により重合させることにより反応系内に析出するものを言い、エステル交換反応又は重縮合反応時にテレフタル酸を添加することにより析出させたものでもよい。前記エステル交換反応又は重縮合反応においては、リン酸、リン酸トリメチル、リン酸トリエチル、リン酸トリブチル、酸性リン酸エチル、亜リン酸、亜リン酸トリメチル、亜リン酸トリエチル、亜リン酸トリブチル等のリン化合物の1種以上を存在させてもよい。   The precipitated particles are, for example, particles precipitated in a reaction system by polymerizing a system using an alkali metal or alkaline earth metal compound as a transesterification catalyst by a conventional method, and transesterification reaction or polycondensation reaction Sometimes it may be precipitated by adding terephthalic acid. In the transesterification or polycondensation reaction, phosphoric acid, trimethyl phosphate, triethyl phosphate, tributyl phosphate, acidic ethyl phosphate, phosphorous acid, trimethyl phosphite, triethyl phosphite, tributyl phosphite, etc. One or more of the phosphorus compounds may be present.

前記微粒子を前記合成樹脂フィルムに含有させる方法としては、前記微粒子を含有させた合成樹脂を溶融し、ダイから吐出してフィルム状に成形してもよく、合成樹脂フィルム製造後に公知の方法で前記微粒子を塗布してもよい。   As a method for incorporating the fine particles into the synthetic resin film, the synthetic resin containing the fine particles may be melted and discharged from a die to be formed into a film shape. Fine particles may be applied.

前記支持体における前記微粒子の含有量としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、前記合成樹脂フィルムに対し、30〜800ppmが好ましく、30〜500ppmがより好ましい。
前記含有量が、30ppm未満となると、前記支持体の滑り性が悪化し、前記パターン形成材料を製造する際の取扱性や、該パターン形成材料自身の取扱性が低下することがあり、800ppmを超えると、透明性が悪くなり、解像度が低下することがある。
There is no restriction | limiting in particular as content of the said microparticles | fine-particles in the said support body, According to the objective, it can select suitably, For example, 30-800 ppm is preferable with respect to the said synthetic resin film, and 30-500 ppm is more preferable.
When the content is less than 30 ppm, the slidability of the support is deteriorated, and the handleability in producing the pattern forming material and the handleability of the pattern forming material itself may be reduced. When it exceeds, transparency may deteriorate and resolution may be lowered.

――――帯電防止剤――――
前記帯電防止剤としては、特に制限はなく、公知の帯電防止剤の中から適宜選択することができ、例えば、スルホン酸金属塩基を2個以上有する化合物が挙げられ、該化合物の一例としては、ラウリルジフェニルエーテルジスルホネート、ジラウリルジフェニルエーテルジスルホネート、ステアリルジフェニルエーテルジスルホネート、ジステアリルジフェニルエーテルジスルホネート、ジフェニルジフェニルエーテルジスルホネートなどが挙げられる。
―――― Antistatic agent ――――
The antistatic agent is not particularly limited and may be appropriately selected from known antistatic agents. Examples thereof include compounds having two or more sulfonic acid metal bases. Examples of the compounds include Examples include lauryl diphenyl ether disulfonate, dilauryl diphenyl ether disulfonate, stearyl diphenyl ether disulfonate, distearyl diphenyl ether disulfonate, and diphenyl diphenyl ether disulfonate.

前記支持体における前記帯電防止剤の含有量としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、前記ポリエステル樹脂に対し、1〜20質量%が好ましく、5〜15質量%がより好ましい。
前記含有量が、1%未満となると、前記支持体上にゴミ等が付着することにより、パターン欠陥が生じることがあり、20質量%を超えると、前記ヘイズ値が高くなり、また、ブロッキング等が生じる結果、前記パターン形成材料を製造する際の取扱性や、該パターン形成材料自身の取扱性が低下することがある。
There is no restriction | limiting in particular as content of the said antistatic agent in the said support body, According to the objective, it can select suitably, For example, 1-20 mass% is preferable with respect to the said polyester resin, 5-15 mass % Is more preferable.
When the content is less than 1%, dust or the like may adhere to the support to cause pattern defects. When the content exceeds 20% by mass, the haze value is increased, blocking, or the like. As a result, the handleability in manufacturing the pattern forming material and the handleability of the pattern forming material itself may be deteriorated.

前記帯電防止剤を前記合成樹脂フィルムに含有させる方法としては、前記帯電防止剤を含有させた合成樹脂を溶融し、ダイから吐出してフィルム上に成形してもよく、合成樹脂フィルム製造後に公知の方法で前記帯電防止剤を塗布してもよい。   As a method of incorporating the antistatic agent into the synthetic resin film, the synthetic resin containing the antistatic agent may be melted, discharged from a die, and molded on the film. The antistatic agent may be applied by the method described above.

前記帯電防止剤は、少なくとも前記支持体の前記感光層が積層されない面に含有されていることが好ましい。前記帯電防止剤を含有させた前記支持体の表面抵抗値としては、10℃、相対湿度35%の条件下において6時間保存した場合には、1×1018Ω□以下が好ましく、8×1017Ω□以下がより好ましい。
前記表面抵抗値が、1×1018Ω□cmを超えると、発生した静電気が帯電されやすく、帯電量が増加し、チリやホコリなどを吸着しやすく、異物故障の原因となることがある。
The antistatic agent is preferably contained at least on the surface of the support on which the photosensitive layer is not laminated. The surface resistance of the support containing the antistatic agent is preferably 1 × 10 18 Ω □ or less when stored for 6 hours under conditions of 10 ° C. and 35% relative humidity, and 8 × 10 8 17 Ω □ or less is more preferable.
If the surface resistance value exceeds 1 × 10 18 Ωcm, the generated static electricity is likely to be charged, the amount of charge is increased, dust and dust are easily adsorbed, and foreign matter failure may occur.

前記支持体の構造としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、単層であってもよく、複数の層が積層されてなる積層体であってもよい。前記支持体が積層体である場合、前記積層体における各層を形成する複数種の組成物のうち、2種が互いに異なっていてもよい。例えば、前記積層体の各層を構成する樹脂組成物が異なる場合、各層が含有する前記微粒子の種類が異なる場合、各層が含有する前記微粒子の含有量が異なる場合及び各層の微粒子含有の有無が異なる場合などが挙げられ、目的に応じて適宜選択することができる。また、前記支持体は、機械的強度特性及び光学的特性の観点から、二軸延伸されてなることが好ましい。   There is no restriction | limiting in particular as a structure of the said support body, According to the objective, it can select suitably, For example, a single layer may be sufficient and the laminated body formed by laminating | stacking several layers may be sufficient. When the said support body is a laminated body, 2 types may mutually differ among the multiple types of compositions which form each layer in the said laminated body. For example, when the resin composition constituting each layer of the laminate is different, when the type of the fine particles contained in each layer is different, when the content of the fine particles contained in each layer is different, and whether each layer contains fine particles is different The case may be mentioned and can be appropriately selected according to the purpose. Moreover, it is preferable that the said support body is biaxially stretched from a viewpoint of a mechanical strength characteristic and an optical characteristic.

前記支持体の厚みとしては、特に制限はなく、目的に応じて適宜選択することができ、例えば、10〜50μmが好ましく、10〜30μmがより好ましく、10〜20μmが特に好ましい。   There is no restriction | limiting in particular as thickness of the said support body, According to the objective, it can select suitably, For example, 10-50 micrometers is preferable, 10-30 micrometers is more preferable, and 10-20 micrometers is especially preferable.

前記支持体の形状としては、特に制限はなく、目的に応じて適宜選択することができ、長尺状が好ましい。前記長尺状の支持体の長さとしては、特に制限はなく、例えば、10m〜20000mの長さのものが挙げられる。   There is no restriction | limiting in particular as a shape of the said support body, According to the objective, it can select suitably, A long shape is preferable. There is no restriction | limiting in particular as the length of the said elongate support body, For example, the thing of length 10m-20000m is mentioned.

前記支持体の表面粗さとしては、前記感光層が積層される面の算術平均粗さ(Ra)が0.3以下であり、かつ、前記感光層が積層されない面の算術平均粗さ(Ra)が0.02〜0.5μmであることが好ましい。   As the surface roughness of the support, the arithmetic average roughness (Ra) of the surface on which the photosensitive layer is laminated is 0.3 or less, and the arithmetic average roughness (Ra of the surface on which the photosensitive layer is not laminated). ) Is preferably 0.02 to 0.5 μm.

前記支持体の前記感光層側が積層される面における算術平均粗さ(Ra)としては、0.3μm以下が好ましく、0.2μm以下がより好ましい。前記感光層側が積層される面における算術平均粗さ(Ra)が0.3μmを超えると、露光、感光、現像後のレジスト面状に劣ることがある。   The arithmetic average roughness (Ra) on the surface of the support on which the photosensitive layer side is laminated is preferably 0.3 μm or less, and more preferably 0.2 μm or less. When the arithmetic average roughness (Ra) on the surface on which the photosensitive layer side is laminated exceeds 0.3 μm, the resist surface shape after exposure, exposure and development may be inferior.

前記支持体の前記感光層が積層されない面の算術平均粗さ(Ra)としては、0.02〜0.5μmが好ましく、0.1〜0.5μmがより好ましい。
前記感光層が積層されない面の算術平均粗さ(Ra)が0.02μm未満であると、前記パターン形成材料製造時において搬送性が悪化することがあり、0.5μmを超えると露光光の散乱によって解像度が低下することがある。
The arithmetic average roughness (Ra) of the surface of the support on which the photosensitive layer is not laminated is preferably 0.02 to 0.5 μm, and more preferably 0.1 to 0.5 μm.
When the arithmetic average roughness (Ra) of the surface on which the photosensitive layer is not laminated is less than 0.02 μm, the transportability may be deteriorated during the production of the pattern forming material, and when it exceeds 0.5 μm, the exposure light is scattered. Depending on the resolution.

前記算術平均粗さ(Ra)は以下の計算式で求められる値である。
前記計算式中、Raは算術平均粗さを表し、f(x)は粗さ曲面を表し、lは基準長さを表し、l=100mmである。
なお、前記算術平均粗さは、JIS B 0601に準じ、測定長10cm、カットオフ0.08mmの条件で、東京精密社製、サーフコム 1400−3DFを用いて測定した値である。
The arithmetic average roughness (Ra) is a value obtained by the following calculation formula.
In the calculation formula, Ra represents arithmetic average roughness, f (x) represents a roughness curved surface, l represents a reference length, and l = 100 mm.
The arithmetic mean roughness is a value measured using Surfcom 1400-3DF manufactured by Tokyo Seimitsu Co., Ltd. under the conditions of a measurement length of 10 cm and a cutoff of 0.08 mm according to JIS B 0601.

前記支持体の幅方向における熱収縮率としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、該支持体を温度160±3℃の条件下で5分間保存した場合では、2%以下が好ましく、1.8%以下がより好ましく、1.5%以下が特に好ましい。
前記熱収縮率が、2%を超えると、感光性樹脂組成物溶液の塗布、乾燥及び巻取り仕上げの製造工程において、筋状の巻き姿、巻きずれが発生することがある。
The heat shrinkage rate in the width direction of the support is not particularly limited and can be appropriately selected depending on the purpose. For example, when the support is stored at a temperature of 160 ± 3 ° C. for 5 minutes. It is preferably 2% or less, more preferably 1.8% or less, and particularly preferably 1.5% or less.
If the heat shrinkage rate exceeds 2%, streaky winding and winding deviation may occur in the manufacturing process of application, drying and winding finish of the photosensitive resin composition solution.

前記支持体の長手方向における熱収縮率としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、該支持体を温度160±3℃の条件下で5分間保存した場合では、3%以下が好ましく、2.5%以下がより好ましく、2.0%以下が特に好ましい。
前記熱収縮率が、3%を超えると、感光性樹脂組成物溶液の塗布、乾燥及び巻取り仕上げの製造工程において、筋状の巻き姿、巻きずれが発生することがある。
The heat shrinkage rate in the longitudinal direction of the support is not particularly limited and can be appropriately selected depending on the purpose. For example, when the support is stored at a temperature of 160 ± 3 ° C. for 5 minutes. It is preferably 3% or less, more preferably 2.5% or less, and particularly preferably 2.0% or less.
If the heat shrinkage rate exceeds 3%, streaky winding and winding deviation may occur in the manufacturing process of application, drying and winding finish of the photosensitive resin composition solution.

なお、前記熱収縮率は、JIS C2318に準じ、幅20mm、長さ150mmの試験片を用いて、該試験片の中央部に約100mmの間隔で2本の標点を入れ、該間隔を正確に測定する(これをAmmとする)。前記試験片を無張力下で160±3℃の熱風オーブン中で5分間保存し、その後室温で30分間放置した後、標点間の間隔を測定し(これをBmm)、次式、熱収縮率=100×(A−B)/A、を計算することにより測定する。   The heat shrinkage rate is determined according to JIS C2318, using a test piece having a width of 20 mm and a length of 150 mm, and placing two marks at an interval of about 100 mm in the center of the test piece. (This is referred to as Amm). The test piece was stored for 5 minutes in a hot air oven at 160 ± 3 ° C. under no tension, and then allowed to stand at room temperature for 30 minutes, and then the interval between the gauge points was measured (this is Bmm). Measure by calculating the rate = 100 × (A−B) / A.

前記支持体の感光層が積層されない面の摩擦係数が、0.3〜1.0が好ましい。
前記静摩擦係数が、0.3未満であると、滑りやすく、ロールでの巻き取りが均一にできない場合があり、一方摩擦係数が1.0を超えると、塗布あるいは加工での搬送工程でシワを生ずることがある。
前記摩擦係数の測定方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、摩擦抵抗試験機などを用いた傾斜法、JIS K 7125に基づいて、対SUS304、面圧0.005MPaなどの条件で行う測定方法などが挙げられる。
The coefficient of friction of the surface of the support on which the photosensitive layer is not laminated is preferably 0.3 to 1.0.
If the coefficient of static friction is less than 0.3, it may be slippery and winding with a roll may not be uniform. On the other hand, if the coefficient of friction exceeds 1.0, wrinkles may occur in the conveying process during coating or processing. May occur.
The method for measuring the friction coefficient is not particularly limited and may be appropriately selected depending on the purpose. For example, the gradient method using a friction resistance tester or the like, based on JIS K 7125, against SUS304, surface pressure Examples include a measurement method performed under conditions such as 0.005 MPa.

――感光層――
前記感光層としては、特に制限はなく、公知のパターン形成材料の中から適宜選択することができ、例えば、バインダーと、重合性化合物と、光重合開始剤とを含み、適宜選択したその他の成分を含むものが好ましい。
また、感光層の積層数としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、1層であってもよく、2層以上であってもよい。
--Photosensitive layer--
The photosensitive layer is not particularly limited and can be appropriately selected from known pattern forming materials. For example, the photosensitive layer includes a binder, a polymerizable compound, and a photopolymerization initiator, and other components appropriately selected. The thing containing is preferable.
Moreover, there is no restriction | limiting in particular as the number of lamination | stacking of a photosensitive layer, According to the objective, it can select suitably, For example, one layer may be sufficient and two or more layers may be sufficient.

―――バインダー―――
前記バインダーとしては、例えば、アルカリ性水溶液に対して膨潤性であることが好ましく、アルカリ性水溶液に対して可溶性であることがより好ましい。
アルカリ性水溶液に対して膨潤性又は溶解性を示すバインダーとしては、例えば、酸性基を有するものが好適に挙げられる。
---binder---
For example, the binder is preferably swellable in an alkaline aqueous solution, and more preferably soluble in an alkaline aqueous solution.
As the binder exhibiting swellability or solubility with respect to the alkaline aqueous solution, for example, those having an acidic group are preferably exemplified.

前記酸性基としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、カルボキシル基、スルホン酸基、リン酸基などが挙げられ、これらの中でもカルボキシル基が好ましい。
カルボキシル基を有するバインダーとしては、例えば、カルボキシル基を有するビニル共重合体、ポリウレタン樹脂、ポリアミド酸樹脂、変性エポキシ樹脂などが挙げられ、これらの中でも、塗布溶媒への溶解性、アルカリ現像液への溶解性、合成適性、膜物性の調整の容易さ等の観点からカルボキシル基を有するビニル共重合体が好ましい。
There is no restriction | limiting in particular as said acidic group, According to the objective, it can select suitably, For example, a carboxyl group, a sulfonic acid group, a phosphoric acid group etc. are mentioned, Among these, a carboxyl group is preferable.
Examples of the binder having a carboxyl group include a vinyl copolymer having a carboxyl group, a polyurethane resin, a polyamic acid resin, and a modified epoxy resin. Among these, the solubility in a coating solvent, the solubility in an alkali developer, and the like. A vinyl copolymer having a carboxyl group is preferable from the viewpoint of solubility, suitability for synthesis, ease of adjustment of film properties, and the like.

前記カルボキシル基を有するビニル共重合体は、少なくとも(1)カルボキシル基を有するビニルモノマー及び(2)これらと共重合可能なモノマーとの共重合により得ることができる。   The vinyl copolymer having a carboxyl group can be obtained by copolymerization of at least (1) a vinyl monomer having a carboxyl group and (2) a monomer copolymerizable therewith.

前記カルボキシル基を有するビニルモノマーとしては、例えば、(メタ)アクリル酸、ビニル安息香酸、マレイン酸、マレイン酸モノアルキルエステル、フマル酸、イタコン酸、クロトン酸、桂皮酸、アクリル酸ダイマー、水酸基を有する単量体(例えば、2−ヒドロキシエチル(メタ)アクリレート等)と環状無水物(例えば、無水マレイン酸や無水フタル酸、シクロヘキサンジカルボン酸無水物)との付加反応物、ω−カルボキシ−ポリカプロラクトンモノ(メタ)アクリレートなどが挙げられる。これらの中でも、共重合性やコスト、溶解性などの観点から(メタ)アクリル酸が特に好ましい。
また、カルボキシル基の前駆体として無水マレイン酸、無水イタコン酸、無水シトラコン酸等の無水物を有するモノマーを用いてもよい。
Examples of the vinyl monomer having a carboxyl group include (meth) acrylic acid, vinyl benzoic acid, maleic acid, maleic acid monoalkyl ester, fumaric acid, itaconic acid, crotonic acid, cinnamic acid, acrylic acid dimer, and hydroxyl group. An addition reaction product of a monomer (for example, 2-hydroxyethyl (meth) acrylate) and a cyclic anhydride (for example, maleic anhydride, phthalic anhydride, cyclohexanedicarboxylic anhydride), ω-carboxy-polycaprolactone mono Examples include (meth) acrylate. Among these, (meth) acrylic acid is particularly preferable from the viewpoints of copolymerizability, cost, solubility, and the like.
Moreover, you may use the monomer which has anhydrides, such as maleic anhydride, itaconic anhydride, and citraconic anhydride, as a precursor of a carboxyl group.

前記その他の共重合可能なモノマーとしては、特に制限はなく、目的に応じて適宜選択することができ、例えば、(メタ)アクリル酸エステル類、クロトン酸エステル類、ビニルエステル類、マレイン酸ジエステル類、フマル酸ジエステル類、イタコン酸ジエステル類、(メタ)アクリルアミド類、ビニルエーテル類、ビニルアルコールのエステル類、スチレン類、(メタ)アクリロニトリル、ビニル基が置換した複素環式基(例えば、ビニルピリジン、ビニルピロリドン、ビニルカルバゾール等)、N−ビニルホルムアミド、N−ビニルアセトアミド、N−ビニルイミダゾール、ビニルカプロラクトン、2−アクリルアミド−2−メチルプロパンスルホン酸、リン酸モノ(2―アクリロイルオキシエチルエステル)、リン酸モノ(1−メチル−2―アクリロイルオキシエチルエステル)、官能基(例えば、ウレタン基、ウレア基、スルホンアミド基、フェノール基、イミド基)を有するビニルモノマーなどが挙げられる。   The other copolymerizable monomer is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include (meth) acrylic acid esters, crotonic acid esters, vinyl esters, maleic acid diesters. , Fumaric acid diesters, itaconic acid diesters, (meth) acrylamides, vinyl ethers, esters of vinyl alcohol, styrenes, (meth) acrylonitrile, heterocyclic groups substituted with vinyl groups (eg vinylpyridine, vinyl Pyrrolidone, vinyl carbazole, etc.), N-vinylformamide, N-vinylacetamide, N-vinylimidazole, vinylcaprolactone, 2-acrylamido-2-methylpropanesulfonic acid, mono (2-acryloyloxyethyl ester) phosphate, phosphoric acid Mono (1-methyl) 2-acryloyloxyethyl ester), functional groups (e.g., a urethane group, a urea group, a sulfonamide group, a phenol group and a vinyl monomer and the like having an imide group).

前記(メタ)アクリル酸エステル類としては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n−プロピル(メタ)アクリレート、イソプロピル(メタ)アクリレート、n−ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、t−ブチル(メタ)アクリレート、n−ヘキシル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、t−ブチルシクロヘキシル(メタ)アクリレート、2−エチルヘキシル(メタ)アクリレート、t−オクチル(メタ)アクリレート、ドデシル(メタ)アクリレート、オクタデシル(メタ)アクリレート、アセトキシエチル(メタ)アクリレート、フェニル(メタ)アクリレート、2−ヒドロキシエチル(メタ)アクリレート、2−メトキシエチル(メタ)アクリレート、2−エトキシエチル(メタ)アクリレート、2−(2−メトキシエトキシ)エチル(メタ)アクリレート、3−フェノキシ−2−ヒドロキシプロピル(メタ)アクリレート、ベンジル(メタ)アクリレート、ジエチレングリコールモノメチルエーテル(メタ)アクリレート、ジエチレングリコールモノエチルエーテル(メタ)アクリレート、ジエチレングリコールモノフェニルエーテル(メタ)アクリレート、トリエチレングリコールモノメチルエーテル(メタ)アクリレート、トリエチレングリコールモノエチルエーテル(メタ)アクリレート、ポリエチレングリコールモノメチルエーテル(メタ)アクリレート、ポリエチレングリコールモノエチルエーテル(メタ)アクリレート、β−フェノキシエトキシエチルアクリレート、ノニルフェノキシポリエチレングリコール(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレート、トリフロロエチル(メタ)アクリレート、オクタフロロペンチル(メタ)アクリレート、パーフロロオクチルエチル(メタ)アクリレート、トリブロモフェニル(メタ)アクリレート、トリブロモフェニルオキシエチル(メタ)アクリレートなどが挙げられる。   Examples of the (meth) acrylic acid esters include methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, n-butyl (meth) acrylate, and isobutyl (meth) ) Acrylate, t-butyl (meth) acrylate, n-hexyl (meth) acrylate, cyclohexyl (meth) acrylate, t-butylcyclohexyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, t-octyl (meth) acrylate, Dodecyl (meth) acrylate, octadecyl (meth) acrylate, acetoxyethyl (meth) acrylate, phenyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-methoxyethyl (meth) acrylate 2-ethoxyethyl (meth) acrylate, 2- (2-methoxyethoxy) ethyl (meth) acrylate, 3-phenoxy-2-hydroxypropyl (meth) acrylate, benzyl (meth) acrylate, diethylene glycol monomethyl ether (meta ) Acrylate, diethylene glycol monoethyl ether (meth) acrylate, diethylene glycol monophenyl ether (meth) acrylate, triethylene glycol monomethyl ether (meth) acrylate, triethylene glycol monoethyl ether (meth) acrylate, polyethylene glycol monomethyl ether (meth) acrylate , Polyethylene glycol monoethyl ether (meth) acrylate, β-phenoxyethoxyethyl acrylate, Nylphenoxypolyethylene glycol (meth) acrylate, dicyclopentanyl (meth) acrylate, dicyclopentenyl (meth) acrylate, dicyclopentenyloxyethyl (meth) acrylate, trifluoroethyl (meth) acrylate, octafluoropentyl (meth) Examples thereof include acrylate, perfluorooctylethyl (meth) acrylate, tribromophenyl (meth) acrylate, and tribromophenyloxyethyl (meth) acrylate.

前記クロトン酸エステル類としては、例えば、クロトン酸ブチル、クロトン酸ヘキシルなどが挙げられる。   Examples of the crotonic acid esters include butyl crotonate and hexyl crotonate.

前記ビニルエステル類としては、例えば、ビニルアセテート、ビニルプロピオネート、ビニルブチレート、ビニルメトキシアセテート、安息香酸ビニルなどが挙げられる。   Examples of the vinyl esters include vinyl acetate, vinyl propionate, vinyl butyrate, vinyl methoxyacetate, vinyl benzoate, and the like.

前記マレイン酸ジエステル類としては、例えば、マレイン酸ジメチル、マレイン酸ジエチル、マレイン酸ジブチルなどが挙げられる。   Examples of the maleic acid diesters include dimethyl maleate, diethyl maleate, and dibutyl maleate.

前記フマル酸ジエステル類としては、例えば、フマル酸ジメチル、フマル酸ジエチル、フマル酸ジブチルなどが挙げられる。   Examples of the fumaric acid diesters include dimethyl fumarate, diethyl fumarate, dibutyl fumarate and the like.

前記イタコン酸ジエステル類としては、例えば、イタコン酸ジメチル、イタコン酸ジエチル、イタコン酸ジブチルなどが挙げられる。   Examples of the itaconic acid diesters include dimethyl itaconate, diethyl itaconate, and dibutyl itaconate.

前記(メタ)アクリルアミド類としては、例えば、(メタ)アクリルアミド、N−メチル(メタ)アクリルアミド、N−エチル(メタ)アクリルアミド、N−プロピル(メタ)アクリルアミド、N−イソプロピル(メタ)アクリルアミド、N−n−ブチルアクリル(メタ)アミド、N−t−ブチル(メタ)アクリルアミド、N−シクロヘキシル(メタ)アクリルアミド、N−(2−メトキシエチル)(メタ)アクリルアミド、N,N−ジメチル(メタ)アクリルアミド、N,N−ジエチル(メタ)アクリルアミド、N−フェニル(メタ)アクリルアミド、N−ベンジル(メタ)アクリルアミド、(メタ)アクリロイルモルホリン、ジアセトンアクリルアミドなどが挙げられる。   Examples of the (meth) acrylamides include (meth) acrylamide, N-methyl (meth) acrylamide, N-ethyl (meth) acrylamide, N-propyl (meth) acrylamide, N-isopropyl (meth) acrylamide, N- n-butylacryl (meth) amide, Nt-butyl (meth) acrylamide, N-cyclohexyl (meth) acrylamide, N- (2-methoxyethyl) (meth) acrylamide, N, N-dimethyl (meth) acrylamide, Examples thereof include N, N-diethyl (meth) acrylamide, N-phenyl (meth) acrylamide, N-benzyl (meth) acrylamide, (meth) acryloylmorpholine, diacetone acrylamide and the like.

前記スチレン類としては、例えば、スチレン、メチルスチレン、ジメチルスチレン、トリメチルスチレン、エチルスチレン、イソプロピルスチレン、ブチルスチレン、ヒドロキシスチレン、メトキシスチレン、ブトキシスチレン、アセトキシスチレン、クロロスチレン、ジクロロスチレン、ブロモスチレン、クロロメチルスチレン、酸性物質により脱保護可能な基(例えば、t-Boc等)で保護されたヒドロキシスチレン、ビニル安息香酸メチル、α−メチルスチレンなどが挙げられる。   Examples of the styrenes include styrene, methyl styrene, dimethyl styrene, trimethyl styrene, ethyl styrene, isopropyl styrene, butyl styrene, hydroxy styrene, methoxy styrene, butoxy styrene, acetoxy styrene, chlorostyrene, dichlorostyrene, bromostyrene, chloro Examples include methylstyrene, hydroxystyrene protected with a group that can be deprotected by an acidic substance (for example, t-Boc and the like), methyl vinylbenzoate, α-methylstyrene, and the like.

前記ビニルエーテル類としては、例えば、メチルビニルエーテル、ブチルビニルエーテル、ヘキシルビニルエーテル、メトキシエチルビニルエーテルなどが挙げられる。   Examples of the vinyl ethers include methyl vinyl ether, butyl vinyl ether, hexyl vinyl ether, and methoxyethyl vinyl ether.

前記官能基としてウレタン基又はウレア基を有するビニルモノマーの合成方法としては、例えば、イソシアナート基と水酸基又はアミノ基の付加反応が挙げられ、具体的には、イソシアナート基を有するモノマーと、水酸基を1個含有する化合物又は1級若しくは2級アミノ基を1個有する化合物との付加反応、水酸基を有するモノマー又は1級若しくは2級アミノ基を有するモノマーと、モノイソシアネートとの付加反応が挙げられる。   Examples of the method for synthesizing a vinyl monomer having a urethane group or a urea group as the functional group include an addition reaction of an isocyanate group and a hydroxyl group or an amino group. Specifically, a monomer having an isocyanate group, and a hydroxyl group An addition reaction with a compound containing 1 or a compound having one primary or secondary amino group, an addition reaction between a monomer having a hydroxyl group or a monomer having a primary or secondary amino group, and a monoisocyanate. .

前記イソシアナート基を有するモノマーとしては、例えば、下記構造式(1)〜(3)で表される化合物が挙げられる。   Examples of the monomer having an isocyanate group include compounds represented by the following structural formulas (1) to (3).

但し、前記構造式(1)〜(3)中、Rは水素原子又はメチル基を表す。 However, in the above structural formula (1) ~ (3), R 1 represents a hydrogen atom or a methyl group.

前記モノイソシアネートとしては、例えば、シクロヘキシルイソシアネート、n−ブチルイソシアネート、トルイルイソシアネート、ベンジルイソシアネート、フェニルイソシアネート等が挙げられる。   Examples of the monoisocyanate include cyclohexyl isocyanate, n-butyl isocyanate, toluyl isocyanate, benzyl isocyanate, and phenyl isocyanate.

前記水酸基を有するモノマーとしては、例えば、下記構造式(4)〜(12)で表される化合物が挙げられる。   Examples of the monomer having a hydroxyl group include compounds represented by the following structural formulas (4) to (12).

但し、前記構造式(4)〜(12)中、Rは水素原子又はメチル基を表し、n、n1及びn2は1以上の整数を表す。 However, in the structural formulas (4) to (12), R 1 represents a hydrogen atom or a methyl group, and n, n1, and n2 represent an integer of 1 or more.

前記水酸基を1個含有する化合物としては、例えば、アルコール類(例えば、メタノール、エタノール、n−プロパノール、i―プロパノール、n−ブタノール、sec−ブタノール、t−ブタノール、n−ヘキサノール、2−エチルヘキサノール、n−デカノール、n−ドデカノール、n−オクタデカノール、シクロペンタノール、シクロへキサノール、ベンジルアルコール、フェニルエチルアルコール等)、フェノール類(例えば、フェノール、クレゾール、ナフトール等)、更に置換基を含むものとして、フロロエタノール、トリフロロエタノール、メトキシエタノール、フェノキシエタノール、クロロフェノール、ジクロロフェノール、メトキシフェノール、アセトキシフェノール等が挙げられる。   Examples of the compound containing one hydroxyl group include alcohols (for example, methanol, ethanol, n-propanol, i-propanol, n-butanol, sec-butanol, t-butanol, n-hexanol, 2-ethylhexanol). , N-decanol, n-dodecanol, n-octadecanol, cyclopentanol, cyclohexanol, benzyl alcohol, phenylethyl alcohol, etc.), phenols (eg, phenol, cresol, naphthol, etc.), and further containing substituents Examples thereof include fluoroethanol, trifluoroethanol, methoxyethanol, phenoxyethanol, chlorophenol, dichlorophenol, methoxyphenol, acetoxyphenol, and the like.

前記1級又は2級アミノ基を有するモノマーとしては、例えば、ビニルベンジルアミンなどが挙げられる。   Examples of the monomer having a primary or secondary amino group include vinylbenzylamine.

前記1級又は2級アミノ基を1個含有する化合物としては、例えば、アルキルアミン(メチルアミン、エチルアミン、n−プロピルアミン、i―プロピルアミン、n−ブチルアミン、sec−ブチルアミン、t−ブチルアミン、ヘキシルアミン、2−エチルヘキシルアミン、デシルアミン、ドデシルアミン、オクタデシルアミン、ジメチルアミン、ジエチルアミン、ジブチルアミン、ジオクチルアミン)、環状アルキルアミン(シクロペンチルアミン、シクロへキシルアミン等)、アラルキルアミン(ベンジルアミン、フェネチルアミン等)、アリールアミン(アニリン、トルイルアミン、キシリルアミン、ナフチルアミン等)、更にこれらの組合せ(N−メチル−N−ベンジルアミン等)、更に置換基を含むアミン(トリフロロエチルアミン、ヘキサフロロイソプロピルアミン、メトキシアニリン、メトキシプロピルアミン等)などが挙げられる。   Examples of the compound containing one primary or secondary amino group include alkylamines (methylamine, ethylamine, n-propylamine, i-propylamine, n-butylamine, sec-butylamine, t-butylamine, hexyl). Amine, 2-ethylhexylamine, decylamine, dodecylamine, octadecylamine, dimethylamine, diethylamine, dibutylamine, dioctylamine), cyclic alkylamine (cyclopentylamine, cyclohexylamine, etc.), aralkylamine (benzylamine, phenethylamine, etc.), Arylamines (aniline, toluylamine, xylylamine, naphthylamine, etc.), combinations thereof (N-methyl-N-benzylamine, etc.), and amines containing substituents (trifluoroethylamino , Hexafluoro isopropyl amine, methoxyaniline, methoxypropylamine and the like) and the like.

また、上記以外の前記その他の共重合可能なモノマーとしては、例えば、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸ブチル、(メタ)アクリル酸ベンジル、(メタ)アクリル酸2−エチルヘキシル、スチレン、クロルスチレン、ブロモスチレン、ヒドロキシスチレンなどが好適に挙げられる。   Examples of the other copolymerizable monomers other than those described above include, for example, methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, benzyl (meth) acrylate, and (meth) acrylic. Preferable examples include 2-ethylhexyl acid, styrene, chlorostyrene, bromostyrene, and hydroxystyrene.

前記その他の共重合可能なモノマーは、1種単独で使用してもよく、2種以上を併用してもよい。   The said other copolymerizable monomer may be used individually by 1 type, and may use 2 or more types together.

前記ビニル共重合体は、それぞれ相当するモノマーを公知の方法により常法に従って共重合させることで調製することができる。例えば、前記モノマーを適当な溶媒中に溶解し、ここにラジカル重合開始剤を添加して溶液中で重合させる方法(溶液重合法)を利用することにより調製することができる。また、水性媒体中に前記モノマーを分散させた状態でいわゆる乳化重合等で重合を利用することにより調製することができる。   The vinyl copolymer can be prepared by copolymerizing the corresponding monomers by a known method according to a conventional method. For example, it can be prepared by using a method (solution polymerization method) in which the monomer is dissolved in a suitable solvent and a radical polymerization initiator is added thereto to polymerize in a solution. Moreover, it can prepare by utilizing superposition | polymerization by what is called emulsion polymerization etc. in the state which disperse | distributed the said monomer in the aqueous medium.

前記溶液重合法で用いられる適当な溶媒としては、特に制限はなく、使用するモノマー及び生成する共重合体の溶解性等に応じて適宜選択することができ、例えば、メタノール、エタノール、プロパノール、イソプロパノール、1−メトキシ−2−プロパノール、アセトン、メチルエチルケトン、メチルイソブチルケトン、メトキシプロピルアセテート、乳酸エチル、酢酸エチル、アセトニトリル、テトラヒドロフラン、ジメチルホルムアミド、クロロホルム、トルエンなどが挙げられる。これらの溶媒は、1種単独で使用してもよく、2種以上を併用してもよい。   The suitable solvent used in the solution polymerization method is not particularly limited, and can be appropriately selected according to the solubility of the monomer used and the copolymer to be produced. For example, methanol, ethanol, propanol, isopropanol 1-methoxy-2-propanol, acetone, methyl ethyl ketone, methyl isobutyl ketone, methoxypropyl acetate, ethyl lactate, ethyl acetate, acetonitrile, tetrahydrofuran, dimethylformamide, chloroform, toluene and the like. These solvents may be used alone or in combination of two or more.

前記ラジカル重合開始剤としては、特に制限はなく、例えば、2,2’−アゾビス(イソブチロニトリル)(AIBN)、2,2’−アゾビス−(2,4’−ジメチルバレロニトリル)等のアゾ化合物、ベンゾイルパーオキシド等の過酸化物、過硫酸カリウム、過硫酸アンモニウム等の過硫酸塩などが挙げられる。   The radical polymerization initiator is not particularly limited, and examples thereof include 2,2′-azobis (isobutyronitrile) (AIBN) and 2,2′-azobis- (2,4′-dimethylvaleronitrile). Examples thereof include peroxides such as azo compounds and benzoyl peroxide, and persulfates such as potassium persulfate and ammonium persulfate.

前記ビニル共重合体におけるカルボキシル基を有する重合性化合物の含有率としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、5〜50モル%が好ましく、10〜40モル%がより好ましく、15〜35モル%が特に好ましい。
前記含有率が、5モル%未満であると、アルカリ水への現像性が不足することがあり、50モル%を超えると、硬化部(画像部)の現像液耐性が不足することがある。
There is no restriction | limiting in particular as content rate of the polymeric compound which has a carboxyl group in the said vinyl copolymer, According to the objective, it can select suitably, For example, 5-50 mol% is preferable, 10-40 mol% Is more preferable, and 15 to 35 mol% is particularly preferable.
If the content is less than 5 mol%, the developability to alkaline water may be insufficient, and if it exceeds 50 mol%, the developer resistance of the cured portion (image portion) may be insufficient.

前記カルボキシル基を有するバインダーの分子量としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、質量平均分子量として、2,000〜300,000が好ましく、4,000〜150,000がより好ましい。
前記質量平均分子量が、2,000未満であると、膜の強度が不足しやすく、また安定な製造が困難になることがあり、300,000を超えると、現像性が低下することがある。
There is no restriction | limiting in particular as molecular weight of the binder which has the said carboxyl group, According to the objective, it can select suitably, For example, as a mass mean molecular weight, 2,000-300,000 are preferable, 4,000-150, 000 is more preferable.
When the mass average molecular weight is less than 2,000, the strength of the film tends to be insufficient and stable production may be difficult, and when it exceeds 300,000, developability may be deteriorated.

前記カルボキシル基を有するバインダーは、1種単独で使用してもよく、2種以上を併用してもよい。前記バインダーを2種以上併用する場合としては、例えば、異なる共重合成分からなる2種以上のバインダー、異なる質量平均分子量の2種以上のバインダー、異なる分散度の2種以上のバインダー、などの組合せが挙げられる。   The binder which has the said carboxyl group may be used individually by 1 type, and may use 2 or more types together. Examples of the case where two or more binders are used in combination include, for example, a combination of two or more binders composed of different copolymer components, two or more binders having different mass average molecular weights, and two or more binders having different dispersities. Is mentioned.

前記カルボキシル基を有するバインダーは、そのカルボキシル基の一部又は全部が塩基性物質で中和されていてもよい。また、前記バインダーは、更にポリエステル樹脂、ポリアミド樹脂、ポリウレタン樹脂、エポキシ樹脂、ポリビニルアルコール、ゼラチン等の構造の異なる樹脂を併用してもよい。   The binder having a carboxyl group may be partially or entirely neutralized with a basic substance. The binder may be used in combination with resins having different structures such as polyester resin, polyamide resin, polyurethane resin, epoxy resin, polyvinyl alcohol, gelatin and the like.

また、前記バインダーとしては、特許2873889号等に記載のアルカリ水溶液に可溶な樹脂などを用いることができる。   Moreover, as the binder, a resin soluble in an alkaline aqueous solution described in Japanese Patent No. 2873889 and the like can be used.

前記感光層における前記バインダーの含有量としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、10〜90質量%が好ましく、20〜80質量%がより好ましく、40〜80質量%が特に好ましい。
前記含有量が10質量%未満であると、アルカリ現像性やプリント配線板形成用基板(例えば、銅張積層板)との密着性が低下することがあり、90質量%を超えると、現像時間に対する安定性や、硬化膜(テント膜)の強度が低下することがある。なお、前記含有量は、前記バインダーと必要に応じて併用される高分子結合剤との合計の含有量であってもよい。
There is no restriction | limiting in particular as content of the said binder in the said photosensitive layer, According to the objective, it can select suitably, For example, 10-90 mass% is preferable, 20-80 mass% is more preferable, 40-80 Mass% is particularly preferred.
When the content is less than 10% by mass, alkali developability and adhesion to a printed wiring board forming substrate (for example, a copper-clad laminate) may be deteriorated. Stability and strength of the cured film (tent film) may be reduced. The content may be the total content of the binder and the polymer binder used in combination as necessary.

前記バインダーの酸価としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、70〜250(mgKOH/g)が好ましく、90〜200(mgKOH/g)がより好ましく、100〜180(mgKOH/g)が特に好ましい。
前記酸価が、70(mgKOH/g)未満であると、現像性が不足したり、解像性が劣り、配線パターン等の永久パターンを高精細に得ることができないことがあり、250(mgKOH/g)を超えると、パターンの耐現像液性及び密着性の少なくともいずれかが悪化し、配線パターン等の永久パターンを高精細に得ることができないことがある。
There is no restriction | limiting in particular as an acid value of the said binder, According to the objective, it can select suitably, For example, 70-250 (mgKOH / g) is preferable, 90-200 (mgKOH / g) is more preferable, 100 -180 (mg KOH / g) is particularly preferred.
When the acid value is less than 70 (mgKOH / g), developability may be insufficient, resolution may be inferior, and permanent patterns such as wiring patterns may not be obtained with high definition. / G), at least one of the developer resistance and adhesion of the pattern deteriorates, and a permanent pattern such as a wiring pattern may not be obtained with high definition.

―――重合性化合物―――
前記重合性化合物としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ウレタン基及びアリール基の少なくともいずれかを有するモノマー又はオリゴマーが好適に挙げられる。また、これらは、重合性基を2種以上有することが好ましい。
――― Polymerizable compound ―――
There is no restriction | limiting in particular as said polymeric compound, According to the objective, it can select suitably, For example, the monomer or oligomer which has at least any one of a urethane group and an aryl group is mentioned suitably. Moreover, it is preferable that these have 2 or more types of polymeric groups.

前記重合性基としては、例えば、エチレン性不飽和結合(例えば、(メタ)アクリロイル基、(メタ)アクリルアミド基、スチリル基、ビニルエステルやビニルエーテル等のビニル基、アリルエーテルやアリルエステル等のアリル基など)、重合可能な環状エーテル基(例えば、エポキシ基、オキセタン基等)などが挙げられ、これらの中でもエチレン性不飽和結合が好ましい。   Examples of the polymerizable group include an ethylenically unsaturated bond (for example, (meth) acryloyl group, (meth) acrylamide group, styryl group, vinyl group such as vinyl ester and vinyl ether, allyl group such as allyl ether and allyl ester). Etc.) and a polymerizable cyclic ether group (for example, epoxy group, oxetane group, etc.) and the like. Among these, an ethylenically unsaturated bond is preferable.

――――ウレタン基を有するモノマー――――
前記ウレタン基を有するモノマーとしては、ウレタン基を有する限り、特に制限は無く、目的に応じて適宜選択することができ、例えば、特公昭48−41708号公報、特開昭51−37193号公報、特公平5−50737号公報、特公平7−7208号公報、特開2001−154346号公報、特開2001−356476号公報等に記載されている化合物などが挙げられ、例えば、分子中に2個以上のイソシアネート基を有するポリイソシアネート化合物と分子中に水酸基を有するビニルモノマーとの付加物などが挙げられる。
―――― Monomer having urethane group ――――
The monomer having a urethane group is not particularly limited as long as it has a urethane group, and can be appropriately selected according to the purpose. For example, JP-B-48-41708, JP-A-51-37193, Examples include compounds described in JP-B-5-50737, JP-B-7-7208, JP-A-2001-154346, JP-A-2001-356476, and the like. Examples include adducts of the above polyisocyanate compounds having an isocyanate group and a vinyl monomer having a hydroxyl group in the molecule.

前記分子中に2個以上のイソシアネート基を有するポリイソシアネート化合物としては、例えば、ヘキサメチレンジイソシアネート、トリメチルヘキサメチレンジイソシアネート、イソホロンジイソシアネート、キシレンジイソシアネート、トルエンジイソシアネート、フェニレンジイソシアネート、ノルボルネンジイソシアネート、ジフェニルジイソシアネート、ジフェニルメタンジイソシアネート、3,3’ジメチル−4,4’−ジフェニルジイソシアネート等のジイソシアネート;該ジイソシアネートを更に2官能アルコールとの重付加物(この場合も両末端はイソシアネート基);該ジイソシアネートのビュレット体やイソシアヌレート等の3量体;該ジイソシアネート若しくはジイソシアネート類と、トリメチロールプロパン、ペンタエリスルトール、グリセリン等の多官能アルコール、又はこれらのエチレンオキシド付加物等の得られる他官能アルコールとの付加体などが挙げられる。   Examples of the polyisocyanate compound having two or more isocyanate groups in the molecule include hexamethylene diisocyanate, trimethylhexamethylene diisocyanate, isophorone diisocyanate, xylene diisocyanate, toluene diisocyanate, phenylene diisocyanate, norbornene diisocyanate, diphenyl diisocyanate, diphenylmethane diisocyanate, A diisocyanate such as 3,3′dimethyl-4,4′-diphenyl diisocyanate; a polyaddition product of the diisocyanate with a bifunctional alcohol (in this case, both ends are isocyanate groups); a burette or isocyanurate of the diisocyanate; Trimer; the diisocyanate or diisocyanates and trimethylolpropane, pe Taerisurutoru, polyfunctional alcohols such as glycerin, or the like adducts of other functional alcohol obtained of such these ethylene oxide adducts and the like.

前記分子中に水酸基を有するビニルモノマーとしては、例えば、2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート、4−ヒドロキシブチル(メタ)アクリレート、ジエチレングリコールモノ(メタ)アクリレート、トリエチレングリコールモノ(メタ)アクリレート、テトラエチレングリコールモノ(メタ)アクリレート、オクタエチレングリコールモノ(メタ)アクリレート、ポリエチレングリコールモノ(メタ)アクリレート、ジプロピレングリコールモノ(メタ)アクリレート、トリプロピレングリコールモノ(メタ)アクリレート、テトラプロピレングリコールモノ(メタ)アクリレート、オクタプロピレングリコールモノ(メタ)アクリレート、ポリプロピレングリコールモノ(メタ)アクリレート、ジブチレングリコールモノ(メタ)アクリレート、トリブチレングリコールモノ(メタ)アクリレート、テトラブチレングリコールモノ(メタ)アクリレート、オクタブチレングリコールモノ(メタ)アクリレート、ポリブチレングリコールモノ(メタ)アクリレート、トリメチロールプロパンジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレートなどが挙げられる。また、エチレンオキシドとプロピレンオキシドの共重合体(ランダム、ブロック等)などの異なるアルキレンオキシド部を有するジオール体の片末端(メタ)アクリレート体などが挙げられる。   Examples of the vinyl monomer having a hydroxyl group in the molecule include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, diethylene glycol mono (meth) acrylate, and triethylene. Glycol mono (meth) acrylate, tetraethylene glycol mono (meth) acrylate, octaethylene glycol mono (meth) acrylate, polyethylene glycol mono (meth) acrylate, dipropylene glycol mono (meth) acrylate, tripropylene glycol mono (meth) acrylate , Tetrapropylene glycol mono (meth) acrylate, octapropylene glycol mono (meth) acrylate, polypropylene glycol mono (meth) Chryrate, dibutylene glycol mono (meth) acrylate, tributylene glycol mono (meth) acrylate, tetrabutylene glycol mono (meth) acrylate, octabutylene glycol mono (meth) acrylate, polybutylene glycol mono (meth) acrylate, trimethylolpropane Examples include di (meth) acrylate and pentaerythritol tri (meth) acrylate. Moreover, the one terminal (meth) acrylate body of the diol body which has different alkylene oxide parts, such as a copolymer (random, a block, etc.) of ethylene oxide and propylene oxide, etc. are mentioned.

また、前記ウレタン基を有するモノマーとしては、トリ((メタ)アクリロイルオキシエチル)イソシアヌレート、ジ(メタ)アクリル化イソシアヌレート、エチレンオキシド変性イソシアヌル酸のトリ(メタ)アクリレート等のイソシアヌレート環を有する化合物が挙げられる。これらの中でも、下記構造式式(13)、又は構造式(14)で表される化合物が好ましく、テント性の観点から、前記構造式(14)で示される化合物を少なくとも含むことが特に好ましい。また、これらの化合物は、1種単独で使用してもよく、2種以上を併用してもよい。   In addition, examples of the monomer having a urethane group include compounds having an isocyanurate ring such as tri ((meth) acryloyloxyethyl) isocyanurate, di (meth) acrylated isocyanurate, and tri (meth) acrylate of ethylene oxide-modified isocyanuric acid. Is mentioned. Among these, the compound represented by the following structural formula (13) or the structural formula (14) is preferable, and it is particularly preferable that at least the compound represented by the structural formula (14) is included from the viewpoint of tent properties. Moreover, these compounds may be used individually by 1 type, and may use 2 or more types together.

前記構造式(13)及び(14)中、R〜Rは、それぞれ水素原子又はメチル基を表す。X〜Xは、アルキレンオキサイドを表し、1種単独でもよく、2種以上を併用してもよい。 In the structural formulas (13) and (14), R 1 to R 3 each represent a hydrogen atom or a methyl group. X 1 to X 3 represents an alkylene oxide, may be alone or in combination of two or more thereof.

前記アルキレンオキサイド基としては、例えば、エチレンオキサイド基、プロピレンオキサイド基、ブチレンオキサイド基、ペンチレンオキサイド基、ヘキシレンオキサイド基、これらを組み合わせた基(ランダム、ブロックのいずれに組み合わされてもよい)などが好適に挙げられ、これらの中でも、エチレンオキサイド基、プロピレンオキサイド基、ブチレンオキサイド基、又はこれらの組み合わせた基が好ましく、エチレンオキサイド基、プロピレンオキサイド基がより好ましい。   Examples of the alkylene oxide group include an ethylene oxide group, a propylene oxide group, a butylene oxide group, a pentylene oxide group, a hexylene oxide group, and a group in which these are combined (may be combined in any of random or block). Among these, an ethylene oxide group, a propylene oxide group, a butylene oxide group, or a combination thereof is preferable, and an ethylene oxide group and a propylene oxide group are more preferable.

前記構造式(13)及び(14)中、m1〜m3は、1〜60の整数を表し、2〜30が好ましく、4〜15がより好ましい。   In the structural formulas (13) and (14), m1 to m3 represent an integer of 1 to 60, preferably 2 to 30, and more preferably 4 to 15.

前記構造式(13)及び(14)中、Y及びYは、炭素原子数2〜30の2価の有機基を表し、例えば、アルキレン基、アリーレン基、アルケニレン基、アルキニレン基、カルボニル基(−CO−)、酸素原子(−O−)、硫黄原子(−S−)、イミノ基(−NH−)、イミノ基の水素原子が1価の炭化水素基で置換された置換イミノ基、スルホニル基(−SO−)又はこれらを組み合わせた基などが好適に挙げられ、これらの中でも、アルキレン基、アリーレン基、又はこれらを組み合わせた基が好ましい。 In the structural formulas (13) and (14), Y 1 and Y 2 represent a divalent organic group having 2 to 30 carbon atoms, for example, an alkylene group, an arylene group, an alkenylene group, an alkynylene group, a carbonyl group. (—CO—), an oxygen atom (—O—), a sulfur atom (—S—), an imino group (—NH—), a substituted imino group in which the hydrogen atom of the imino group is substituted with a monovalent hydrocarbon group, Preferred examples include a sulfonyl group (—SO 2 —) or a combination thereof, and among these, an alkylene group, an arylene group, or a combination thereof is preferable.

前記アルキレン基は、分岐構造又は環状構造を有していてもよく、例えば、メチレン基、エチレン基、プロピレン基、イソプロピレン基、ブチレン基、イソブチレン基、ペンチレン基、ネオペンチレン基、ヘキシレン基、トリメチルヘキシレン基、シクロへキシレン基、ヘプチレン基、オクチレン基、2−エチルヘキシレン基、ノニレン基、デシレン基、ドデシレン基、オクタデシレン基又は下記に示すいずれかの基などが好適に挙げられる。   The alkylene group may have a branched structure or a cyclic structure, for example, methylene group, ethylene group, propylene group, isopropylene group, butylene group, isobutylene group, pentylene group, neopentylene group, hexylene group, trimethyl hexene. Preferable examples include a xylene group, a cyclohexylene group, a heptylene group, an octylene group, a 2-ethylhexylene group, a nonylene group, a decylene group, a dodecylene group, an octadecylene group, or any of the following groups.

前記アリーレン基としては、炭化水素基で置換されていてもよく、例えば、フェニレン基、トリレン基、ジフェニレン基、ナフチレン基、又は下記に示す基などが好適に挙げられる。   The arylene group may be substituted with a hydrocarbon group, and examples thereof include a phenylene group, a tolylene group, a diphenylene group, a naphthylene group, and the groups shown below.

前記これらを組み合わせた基としては、例えば、キシリレン基などが挙げられる。   Examples of the group in which these are combined include a xylylene group.

前記アルキレン基、アリーレン基、又はこれらを組み合わせた基としては、更に置換基を有していてもよく、該置換基としては、例えば、ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子)、アリール基、アルコキシ基(例えば、メトキシ基、エトキシ基、2−エトキシエトキシ基)、アリールオキシ基(例えば、フェノキシ基)、アシル基(例えば、アセチル基、プロピオニル基)、アシルオキシ基(例えば、アセトキシ基、ブチリルオキシ基)、アルコキシカルボニル基(例えば、メトキシカルボニル基、エトキシカルボニル基)、アリールオキシカルボニル基(例えば、フェノキシカルボニル基)などが挙げられる。   The alkylene group, arylene group, or a combination thereof may further have a substituent. Examples of the substituent include a halogen atom (for example, fluorine atom, chlorine atom, bromine atom, iodine). Atom), aryl group, alkoxy group (for example, methoxy group, ethoxy group, 2-ethoxyethoxy group), aryloxy group (for example, phenoxy group), acyl group (for example, acetyl group, propionyl group), acyloxy group (for example, , Acetoxy group, butyryloxy group), alkoxycarbonyl group (for example, methoxycarbonyl group, ethoxycarbonyl group), aryloxycarbonyl group (for example, phenoxycarbonyl group) and the like.

前記構造式(13)及び(14)中、nは3〜6の整数を表し、重合性モノマーを合成するための原料供給性などの観点から、3、4又は6が好ましい。   In the structural formulas (13) and (14), n represents an integer of 3 to 6, and 3, 4 or 6 is preferable from the viewpoint of feedability of raw materials for synthesizing a polymerizable monomer.

前記構造式(13)及び(14)中、Zはn価(3価〜6価)の連結基を表し、例えば、下記に示すいずれかの基などが挙げられる。   In the structural formulas (13) and (14), Z represents an n-valent (trivalent to hexavalent) linking group, and examples thereof include any of the groups shown below.

但し、Xはアルキレンオキサイドを表す。m4は、1〜20の整数を表す。nは、3〜6の整数を表す。Aは、n価(3価〜6価)の有機基を表す。 However, X 4 represents an alkylene oxide. m4 represents an integer of 1 to 20. n represents an integer of 3 to 6. A represents an n-valent (trivalent to hexavalent) organic group.

前記Aとしては、例えば、n価の脂肪族基、n価の芳香族基、又はこれらとアルキレン基、アリーレン基、アルケニレン基、アルキニレン基、カルボニル基、酸素原子、硫黄原子、イミノ基、イミノ基の水素原子が1価の炭化水素基で置換された置換イミノ基、又はスルホニル基とを組み合わせた基が好ましく、n価の脂肪族基、n価の芳香族基、又はこれらとアルキレン基、アリーレン基、酸素原子とを組み合わせた基がより好ましく、n価の脂肪族基、n価の脂肪族基とアルキレン基、酸素原子とを組み合わせた基が特に好ましい。   Examples of A include an n-valent aliphatic group, an n-valent aromatic group, and an alkylene group, an arylene group, an alkenylene group, an alkynylene group, a carbonyl group, an oxygen atom, a sulfur atom, an imino group, and an imino group. Are preferably a combination of a substituted imino group in which the hydrogen atom is substituted with a monovalent hydrocarbon group or a sulfonyl group, an n-valent aliphatic group, an n-valent aromatic group, or an alkylene group or arylene A group in which a group and an oxygen atom are combined is more preferable, and an n-valent aliphatic group, and a group in which an n-valent aliphatic group is combined with an alkylene group and an oxygen atom are particularly preferable.

前記Aの炭素原子数としては、例えば、1〜100の整数が好ましく、1〜50の整数がより好ましく、3〜30の整数が特に好ましい。   The number of carbon atoms of A is, for example, preferably an integer of 1 to 100, more preferably an integer of 1 to 50, and particularly preferably an integer of 3 to 30.

前記n価の脂肪族基としては、分岐構造又は環状構造を有していてもよい。
前記脂肪族基の炭素原子数としては、例えば、1〜30の整数が好ましく、1〜20の整数がより好ましく、3〜10の整数が特に好ましい。
前記芳香族基の炭素原子数としては、6〜100の整数が好ましく、6〜50の整数がより好ましく、6〜30の整数が特に好ましい。
The n-valent aliphatic group may have a branched structure or a cyclic structure.
As a carbon atom number of the said aliphatic group, the integer of 1-30 is preferable, for example, the integer of 1-20 is more preferable, and the integer of 3-10 is especially preferable.
The number of carbon atoms of the aromatic group is preferably an integer of 6 to 100, more preferably an integer of 6 to 50, and particularly preferably an integer of 6 to 30.

前記n価の脂肪族基、又は芳香族基は、更に置換基を有していてもよく、該置換基としては、例えば、ヒドロキシル基、ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子)、アリール基、アルコキシ基(例えば、メトキシ基、エトキシ基、2−エトキシエトキシ基)、アリールオキシ基(例えば、フェノキシ基)、アシル基(例えば、アセチル基、プロピオニル基)、アシルオキシ基(例えば、アセトキシ基、ブチリルオキシ基)、アルコキシカルボニル基(例えば、メトキシカルボニル基、エトキシカルボニル基)、アリールオキシカルボニル基(例えば、フェノキシカルボニル基)などが挙げられる。   The n-valent aliphatic group or aromatic group may further have a substituent. Examples of the substituent include a hydroxyl group, a halogen atom (for example, a fluorine atom, a chlorine atom, a bromine atom, Iodine atom), aryl group, alkoxy group (for example, methoxy group, ethoxy group, 2-ethoxyethoxy group), aryloxy group (for example, phenoxy group), acyl group (for example, acetyl group, propionyl group), acyloxy group ( Examples thereof include an acetoxy group, a butyryloxy group), an alkoxycarbonyl group (for example, a methoxycarbonyl group, an ethoxycarbonyl group), an aryloxycarbonyl group (for example, a phenoxycarbonyl group), and the like.

前記アルキレン基は、分岐構造又は環状構造を有していてもよい。
前記アルキレン基の炭素原子数としては、例えば、1〜18の整数が好ましく、1〜10の整数がより好ましい。
The alkylene group may have a branched structure or a cyclic structure.
As a carbon atom number of the said alkylene group, the integer of 1-18 is preferable, for example, and the integer of 1-10 is more preferable.

前記アリーレン基は、炭化水素基で更に置換されていてもよい。
前記アリーレン基の炭素原子数としては、6〜18の整数が好ましく、6〜10の整数がより好ましい。
The arylene group may be further substituted with a hydrocarbon group.
As the number of carbon atoms of the arylene group, an integer of 6 to 18 is preferable, and an integer of 6 to 10 is more preferable.

前記置換イミノ基の1価の炭化水素基の炭素原子数としては、1〜18の整数が好ましく、1〜10の整数がより好ましい。   As a carbon atom number of the monovalent hydrocarbon group of the said substituted imino group, the integer of 1-18 is preferable and the integer of 1-10 is more preferable.

以下に、前記Aの好ましい例は以下の通りである。   Below, the preferable example of said A is as follows.

前記構造式(13)及び(14)で表される化合物としては、例えば下記構造式(15)〜(37)で表される化合物などが挙げられる。   Examples of the compounds represented by the structural formulas (13) and (14) include compounds represented by the following structural formulas (15) to (37).

但し、前記構造式(15)〜(37)中、n、n1、n2及びmは、1〜60を意味し、lは、1〜20を意味し、Rは、水素原子又はメチル基を表す。   However, in said structural formula (15)-(37), n, n1, n2 and m mean 1-60, l means 1-20, R represents a hydrogen atom or a methyl group. .

−アリール基を有するモノマー−
前記アリール基を有するモノマーとしては、アリール基を有する限り、特に制限はなく、目的に応じて適宜選択することができ、例えば、アリール基を有する多価アルコール化合物、多価アミン化合物及び多価アミノアルコール化合物の少なくともいずれかと不飽和カルボン酸とのエステル又はアミドなどが挙げられる。
-Monomer having an aryl group-
The monomer having an aryl group is not particularly limited as long as it has an aryl group, and can be appropriately selected according to the purpose. For example, a polyhydric alcohol compound having a aryl group, a polyvalent amine compound, and a polyvalent amino Examples thereof include esters or amides of at least one of alcohol compounds and an unsaturated carboxylic acid.

前記アリール基を有する多価アルコール化合物、多価アミン化合物又は多価アミノアルコール化合物としては、例えば、ポリスチレンオキサイド、キシリレンジオール、ジ−(β−ヒドロキシエトキシ)ベンゼン、1,5−ジヒドロキシ−1,2,3,4−テトラヒドロナフタレン、2、2−ジフェニル−1,3−プロパンジオール、ヒドロキシベンジルアルコール、ヒドロキシエチルレゾルシノール、1−フェニル−1,2−エタンジオール、2,3,5,6−テトラメチル−p−キシレン−α,α’−ジオール、1,1,4,4−テトラフェニル−1,4−ブタンジオール、1,1,4,4−テトラフェニル−2−ブチン−1,4−ジオール、1,1’−ビ−2−ナフトール、ジヒドロキシナフタレン、1,1’−メチレン−ジ−2−ナフトール、1,2,4−ベンゼントリオール、ビフェノール、2,2’−ビス(4−ヒドロキシフェニル)ブタン、1,1−ビス(4−ヒドロキシフェニル)シクロヘキサン、ビス(ヒドロキシフェニル)メタン、カテコール、4−クロルレゾルシノール、ハイドロキノン、ヒドロキシベンジルアルコール、メチルハイドロキノン、メチレン−2,4,6−トリヒドロキシベンゾエート、フロログリシノール、ピロガロール、レゾルシノール、α−(1−アミノエチル)−p−ヒドロキシベンジルアルコール、α−(1−アミノエチル)−p−ヒドロキシベンジルアルコール、3−アミノ−4−ヒドロキシフェニルスルホンなどが挙げられる。また、この他、キシリレンビス(メタ)アクリルアミド、ノボラック型エポキシ樹脂やビスフェノールAジグリシジルエーテル等のグリシジル化合物にα、β−不飽和カルボン酸を付加して得られる化合物、フタル酸やトリメリット酸などと分子中に水酸基を含有するビニルモノマーから得られるエステル化物、フタル酸ジアリル、トリメリット酸トリアリル、ベンゼンジスルホン酸ジアリル、重合性モノマーとしてカチオン重合性のジビニルエーテル類(例えば、ビスフェノールAジビニルエーテル)、エポキシ化合物(例えば、ノボラック型エポキシ樹脂、ビスフェノールAジグリシジルエーテル等)、ビニルエステル類(例えば、ジビニルフタレート、ジビニルテレフタレート、ジビニルベンゼン−1,3−ジスルホネート等)、スチレン化合物(例えば、ジビニルベンゼン、p−アリルスチレン、p−イソプロペンスチレン等)が挙げられる。これらの中でも下記構造式(38)で表される化合物が好ましい。   Examples of the polyhydric alcohol compound, polyamine compound or polyhydric amino alcohol compound having an aryl group include polystyrene oxide, xylylene diol, di- (β-hydroxyethoxy) benzene, 1,5-dihydroxy-1, 2,3,4-tetrahydronaphthalene, 2,2-diphenyl-1,3-propanediol, hydroxybenzyl alcohol, hydroxyethyl resorcinol, 1-phenyl-1,2-ethanediol, 2,3,5,6-tetra Methyl-p-xylene-α, α′-diol, 1,1,4,4-tetraphenyl-1,4-butanediol, 1,1,4,4-tetraphenyl-2-butyne-1,4- Diol, 1,1′-bi-2-naphthol, dihydroxynaphthalene, 1,1′-methylene-di-2-naphth 1,2,4-benzenetriol, biphenol, 2,2′-bis (4-hydroxyphenyl) butane, 1,1-bis (4-hydroxyphenyl) cyclohexane, bis (hydroxyphenyl) methane, catechol, 4-chlororesorcinol, hydroquinone, hydroxybenzyl alcohol, methyl hydroquinone, methylene-2,4,6-trihydroxybenzoate, phloroglicinol, pyrogallol, resorcinol, α- (1-aminoethyl) -p-hydroxybenzyl alcohol, α -(1-aminoethyl) -p-hydroxybenzyl alcohol, 3-amino-4-hydroxyphenylsulfone and the like can be mentioned. In addition, compounds obtained by adding α, β-unsaturated carboxylic acid to glycidyl compounds such as xylylene bis (meth) acrylamide, novolac epoxy resin and bisphenol A diglycidyl ether, phthalic acid, trimellitic acid, etc. Esterified products obtained from vinyl monomers containing hydroxyl groups in the molecule, diallyl phthalate, triallyl trimellitic acid, diallyl benzenedisulfonate, cationically polymerizable divinyl ethers (for example, bisphenol A divinyl ether), epoxy as a polymerizable monomer Compound (for example, novolac type epoxy resin, bisphenol A diglycidyl ether, etc.), vinyl ester (for example, divinyl phthalate, divinyl terephthalate, divinylbenzene-1,3-disulfonate, etc.), styrene Compounds such as divinylbenzene, p-allylstyrene, p-isopropenestyrene, and the like. Among these, the compound represented by the following structural formula (38) is preferable.

前記構造式(38)中、R4、Rは、水素原子又はアルキル基を表す。 In the structural formula (38), R 4 and R 5 represent a hydrogen atom or an alkyl group.

前記構造式(38)中、X及びXは、アルキレンオキサイド基を表し、1種単独でもよく、2種以上を併用してもよい。該アルキレンオキサイド基としては、例えば、エチレンオキサイド基、プロピレンオキサイド基、ブチレンオキサイド基、ペンチレンオキサイド基、ヘキシレンオキサイド基、これらを組み合わせた基(ランダム、ブロックのいずれに組み合わされてもよい)、などが好適に挙げられ、これらの中でも、エチレンオキサイド基、プロピレンオキサイド基、ブチレンオキサイド基、又はこれらを組み合わせた基が好ましく、エチレンオキサイド基、プロピレンオキサイド基がより好ましい。 In the structural formula (38), X 5 and X 6 represent an alkylene oxide group, which may be used alone or in combination of two or more. As the alkylene oxide group, for example, an ethylene oxide group, a propylene oxide group, a butylene oxide group, a pentylene oxide group, a hexylene oxide group, a group combining these (which may be combined in any of random and block), Among these, an ethylene oxide group, a propylene oxide group, a butylene oxide group, or a group combining these is preferable, and an ethylene oxide group and a propylene oxide group are more preferable.

前記構造式(38)中、m5、m6は、1〜60の整数が好ましく、2〜30の整数がより好ましく、4〜15の整数が特に好ましい。   In the structural formula (38), m5 and m6 are preferably an integer of 1 to 60, more preferably an integer of 2 to 30, and particularly preferably an integer of 4 to 15.

前記構造式(38)中、Tは、2価の連結基を表し、例えば、メチレン、エチレン、MeCMe、CFCCF、CO、SOなどが挙げられる。 In the structural formula (38), T represents a divalent linking group, and examples thereof include methylene, ethylene, MeCMe, CF 3 CCF 3 , CO, and SO 2 .

前記構造式(38)中、Ar、Arは、置換基を有していてもよいアリール基を表し、例えば、フェニレン、ナフチレンなどが挙げられる。前記置換基としては、例えば、アルキル基、アリール基、アラルキル基、ハロゲン基、アルコキシ基、又はこれらの組合せなどが挙げられる。 In the structural formula (38), Ar 1 and Ar 2 represent an aryl group which may have a substituent, and examples thereof include phenylene and naphthylene. Examples of the substituent include an alkyl group, an aryl group, an aralkyl group, a halogen group, an alkoxy group, or a combination thereof.

前記アリール基を有するモノマーの具体例としては、2,2−ビス〔4−(3−(メタ)アクリルオキシ−2−ヒドロキシプロポキシ)フェニル〕プロパン、2,2−ビス〔4−((メタ)アクリルオキシエトキシ)フェニル〕プロパン、フェノール性のOH基1個に置換しさせたエトキシ基の数が2から20である2,2−ビス(4−((メタ)アクリロイルオキシポリエトキシ)フェニル)プロパン(例えば、2,2−ビス(4−((メタ)アクリロイルオキシジエトキシ)フェニル)プロパン、2,2−ビス(4−((メタ)アクリロイルオキシテトラエトキシ)フェニル)プロパン、2,2−ビス(4−((メタ)アクリロイルオキシペンタエトキシ)フェニル)プロパン、2,2−ビス(4−((メタ)アクリロイルオキシデカエトキシ)フェニル)プロパン、2,2−ビス(4−((メタ)アクリロイルオキシペンタデカエトキシ)フェニル)プロパン等)、2,2−ビス〔4−((メタ)アクリルオキシプロポキシ)フェニル〕プロパン、フェノール性のOH基1個に置換させたエトキシ基の数が2から20である2,2−ビス(4−((メタ)アクリロイルオキシポリプロポキシ)フェニル)プロパン(例えば、2,2−ビス(4−((メタ)アクリロイルオキシジプロポキシ)フェニル)プロパン、2,2−ビス(4−((メタ)アクリロイルオキシテトラプロポキシ)フェニル)プロパン、2,2−ビス(4−((メタ)アクリロイルオキシペンタプロポキシ)フェニル)プロパン、2,2−ビス(4−((メタ)アクリロイルオキシデカプロポキシ)フェニル)プロパン、2,2−ビス(4−((メタ)アクリロイルオキシペンタデカプロポキシ)フェニル)プロパン等)、又はこれらの化合物のポリエーテル部位として同一分子中にポリエチレンオキシド骨格とポリプロピレンオキシド骨格の両方を含む化合物(例えば、WO01/98832号公報に記載の化合物等、又は、市販品として、新中村化学工業社製、BPE−200、BPE−500、BPE−1000)、ビスフェノール骨格とウレタン基とを有する重合性化合物などが挙げられる。なお、これらは、ビスフェノールA骨格に由来する部分をビスフェノールF又はビスフェノールS等に変更した化合物であってもよい。   Specific examples of the monomer having an aryl group include 2,2-bis [4- (3- (meth) acryloxy-2-hydroxypropoxy) phenyl] propane, 2,2-bis [4-((meth)). (Acryloxyethoxy) phenyl] propane, 2,2-bis (4-((meth) acryloyloxypolyethoxy) phenyl) propane having 2 to 20 ethoxy groups substituted with one phenolic OH group (For example, 2,2-bis (4-((meth) acryloyloxydiethoxy) phenyl) propane, 2,2-bis (4-((meth) acryloyloxytetraethoxy) phenyl) propane, 2,2-bis (4-((Meth) acryloyloxypentaethoxy) phenyl) propane, 2,2-bis (4-((meth) acryloyloxydecae) Xyl) phenyl) propane, 2,2-bis (4-((meth) acryloyloxypentadecaethoxy) phenyl) propane), 2,2-bis [4-((meth) acryloxypropoxy) phenyl] propane, 2,2-bis (4-((meth) acryloyloxypolypropoxy) phenyl) propane (e.g. 2,2-bis (2) having 2 to 20 ethoxy groups substituted with one phenolic OH group 4-((meth) acryloyloxydipropoxy) phenyl) propane, 2,2-bis (4-((meth) acryloyloxytetrapropoxy) phenyl) propane, 2,2-bis (4-((meth) acryloyloxy) Pentapropoxy) phenyl) propane, 2,2-bis (4-((meth) acryloyloxydecapropoxy) pheny ) Propane, 2,2-bis (4-((meth) acryloyloxypentadecapropoxy) phenyl) propane, or the like, or both the polyethylene oxide skeleton and the polypropylene oxide skeleton in the same molecule as the polyether moiety Compounds (for example, compounds described in WO01 / 98832 etc., or commercially available, Shin-Nakamura Chemical Co., Ltd., BPE-200, BPE-500, BPE-1000), bisphenol skeleton and urethane group Examples thereof include a polymerizable compound. These compounds may be compounds obtained by changing the part derived from the bisphenol A skeleton to bisphenol F or bisphenol S.

前記ビスフェノール骨格とウレタン基とを有する重合性化合物としては、例えば、ビスフェノールとエチレンオキシド又はプロピレンオキシド等の付加物、重付加物として得られる末端に水酸基を有する化合物にイソシアネート基と重合性基とを有する化合物(例えば、2−イソシアネートエチル(メタ)アクリレート、α、α−ジメチル−ビニルベンジルイソシアネート等)などが挙げられる。   Examples of the polymerizable compound having a bisphenol skeleton and a urethane group include an isocyanate group and a polymerizable group in a compound having a hydroxyl group at the terminal obtained as an adduct such as bisphenol and ethylene oxide or propylene oxide, or a polyaddition product. Examples thereof include compounds (for example, 2-isocyanatoethyl (meth) acrylate, α, α-dimethyl-vinylbenzyl isocyanate, etc.).

−その他の重合性モノマー−
本発明のパターン形成方法には、前記パターン形成材料としての特性を悪化させない範囲で、前記ウレタン基を含有するモノマー、アリール基を有するモノマー以外の重合性モノマーを併用してもよい。
-Other polymerizable monomers-
In the pattern forming method of the present invention, a polymerizable monomer other than the monomer containing the urethane group and the monomer having an aryl group may be used in combination as long as the characteristics as the pattern forming material are not deteriorated.

前記ウレタン基を含有するモノマー、芳香環を含有するモノマー以外の重合性モノマーとしては、例えば、不飽和カルボン酸(例えば、アクリル酸、メタクリル酸、イタコン酸、クロトン酸、イソクロトン酸、マレイン酸等)と脂肪族多価アルコール化合物とのエステル、不飽和カルボン酸と多価アミン化合物とのアミドなどが挙げられる。   Examples of the polymerizable monomer other than the monomer containing a urethane group and the monomer containing an aromatic ring include unsaturated carboxylic acids (for example, acrylic acid, methacrylic acid, itaconic acid, crotonic acid, isocrotonic acid, maleic acid, etc.) And an ester of an aliphatic polyhydric alcohol compound and an amide of an unsaturated carboxylic acid and a polyvalent amine compound.

前記不飽和カルボン酸と脂肪族多価アルコール化合物とのエステルのモノマーとしては、例えば、(メタ)アクリル酸エステルとして、エチレングリコールジ(メタ)アクリレート、エチレン基の数が2〜18であるポリエチレングリコールジ(メタ)アクリレート(例えば、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ノナエチレングリコールジ(メタ)アクリレート、ドデカエチレングリコールジ(メタ)アクリレート、テトラデカエチレングリコールジ(メタ)アクリレート等)、プロピレングリコールジ(メタ)アクリレート、プロピレン基の数が2から18であるポリプロピレングリコールジ(メタ)アクリレート(例えば、ジプロピレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、テトラプロピレングリコールジ(メタ)アクリレート、ドデカプロピレングリコールジ(メタ)アクリレート等)、ネオペンチルグリコールジ(メタ)アクリレート、エチレンオキシド変性ネオペンチルグリコールジ(メタ)アクリレート、プロピレンオキシド変性ネオペンチルグリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールプロパンジ(メタ)アクリレート、トリメチロールプロパントリ((メタ)アクリロイルオキシプロピル)エーテル、トリメチロールエタントリ(メタ)アクリレート、1,3−プロパンジオールジ(メタ)アクリレート、1,3−ブタンジオールジ(メタ)アクリレート、1,4−ブタンジオールジ(メタ)アクリレート、1,6−ヘキサンジオールジ(メタ)アクリレート、テトラメチレングリコールジ(メタ)アクリレート、1,4−シクロヘキサンジオールジ(メタ)アクリレート、1,2,4−ブタントリオールトリ(メタ)アクリレート、1,5−ベンタンジオール(メタ)アクリレート、ペンタエリスリトールジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ソルビトールトリ(メタ)アクリレート、ソルビトールテトラ(メタ)アクリレート、ソルビトールペンタ(メタ)アクリレート、ソルビトールヘキサ(メタ)アクリレート、ジメチロールジシクロペンタンジ(メタ)アクリレート、トリシクロデカンジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、ネオペンチルグリコール変性トリメチロールプロパンジ(メタ)アクリレート、エチレングリコール鎖/プロピレングリコール鎖を少なくとも各々一つずつ有するアルキレングリコール鎖のジ(メタ)アクリレート(例えば、WO01/98832号公報に記載の化合物等)、エチレンオキサイド及びプロピレンオキサイドの少なくともいずれかを付加したトリメチロールプロパンのトリ(メタ)アクリル酸エステル、ポリブチレングリコールジ(メタ)アクリレート、グリセリンジ(メタ)アクリレート、グリセリントリ(メタ)アクリレート、キシレノールジ(メタ)アクリレートなどが挙げられる。   Examples of the monomer of the ester of the unsaturated carboxylic acid and the aliphatic polyhydric alcohol compound include (meth) acrylic acid ester, ethylene glycol di (meth) acrylate, and polyethylene glycol having 2 to 18 ethylene groups. Di (meth) acrylate (for example, diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, nonaethylene glycol di (meth) acrylate, dodecaethylene glycol di (meth) acrylate , Tetradecaethylene glycol di (meth) acrylate, etc.), propylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate having 2 to 18 propylene groups (for example, , Dipropylene glycol di (meth) acrylate, tripropylene glycol di (meth) acrylate, tetrapropylene glycol di (meth) acrylate, dodecapropylene glycol di (meth) acrylate, etc.), neopentyl glycol di (meth) acrylate, ethylene oxide modified Neopentyl glycol di (meth) acrylate, propylene oxide modified neopentyl glycol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, trimethylolpropane di (meth) acrylate, trimethylolpropane tri ((meth) acryloyloxypropyl) ) Ether, trimethylolethane tri (meth) acrylate, 1,3-propanediol di (meth) acrylate, 1,3-butanediol (Meth) acrylate, 1,4-butanediol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, tetramethylene glycol di (meth) acrylate, 1,4-cyclohexanediol di (meth) acrylate, 1,2,4-butanetriol tri (meth) acrylate, 1,5-bentanediol (meth) acrylate, pentaerythritol di (meth) acrylate, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, di Pentaerythritol penta (meth) acrylate, dipentaerythritol hexa (meth) acrylate, sorbitol tri (meth) acrylate, sorbitol tetra (meth) acrylate, sorbitol penta (meth) acrylate Rate, sorbitol hexa (meth) acrylate, dimethylol dicyclopentane di (meth) acrylate, tricyclodecane di (meth) acrylate, neopentyl glycol di (meth) acrylate, neopentyl glycol modified trimethylolpropane di (meth) acrylate A di (meth) acrylate of an alkylene glycol chain having at least one ethylene glycol chain / propylene glycol chain (for example, a compound described in WO01 / 98832), at least one of ethylene oxide and propylene oxide Trimethylolpropane tri (meth) acrylate, polybutylene glycol di (meth) acrylate, glycerol di (meth) acrylate, glycerol tri (meth) acrylate Examples include relate and xylenol di (meth) acrylate.

前記(メタ)アクリル酸エステル類の中でも、その入手の容易さ等の観点から、エチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、エチレングリコール鎖/プロピレングリコール鎖を少なくとも各々一つずつ有するアルキレングリコール鎖のジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールジ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、グリセリントリ(メタ)アクリレート、ジグリセリンジ(メタ)アクリレート、1,3−プロパンジオールジ(メタ)アクリレート、1,2,4−ブタントリオールトリ(メタ)アクリレート、1,4−シクロヘキサンジオールジ(メタ)アクリレート、1,5−ペンタンジオール(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、エチレンオキサイド付加したトリメチロールプロパンのトリ(メタ)アクリル酸エステルなどが好ましい。   Among the (meth) acrylic acid esters, ethylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, polypropylene glycol di (meta) from the viewpoint of easy availability. ) Acrylate, di (meth) acrylate of alkylene glycol chain each having at least one ethylene glycol chain / propylene glycol chain, trimethylolpropane tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, pentaerythritol triacrylate, penta Erythritol di (meth) acrylate, dipentaerythritol penta (meth) acrylate, dipentaerythritol hexa (meth) acrylate, glycerin tri (Meth) acrylate, diglycerin di (meth) acrylate, 1,3-propanediol di (meth) acrylate, 1,2,4-butanetriol tri (meth) acrylate, 1,4-cyclohexanediol di (meth) acrylate, 1, Preference is given to 5-pentanediol (meth) acrylate, neopentyl glycol di (meth) acrylate, trimethylolpropane tri (meth) acrylate added with ethylene oxide, and the like.

前記イタコン酸と前記脂肪族多価アルコール化合物とのエステル(イタコン酸エステル)としては、例えば、エチレングリコールジイタコネート、プロピレングリコールジイタコネート、1,3−ブタンジオールジイタコネート、1,4ーブタンジオールジイタコネート、テトラメチレングリコールジイタコネート、ペンタエリスリトールジイタコネート及びソルビトールテトライタコネートなどが挙げられる。   Examples of the ester (itaconic acid ester) of the itaconic acid and the aliphatic polyhydric alcohol compound include ethylene glycol diitaconate, propylene glycol diitaconate, 1,3-butanediol diitaconate, 1,4- Examples include butanediol diitaconate, tetramethylene glycol diitaconate, pentaerythritol diitaconate, and sorbitol tetritaconate.

前記クロトン酸と前記脂肪族多価アルコール化合物とのエステル(クロトン酸エステル)としては、例えば、エチレングリコールジクロトネート、テトラメチレングリコールジクロトネート、ペンタエリスリトールジクロトネート、ソルビトールテトラジクロトネートなどが挙げられる。   Examples of the ester (crotonic acid ester) of the crotonic acid and the aliphatic polyhydric alcohol compound include ethylene glycol dicrotonate, tetramethylene glycol dicrotonate, pentaerythritol dicrotonate, and sorbitol tetradicrotonate. Can be mentioned.

前記イソクロトン酸と前記脂肪族多価アルコール化合物とのエステル(イソクロトン酸エステル)としては、例えば、エチレングリコールジイソクロトネート、ペンタエリスリトールジイソクロトネート、ソルビトールテトライソクロトネートなどが挙げられる。   Examples of the ester (isocrotonic acid ester) of the isocrotonic acid and the aliphatic polyhydric alcohol compound include ethylene glycol diisocrotonate, pentaerythritol diisocrotonate, and sorbitol tetraisocrotonate.

前記マレイン酸と前記脂肪族多価アルコール化合物とのエステル(マレイン酸エステル)としては、例えば、エチレングリコールジマレート、トリエチレングリコールジマレート、ペンタエリスリトールジマレート、ソルビトールテトラマレートなどが挙げられる。   Examples of the ester of maleic acid and the aliphatic polyhydric alcohol compound (maleic acid ester) include ethylene glycol dimaleate, triethylene glycol dimaleate, pentaerythritol dimaleate, and sorbitol tetramaleate.

前記多価アミン化合物と前記不飽和カルボン酸類から誘導されるアミドとしては、例えば、メチレンビス(メタ)アクリルアミド、エチレンビス(メタ)アクリルアミド、1,6−ヘキサメチレンビス(メタ)アクリルアミド、オクタメチレンビス(メタ)アクリルアミド、ジエチレントリアミントリス(メタ)アクリルアミド、ジエチレントリアミンビス(メタ)アクリルアミド、などが挙げられる。   Examples of the amide derived from the polyvalent amine compound and the unsaturated carboxylic acid include methylene bis (meth) acrylamide, ethylene bis (meth) acrylamide, 1,6-hexamethylene bis (meth) acrylamide, and octamethylene bis ( And (meth) acrylamide, diethylenetriamine tris (meth) acrylamide, and diethylenetriamine bis (meth) acrylamide.

また、上記以外にも、前記重合性モノマーとして、例えば、ブタンジオール−1,4−ジグリシジルエーテル、シクロヘキサンジメタノールグリシジルエーテル、エチレングリコールジグリシジルエーテル、ジエチレングリコールジグリシジルエーテル、ジプロピレングリコールジグリシジルエーテル、ヘキサンジオールジグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、ペンタエリスリトールテトラグリシジルエーテル、グリセリントリグリシジルエーテル等のグリシジル基含有化合物にα,β−不飽和カルボン酸を付加して得られる化合物、特開昭48−64183号公報、特公昭49−43191号公報、特公昭52−30490号各公報に記載されているようなポリエステルアクリレートやポリエステル(メタ)アクリレートオリゴマー類、エポキシ化合物(例えば、ブタンジオール−1,4−ジグリシジルエーテル、シクロヘキサンジメタノールグリシジルエーテル、ジエチレングリコールジグリシジルエーテル、ジプロピレングリコールジグリシジルエーテル、ヘキサンジオールジグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、ペンタエリスリトールテトラグリシジルエーテル、グリセリントリグリシジルエーテルなど)と(メタ)アクリル酸を反応させたエポキシアクリレート類等の多官能のアクリレートやメタクリレート、日本接着協会誌vol.20、No.7、300〜308ページ(1984年)に記載の光硬化性モノマー及びオリゴマー、アリルエステル(例えば、フタル酸ジアリル、アジピン酸ジアリル、マロン酸ジアリル、ジアリルアミド(例えば、ジアリルアセトアミド等)、カチオン重合性のジビニルエーテル類(例えば、ブタンジオール−1,4−ジビニルエーテル、シクロヘキサンジメタノールジビニルエーテル、エチレングリコールジビニルエーテル、ジエチレングリコールジビニルエーテル、ジプロピレングリコールジビニルエーテル、ヘキサンジオールジビニルエーテル、トリメチロールプロパントリビニルエーテル、ペンタエリスリトールテトラビニルエーテル、グリセリントリビニルエーテル等)、エポキシ化合物(例えば、ブタンジオール−1,4−ジグリシジルエーテル、シクロヘキサンジメタノールグリシジルエーテル、エチレングリコールジグリシジルエーテル、ジエチレングリコールジグリシジルエーテル、ジプロピレングリコールジグリシジルエーテル、ヘキサンジオールジグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、ペンタエリスリトールテトラグリシジルエーテル、グリセリントリグリシジルエーテル等)、オキセタン類(例えば、1,4−ビス〔(3−エチルー3−オキセタニルメトキシ)メチル〕ベンゼン等)、エポキシ化合物、オキセタン類(例えば、WO01/22165号公報に記載の化合物)、N−β−ヒドロキシエチル−β−(メタクリルアミド)エチルアクリレート、N,N−ビス(β−メタクリロキシエチル)アクリルアミド、アリルメタクリレート等の異なったエチレン性不飽和二重結合を2個以上有する化合物などが挙げられる。   In addition to the above, as the polymerizable monomer, for example, butanediol-1,4-diglycidyl ether, cyclohexanedimethanol glycidyl ether, ethylene glycol diglycidyl ether, diethylene glycol diglycidyl ether, dipropylene glycol diglycidyl ether, Compounds obtained by adding an α, β-unsaturated carboxylic acid to a glycidyl group-containing compound such as hexanediol diglycidyl ether, trimethylolpropane triglycidyl ether, pentaerythritol tetraglycidyl ether, glycerin triglycidyl ether, Polyester acrylate and polyester (Metal) as described in JP-B-64183, JP-B-49-43191, and JP-B-52-30490 ) Acrylate oligomers, epoxy compounds (for example, butanediol-1,4-diglycidyl ether, cyclohexanedimethanol glycidyl ether, diethylene glycol diglycidyl ether, dipropylene glycol diglycidyl ether, hexanediol diglycidyl ether, trimethylolpropane triglycidyl Ether, pentaerythritol tetraglycidyl ether, glycerin triglycidyl ether, etc.) and (meth) acrylic acid and other polyfunctional acrylates and methacrylates such as epoxy acrylates, Japan Adhesion Association Vol. 20, No. 7, 300- 308 pages (1984), photocurable monomers and oligomers, allyl esters (eg, diallyl phthalate, diallyl adipate, Diallyl ronate, diallylamide (for example, diallylacetamide), cationically polymerizable divinyl ethers (for example, butanediol-1,4-divinyl ether, cyclohexane dimethanol divinyl ether, ethylene glycol divinyl ether, diethylene glycol divinyl ether, di Propylene glycol divinyl ether, hexanediol divinyl ether, trimethylolpropane trivinyl ether, pentaerythritol tetravinyl ether, glycerin trivinyl ether, etc.), epoxy compounds (eg, butanediol-1,4-diglycidyl ether, cyclohexanedimethanol glycidyl ether, ethylene) Glycol diglycidyl ether, diethylene glycol diglycidyl ether, dipro Pyrene glycol diglycidyl ether, hexanediol diglycidyl ether, trimethylolpropane triglycidyl ether, pentaerythritol tetraglycidyl ether, glycerin triglycidyl ether, etc.), oxetanes (for example, 1,4-bis [(3-ethyl-3-oxetanyl) Methoxy) methyl] benzene, etc.), epoxy compounds, oxetanes (for example, compounds described in WO01 / 22165), N-β-hydroxyethyl-β- (methacrylamide) ethyl acrylate, N, N-bis (β -Methacryloxyethyl) A compound having two or more different ethylenically unsaturated double bonds such as acrylamide and allyl methacrylate.

前記ビニルエステル類としては、例えば、ジビニルサクシネート、ジビニルアジペートなどが挙げられる。   Examples of the vinyl esters include divinyl succinate and divinyl adipate.

これらの多官能モノマー又はオリゴマーは、1種単独で使用してもよく、2種以上を併用してもよい。   These polyfunctional monomers or oligomers may be used alone or in combination of two or more.

前記重合性モノマーは、必要に応じて、分子内に重合性基を1個含有する重合性化合物(単官能モノマー)を併用してもよい。
前記単官能モノマーとしては、例えば、前記バインダーの原料として例示した化合物、特開平6−236031号公報に記載されている2塩基のモノ((メタ)アクリロイルオキシアルキルエステル)モノ(ハロヒドロキシアルキルエステル)等の単官能モノマー(例えば、γ−クロロ−β−ヒドロキシプロピル−β′−メタクリロイルオキシエチル−o−フタレート等)、特許2744643号公報、WO00/52529号公報、特許2548016号公報等に記載の化合物が挙げられる。
If necessary, the polymerizable monomer may be used in combination with a polymerizable compound (monofunctional monomer) containing one polymerizable group in the molecule.
Examples of the monofunctional monomer include the compounds exemplified as the raw material of the binder, and the dibasic mono ((meth) acryloyloxyalkyl ester) mono (halohydroxyalkyl ester) described in JP-A-6-236031. Monofunctional monomers such as γ-chloro-β-hydroxypropyl-β′-methacryloyloxyethyl-o-phthalate, etc., compounds described in Japanese Patent No. 2744443, WO00 / 52529, Japanese Patent No. 2548016, etc. Is mentioned.

前記感光層における重合性化合物の含有量としては、例えば、5〜90質量%が好ましく、15〜60質量%がより好ましく、20〜50質量%が特に好ましい。
前記含有量が、5質量%となると、テント膜の強度が低下することがあり、90質量%を超えると、保存時のエッジフュージョン(ロール端部からのしみだし故障)が悪化することがある。
また、重合性化合物中に前記重合性基を2個以上有する多官能モノマーの含有量としては、5〜100質量%が好ましく、20〜100質量%がより好ましく、40〜100質量%が特に好ましい。
As content of the polymeric compound in the said photosensitive layer, 5-90 mass% is preferable, for example, 15-60 mass% is more preferable, and 20-50 mass% is especially preferable.
If the content is 5% by mass, the strength of the tent film may be reduced, and if it exceeds 90% by mass, edge fusion during storage (exudation failure from the end of the roll) may be deteriorated. .
Moreover, as content of the polyfunctional monomer which has 2 or more of the said polymeric groups in a polymeric compound, 5-100 mass% is preferable, 20-100 mass% is more preferable, 40-100 mass% is especially preferable. .

――光重合開始剤――
前記光重合開始剤としては、前記重合性化合物の重合を開始する能力を有する限り、特に制限はなく、公知の光重合開始剤の中から適宜選択することができ、例えば、紫外線領域から可視の光線に対して感光性を有するものが好ましく、光励起された増感剤と何らかの作用を生じ、活性ラジカルを生成する活性剤であってもよく、モノマーの種類に応じてカチオン重合を開始させるような開始剤であってもよい。
また、前記光重合開始剤は、約300〜800nm(より好ましくは330〜500nm)の範囲内に少なくとも約50の分子吸光係数を有する成分を少なくとも1種含有していることが好ましい。
-Photopolymerization initiator-
The photopolymerization initiator is not particularly limited as long as it has the ability to initiate polymerization of the polymerizable compound, and can be appropriately selected from known photopolymerization initiators, for example, visible from the ultraviolet region. Those having photosensitivity to light are preferable, and may be an activator that generates an active radical by causing some action with a photoexcited sensitizer, and initiates cationic polymerization according to the type of monomer. It may be an initiator.
The photopolymerization initiator preferably contains at least one component having a molecular extinction coefficient of at least about 50 within a range of about 300 to 800 nm (more preferably 330 to 500 nm).

前記光重合開始剤としては、例えば、ハロゲン化炭化水素誘導体(例えば、トリアジン骨格を有するもの、オキサジアゾール骨格を有するもの等)、ヘキサアリールビイミダゾール、オキシム誘導体、有機過酸化物、チオ化合物、ケトン化合物、芳香族オニウム塩、メタロセン類などが挙げられる。これらの中でも、感光層の感度、保存性及び感光層とプリント配線板形成用基板との密着性等の観点から、トリアジン骨格を有するハロゲン化炭化水素、オキシム誘導体、ケトン化合物、ヘキサアリールビイミダゾール系化合物が好ましい。   Examples of the photopolymerization initiator include halogenated hydrocarbon derivatives (for example, those having a triazine skeleton, those having an oxadiazole skeleton), hexaarylbiimidazoles, oxime derivatives, organic peroxides, thio compounds, Examples include ketone compounds, aromatic onium salts, and metallocenes. Among these, halogenated hydrocarbons having a triazine skeleton, oxime derivatives, ketone compounds, hexaarylbiimidazole series from the viewpoints of sensitivity and storage stability of the photosensitive layer and adhesion between the photosensitive layer and the printed wiring board forming substrate. Compounds are preferred.

前記ヘキサアリールビイミダゾールとしては、例えば、2,2′−ビス(2−クロロフェニル)−4,4′,5,5′−テトラフェニルビイミダゾール、2,2′−ビス(o−フロロフェニル)−4,4′,5,5′−テトラフェニルビイミダゾール、2,2′−ビス(2−ブロモフェニル)−4,4′,5,5′−テトラフェニルビイミダゾール、2,2′−ビス(2,4−ジクロロフェニル)−4,4′,5,5′−テトラフェニルビイミダゾール、2,2′−ビス(2−クロロフェニル)−4,4′,5,5′−テトラ(3−メトキシフェニル)ビイミダゾール、2,2′−ビス(2−クロロフェニル)−4,4′,5,5′−テトラ(4−メトキシフェニル)ビイミダゾール、2,2′−ビス(4−メトキシフェニル)−4,4′,5,5′−テトラフェニルビイミダゾール、2,2′−ビス(2,4−ジクロロフェニル)−4,4′,5,5′−テトラフェニルビイミダゾール、2,2′−ビス(2−ニトロフェニル)−4,4′,5,5′−テトラフェニルビイミダゾール、2,2′−ビス(2−メチルフェニル)−4,4′,5,5′−テトラフェニルビイミダゾール、2,2′−ビス(2−トリフルオロメチルフェニル)−4,4′,5,5′−テトラフェニルビイミダゾール、WO00/52529号公報に記載の化合物などが挙げられる。   Examples of the hexaarylbiimidazole include 2,2′-bis (2-chlorophenyl) -4,4 ′, 5,5′-tetraphenylbiimidazole, 2,2′-bis (o-fluorophenyl)- 4,4 ', 5,5'-tetraphenylbiimidazole, 2,2'-bis (2-bromophenyl) -4,4', 5,5'-tetraphenylbiimidazole, 2,2'-bis ( 2,4-dichlorophenyl) -4,4 ', 5,5'-tetraphenylbiimidazole, 2,2'-bis (2-chlorophenyl) -4,4', 5,5'-tetra (3-methoxyphenyl) ) Biimidazole, 2,2'-bis (2-chlorophenyl) -4,4 ', 5,5'-tetra (4-methoxyphenyl) biimidazole, 2,2'-bis (4-methoxyphenyl) -4 , 4 ', , 5'-tetraphenylbiimidazole, 2,2'-bis (2,4-dichlorophenyl) -4,4 ', 5,5'-tetraphenylbiimidazole, 2,2'-bis (2-nitrophenyl) -4,4 ', 5,5'-tetraphenylbiimidazole, 2,2'-bis (2-methylphenyl) -4,4', 5,5'-tetraphenylbiimidazole, 2,2'-bis (2-Trifluoromethylphenyl) -4,4 ', 5,5'-tetraphenylbiimidazole, compounds described in WO00 / 52529, and the like.

前記ビイミダゾール類は、例えば、Bull.Chem.Soc.Japan,33,565(1960)及びJ.Org.Chem,36(16)2262(1971)に開示されている方法により容易に合成することができる。   The biimidazoles are described in, for example, Bull. Chem. Soc. Japan, 33, 565 (1960) and J. Am. Org. It can be easily synthesized by the method disclosed in Chem, 36 (16) 2262 (1971).

トリアジン骨格を有するハロゲン化炭化水素化合物としては、例えば、若林ら著、Bull.Chem.Soc.Japan,42、2924(1969)記載の化合物、英国特許1388492号明細書記載の化合物、特開昭53−133428号公報記載の化合物、独国特許3337024号明細書記載の化合物、F.C.Schaefer等によるJ.Org.Chem.;29、1527(1964)記載の化合物、特開昭62−58241号公報記載の化合物、特開平5−281728号公報記載の化合物、特開平5−34920号公報記載化合物、米国特許第4212976号明細書に記載されている化合物が挙げられる。   Examples of the halogenated hydrocarbon compound having a triazine skeleton include those described in Wakabayashi et al., Bull. Chem. Soc. Japan, 42, 2924 (1969), a compound described in British Patent 1388492, a compound described in JP-A-53-133428, a compound described in German Patent 3337024, F.I. C. J. Schaefer et al. Org. Chem. 29, 1527 (1964), compounds described in JP-A-62-258241, compounds described in JP-A-5-281728, compounds described in JP-A-5-34920, US Pat. No. 4,221,976 And compounds described in the book.

前記若林ら著、Bull.Chem.Soc.Japan,42、2924(1969)記載の化合物としては、例えば、2−フェニル−4,6−ビス(トリクロルメチル)−1,3,5−トリアジン、2−(4−クロルフェニル)−4,6−ビス(トリクロルメチル)−1,3,5−トリアジン、2−(4−トリル)−4,6−ビス(トリクロルメチル)−1,3,5−トリアジン、2−(4−メトキシフェニル)−4,6−ビス(トリクロルメチル)−1,3,5−トリアジン、2−(2,4−ジクロルフェニル)−4,6−ビス(トリクロルメチル)−1,3,5−トリアジン、2,4,6−トリス(トリクロルメチル)−1,3,5−トリアジン、2−メチル−4,6−ビス(トリクロルメチル)−1,3,5−トリアジン、2−n−ノニル−4,6−ビス(トリクロルメチル)−1,3,5−トリアジン及び2−(α,α,β−トリクロルエチル)−4,6−ビス(トリクロルメチル)−1,3,5−トリアジンなどが挙げられる。   Wakabayashi et al., Bull. Chem. Soc. As a compound described in Japan, 42, 2924 (1969), for example, 2-phenyl-4,6-bis (trichloromethyl) -1,3,5-triazine, 2- (4-chlorophenyl) -4,6 -Bis (trichloromethyl) -1,3,5-triazine, 2- (4-tolyl) -4,6-bis (trichloromethyl) -1,3,5-triazine, 2- (4-methoxyphenyl)- 4,6-bis (trichloromethyl) -1,3,5-triazine, 2- (2,4-dichlorophenyl) -4,6-bis (trichloromethyl) -1,3,5-triazine, 2, 4,6-tris (trichloromethyl) -1,3,5-triazine, 2-methyl-4,6-bis (trichloromethyl) -1,3,5-triazine, 2-n-nonyl-4,6- Bis (trichloromethyl) 1,3,5-triazine and 2- (α, α, β- trichloroethyl) -4,6-bis (trichloromethyl) -1,3,5-triazine.

前記英国特許1388492号明細書記載の化合物としては、例えば、2−スチリル−4,6−ビス(トリクロルメチル)−1,3,5−トリアジン、2−(4−メチルスチリル)−4,6−ビス(トリクロルメチル)−1,3,5−トリアジン、2−(4−メトキシスチリル)−4,6−ビス(トリクロルメチル)−1,3,5−トリアジン、2−(4−メトキシスチリル)−4−アミノ−6−トリクロルメチル−1,3,5−トリアジンなどが挙げられる。   Examples of the compound described in the British Patent 1388492 include 2-styryl-4,6-bis (trichloromethyl) -1,3,5-triazine, 2- (4-methylstyryl) -4,6- Bis (trichloromethyl) -1,3,5-triazine, 2- (4-methoxystyryl) -4,6-bis (trichloromethyl) -1,3,5-triazine, 2- (4-methoxystyryl)- 4-amino-6-trichloromethyl-1,3,5-triazine and the like can be mentioned.

前記特開昭53−133428号公報記載の化合物としては、例えば、2−(4−メトキシ−ナフト−1−イル)−4,6−ビス(トリクロルメチル)−1,3,5−トリアジン、2−(4−エトキシ−ナフト−1−イル)−4,6−ビス(トリクロルメチル)−1,3,5−トリアジン、2−〔4−(2−エトキシエチル)−ナフト−1−イル〕−4,6−ビス(トリクロルメチル)−1,3,5−トリアジン、2−(4,7−ジメトキシ−ナフト−1−イル)−4,6−ビス(トリクロルメチル)−1,3,5−トリアジン及び2−(アセナフト−5−イル)−4,6−ビス(トリクロルメチル)−1,3,5−トリアジンなどが挙げられる。   Examples of the compounds described in JP-A-53-133428 include 2- (4-methoxy-naphth-1-yl) -4,6-bis (trichloromethyl) -1,3,5-triazine, 2 -(4-Ethoxy-naphth-1-yl) -4,6-bis (trichloromethyl) -1,3,5-triazine, 2- [4- (2-ethoxyethyl) -naphth-1-yl]- 4,6-bis (trichloromethyl) -1,3,5-triazine, 2- (4,7-dimethoxy-naphth-1-yl) -4,6-bis (trichloromethyl) -1,3,5- Examples include triazine and 2- (acenaphtho-5-yl) -4,6-bis (trichloromethyl) -1,3,5-triazine.

前記独国特許3337024号明細書記載の化合物としては、例えば、2−(4−スチリルフェニル)−4、6−ビス(トリクロロメチル)−1,3,5−トリアジン、2−(4−(4−メトキシスチリル)フェニル)−4、6−ビス(トリクロロメチル)−1,3,5−トリアジン、2−(1−ナフチルビニレンフェニル)−4、6−ビス(トリクロロメチル)−1,3,5−トリアジン、2−クロロスチリルフェニル−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、2−(4−チオフェン−2−ビニレンフェニル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、2−(4−チオフェン−3−ビニレンフェニル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、2−(4−フラン−2−ビニレンフェニル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン及び2−(4−ベンゾフラン−2−ビニレンフェニル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジンなどが挙げられる。   Examples of the compound described in the specification of German Patent 3333724 include 2- (4-styrylphenyl) -4,6-bis (trichloromethyl) -1,3,5-triazine, 2- (4- (4 -Methoxystyryl) phenyl) -4,6-bis (trichloromethyl) -1,3,5-triazine, 2- (1-naphthylvinylenephenyl) -4,6-bis (trichloromethyl) -1,3,5 -Triazine, 2-chlorostyrylphenyl-4,6-bis (trichloromethyl) -1,3,5-triazine, 2- (4-thiophen-2-vinylenephenyl) -4,6-bis (trichloromethyl)- 1,3,5-triazine, 2- (4-thiophene-3-vinylenephenyl) -4,6-bis (trichloromethyl) -1,3,5-triazine, 2- (4-furan-2 Vinylenephenyl) -4,6-bis (trichloromethyl) -1,3,5-triazine and 2- (4-benzofuran-2-vinylenephenyl) -4,6-bis (trichloromethyl) -1,3,5 -Triazine etc. are mentioned.

前記F.C.Schaefer等によるJ.Org.Chem.;29、1527(1964)記載の化合物としては、例えば、2−メチル−4,6−ビス(トリブロモメチル)−1,3,5−トリアジン、2,4,6−トリス(トリブロモメチル)−1,3,5−トリアジン、2,4,6−トリス(ジブロモメチル)−1,3,5−トリアジン、2−アミノ−4−メチル−6−トリ(ブロモメチル)−1,3,5−トリアジン及び2−メトキシ−4−メチル−6−トリクロロメチル−1,3,5−トリアジンなどが挙げられる。   F. above. C. J. Schaefer et al. Org. Chem. 29, 1527 (1964) include, for example, 2-methyl-4,6-bis (tribromomethyl) -1,3,5-triazine, 2,4,6-tris (tribromomethyl); -1,3,5-triazine, 2,4,6-tris (dibromomethyl) -1,3,5-triazine, 2-amino-4-methyl-6-tri (bromomethyl) -1,3,5- Examples include triazine and 2-methoxy-4-methyl-6-trichloromethyl-1,3,5-triazine.

前記特開昭62−58241号公報記載の化合物としては、例えば、2−(4−フェニルエチニルフェニル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、2−(4−ナフチル−1−エチニルフェニル−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、2−(4−(4−トリルエチニル)フェニル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、2−(4−(4−メトキシフェニル)エチニルフェニル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、2−(4−(4−イソプロピルフェニルエチニル)フェニル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、2−(4−(4−エチルフェニルエチニル)フェニル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジンなどが挙げられる。   Examples of the compounds described in JP-A-62-258241 include 2- (4-phenylethynylphenyl) -4,6-bis (trichloromethyl) -1,3,5-triazine, 2- (4- Naphthyl-1-ethynylphenyl-4,6-bis (trichloromethyl) -1,3,5-triazine, 2- (4- (4-tolylethynyl) phenyl) -4,6-bis (trichloromethyl) -1 , 3,5-triazine, 2- (4- (4-methoxyphenyl) ethynylphenyl) -4,6-bis (trichloromethyl) -1,3,5-triazine, 2- (4- (4-isopropylphenyl) Ethynyl) phenyl) -4,6-bis (trichloromethyl) -1,3,5-triazine, 2- (4- (4-ethylphenylethynyl) phenyl) -4,6-bis (trichloromethyl) Le) -1,3,5-triazine.

前記特開平5−281728号公報記載の化合物としては、例えば、2−(4−トリフルオロメチルフェニル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、2−(2,6−ジフルオロフェニル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、2−(2,6−ジクロロフェニル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、2−(2,6−ジブロモフェニル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジンなどが挙げられる。   Examples of the compound described in JP-A-5-281728 include 2- (4-trifluoromethylphenyl) -4,6-bis (trichloromethyl) -1,3,5-triazine, 2- (2, 6-difluorophenyl) -4,6-bis (trichloromethyl) -1,3,5-triazine, 2- (2,6-dichlorophenyl) -4,6-bis (trichloromethyl) -1,3,5- Examples include triazine, 2- (2,6-dibromophenyl) -4,6-bis (trichloromethyl) -1,3,5-triazine.

前記特開平5−34920号公報記載化合物としては、例えば、2,4−ビス(トリクロロメチル)−6−[4−(N,N−ジエトキシカルボニルメチルアミノ)−3−ブロモフェニル]−1,3,5−トリアジン、米国特許第4239850号明細書に記載されているトリハロメチル−s−トリアジン化合物、更に2,4,6−トリス(トリクロロメチル)−s−トリアジン、2−(4−クロロフェニル)−4,6−ビス(トリブロモメチル)−s−トリアジンなどが挙げられる。   Examples of the compound described in JP-A-5-34920 include 2,4-bis (trichloromethyl) -6- [4- (N, N-diethoxycarbonylmethylamino) -3-bromophenyl] -1, 3,5-triazine, trihalomethyl-s-triazine compounds described in US Pat. No. 4,239,850, 2,4,6-tris (trichloromethyl) -s-triazine, 2- (4-chlorophenyl) Examples include -4,6-bis (tribromomethyl) -s-triazine.

前記米国特許第4212976号明細書に記載されている化合物としては、例えば、オキサジアゾール骨格を有する化合物(例えば、2−トリクロロメチル−5−フェニル−1,3,4−オキサジアゾール、2−トリクロロメチル−5−(4−クロロフェニル)−1,3,4−オキサジアゾール、2−トリクロロメチル−5−(1−ナフチル)−1,3,4−オキサジアゾール、2−トリクロロメチル−5−(2−ナフチル)−1,3,4−オキサジアゾール、2−トリブロモメチル−5−フェニル−1,3,4−オキサジアゾール、2−トリブロモメチル−5−(2−ナフチル)−1,3,4−オキサジアゾール;2−トリクロロメチル−5−スチリル−1,3,4−オキサジアゾール、2−トリクロロメチル−5−(4−クロルスチリル)−1,3,4−オキサジアゾール、2−トリクロロメチル−5−(4−メトキシスチリル)−1,3,4−オキサジアゾール、2−トリクロロメチル−5−(1−ナフチル)−1,3,4−オキサジアゾール、2−トリクロロメチル−5−(4−n−ブトキシスチリル)−1,3,4−オキサジアゾール、2−トリプロメメチル−5−スチリル−1,3,4−オキサジアゾール等)などが挙げられる。   Examples of the compound described in US Pat. No. 4,221,976 include compounds having an oxadiazole skeleton (for example, 2-trichloromethyl-5-phenyl-1,3,4-oxadiazole, 2- Trichloromethyl-5- (4-chlorophenyl) -1,3,4-oxadiazole, 2-trichloromethyl-5- (1-naphthyl) -1,3,4-oxadiazole, 2-trichloromethyl-5 -(2-naphthyl) -1,3,4-oxadiazole, 2-tribromomethyl-5-phenyl-1,3,4-oxadiazole, 2-tribromomethyl-5- (2-naphthyl) -1,3,4-oxadiazole; 2-trichloromethyl-5-styryl-1,3,4-oxadiazole, 2-trichloromethyl-5- (4-chlorostyryl) -1,3,4-oxadiazole, 2-trichloromethyl-5- (4-methoxystyryl) -1,3,4-oxadiazole, 2-trichloromethyl-5- (1-naphthyl) -1, 3,4-oxadiazole, 2-trichloromethyl-5- (4-n-butoxystyryl) -1,3,4-oxadiazole, 2-tripromemethyl-5-styryl-1,3,4 Oxadiazole and the like).

本発明で好適に用いられるオキシム誘導体としては、例えば、下記構造式(39)〜(72)で表される化合物が挙げられる。   Examples of the oxime derivative suitably used in the present invention include compounds represented by the following structural formulas (39) to (72).

前記ケトン化合物としては、例えば、ベンゾフェノン、2−メチルベンゾフェノン、3−メチルベンゾフェノン、4−メチルベンゾフェノン、4−メトキシベンゾフェノン、2−クロロベンゾフェノン、4−クロロベンゾフェノン、4−ブロモベンゾフェノン、2−カルボキシベンゾフェノン、2−エトキシカルボニルベンゾルフェノン、ベンゾフェノンテトラカルボン酸又はそのテトラメチルエステル、4,4’−ビス(ジアルキルアミノ)ベンゾフェノン類(例えば、4,4’−ビス(ジメチルアミノ)ベンゾフェノン、4,4’−ビスジシクロヘキシルアミノ)ベンゾフェノン、4,4’−ビス(ジエチルアミノ)ベンゾフェノン、4,4’−ビス(ジヒドロキシエチルアミノ)ベンゾフェノン、4−メトキシ−4’−ジメチルアミノベンゾフェノン、4,4’−ジメトキシベンゾフェノン、4−ジメチルアミノベンゾフェノン、4−ジメチルアミノアセトフェノン、ベンジル、アントラキノン、2−t−ブチルアントラキノン、2−メチルアントラキノン、フェナントラキノン、キサントン、チオキサントン、2−クロル−チオキサントン、2,4−ジエチルチオキサントン、フルオレノン、2−ベンジル−ジメチルアミノ−1−(4−モルホリノフェニル)−1−ブタノン、2−メチル−1−〔4−(メチルチオ)フェニル〕−2−モルホリノ−1−プロパノン、2−ヒドロキシー2−メチル−〔4−(1−メチルビニル)フェニル〕プロパノールオリゴマー、ベンゾイン、ベンゾインエーテル類(例えば、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインプロピルエーテル、ベンゾインイソプロピルエーテル、ベンゾインフェニルエーテル、ベンジルジメチルケタール)、アクリドン、クロロアクリドン、N−メチルアクリドン、N−ブチルアクリドン、N−ブチル−クロロアクリドンなどが挙げられる。   Examples of the ketone compound include benzophenone, 2-methylbenzophenone, 3-methylbenzophenone, 4-methylbenzophenone, 4-methoxybenzophenone, 2-chlorobenzophenone, 4-chlorobenzophenone, 4-bromobenzophenone, 2-carboxybenzophenone, 2-ethoxycarbonylbenzolphenone, benzophenonetetracarboxylic acid or tetramethyl ester thereof, 4,4′-bis (dialkylamino) benzophenone (for example, 4,4′-bis (dimethylamino) benzophenone, 4,4′- Bisdicyclohexylamino) benzophenone, 4,4′-bis (diethylamino) benzophenone, 4,4′-bis (dihydroxyethylamino) benzophenone, 4-methoxy-4′-dimethylamino Nzophenone, 4,4'-dimethoxybenzophenone, 4-dimethylaminobenzophenone, 4-dimethylaminoacetophenone, benzyl, anthraquinone, 2-t-butylanthraquinone, 2-methylanthraquinone, phenanthraquinone, xanthone, thioxanthone, 2-chloro -Thioxanthone, 2,4-diethylthioxanthone, fluorenone, 2-benzyl-dimethylamino-1- (4-morpholinophenyl) -1-butanone, 2-methyl-1- [4- (methylthio) phenyl] -2-morpholino -1-propanone, 2-hydroxy-2-methyl- [4- (1-methylvinyl) phenyl] propanol oligomer, benzoin, benzoin ethers (for example, benzoin methyl ether, benzoin ethyl ether, In propyl ether, benzoin isopropyl ether, benzoin phenyl ether, benzyl dimethyl ketal), acridone, chloro acridone, N- methyl acridone, N- butyl acridone, N- butyl - such as chloro acrylic pyrrolidone.

前記メタロセン類としては、例えば、ビス(η5−2,4−シクロペンタジエン−1−イル)−ビス(2,6−ジフロロ−3−(1H−ピロール−1−イル)−フェニル)チタニウム、η5−シクロペンタジエニル−η6−クメニル−アイアン(1+)−ヘキサフロロホスフェート(1−)、特開昭53−133428号公報、特公昭57−1819号公報、同57−6096号公報及び米国特許第3615455号明細書に記載された化合物などが挙げられる。   Examples of the metallocenes include bis (η5-2,4-cyclopentadien-1-yl) -bis (2,6-difluoro-3- (1H-pyrrol-1-yl) -phenyl) titanium, η5- Cyclopentadienyl-η6-cumenyl-iron (1 +)-hexafluorophosphate (1-), JP-A-53-133428, JP-B-57-1819, JP-A-57-6096 and US Pat. No. 3,615,455 And the compounds described in the specification.

また、上記以外の光重合開始剤として、アクリジン誘導体(例えば、9−フェニルアクリジン、1,7−ビス(9、9’−アクリジニル)ヘプタン等)、N−フェニルグリシン等、ポリハロゲン化合物(例えば、四臭化炭素、フェニルトリブロモメチルスルホン、フェニルトリクロロメチルケトン等)、クマリン類(例えば、3−(2−ベンゾフロイル)−7−ジエチルアミノクマリン、3−(2−ベンゾフロイル)−7−(1−ピロリジニル)クマリン、3−ベンゾイル−7−ジエチルアミノクマリン、3−(2−メトキシベンゾイル)−7−ジエチルアミノクマリン、3−(4−ジメチルアミノベンゾイル)−7−ジエチルアミノクマリン、3,3’−カルボニルビス(5,7−ジ−n−プロポキシクマリン)、3,3’−カルボニルビス(7−ジエチルアミノクマリン)、3−ベンゾイル−7−メトキシクマリン、3−(2−フロイル)−7−ジエチルアミノクマリン、3−(4−ジエチルアミノシンナモイル)−7−ジエチルアミノクマリン、7−メトキシ−3−(3−ピリジルカルボニル)クマリン、3−ベンゾイル−5,7−ジプロポキシクマリン、7−ベンゾトリアゾール−2−イルクマリン、また、特開平5-19475号公報、特開平7-271028号公報、特開2002-363206号公報、特開2002-363207号公報、特開2002-363208号公報、特開2002-363209号公報等に記載のクマリン化合物など)、アミン類(例えば、4−ジメチルアミノ安息香酸エチル、4−ジメチルアミノ安息香酸n−ブチル、4−ジメチルアミノ安息香酸フェネチル、4−ジメチルアミノ安息香酸2−フタルイミドエチル、4−ジメチルアミノ安息香酸2−メタクリロイルオキシエチル、ペンタメチレンビス(4−ジメチルアミノベンゾエート)、3−ジメチルアミノ安息香酸のフェネチル、ペンタメチレンエステル、4−ジメチルアミノベンズアルデヒド、2−クロル−4−ジメチルアミノベンズアルデヒド、4−ジメチルアミノベンジルアルコール、エチル(4−ジメチルアミノベンゾイル)アセテート、4−ピペリジノアセトフェノン、4−ジメチルアミノベンゾイン、N,N−ジメチル−4−トルイジン、N,N−ジエチル−3−フェネチジン、トリベンジルアミン、ジベンジルフェニルアミン、N−メチル−N−フェニルベンジルアミン、4−ブロム−N,N−ジメチルアニリン、トリドデシルアミン、アミノフルオラン類(ODB,ODBII等)、クリスタルバイオレットラクトン、ロイコクリスタルバイオレット等)、アシルホスフィンオキシド類(例えば、ビス(2,4,6−トリメチルベンゾイル)−フェニルホスフィンオキシド、ビス(2,6−ジメトキシベンゾイル)−2,4,4−トリメチル−ペンチルフェニルホスフィンオキシド、LucirinTPOなど)などが挙げられる。   Further, as photopolymerization initiators other than the above, acridine derivatives (for example, 9-phenylacridine, 1,7-bis (9,9′-acridinyl) heptane, etc.), N-phenylglycine, and the like, polyhalogen compounds (for example, Carbon tetrabromide, phenyltribromomethylsulfone, phenyltrichloromethylketone, etc.), coumarins (for example, 3- (2-benzofuroyl) -7-diethylaminocoumarin, 3- (2-benzofuroyl) -7- (1-pyrrolidinyl) ) Coumarin, 3-benzoyl-7-diethylaminocoumarin, 3- (2-methoxybenzoyl) -7-diethylaminocoumarin, 3- (4-dimethylaminobenzoyl) -7-diethylaminocoumarin, 3,3′-carbonylbis (5 , 7-di-n-propoxycoumarin), 3,3′-carbonylbis (7-diethylaminocoumarin), 3-benzoyl-7-methoxycoumarin, 3- (2-furoyl) -7-diethylaminocoumarin, 3- (4-diethylaminocinnamoyl) -7-diethylaminocoumarin, 7-methoxy-3- (3-pyridylcarbonyl) coumarin, 3-benzoyl-5,7-dipropoxycoumarin, 7-benzotriazol-2-ylcoumarin, JP-A-5-19475, JP-A-7-271028, JP2002 -363206, JP-A-2002-363207, JP-A-2002-363208, JP-A-2002-363209, etc.), amines (for example, ethyl 4-dimethylaminobenzoate, N-butyl 4-dimethylaminobenzoate, 4-dimethylaminobenzoic acid Phenethyl, 4-dimethylaminobenzoic acid 2-phthalimidoethyl, 4-dimethylaminobenzoic acid 2-methacryloyloxyethyl, pentamethylenebis (4-dimethylaminobenzoate), phenethyl of 3-dimethylaminobenzoic acid, pentamethylene ester, 4 -Dimethylaminobenzaldehyde, 2-chloro-4-dimethylaminobenzaldehyde, 4-dimethylaminobenzyl alcohol, ethyl (4-dimethylaminobenzoyl) acetate, 4-piperidinoacetophenone, 4-dimethylaminobenzoin, N, N-dimethyl -4-toluidine, N, N-diethyl-3-phenidine, tribenzylamine, dibenzylphenylamine, N-methyl-N-phenylbenzylamine, 4-bromo-N, N-dimethylaniline, tri Dodecylamine, aminofluoranes (ODB, ODBII, etc.), crystal violet lactone, leuco crystal violet, etc.), acylphosphine oxides (for example, bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide, bis (2 , 6-dimethoxybenzoyl) -2,4,4-trimethyl-pentylphenylphosphine oxide, Lucirin TPO, etc.).

更に、米国特許第2367660号明細書に記載されているビシナルポリケタルドニル化合物、米国特許第2448828号明細書に記載されているアシロインエーテル化合物、米国特許第2722512号明細書に記載されているα−炭化水素で置換された芳香族アシロイン化合物、米国特許第3046127号明細書及び同第2951758号明細書に記載の多核キノン化合物、特開2002−229194号公報に記載の有機ホウ素化合物、ラジカル発生剤、トリアリールスルホニウム塩(例えば、ヘキサフロロアンチモンやヘキサフロロホスフェートとの塩)、ホスホニウム塩化合物(例えば、(フェニルチオフェニル)ジフェニルスルホニウム塩等)(カチオン重合開始剤として有効)、WO01/71428号公報記載のオニウム塩化合物などが挙げられる。   Further, vicinal polyketaldonyl compounds described in US Pat. No. 2,367,660, acyloin ether compounds described in US Pat. No. 2,448,828, and US Pat. No. 2,722,512 are described. An aromatic acyloin compound substituted with α-hydrocarbon, a polynuclear quinone compound described in US Pat. Nos. 3,046,127 and 2,951,758, an organoboron compound described in JP-A-2002-229194, and a radical Generator, triarylsulfonium salt (for example, salt with hexafluoroantimony or hexafluorophosphate), phosphonium salt compound (for example, (phenylthiophenyl) diphenylsulfonium salt, etc.) (effective as a cationic polymerization initiator), WO01 / 71428 Onium Such compounds.

前記光重合開始剤は、1種単独で使用してもよく、2種以上を併用してもよい。2種以上の組合せとしては、例えば、米国特許第3549367号明細書に記載のヘキサアリールビイミダゾールと4−アミノケトン類との組合せ、特公昭51−48516号公報に記載のベンゾチアゾール化合物とトリハロメチル−s−トリアジン化合物の組合せ、また、芳香族ケトン化合物(例えば、チオキサントン等)と水素供与体(例えば、ジアルキルアミノ含有化合物、フェノール化合物等)の組合せ、ヘキサアリールビイミダゾールとチタノセンとの組合せ、クマリン類とチタノセンとフェニルグリシン類との組合せなどが挙げられる。   The said photoinitiator may be used individually by 1 type, and may use 2 or more types together. Examples of the combination of two or more include, for example, a combination of hexaarylbiimidazole and 4-aminoketone described in US Pat. No. 3,549,367, a benzothiazole compound described in Japanese Patent Publication No. 51-48516, and trihalomethyl- Combinations of s-triazine compounds, combinations of aromatic ketone compounds (such as thioxanthone) and hydrogen donors (such as dialkylamino-containing compounds and phenol compounds), combinations of hexaarylbiimidazole and titanocene, and coumarins And combinations of titanocene and phenylglycines.

前記感光層における光重合開始剤の含有量としては、0.1〜30質量%が好ましく、0.5〜20質量%がより好ましく、0.5〜15質量%が特に好ましい。   As content of the photoinitiator in the said photosensitive layer, 0.1-30 mass% is preferable, 0.5-20 mass% is more preferable, 0.5-15 mass% is especially preferable.

――その他の成分――
前記その他の成分としては、例えば、増感剤、熱重合禁止剤、可塑剤、発色剤、着色剤などが挙げられ、更に基体表面への密着促進剤及びその他の助剤類(例えば、顔料、導電性粒子、充填剤、消泡剤、難燃剤、レベリング剤、剥離促進剤、酸化防止剤、香料、熱架橋剤、表面張力調整剤、連鎖移動剤等)を併用してもよい。これらの成分を適宜含有させることにより、目的とするパターン形成材料の安定性、写真性、焼きだし性、膜物性等の性質を調整することができる。
--Other ingredients--
Examples of the other components include sensitizers, thermal polymerization inhibitors, plasticizers, color formers, colorants, and the like, and further adhesion promoters to the substrate surface and other auxiliary agents (for example, pigments, Conductive particles, fillers, antifoaming agents, flame retardants, leveling agents, peeling accelerators, antioxidants, fragrances, thermal crosslinking agents, surface tension adjusting agents, chain transfer agents, etc.) may be used in combination. By appropriately containing these components, it is possible to adjust properties such as stability, photographic properties, print-out properties, and film properties of the target pattern forming material.

―――増感剤―――
前記増感剤は、後述する光照射手段として可視光線や紫外光・可視光レーザなどにより適宜選択することができる。
前記増感剤は、活性エネルギー線により励起状態となり、他の物質(例えば、ラジカル発生剤、酸発生剤等)と相互作用(例えば、エネルギー移動、電子移動等)することにより、ラジカルや酸等の有用基を発生することが可能である。
――― Sensitizer ―――
The sensitizer can be appropriately selected by visible light, ultraviolet light, visible light laser, or the like as a light irradiation means to be described later.
The sensitizer is excited by active energy rays and interacts with other substances (for example, radical generator, acid generator, etc.) (for example, energy transfer, electron transfer, etc.), thereby generating radicals, acids, etc. It is possible to generate a useful group of

前記増感剤としては、特に制限はなく、公知の増感剤の中から適宜選択することができ、例えば、公知の多核芳香族類(例えば、ピレン、ペリレン、トリフェニレン)、キサンテン類(例えば、フルオレセイン、エオシン、エリスロシン、ローダミンB、ローズベンガル)、シアニン類(例えば、インドカルボシアニン、チアカルボシアニン、オキサカルボシアニン)、メロシアニン類(例えば、メロシアニン、カルボメロシアニン)、チアジン類(例えば、チオニン、メチレンブルー、トルイジンブルー)、アクリジン類(例えば、アクリジンオレンジ、クロロフラビン、アクリフラビン)、アントラキノン類(例えば、アントラキノン)、スクアリウム類(例えば、スクアリウム)、アクリドン類(例えば、アクリドン、クロロアクリドン、N−メチルアクリドン、N−ブチルアクリドン、N−ブチル−クロロアクリドン等)、クマリン類(例えば、3−(2−ベンゾフロイル)−7−ジエチルアミノクマリン、3−(2−ベンゾフロイル)−7−(1−ピロリジニル)クマリン、3−ベンゾイル−7−ジエチルアミノクマリン、3−(2−メトキシベンゾイル)−7−ジエチルアミノクマリン、3−(4−ジメチルアミノベンゾイル)−7−ジエチルアミノクマリン、3,3’−カルボニルビス(5,7−ジ−n−プロポキシクマリン)、3,3’−カルボニルビス(7−ジエチルアミノクマリン)、3−ベンゾイル−7−メトキシクマリン、3−(2−フロイル)−7−ジエチルアミノクマリン、3−(4−ジエチルアミノシンナモイル)−7−ジエチルアミノクマリン、7−メトキシ−3−(3−ピリジルカルボニル)クマリン、3−ベンゾイル−5,7−ジプロポキシクマリン等があげられる。他には、特開平5-19475号公報、特開平7-271028号公報、特開2002-363206号公報、特開2002-363207号公報、特開2002-363208号公報、特開2002-363209号公報等に記載のクマリン化合物など)も挙げられる。   The sensitizer is not particularly limited and may be appropriately selected from known sensitizers. For example, known polynuclear aromatics (for example, pyrene, perylene, triphenylene), xanthenes (for example, Fluorescein, eosin, erythrosine, rhodamine B, rose bengal), cyanines (eg, indocarbocyanine, thiacarbocyanine, oxacarbocyanine), merocyanines (eg, merocyanine, carbomerocyanine), thiazines (eg, thionine, methylene blue) , Toluidine blue), acridines (eg, acridine orange, chloroflavin, acriflavine), anthraquinones (eg, anthraquinone), squariums (eg, squalium), acridones (eg, acridone, chloroacrid) N-methylacridone, N-butylacridone, N-butyl-chloroacridone, etc.), coumarins (for example, 3- (2-benzofuroyl) -7-diethylaminocoumarin, 3- (2-benzofuroyl) -7 -(1-pyrrolidinyl) coumarin, 3-benzoyl-7-diethylaminocoumarin, 3- (2-methoxybenzoyl) -7-diethylaminocoumarin, 3- (4-dimethylaminobenzoyl) -7-diethylaminocoumarin, 3,3 ′ -Carbonylbis (5,7-di-n-propoxycoumarin), 3,3'-carbonylbis (7-diethylaminocoumarin), 3-benzoyl-7-methoxycoumarin, 3- (2-furoyl) -7-diethylamino Coumarin, 3- (4-Diethylaminocinnamoyl) -7-diethylaminocoumarin, 7 Examples thereof include methoxy-3- (3-pyridylcarbonyl) coumarin, 3-benzoyl-5,7-dipropoxycoumarin, etc. In addition, JP-A-5-19475, JP-A-7-271028, JP And coumarin compounds described in JP 2002-363206 A, JP 2002-363207 A, JP 2002-363208 A, JP 2002-363209 A, and the like.

前記光重合開始剤と前記増感剤との組合せとしては、例えば、特開2001−305734号公報に記載の電子移動型開始系[(1)電子供与型開始剤及び増感色素、(2)電子受容型開始剤及び増感色素、(3)電子供与型開始剤、増感色素及び電子受容型開始剤(三元開始系)]などの組合せが挙げられる。   Examples of the combination of the photopolymerization initiator and the sensitizer include, for example, an electron transfer start system described in JP-A-2001-305734 [(1) an electron donating initiator and a sensitizing dye, (2) A combination of an electron-accepting initiator and a sensitizing dye, (3) an electron-donating initiator, a sensitizing dye and an electron-accepting initiator (ternary initiation system), and the like.

前記増感剤の含有量としては、特に制限はなく、目的に応じて適宜選択することができ、感光性樹脂組成物の全成分に対し、0.05〜30質量%が好ましく、0.1〜20質量%がより好ましく、0.2〜10質量%が特に好ましい。
前記含有量が、0.05質量%未満となると、活性エネルギー線への感度が低下し、露光プロセスに時間がかかり、生産性が低下することがあり、30質量%を超えると、前記感光層から保存時に析出することがある。
There is no restriction | limiting in particular as content of the said sensitizer, According to the objective, it can select suitably, 0.05-30 mass% is preferable with respect to all the components of the photosensitive resin composition, 0.1% -20 mass% is more preferable, and 0.2-10 mass% is especially preferable.
When the content is less than 0.05% by mass, the sensitivity to active energy rays decreases, the exposure process takes time, and the productivity may decrease. When the content exceeds 30% by mass, the photosensitive layer May precipitate during storage.

―――熱重合禁止剤―――
前記熱重合禁止剤は、前記感光層における前記重合性化合物の熱的な重合又は経時的な重合を防止するために添加してもよい。
前記熱重合禁止剤としては、例えば、4−メトキシフェノール、ハイドロキノン、アルキルまたはアリール置換ハイドロキノン、t−ブチルカテコール、ピロガロール、2−ヒドロキシベンゾフェノン、4−メトキシ−2−ヒドロキシベンゾフェノン、塩化第一銅、フェノチアジン、クロラニル、ナフチルアミン、β−ナフトール、2,6−ジ−t−ブチル−4−クレゾール、2,2’−メチレンビス(4−メチル−6−t−ブチルフェノール)、ピリジン、ニトロベンゼン、ジニトロベンゼン、ピクリン酸、4−トルイジン、メチレンブルー、銅と有機キレート剤反応物、サリチル酸メチル、フェノチアジン、ニトロソ化合物及びニトロソ化合物とAlとのキレート等が挙げられる。
――― Thermal polymerization inhibitor ―――
The thermal polymerization inhibitor may be added to prevent thermal polymerization or temporal polymerization of the polymerizable compound in the photosensitive layer.
Examples of the thermal polymerization inhibitor include 4-methoxyphenol, hydroquinone, alkyl or aryl-substituted hydroquinone, t-butylcatechol, pyrogallol, 2-hydroxybenzophenone, 4-methoxy-2-hydroxybenzophenone, cuprous chloride, phenothiazine. , Chloranil, naphthylamine, β-naphthol, 2,6-di-tert-butyl-4-cresol, 2,2′-methylenebis (4-methyl-6-tert-butylphenol), pyridine, nitrobenzene, dinitrobenzene, picric acid 4-toluidine, methylene blue, copper and organic chelating agent reactant, methyl salicylate, phenothiazine, nitroso compound, chelate of nitroso compound and Al, and the like.

前記熱重合禁止剤の含有量としては、前記感光層の前記重合性化合物に対して0.001〜5質量%が好ましく、0.005〜2質量%がより好ましく、0.01〜1質量%が特に好ましい。
前記含有量が、0.001質量%未満であると、保存時の安定性が低下することがあり、5質量%を超えると、活性エネルギー線に対する感度が低下することがある。
As content of the said thermal-polymerization inhibitor, 0.001-5 mass% is preferable with respect to the said polymeric compound of the said photosensitive layer, 0.005-2 mass% is more preferable, 0.01-1 mass% Is particularly preferred.
When the content is less than 0.001% by mass, stability during storage may be reduced, and when it exceeds 5% by mass, sensitivity to active energy rays may be reduced.

―――可塑剤―――
前記可塑剤は、前記感光層の膜物性(可撓性)をコントロールするために添加してもよい。
前記可塑剤としては、例えば、ジメチルフタレート、ジブチルフタレート、ジイソブチルフタレート、ジヘプチルフタレート、ジオクチルフタレート、ジシクロヘキシルフタレート、ジトリデシルフタレート、ブチルベンジルフタレート、ジイソデシルフタレート、ジフェニルフタレート、ジアリルフタレート、オクチルカプリールフタレート等のフタル酸エステル類;トリエチレングリコールジアセテート、テトラエチレングリコールジアセテート、ジメチルグリコースフタレート、エチルフタリールエチルグリコレート、メチルフタリールエチルグリコレート、ブチルフタリールブチルグリコレート、トリエチレングリコールジカブリル酸エステル等のグリコールエステル類;トリクレジルホスフェート、トリフェニルホスフェート等のリン酸エステル類;4−トルエンスルホンアミド、ベンゼンスルホンアミド、N−n−ブチルベンゼンスルホンアミド、N−n−ブチルアセトアミド等のアミド類;ジイソブチルアジペート、ジオクチルアジペート、ジメチルセバケート、ジブチルセパケート、ジオクチルセパケート、ジオクチルアゼレート、ジブチルマレート等の脂肪族二塩基酸エステル類;クエン酸トリエチル、クエン酸トリブチル、グリセリントリアセチルエステル、ラウリン酸ブチル、4,5−ジエポキシシクロヘキサン−1,2−ジカルボン酸ジオクチル等、ポリエチレングリコール、ポリプロピレングリコール等のグリコール類が挙げられる。
――― Plasticizer ―――
The plasticizer may be added to control film physical properties (flexibility) of the photosensitive layer.
Examples of the plasticizer include dimethyl phthalate, dibutyl phthalate, diisobutyl phthalate, diheptyl phthalate, dioctyl phthalate, dicyclohexyl phthalate, ditridecyl phthalate, butyl benzyl phthalate, diisodecyl phthalate, diphenyl phthalate, diallyl phthalate, octyl capryl phthalate, and the like. Phthalic acid esters: Triethylene glycol diacetate, tetraethylene glycol diacetate, dimethylglycol phthalate, ethyl phthalyl ethyl glycolate, methyl phthalyl ethyl glycolate, butyl phthalyl butyl glycolate, triethylene glycol dicabrylate, etc. Glycol esters of tricresyl phosphate, triphenyl phosphate, etc. Acid esters; Amides such as 4-toluenesulfonamide, benzenesulfonamide, Nn-butylbenzenesulfonamide, Nn-butylacetamide; diisobutyl adipate, dioctyl adipate, dimethyl sebacate, dibutyl sepacate, dioctyl Aliphatic dibasic acid esters such as sepacate, dioctyl azelate, dibutyl malate; triethyl citrate, tributyl citrate, glycerin triacetyl ester, butyl laurate, 4,5-diepoxycyclohexane-1,2-dicarboxylic acid Examples include glycols such as dioctyl acid, polyethylene glycol, and polypropylene glycol.

前記可塑剤の含有量としては、前記感光層の全成分に対して0.1〜50質量%が好ましく、0.5〜40質量%がより好ましく、1〜30質量%が特に好ましい。   As content of the said plasticizer, 0.1-50 mass% is preferable with respect to all the components of the said photosensitive layer, 0.5-40 mass% is more preferable, 1-30 mass% is especially preferable.

―――発色剤―――
前記発色剤は、露光後の前記感光層に可視像を与える(焼きだし機能)ために添加してもよい。
前記発色剤としては、例えば、トリス(4−ジメチルアミノフェニル)メタン(ロイコクリスタルバイオレット)、トリス(4−ジエチルアミノフェニル)メタン、トリス(4−ジメチルアミノ−2−メチルフェニル)メタン、トリス(4−ジエチルアミノ−2−メチルフェニル)メタン、ビス(4−ジブチルアミノフェニル)−〔4−(2−シアノエチル)メチルアミノフェニル〕メタン、ビス(4−ジメチルアミノフェニル)−2−キノリルメタン、トリス(4−ジプロピルアミノフェニル)メタン等のアミノトリアリールメタン類;3,6−ビス(ジメチルアミノ)−9−フェニルキサンチン、3−アミノ−6−ジメチルアミノ−2−メチル−9−(2−クロロフェニル)キサンチン等のアミノキサンチン類;3,6−ビス(ジエチルアミノ)−9−(2−エトキシカルボニルフェニル)チオキサンテン、3,6−ビス(ジメチルアミノ)チオキサンテン等のアミノチオキサンテン類;3,6−ビス(ジエチルアミノ)−9,10−ジヒドロ−9−フェニルアクリジン、3,6−ビス(ベンジルアミノ)−9,10−ジビドロ−9−メチルアクリジン等のアミノ−9,10−ジヒドロアクリジン類;3,7−ビス(ジエチルアミノ)フェノキサジン等のアミノフェノキサジン類;3,7−ビス(エチルアミノ)フェノチアゾン等のアミノフェノチアジン類;3,7−ビス(ジエチルアミノ)−5−ヘキシル−5,10−ジヒドロフェナジン等のアミノジヒドロフェナジン類;ビス(4−ジメチルアミノフェニル)アニリノメタン等のアミノフェニルメタン類;4−アミノ−4’−ジメチルアミノジフェニルアミン、4−アミノ−α、β−ジシアノヒドロケイ皮酸メチルエステル等のアミノヒドロケイ皮酸類;1−(2−ナフチル)−2−フェニルヒドラジン等のヒドラジン類;1,4−ビス(エチルアミノ)−2,3−ジヒドロアントラキノン類のアミノ−2,3−ジヒドロアントラキノン類;N,N−ジエチル−4−フェネチルアニリン等のフェネチルアニリン類;10−アセチル−3,7−ビス(ジメチルアミノ)フェノチアジン等の塩基性NHを含むロイコ色素のアシル誘導体;トリス(4−ジエチルアミノ−2−トリル)エトキシカルボニルメンタン等の酸化しうる水素を有していないが、発色化合物に酸化しうるロイコ様化合物;ロイコインジゴイド色素;米国特許3,042,515号及び同第3,042,517号に記載されているような発色形に酸化しうるような有機アミン類(例、4,4’−エチレンジアミン、ジフェニルアミン、N,N−ジメチルアニリン、4,4’−メチレンジアミントリフェニルアミン、N−ビニルカルバゾール)が挙げられ、これらの中でも、ロイコクリスタルバイオレット等のトリアリールメタン系化合物が好ましい。
――― Coloring agent ―――
The color former may be added to give a visible image (printing function) to the photosensitive layer after exposure.
Examples of the color former include tris (4-dimethylaminophenyl) methane (leuco crystal violet), tris (4-diethylaminophenyl) methane, tris (4-dimethylamino-2-methylphenyl) methane, tris (4- Diethylamino-2-methylphenyl) methane, bis (4-dibutylaminophenyl)-[4- (2-cyanoethyl) methylaminophenyl] methane, bis (4-dimethylaminophenyl) -2-quinolylmethane, tris (4-di Aminotriarylmethanes such as propylaminophenyl) methane; 3,6-bis (dimethylamino) -9-phenylxanthine, 3-amino-6-dimethylamino-2-methyl-9- (2-chlorophenyl) xanthine, etc. Aminoxanthines; 3,6-bis (diethyl Aminothioxanthenes such as mino) -9- (2-ethoxycarbonylphenyl) thioxanthene and 3,6-bis (dimethylamino) thioxanthene; 3,6-bis (diethylamino) -9,10-dihydro-9- Amino-9,10-dihydroacridine such as phenylacridine, 3,6-bis (benzylamino) -9,10-dividro-9-methylacridine; aminophenoxazine such as 3,7-bis (diethylamino) phenoxazine Aminophenothiazines such as 3,7-bis (ethylamino) phenothiazone; aminodihydrophenazines such as 3,7-bis (diethylamino) -5-hexyl-5,10-dihydrophenazine; bis (4-dimethylamino) Aminophenylmethanes such as phenyl) anilinomethane; 4-amino-4 ′ Aminohydrocinnamic acids such as dimethylaminodiphenylamine, 4-amino-α, β-dicyanohydrocinnamic acid methyl ester; hydrazines such as 1- (2-naphthyl) -2-phenylhydrazine; 1,4-bis ( Ethylamino) -2,3-dihydroanthraquinones amino-2,3-dihydroanthraquinones; phenethylanilines such as N, N-diethyl-4-phenethylaniline; 10-acetyl-3,7-bis (dimethylamino) ) An acyl derivative of a leuco dye containing basic NH such as phenothiazine; a leuco-like compound which does not have an oxidizable hydrogen such as tris (4-diethylamino-2-tolyl) ethoxycarbonylmentane but can be oxidized to a coloring compound Leucoin digoid pigment; U.S. Pat. Nos. 3,042,515 and 3,042 Organic amines that can be oxidized to a colored form as described in No. 517 (eg, 4,4′-ethylenediamine, diphenylamine, N, N-dimethylaniline, 4,4′-methylenediamine triphenylamine, N-vinylcarbazole), and among these, triarylmethane compounds such as leuco crystal violet are preferable.

更に、前記発色剤は、前記ロイコ体を発色させるためなどの目的で、ハロゲン化合物と組み合わせることが一般に知られている。
前記ハロゲン化合物としては、例えば、ハロゲン化炭化水素(例えば、四臭化炭素、ヨードホルム、臭化エチレン、臭化メチレン、臭化アミル、臭化イソアミル、ヨウ化アミル、臭化イソブチレン、ヨウ化ブチル、臭化ジフェニルメチル、ヘキサクロロエタン、1,2−ジブロモエタン、1,1,2,2−テトラブロモエタン、1,2−ジブロモ−1,1,2−トリクロロエタン、1,2,3トリブロモプロバン、1−ブロモ−4−クロロブタン、1,2,3,4−テトラブロモブタン、テトラクロロシクロプロペン、ヘキサクロロシクロペンタジエン、ジブロモシキロヘキサン、1,1,1−トリクロロ−2,2−ビス(4−クロロフェニル)エタンなど);ハロゲン化アルコール化合物(例えば、2,2,2−トリクロロエタノール、トリブロモエタノール、1,3−ジクロロ−2−プロパノール、1,1,1−トリクロロ−2−プロパノール、ジ(ヨードヘキサメチレン)アミノイソプロパノール、トリブロモ−t−ブチルアルコール、2,2,3−トリクロロブタン−1,4−ジオールなど);ハロゲン化カルボニル化合物(例えば1,1−ジクロロアセトン、1,3−ジクロロアセトン、ヘキサクロロアセトン、ヘキサブロモアセトン、1,1,3,3−テトラクロロアセトン、1,1,1−トリクロロアセトン、3,4−ジブロモ−2−ブタノン、1,4−ジクロロ−2−ブタノン−ジブロモシクロヘキサノン等);ハロゲン化エーテル化合物(例えば2−ブロモエチルメチルエーテル、2−ブロモエチルエチルエーテル、ジ(2−ブロモエチル)エーテル、1,2−ジクロロエチルエチルエーテル等);ハロゲン化エステル化合物(例えば、酢酸ブロモエチル、トリクロロ酢酸エチル、トリクロロ酢酸トリクロロエチル、2,3−ジブロモプロピルアクリレートのホモポリマー及び共重合体、ジブロモプロピオン酸トリクロロエチル、α,β−ジグロロアクリル酸エチル等);ハロゲン化アミド化合物(例えば、クロロアセトアミド、ブロモアセトアミド、ジクロロアセトアミド、トリクロロアセトアミド、トリブロモアセトアミド、トリクロロエチルトリクロロアセトアミド、2−ブロモイソプロピオンアミド、2,2,2−トリクロロプロピオンアミド、N−クロロスクシンイミド、N−ブロモスクシンイミドなど);硫黄やリンを有する化合物(例えば、トリブロモメチルフェニルスルホン、4−ニトロフェニルトリブロモメチルスルホン、4−クロルフェニルトリブロモメチルスルホン、トリス(2,3−ジブロモプロピル)ホスフェート等)、2,4−ビス(トリクロロメチル)6−フェニルトリアゾールなどが挙げられる。有機ハロゲン化合物では、同一炭素原子に結合した2個以上のハロゲン原子を持つハロゲン化合物が好ましく、1個の炭素原子に3個のハロゲン原子を持つハロゲン化合物がより好ましい。前記有機ハロゲン化合物は、1種単独で使用してもよく、2種以上を併用してもよい。これらの中でも、トリブロモメチルフェニルスルホン、2,4−ビス(トリクロロメチル)−6−フェニルトリアゾールが好ましい。
Furthermore, it is generally known that the color former is combined with a halogen compound for the purpose of coloring the leuco body.
Examples of the halogen compound include halogenated hydrocarbons (for example, carbon tetrabromide, iodoform, ethylene bromide, methylene bromide, amyl bromide, isoamyl bromide, amyl iodide, isobutylene bromide, butyl iodide, Diphenylmethyl bromide, hexachloroethane, 1,2-dibromoethane, 1,1,2,2-tetrabromoethane, 1,2-dibromo-1,1,2-trichloroethane, 1,2,3 tribromopropan, 1-bromo-4-chlorobutane, 1,2,3,4-tetrabromobutane, tetrachlorocyclopropene, hexachlorocyclopentadiene, dibromocyclohexane, 1,1,1-trichloro-2,2-bis (4- Chlorophenyl) ethane); halogenated alcohol compounds (eg, 2,2,2-trichloroethanol, Bromoethanol, 1,3-dichloro-2-propanol, 1,1,1-trichloro-2-propanol, di (iodohexamethylene) aminoisopropanol, tribromo-t-butyl alcohol, 2,2,3-trichlorobutane 1,4-diol and the like; halogenated carbonyl compounds (for example, 1,1-dichloroacetone, 1,3-dichloroacetone, hexachloroacetone, hexabromoacetone, 1,1,3,3-tetrachloroacetone, 1,1 , 1-trichloroacetone, 3,4-dibromo-2-butanone, 1,4-dichloro-2-butanone-dibromocyclohexanone, etc.); halogenated ether compounds (eg 2-bromoethyl methyl ether, 2-bromoethyl ethyl ether) Di (2-bromoethyl) ether, 1,2- Chloroethyl ethyl ether, etc.); halogenated ester compounds (eg, bromoethyl acetate, ethyl trichloroacetate, trichloroethyl trichloroacetate, homopolymers and copolymers of 2,3-dibromopropyl acrylate, trichloroethyl dibromopropionate, α, β Halogenated amide compounds (for example, chloroacetamide, bromoacetamide, dichloroacetamide, trichloroacetamide, tribromoacetamide, trichloroethyltrichloroacetamide, 2-bromoisopropionamide, 2,2,2- Trichloropropionamide, N-chlorosuccinimide, N-bromosuccinimide, etc.); a compound having sulfur or phosphorus (for example, tribromomethylphenylsulfone, 4-nitro) Phenyl tribromomethyl sulfone, 4-chlorophenyl tribromomethyl sulfone, tris (2,3-dibromopropyl) phosphate, etc.), e.g., 2,4-bis (trichloromethyl) 6- phenyltriazole and the like. As the organic halogen compound, a halogen compound having two or more halogen atoms bonded to the same carbon atom is preferable, and a halogen compound having three halogen atoms per carbon atom is more preferable. The said organic halogen compound may be used individually by 1 type, and may use 2 or more types together. Among these, tribromomethylphenyl sulfone and 2,4-bis (trichloromethyl) -6-phenyltriazole are preferable.

前記発色剤の含有量としては、前記感光層の全成分に対して0.01〜20質量%が好ましく、0.05〜10質量%がより好ましく、0.1〜5質量%が特に好ましい。また、前記ハロゲン化合物の含有量としては、前記感光層の全成分に対し0.001〜5質量%が好ましく、0.005〜1質量%がより好ましい。   The content of the color former is preferably 0.01 to 20% by mass, more preferably 0.05 to 10% by mass, and particularly preferably 0.1 to 5% by mass with respect to all components of the photosensitive layer. Moreover, as content of the said halogen compound, 0.001-5 mass% is preferable with respect to all the components of the said photosensitive layer, and 0.005-1 mass% is more preferable.

―――染料―――
前記感光層には、取り扱い性の向上のために感光性樹脂組成物を着色し、又は保存安定性を付与する目的に、染料を用いることができる。
前記染料としては、ブリリアントグリーン(例えば、その硫酸塩)、エオシン、エチルバイオレット、エリスロシンB、メチルグリーン、クリスタルバイオレット、ベイシックフクシン、フェノールフタレイン、1,3−ジフェニルトリアジン、アリザリンレッドS、チモールフタレイン、メチルバイオレット2B、キナルジンレッド、ローズベンガル、メタニル−イエロー、チモールスルホフタレイン、キシレノールブルー、メチルオレンジ、オレンジIV、ジフェニルチロカルバゾン、2,7−ジクロロフルオレセイン、パラメチルレッド、コンゴーレッド、ベンゾプルプリン4B、α−ナフチル−レッド、ナイルブルーA、フェナセタリン、メチルバイオレット、マラカイトグリーン、パラフクシン、オイルブルー#603(オリエント化学工業社製)、ローダミンB、ロータミン6G、ビクトリアピュアブルーBOHなどを挙げることができ、これらの中でもカチオン染料(例えば、マラカイトグリーンシュウ酸塩、マラカイトグリーン硫酸塩等)が好ましい。該カチオン染料の対アニオンとしては、有機酸又は無機酸の残基であればよく、例えば、臭素酸、ヨウ素酸、硫酸、リン酸、シュウ酸、メタンスルホン酸、トルエンスルホン酸等の残基(アニオン)などが挙げられる。
---dye---
In the photosensitive layer, a dye can be used for the purpose of coloring the photosensitive resin composition for improving handleability or imparting storage stability.
Examples of the dye include brilliant green (for example, sulfate thereof), eosin, ethyl violet, erythrosine B, methyl green, crystal violet, basic fuchsin, phenolphthalein, 1,3-diphenyltriazine, alizarin red S, thymolphthalein. , Methyl violet 2B, quinaldine red, rose bengal, metanil-yellow, thymol sulfophthalein, xylenol blue, methyl orange, orange IV, diphenyltylocarbazone, 2,7-dichlorofluorescein, paramethyl red, congo red, benzo Purpurin 4B, α-naphthyl-red, Nile blue A, phenacetalin, methyl violet, malachite green, parafuxin, oil blue # 603 (Orien Chemical Co., Ltd.), rhodamine B, Rotamin 6G, etc. Victoria Pure Blue BOH can be cited, among these cationic dyes (e.g., Malachite Green oxalate, malachite green sulfates) are preferable. The counter anion of the cationic dye may be a residue of an organic acid or an inorganic acid, for example, a residue such as bromic acid, iodic acid, sulfuric acid, phosphoric acid, oxalic acid, methanesulfonic acid, toluenesulfonic acid ( Anion) and the like.

前記染料の含有量としては、前記感光層の全成分に対して0.001〜10質量%が好ましく、0.01〜5質量%がより好ましく、0.1〜2質量%が特に好ましい。   As content of the said dye, 0.001-10 mass% is preferable with respect to all the components of the said photosensitive layer, 0.01-5 mass% is more preferable, 0.1-2 mass% is especially preferable.

―――密着促進剤―――
各層間の密着性、又はパターン形成材料と基体との密着性を向上させるために、各層に公知のいわゆる密着促進剤を用いることができる。
――― Adhesion promoter ―――
In order to improve the adhesion between the layers or the adhesion between the pattern forming material and the substrate, a known so-called adhesion promoter can be used for each layer.

前記密着促進剤としては、例えば、特開平5−11439号公報、特開平5−341532号公報及び特開平6−43638号公報等に記載の密着促進剤が好適挙げられる。具体的には、ベンズイミダゾール、ベンズオキサゾール、ベンズチアゾール、2−メルカプトベンズイミダゾール、2−メルカプトベンズオキサゾール、2−メルカプトベンズチアゾール、3−モルホリノメチル−1−フェニル−トリアゾール−2−チオン、3−モルホリノメチル−5−フェニル−オキサジアゾール−2−チオン、5−アミノ−3−モルホリノメチル−チアジアゾール−2−チオン、2−メルカプト−5−メチルチオ−チアジアゾール、トリアゾール、テトラゾール、ベンゾトリアゾール、カルボキシベンゾトリアゾール、アミノ基含有ベンゾトリアゾール及びシランカップリング剤などが挙げられる。   Preferable examples of the adhesion promoter include adhesion promoters described in JP-A Nos. 5-11439, 5-341532, and 6-43638. Specifically, benzimidazole, benzoxazole, benzthiazole, 2-mercaptobenzimidazole, 2-mercaptobenzoxazole, 2-mercaptobenzthiazole, 3-morpholinomethyl-1-phenyl-triazole-2-thione, 3-morpholino Methyl-5-phenyl-oxadiazole-2-thione, 5-amino-3-morpholinomethyl-thiadiazole-2-thione, 2-mercapto-5-methylthio-thiadiazole, triazole, tetrazole, benzotriazole, carboxybenzotriazole, Examples thereof include amino group-containing benzotriazole and silane coupling agents.

前記密着促進剤の含有量としては、前記感光層の全成分に対して0.001質量%〜20質量%が好ましく、0.01〜10質量%がより好ましく、0.1質量%〜5質量%が特に好ましい。   As content of the said adhesion promoter, 0.001 mass%-20 mass% are preferable with respect to all the components of the said photosensitive layer, 0.01-10 mass% is more preferable, 0.1 mass%-5 mass% % Is particularly preferred.

前記感光層は、例えば、J.コーサー著「ライトセンシテイブシステムズ」第5章に記載されているような有機硫黄化合物、過酸化物、レドックス系化合物、アゾ又はジアゾ化合物、光還元性色素、有機ハロゲン化合物などを含んでいてもよい。   The photosensitive layer is, for example, J.I. It may contain organic sulfur compounds, peroxides, redox compounds, azo or diazo compounds, photoreducible dyes, organic halogen compounds, etc. as described in Chapter 5 of “Light Sensitive Systems” Good.

前記有機硫黄化合物としては、例えば、ジ−n−ブチルジサルファイド、ジベンジルジサルファイド、2−メルカプロベンズチアゾール、2−メルカプトベンズオキサゾール、チオフェノール、エチルトリクロロメタンスルフェネート、2−メルカプトベンズイミダゾールなどが挙げられる。   Examples of the organic sulfur compound include di-n-butyl disulfide, dibenzyl disulfide, 2-mercaprobenzthiazole, 2-mercaptobenzoxazole, thiophenol, ethyltrichloromethanesulfenate, and 2-mercaptobenzimidazole. Etc.

前記過酸化物としては、例えば、ジ−t−ブチルパーオキサイド、過酸化ベンゾイル、メチルエチルケトンパーオキサイドを挙げることができる。   Examples of the peroxide include di-t-butyl peroxide, benzoyl peroxide, and methyl ethyl ketone peroxide.

前記レドックス化合物は、過酸化物と還元剤の組合せからなるものであり、第一鉄イオンと過硫酸イオン、第二鉄イオンと過酸化物などを挙げることができる。   The redox compound is a combination of a peroxide and a reducing agent, and examples thereof include ferrous ions and persulfate ions, ferric ions and peroxides.

前記アゾ及びジアゾ化合物としては、例えば、α,α’−アゾビスイリブチロニトリル、2−アゾビス−2−メチルブチロニトリル、4−アミノジフェニルアミンのジアゾニウム類が挙げられる。   Examples of the azo and diazo compounds include α, α'-azobisiributyronitrile, 2-azobis-2-methylbutyronitrile, and diazonium such as 4-aminodiphenylamine.

前記光還元性色素としては、例えば、ローズベンガル、エリスロシン、エオシン、アクリフラビン、リポフラビン、チオニンが挙げられる。   Examples of the photoreducible dye include rose bengal, erythrosine, eosin, acriflavine, lipoflavin, and thionine.

――界面活性剤――
本発明の前記パターン形成材料を製造する際に発生する面状ムラを改善させるために、公知の界面活性剤を添加することができる。
前記界面活性剤としては、例えば、アニオン系界面活性剤、カチオン系界面活性剤、ノニオン系界面活性剤、両性界面活性剤、フッ素含有界面活性剤などから適宜選択できる。
--Surfactant--
In order to improve the surface unevenness generated when the pattern forming material of the present invention is produced, a known surfactant can be added.
The surfactant can be appropriately selected from, for example, an anionic surfactant, a cationic surfactant, a nonionic surfactant, an amphoteric surfactant, and a fluorine-containing surfactant.

前記界面活性剤の含有量としては、感光性樹脂組成物の固形分に対し、0.001〜10質量%が好ましい。
前記含有量が、0.001質量%未満になると、面状改良の効果が得られなくことがあり、10質量%を超えると、密着性が低下することがある。
As content of the said surfactant, 0.001-10 mass% is preferable with respect to solid content of the photosensitive resin composition.
When the content is less than 0.001% by mass, the effect of improving the surface shape may not be obtained, and when it exceeds 10% by mass, the adhesion may be deteriorated.

前記界面活性剤としては、上述の界面活性剤の他、フッ素系の界面活性剤として、炭素鎖3〜20でフッ素原子を40質量%以上含み、かつ、非結合末端から数えて少なくとも3個の炭素原子に結合した水素原子がフッ素置換されているフルオロ脂肪族基を有するアクリレート又はメタクリレートを共重合成分として有する高分子界面活性剤も好適に挙げられる。   As the surfactant, in addition to the above-mentioned surfactant, as a fluorine-based surfactant, it contains 40% by mass or more of fluorine atoms in a carbon chain of 3 to 20, and at least 3 counted from the non-bonding terminal A polymer surfactant having, as a copolymerization component, an acrylate or methacrylate having a fluoroaliphatic group in which a hydrogen atom bonded to a carbon atom is fluorine-substituted is also preferred.

前記感光層の厚みとしては、特に制限はなく、目的に応じて適宜選択することができ、例えば、1〜100μmが好ましく、2〜50μmがより好ましく、4〜30μmが特に好ましい。   There is no restriction | limiting in particular as thickness of the said photosensitive layer, According to the objective, it can select suitably, For example, 1-100 micrometers is preferable, 2-50 micrometers is more preferable, and 4-30 micrometers is especially preferable.

――その他の層――
前記その他の層としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、クッション層、バリア層、剥離層、接着層、光吸収層、表面保護層等の層が挙げられる。前記パターン形成材料は、これらの層を1種単独で有していてもよく、2種以上を有していてもよい。また、同種の層を2層以上有していてもよい。
-Other layers-
There is no restriction | limiting in particular as said other layer, According to the objective, it can select suitably, For example, layers, such as a cushion layer, a barrier layer, a peeling layer, an adhesive layer, a light absorption layer, a surface protective layer, are mentioned. . The said pattern formation material may have these layers individually by 1 type, and may have 2 or more types. Moreover, you may have two or more layers of the same kind.

――保護フィルム――
前記パターン形成材料は、前記感光層上に保護フィルムを形成してもよい。
前記保護フィルムとしては、例えば、前記支持体に使用されるもの、紙、ポリエチレン、ポリプロピレンがラミネートされた紙、などが挙げられ、これらの中でも、ポリエチレンフィルム、ポリプロピレンフィルムが好ましい。
前記保護フィルムの厚みとしては、特に制限はなく、目的に応じて適宜選択することができ、例えば、5〜100μmが好ましく、8〜50μmがより好ましく、10〜30μmが特に好ましい。
前記保護フィルムを用いる場合、前記感光層及び前記支持体の接着力Aと、前記感光層及び保護フィルムの接着力Bとが、接着力A>接着力Bの関係であることが好ましい。
前記支持体と保護フィルムとの組合せ(支持体/保護フィルム)としては、例えば、ポリエチレンテレフタレート/ポリプロピレン、ポリエチレンテレフタレート/ポリエチレン、ポリ塩化ビニル/セロフアン、ポリイミド/ポリプロピレン、ポリエチレンテレフタレート/ポリエチレンテレフタレートなどが挙げられる。また、支持体及び保護フィルムの少なくともいずれかを表面処理することにより、上述のような接着力の関係を満たすことができる。前記支持体の表面処理は、前記感光層との接着力を高めるために施されてもよく、例えば、下塗層の塗設、コロナ放電処理、火炎処理、紫外線照射処理、高周波照射処理、グロー放電照射処理、活性プラズマ照射処理、レーザ光線照射処理などを挙げることができる。
--Protective film--
The pattern forming material may form a protective film on the photosensitive layer.
Examples of the protective film include those used for the support, paper, paper laminated with polyethylene, polypropylene, and the like. Among these, polyethylene film and polypropylene film are preferable.
There is no restriction | limiting in particular as thickness of the said protective film, According to the objective, it can select suitably, For example, 5-100 micrometers is preferable, 8-50 micrometers is more preferable, 10-30 micrometers is especially preferable.
When the protective film is used, it is preferable that the adhesive force A between the photosensitive layer and the support and the adhesive force B between the photosensitive layer and the protective film satisfy the relationship of adhesive force A> adhesive force B.
Examples of the combination of the support and the protective film (support / protective film) include polyethylene terephthalate / polypropylene, polyethylene terephthalate / polyethylene, polyvinyl chloride / cellophane, polyimide / polypropylene, polyethylene terephthalate / polyethylene terephthalate, and the like. . Moreover, the relationship of the above adhesive forces can be satisfy | filled by surface-treating at least any one of a support body and a protective film. The surface treatment of the support may be performed in order to increase the adhesive force with the photosensitive layer. For example, coating of a primer layer, corona discharge treatment, flame treatment, ultraviolet irradiation treatment, high frequency irradiation treatment, glow treatment Examples thereof include discharge irradiation treatment, active plasma irradiation treatment, and laser beam irradiation treatment.

また、前記支持体と前記保護フィルムとの静摩擦係数としては、0.3〜1.4が好ましく、0.5〜1.2がより好ましい。
前記静摩擦係数が、0.3未満であると、滑り過ぎるため、ロール状にした場合に巻ズレが発生することがあり、1.4を超えると、良好なロール状に巻くことが困難となることがある。
前記摩擦係数の測定方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、JIS K 7125に基づいて、対SUS304、面圧0.005MPaなどの条件での測定などが挙げられる。
Moreover, as a static friction coefficient of the said support body and the said protective film, 0.3-1.4 are preferable and 0.5-1.2 are more preferable.
When the coefficient of static friction is less than 0.3, slipping is excessive, so that winding deviation may occur when the roll is formed, and when it exceeds 1.4, it is difficult to wind into a good roll. Sometimes.
The method for measuring the coefficient of friction is not particularly limited and can be appropriately selected depending on the purpose. For example, based on JIS K 7125, measurement under conditions such as SUS304, surface pressure of 0.005 MPa, etc. Can be mentioned.

前記パターン形成材料は、例えば、円筒状の巻芯に巻き取って、長尺状でロール状に巻かれて保管されることが好ましい。前記長尺状のパターン形成材料の長さとしては、特に制限はなく、例えば、10m〜20,000mの範囲から適宜選択することができる。また、ユーザーが使いやすいようにスリット加工し、100m〜1,000mの範囲の長尺体をロール状にしてもよい。なお、この場合には、前記支持体が一番外側になるように巻き取られることが好ましい。また、前記ロール状のパターン形成材料をシート状にスリットしてもよい。保管の際、端面の保護、エッジフュージョンを防止する観点から、端面にはセパレーター(特に防湿性のもの、乾燥剤入りのもの)を設置することが好ましく、また梱包も透湿性の低い素材を用いることが好ましい。   It is preferable that the pattern forming material is wound around a cylindrical core, wound into a long roll, and stored. There is no restriction | limiting in particular as length of the said elongate pattern formation material, For example, it can select suitably from the range of 10m-20,000m. Further, slitting may be performed so that the user can easily use, and a long body in the range of 100 m to 1,000 m may be formed into a roll. In this case, it is preferable that the support is wound up so as to be the outermost side. The roll-shaped pattern forming material may be slit into a sheet shape. From the viewpoint of protecting the end face and preventing edge fusion during storage, it is preferable to install a separator (especially moisture-proof and desiccant-containing) on the end face, and use a low moisture-permeable material for packaging. It is preferable.

前記保護フィルムは、前記保護フィルムと前記感光層との接着性を調整するために表面処理してもよい。前記表面処理は、例えば、前記保護フィルムの表面に、ポリオルガノシロキサン、弗素化ポリオレフィン、ポリフルオロエチレン、ポリビニルアルコール等のポリマーからなる下塗層を形成させる。該下塗層の形成は、前記ポリマーの塗布液を前記保護フィルムの表面に塗布した後、30〜150℃(特に50〜120℃)で1〜30分間乾燥させることにより形成させることができる。   The protective film may be surface-treated in order to adjust the adhesion between the protective film and the photosensitive layer. In the surface treatment, for example, an undercoat layer made of a polymer such as polyorganosiloxane, fluorinated polyolefin, polyfluoroethylene, or polyvinyl alcohol is formed on the surface of the protective film. The undercoat layer can be formed by applying the polymer coating solution to the surface of the protective film and then drying at 30 to 150 ° C. (especially 50 to 120 ° C.) for 1 to 30 minutes.

−パターン形成材料の製造方法−
前記パターン形成材料は、例えば、次のようにして製造することができる。
まず、上述の各種材料を、水又は溶剤に溶解、乳化又は分散させて感光性樹脂組成物溶液を調製する。
-Manufacturing method of pattern forming material-
The pattern forming material can be manufactured, for example, as follows.
First, the above-mentioned various materials are dissolved, emulsified or dispersed in water or a solvent to prepare a photosensitive resin composition solution.

前記感光性樹脂組成物溶液の溶剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、メタノール、エタノール、n−プロパノール、イソプロパノール、n−ブタノール、sec−ブタノール、n−ヘキサノール等のアルコール類;アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、ジイソブチルケトンなどのケトン類;酢酸エチル、酢酸ブチル、酢酸−n−アミル、硫酸メチル、プロピオン酸エチル、フタル酸ジメチル、安息香酸エチル及びメトキシプロピルアセテートなどのエステル類;トルエン、キシレン、ベンゼン、エチルベンゼンなどの芳香族炭化水素類;四塩化炭素、トリクロロエチレン、クロロホルム、1,1,1−トリクロロエタン、塩化メチレン、モノクロロベンゼンなどのハロゲン化炭化水素類;テトラヒドロフラン、ジエチルエーテル、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、1−メトキシ−2−プロパノールなどのエーテル類;ジメチルホルムアミド、ジメチルアセトアミド、ジメチルスルホオキサイド、スルホランなどが挙げられる。これらは、1種単独で使用してもよく、2種以上を併用してもよい。また、公知の界面活性剤を添加してもよい。   There is no restriction | limiting in particular as a solvent of the said photosensitive resin composition solution, According to the objective, it can select suitably, For example, methanol, ethanol, n-propanol, isopropanol, n-butanol, sec-butanol, n- Alcohols such as hexanol; ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, diisobutyl ketone; ethyl acetate, butyl acetate, n-amyl acetate, methyl sulfate, ethyl propionate, dimethyl phthalate, ethyl benzoate and Esters such as methoxypropyl acetate; aromatic hydrocarbons such as toluene, xylene, benzene, and ethylbenzene; carbon tetrachloride, trichloroethylene, chloroform, 1,1,1-trichloroethane, methylene chloride, monochlorobenzene Any halogenated hydrocarbons; ethers such as tetrahydrofuran, diethyl ether, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, 1-methoxy-2-propanol; dimethylformamide, dimethylacetamide, dimethylsulfoxide, sulfolane, etc. . These may be used alone or in combination of two or more. Moreover, you may add a well-known surfactant.

次に、前記感光性樹脂組成物溶液を支持体上に塗布し、乾燥させることにより感光層を形成し、パターン形成材料を製造することができる。
前記感光性樹脂組成物溶液の塗布方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、スプレー法、ロールコート法、回転塗布法、スリットコート法、エクストルージョンコート法、カーテンコート法、ダイコート法、グラビアコート法、ワイヤーバーコート法、ナイフコート法等の各種の塗布方法が挙げられる。
前記乾燥の条件としては、各成分、溶媒の種類、使用割合等によっても異なるが、通常60〜110℃の温度で30秒間〜15分間程度である。
Next, the said photosensitive resin composition solution is apply | coated on a support body, a photosensitive layer is formed by making it dry, and a pattern formation material can be manufactured.
The method for applying the photosensitive resin composition solution is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include a spray method, a roll coating method, a spin coating method, a slit coating method, and an extrusion coating method. And various coating methods such as a curtain coating method, a die coating method, a gravure coating method, a wire bar coating method, and a knife coating method.
The drying conditions vary depending on each component, the type of solvent, the use ratio, and the like, but are usually about 60 to 110 ° C. for about 30 seconds to 15 minutes.

――積層体――
前記露光の対象としては、感光層を有する前記パターン形成材料である限り、特に制限はなく、目的に応じて適宜選択することができ、例えば、基体上に前記パターン形成材料を形成してなる積層体に対して行われることが好ましい。
--Laminated body--
The exposure target is not particularly limited as long as it is the pattern forming material having a photosensitive layer, and can be appropriately selected according to the purpose. For example, a laminate formed by forming the pattern forming material on a substrate It is preferably performed on the body.

―――基体―――
前記基体としては、特に制限はなく、公知の材料の中から表面平滑性の高いものから凸凹のある表面を有するものまで適宜選択することができ、板状の基体(基板)が好ましく、具体的には、公知のプリント配線板形成用基板(例えば、銅張積層板)、ガラス板(例えば、ソーダガラス板等)、合成樹脂性のフィルム、紙、金属板などが挙げられる。
――― Substrate ―――
The substrate is not particularly limited, and can be appropriately selected from known materials having high surface smoothness to those having an uneven surface. A plate-shaped substrate (substrate) is preferable and specific. Examples include known printed wiring board forming substrates (for example, copper-clad laminates), glass plates (for example, soda glass plates), synthetic resin films, paper, metal plates, and the like.

前記基体は、該基体上に前記パターン形成材料における感光層が重なるようにして積層してなる積層体を形成して用いることができる。即ち、前記積層体におけるパターン形成材料の前記感光層に対して露光することにより、露光した領域を硬化させ、後述する現像工程によりパターンを形成することができる。   The substrate can be used by forming a laminate on which the photosensitive layer of the pattern forming material is laminated on the substrate. That is, by exposing the photosensitive layer of the pattern forming material in the laminate, the exposed region can be cured, and a pattern can be formed by a development process described later.

前記パターン形成材料は、プリント配線板、カラーフィルタや柱材、リブ材、スペーサー、隔壁などのディスプレイ用部材、ホログラム、マイクロマシン、プルーフなどのパターン形成用として広く用いることができ、特に本発明のパターン形成方法及びパターン形成装置に好適に用いることができる。   The pattern forming material can be widely used for pattern formation of printed wiring boards, color filters, column materials, rib materials, spacers, partition members and other display members, holograms, micromachines, proofs, and the like. It can be suitably used for a forming method and a pattern forming apparatus.

−パターン形成装置、パターン形成方法−
本発明のパターン形成方法は、露光工程を少なくとも含み、適宜選択したその他の工程を含む。
-Pattern forming apparatus and pattern forming method-
The pattern forming method of the present invention includes at least an exposure step and includes other appropriately selected steps.

――露光工程――
前記露光工程は、支持体上に感光層を有するパターン形成材料における該感光層に対し、光照射手段からの光を受光し出射する描素部をn個有する光変調手段により、前記光照射手段からの光を変調させた後、前記描素部における出射面の歪みによる収差を補正可能な非球面を有するマイクロレンズを配列したマイクロレンズアレイを通して露光を行う工程である。
--Exposure process--
In the exposure step, the light irradiating unit includes a light modulating unit having n pixel portions that receive and emit light from the light irradiating unit with respect to the photosensitive layer in the pattern forming material having the photosensitive layer on the support. After the light from the light is modulated, exposure is performed through a microlens array in which microlenses having aspherical surfaces capable of correcting aberration due to distortion of the exit surface in the picture element portion are arranged.

―――変調手段――
前記光変調手段としては、n個の描素部を有する限り、特に制限はなく、目的に応じて適宜選択することができ、例えば、空間光変調素子等が好適に挙げられる。
前記空間光変調素子としては、例えば、デジタル・マイクロミラー・デバイス(DMD)、MEMS(Micro Electro Mechanical Systems)タイプの空間光変調素子(SLM;Special Light Modulator)、電気光学効果により透過光を変調する光学素子(PLZT素子)、液晶光シャッタ(FLC)などが挙げられ、これらの中でもDMDが好適に挙げられる。
――― Modulation means――
The light modulation means is not particularly limited as long as it has n picture elements, and can be appropriately selected according to the purpose. For example, a spatial light modulation element or the like is preferable.
Examples of the spatial light modulator include a digital micromirror device (DMD), a MEMS (Micro Electro Mechanical Systems) type spatial light modulator (SLM), and modulates transmitted light by an electro-optic effect. An optical element (PLZT element), a liquid crystal optical shutter (FLC), etc. are mentioned, Among these, DMD is mentioned suitably.

以下、前記光変調手段の一例について図面を参照しながら説明する。
DMD50は図2に示すように、SRAMセル(メモリセル)60上に、各々描素(ピクセル)を構成する多数(例えば、1024個×768個)の微小ミラー(マイクロミラー)62が格子状に配列されてなるミラーデバイスである。各ピクセルにおいて、最上部には支柱に支えられたマイクロミラー62が設けられており、マイクロミラー62の表面にはアルミニウム等の反射率の高い材料が蒸着されている。なお、マイクロミラー62の反射率は90%以上であり、その配列ピッチは縦方向、横方向とも一例として13.7μmである。また、マイクロミラー62の直下には、ヒンジおよびヨークを含む支柱を介して通常の半導体メモリの製造ラインで製造されるシリコンゲートのCMOSのSRAMセル60が配置されており、全体はモノリシックに構成されている。
Hereinafter, an example of the light modulation means will be described with reference to the drawings.
As shown in FIG. 2, in the DMD 50, a large number (for example, 1024 × 768) of micromirrors (micromirrors) 62 constituting pixels (pixels) are arranged in a lattice pattern on an SRAM cell (memory cell) 60. It is a mirror device arranged. In each pixel, a micromirror 62 supported by a support column is provided at the top, and a material having high reflectance such as aluminum is deposited on the surface of the micromirror 62. The reflectance of the micromirror 62 is 90% or more, and the arrangement pitch is 13.7 μm as an example in both the vertical and horizontal directions. A silicon gate CMOS SRAM cell 60 manufactured in a normal semiconductor memory manufacturing line is disposed directly below the micromirror 62 via a support including a hinge and a yoke, and the entire structure is monolithic. ing.

DMD50のSRAMセル60にデジタル信号が書き込まれると、支柱に支えられたマイクロミラー62が、対角線を中心としてDMD50が配置された基板側に対して±α度(例えば±12度)の範囲で傾けられる。図3(A)は、マイクロミラー62がオン状態である+α度に傾いた状態を示し、図3(B)は、マイクロミラー62がオフ状態である−α度に傾いた状態を示す。したがって、パターン情報に応じて、DMD50の各ピクセルにおけるマイクロミラー62の傾きを、図2に示すように制御することによって、DMD50に入射したレーザ光Bはそれぞれのマイクロミラー62の傾き方向へ反射される。   When a digital signal is written in the SRAM cell 60 of the DMD 50, the micromirror 62 supported by the support is tilted in a range of ± α degrees (for example, ± 12 degrees) with respect to the substrate side on which the DMD 50 is disposed with the diagonal line as the center. It is done. 3A shows a state in which the micromirror 62 is tilted to + α degrees when the micromirror 62 is in an on state, and FIG. 3B shows a state in which the micromirror 62 is tilted to −α degrees that is in an off state. Therefore, by controlling the tilt of the micromirror 62 in each pixel of the DMD 50 according to the pattern information as shown in FIG. 2, the laser light B incident on the DMD 50 is reflected in the tilt direction of each micromirror 62. The

なお、図2には、DMD50の一部を拡大し、マイクロミラー62が+α度又は−α度に制御されている状態の一例を示す。それぞれのマイクロミラー62のオンオフ制御は、DMD50に接続されたコントローラ302(図13参照)によって行われる。また、オフ状態のマイクロミラー62で反射したレーザ光Bが進行する方向には、光吸収体(図示せず)が配置されている。   FIG. 2 shows an example of a state in which a part of the DMD 50 is enlarged and the micromirror 62 is controlled to + α degrees or −α degrees. The on / off control of each micromirror 62 is performed by the controller 302 (see FIG. 13) connected to the DMD 50. Further, a light absorber (not shown) is arranged in the direction in which the laser beam B reflected by the off-state micromirror 62 travels.

また、DMD50は、その短辺が副走査方向と所定角度θ(例えば、0.1°〜5°)を成すように僅かに傾斜させて配置するのが好ましい。図4(A)はDMD50を傾斜させない場合の各マイクロミラーによる反射光像(露光ビーム)53の走査軌跡を示し、図4(B)はDMD50を傾斜させた場合の露光ビーム53の走査軌跡を示している。   Further, it is preferable that the DMD 50 is arranged with a slight inclination so that the short side forms a predetermined angle θ (for example, 0.1 ° to 5 °) with the sub-scanning direction. 4A shows the scanning trajectory of the reflected light image (exposure beam) 53 by each micromirror when the DMD 50 is not tilted, and FIG. 4B shows the scanning trajectory of the exposure beam 53 when the DMD 50 is tilted. Show.

DMD50には、長手方向にマイクロミラーが多数個(例えば、1024個)配列されたマイクロミラー列が、短手方向に多数組(例えば、756組)配列されているが、図4(B)に示すように、DMD50を傾斜させることにより、各マイクロミラーによる露光ビーム53の走査軌跡(走査線)のピッチPが、DMD50を傾斜させない場合の走査線のピッチPより狭くなり、解像度を大幅に向上させることができる。一方、DMD50の傾斜角は微小であるので、DMD50を傾斜させた場合の走査幅Wと、DMD50を傾斜させない場合の走査幅Wとは略同一である。 In the DMD 50, a number of micromirror arrays in which a large number (for example, 1024) of micromirrors are arranged in the longitudinal direction are arranged in a short direction (for example, 756 sets). as shown, by tilting the DMD 50, the pitch P 1 of the scanning locus of the exposure beams 53 from each micromirror (scan line), it becomes narrower than the pitch P 2 of the scanning lines in the case of not tilting the DMD 50, significant resolution Can be improved. On the other hand, the inclination angle of the DMD 50 is small, the scanning width W 2 in the case of tilting the DMD 50, which is substantially equal to the scanning width W 1 when not inclined DMD 50.

次に、前記光変調手段における変調速度を速くさせる方法(以下「高速変調」と称する)について説明する。
前記光変調手段は、前記n個の描素の中から連続的に配置された任意のn個未満の前記描素部をパターン情報に応じて制御可能であることが好ましい。前記光変調手段のデータ処理速度には限界があり、使用する描素数に比例して1ライン当りの変調速度が決定されるので、連続的に配列された任意のn個未満の描素部だけを使用することで1ライン当りの変調速度が速くなる。
Next, a method for increasing the modulation speed in the optical modulation means (hereinafter referred to as “high-speed modulation”) will be described.
It is preferable that the light modulation unit is capable of controlling any less than n pixel elements arranged continuously from the n pixel elements according to pattern information. There is a limit to the data processing speed of the light modulation means, and the modulation speed per line is determined in proportion to the number of pixels to be used. By using, the modulation speed per line is increased.

以下、前記高速変調について図面を参照しながら更に説明する。
ファイバアレイ光源66からDMD50にレーザ光Bが照射されると、DMD50のマイクロミラーがオン状態のときに反射されたレーザ光は、レンズ系54、58によりパターン形成材料150上に結像される。このようにして、ファイバアレイ光源66から出射されたレーザ光が描素毎にオンオフされて、パターン形成材料150がDMD50の使用描素数と略同数の描素単位(露光エリア168)で露光される。また、パターン形成材料150がステージ152と共に一定速度で移動されることにより、パターン形成材料150がスキャナ162によりステージ移動方向と反対の方向に副走査され、露光ヘッド166毎に帯状の露光済み領域170が形成される。
Hereinafter, the high-speed modulation will be further described with reference to the drawings.
When the laser light B is irradiated from the fiber array light source 66 to the DMD 50, the laser light reflected when the micromirror of the DMD 50 is in an on state is imaged on the pattern forming material 150 by the lens systems 54 and 58. In this manner, the laser light emitted from the fiber array light source 66 is turned on / off for each pixel, and the pattern forming material 150 is exposed in the number of pixel units (exposure area 168) substantially equal to the number of used pixel elements of the DMD 50. . Further, when the pattern forming material 150 is moved at a constant speed together with the stage 152, the pattern forming material 150 is sub-scanned in the direction opposite to the stage moving direction by the scanner 162, and a strip-shaped exposed region 170 is provided for each exposure head 166. Is formed.

なお本例では、図5(A)及び(B)に示すように、DMD50には、主走査方向にマイクロミラーが1024個配列されたマイクロミラー列が副走査方向に768組配列されているが、本例では、前記コントローラ302(図13参照)により一部のマイクロミラー列(例えば、1024個×256列)だけが駆動するように制御がなされる。   In this example, as shown in FIGS. 5A and 5B, in the DMD 50, 768 sets of micromirror arrays in which 1024 micromirrors are arranged in the main scanning direction are arranged in the subscanning direction. In this example, the controller 302 (see FIG. 13) controls so that only a part of the micromirror rows (for example, 1024 × 256 rows) are driven.

この場合、図5(A)に示すようにDMD50の中央部に配置されたマイクロミラー列を使用してもよく、図5(B)に示すように、DMD50の端部に配置されたマイクロミラー列を使用してもよい。また、一部のマイクロミラーに欠陥が発生した場合は、欠陥が発生していないマイクロミラー列を使用するなど、状況に応じて使用するマイクロミラー列を適宜変更してもよい。   In this case, a micromirror array arranged at the center of the DMD 50 as shown in FIG. 5 (A) may be used, and a micromirror arranged at the end of the DMD 50 as shown in FIG. 5 (B). A column may be used. In addition, when a defect occurs in some of the micromirrors, the micromirror array to be used may be appropriately changed depending on the situation, such as using a micromirror array in which no defect has occurred.

DMD50のデータ処理速度には限界があり、使用する描素数に比例して1ライン当りの変調速度が決定されるので、一部のマイクロミラー列だけを使用することで1ライン当りの変調速度が速くなる。一方、連続的に露光ヘッドを露光面に対して相対移動させる露光方式の場合には、副走査方向の描素を全部使用する必要はない。   Since the data processing speed of the DMD 50 is limited and the modulation speed per line is determined in proportion to the number of pixels used, the modulation speed per line can be increased by using only a part of the micromirror array. Get faster. On the other hand, in the case of an exposure method in which the exposure head is continuously moved relative to the exposure surface, it is not necessary to use all the pixels in the sub-scanning direction.

スキャナ162によるパターン形成材料150の副走査が終了し、センサ164でパターン形成材料150の後端が検出されると、ステージ152は、ステージ駆動装置304により、ガイド158に沿ってゲート160の最上流側にある原点に復帰し、再度、ガイド158に沿ってゲート160の上流側から下流側に一定速度で移動される。   When the sub-scan of the pattern forming material 150 by the scanner 162 is finished and the rear end of the pattern forming material 150 is detected by the sensor 164, the stage 152 is moved upstream of the gate 160 along the guide 158 by the stage driving device 304. It returns to the origin on the side and is moved again along the guide 158 from the upstream side to the downstream side of the gate 160 at a constant speed.

例えば、768組のマイクロミラー列の内、384組だけ使用する場合には、768組全部使用する場合と比較すると1ライン当り2倍速く変調することができる。また、768組のマイクロミラー列の内、256組だけ使用する場合には、768組全部使用する場合と比較すると1ライン当り3倍速く変調することができる。   For example, when only 384 sets of 768 sets of micromirror arrays are used, modulation can be performed twice as fast per line as compared with the case of using all 768 sets. Also, when only 256 pairs are used in the 768 sets of micromirror arrays, modulation can be performed three times faster per line than when all 768 sets are used.

以上説明した通り、本発明のパターン形成方法によれば、主走査方向にマイクロミラーが1,024個配列されたマイクロミラー列が、副走査方向に768組配列されたDMDを備えているが、コントローラにより一部のマイクロミラー列だけが駆動されるように制御することにより、全部のマイクロミラー列を駆動する場合に比べて、1ライン当りの変調速度が速くなる。   As described above, according to the pattern forming method of the present invention, the micromirror array in which 1,024 micromirrors are arranged in the main scanning direction includes the DMD in which 768 sets are arranged in the subscanning direction. By controlling so that only a part of the micromirror rows are driven by the controller, the modulation rate per line becomes faster than when all the micromirror rows are driven.

また、DMDのマイクロミラーを部分的に駆動する例について説明したが、所定方向に対応する方向の長さが前記所定方向と交差する方向の長さより長い基板上に、各々制御信号に応じて反射面の角度が変更可能な多数のマイクロミラーが2次元状に配列された細長いDMDを用いても、反射面の角度を制御するマイクロミラーの個数が少なくなるので、同様に変調速度を速くすることができる。   In addition, an example in which the DMD micromirror is partially driven has been described, but the length of the direction corresponding to the predetermined direction is reflected on the substrate longer than the length of the direction intersecting the predetermined direction according to the control signal. Even if a long and narrow DMD in which a large number of micromirrors capable of changing the surface angle are arranged in a two-dimensional manner is used, the number of micromirrors for controlling the angle of the reflecting surface is reduced. Can do.

また、前記露光の方法として、露光光と前記感光層とを相対的に移動しながら行うことが好ましく、この場合、前記高速変調と併用することが好ましい。これにより、短時間で高速の露光を行うことができる。   The exposure method is preferably performed while relatively moving the exposure light and the photosensitive layer, and in this case, it is preferable to use the high-speed modulation together. Thereby, high-speed exposure can be performed in a short time.

その他、図6に示すように、スキャナ162によるX方向への1回の走査でパターン形成材料150の全面を露光してもよく、図7(A)及び(B)に示すように、スキャナ162によりパターン形成材料150をX方向へ走査した後、スキャナ162をY方向に1ステップ移動し、X方向へ走査を行うというように、走査と移動を繰り返して、複数回の走査でパターン形成材料150の全面を露光するようにしてもよい。なお、この例では、スキャナ162は18個の露光ヘッド166を備えている。なお、露光ヘッドは、前記光照射手段と前記光変調手段とを少なくとも有する。   In addition, as shown in FIG. 6, the entire surface of the pattern forming material 150 may be exposed by a single scan in the X direction by the scanner 162, and as shown in FIGS. 7A and 7B, the scanner 162. After the pattern forming material 150 is scanned in the X direction, the scanner 162 is moved one step in the Y direction, and scanning is performed in the X direction. Thus, the pattern forming material 150 is scanned a plurality of times. Alternatively, the entire surface may be exposed. In this example, the scanner 162 includes 18 exposure heads 166. Note that the exposure head includes at least the light irradiation unit and the light modulation unit.

前記露光は、前記感光層の一部の領域に対してされることにより該一部の領域が硬化され、後述の現像工程において、前記硬化させた一部の領域以外の未硬化領域が除去され、パターンが形成される。   The exposure is performed on a partial area of the photosensitive layer to cure the partial area, and uncured areas other than the cured partial area are removed in a development step described later. A pattern is formed.

次に、前記光変調手段を含むパターン形成装置の一例について、図面を参照しながら説明する。
前記光変調手段を含むパターン形成装置は、図8に示すように、シート状のパターン形成材料150を表面に吸着して保持する平板状のステージ152を備えている。
4本の脚部154に支持された厚い板状の設置台156の上面には、ステージ移動方向に沿って延びた2本のガイド158が設置されている。ステージ152は、その長手方向がステージ移動方向を向くように配置されると共に、ガイド158によって往復移動可能に支持されている。なお、前記パターン形成装置には、ステージ152をガイド158に沿って駆動するための図示しない駆動装置を有している。
Next, an example of a pattern forming apparatus including the light modulation means will be described with reference to the drawings.
As shown in FIG. 8, the pattern forming apparatus including the light modulation means includes a flat plate stage 152 that adsorbs and holds a sheet-like pattern forming material 150 on the surface.
Two guides 158 extending along the stage moving direction are installed on the upper surface of the thick plate-shaped installation table 156 supported by the four legs 154. The stage 152 is arranged so that the longitudinal direction thereof faces the stage moving direction, and is supported by a guide 158 so as to be reciprocally movable. The pattern forming apparatus has a drive device (not shown) for driving the stage 152 along the guide 158.

設置台156の中央部には、ステージ152の移動経路を跨ぐようにコ字状のゲート160が設けられている。コ字状のゲート160の端部の各々は、設置台156の両側面に固定されている。このゲート160を挟んで一方の側にはスキャナ162が設けられ、他方の側にはパターン形成材料150の先端及び後端を検知する複数(例えば、2個)の検知センサ164が設けられている。スキャナ162及び検知センサ164は、ゲート160に各々取り付けられて、ステージ152の移動経路の上方に固定配置されている。なお、スキャナ162及び検知センサ164は、これらを制御する図示しないコントローラに接続されている。   A U-shaped gate 160 is provided at the center of the installation table 156 so as to straddle the movement path of the stage 152. Each of the ends of the U-shaped gate 160 is fixed to both side surfaces of the installation table 156. A scanner 162 is provided on one side of the gate 160, and a plurality of (for example, two) detection sensors 164 for detecting the front and rear ends of the pattern forming material 150 are provided on the other side. . The scanner 162 and the detection sensor 164 are respectively attached to the gate 160 and fixedly arranged above the moving path of the stage 152. The scanner 162 and the detection sensor 164 are connected to a controller (not shown) that controls them.

スキャナ162は、図9及び図10(B)に示すように、m行n列(例えば、3行5列)の略マトリックス状に配列された複数(例えば、14個)の露光ヘッド166を備えている。この例では、パターン形成材料150の幅との関係で、3行目には4個の露光ヘッド166を配置した。なお、m行目のn列目に配列された個々の露光ヘッドを示す場合は、露光ヘッド166mnと表記する。 As shown in FIGS. 9 and 10B, the scanner 162 includes a plurality of (for example, 14) exposure heads 166 arranged in an approximately matrix of m rows and n columns (for example, 3 rows and 5 columns). ing. In this example, four exposure heads 166 are arranged in the third row in relation to the width of the pattern forming material 150. In addition, when showing each exposure head arranged in the m-th row and the n-th column, it is expressed as an exposure head 166 mn .

露光ヘッド166による露光エリア168は、副走査方向を短辺とする矩形状である。従って、ステージ152の移動に伴い、パターン形成材料150には露光ヘッド166毎に帯状の露光済み領域170が形成される。なお、m行目のn列目に配列された個々の露光ヘッドによる露光エリアを示す場合は、露光エリア168mnと表記する。 An exposure area 168 by the exposure head 166 has a rectangular shape with a short side in the sub-scanning direction. Accordingly, as the stage 152 moves, a strip-shaped exposed region 170 is formed in the pattern forming material 150 for each exposure head 166. In addition, when showing the exposure area by each exposure head arranged in the m-th row and the n-th column, it is expressed as an exposure area 168 mn .

また、図10(A)及び(B)に示すように、帯状の露光済み領域170が副走査方向と直交する方向に隙間無く並ぶように、ライン状に配列された各行の露光ヘッドの各々は、配列方向に所定間隔(露光エリアの長辺の自然数倍、本例では2倍)ずらして配置されている。このため、1行目の露光エリア16811と露光エリア16812との間の露光できない部分は、2行目の露光エリア16821と3行目の露光エリア16831とにより露光することができる。 Further, as shown in FIGS. 10A and 10B, each of the exposure heads in each row arranged in a line so that the strip-shaped exposed regions 170 are arranged without gaps in the direction orthogonal to the sub-scanning direction. These are arranged with a predetermined interval (natural number times the long side of the exposure area, twice in this example) in the arrangement direction. Therefore, can not be exposed portion between the exposure area 168 11 in the first row and the exposure area 168 12, it can be exposed by the second row of the exposure area 168 21 and the exposure area 168 31 in the third row.

露光ヘッド16611〜166mn各々は、図11及び図12に示すように、入射された光ビームをパターン情報に応じて前記光変調手段(各描素毎に変調する空間光変調素子)として、米国テキサス・インスツルメンツ社製のデジタル・マイクロミラー・デバイス(DMD)50を備えている。DMD50は、データ処理部とミラー駆動制御部とを備えた前記コントローラ302(図13参照)に接続されている。このコントローラ302のデータ処理部では、入力されたパターン情報に基づいて、露光ヘッド166毎にDMD50の制御すべき領域内の各マイクロミラーを駆動制御する制御信号を生成する。なお、制御すべき領域については後述する。また、ミラー駆動制御部では、パターン情報処理部で生成した制御信号に基づいて、露光ヘッド166毎にDMD50の各マイクロミラーの反射面の角度を制御する。なお、反射面の角度の制御に付いては後述する。 As shown in FIG. 11 and FIG. 12, each of the exposure heads 166 11 to 166 mn serves as the light modulation means (spatial light modulation element that modulates each pixel) according to pattern information. A digital micromirror device (DMD) 50 manufactured by Texas Instruments, USA is provided. The DMD 50 is connected to the controller 302 (see FIG. 13) having a data processing unit and a mirror drive control unit. The data processing unit of the controller 302 generates a control signal for driving and controlling each micromirror in the area to be controlled by the DMD 50 for each exposure head 166 based on the input pattern information. The area to be controlled will be described later. The mirror drive control unit controls the angle of the reflection surface of each micromirror of the DMD 50 for each exposure head 166 based on the control signal generated by the pattern information processing unit. The control of the angle of the reflecting surface will be described later.

DMD50の光入射側には、光ファイバの出射端部(発光点)が、露光エリア168の長辺方向と対応する方向に沿って一列に配列されたレーザ出射部を備えたファイバアレイ光源66、ファイバアレイ光源66から出射されたレーザ光を補正してDMD上に集光させるレンズ系67、レンズ系67を透過したレーザ光をDMD50に向けて反射するミラー69がこの順に配置されている。なお、図11では、レンズ系67を概略的に示してある。   On the light incident side of the DMD 50, a fiber array light source 66 having a laser emitting portion in which emission ends (light emitting points) of optical fibers are arranged in a line along a direction corresponding to the long side direction of the exposure area 168, A lens system 67 that corrects the laser light emitted from the fiber array light source 66 and collects it on the DMD, and a mirror 69 that reflects the laser light transmitted through the lens system 67 toward the DMD 50 are arranged in this order. In FIG. 11, the lens system 67 is schematically shown.

レンズ系67は、図12に詳しく示すように、ファイバアレイ光源66から出射した照明光としてのレーザ光Bを集光する集光レンズ71、集光レンズ71を通過した光の光路に挿入されたロッド状オプティカルインテグレータ(以下、ロッドインテグレータという)72及びロッドインテグレータ72の前方つまりミラー69側に配置された結像レンズ74から構成されている。集光レンズ71、ロッドインテグレータ72及び結像レンズ74は、ファイバアレイ光源66から出射したレーザ光を、平行光に近くかつビーム断面内強度が均一化された光束としてDMD50に入射させる。このロッドインテグレータ72の形状や作用については、後に詳しく説明する。   As shown in detail in FIG. 12, the lens system 67 is inserted into the optical path of the light passing through the condenser lens 71 and the condenser lens 71 that collects the laser light B as the illumination light emitted from the fiber array light source 66. A rod-shaped optical integrator (hereinafter referred to as a rod integrator) 72 and an imaging lens 74 disposed in front of the rod integrator 72, that is, on the mirror 69 side. The condensing lens 71, the rod integrator 72, and the imaging lens 74 cause the laser light emitted from the fiber array light source 66 to enter the DMD 50 as a light beam that is close to parallel light and has a uniform beam cross-sectional intensity. The shape and action of the rod integrator 72 will be described in detail later.

レンズ系67から出射したレーザ光Bはミラー69で反射し、TIR(全反射)プリズム70を介してDMD50に照射される。なお、図11では、このTIRプリズム70は省略してある。   The laser beam B emitted from the lens system 67 is reflected by the mirror 69 and irradiated to the DMD 50 via the TIR (total reflection) prism 70. In FIG. 11, the TIR prism 70 is omitted.

また、DMD50の光反射側には、DMD50で反射されたレーザ光Bを、パターン形成材料150上に結像する結像光学系51が配置されている。この結像光学系51は、図11では概略的に示してあるが、図12に詳細を示すように、レンズ系52,54からなる第1結像光学系と、レンズ系57,58からなる第2結像光学系と、これらの結像光学系の間に挿入されたマイクロレンズアレイ55と、アパーチャアレイ59とから構成されている。   An imaging optical system 51 that images the laser beam B reflected by the DMD 50 on the pattern forming material 150 is disposed on the light reflection side of the DMD 50. The imaging optical system 51 is schematically shown in FIG. 11, but as shown in detail in FIG. 12, the imaging optical system 51 includes a first imaging optical system including lens systems 52 and 54 and lens systems 57 and 58. A second imaging optical system, a microlens array 55 inserted between these imaging optical systems, and an aperture array 59 are included.

マイクロレンズアレイ55は、DMD50の各描素に対応する多数のマイクロレンズ55aが2次元状に配列されてなるものである。本例では、後述するようにDMD50の1024個×768列のマイクロミラーのうち1024個×256列だけが駆動されるので、それに対応させてマイクロレンズ55aは1024個×256列配置されている。またマイクロレンズ55aの配置ピッチは縦方向、横方向とも41μmである。このマイクロレンズ55aは、一例として焦点距離が0.19mm、NA(開口数)が0.11で、光学ガラスBK7から形成されている。なおマイクロレンズ55aの形状については、後に詳しく説明する。そして、各マイクロレンズ55aの位置におけるレーザ光Bのビーム径は、41μmである。   The microlens array 55 is formed by two-dimensionally arranging a large number of microlenses 55a corresponding to the pixels of the DMD 50. In this example, as described later, only 1024 × 256 rows of the 1024 × 768 rows of micromirrors of the DMD 50 are driven, and accordingly, 1024 × 256 rows of microlenses 55a are arranged. The arrangement pitch of the micro lenses 55a is 41 μm in both the vertical and horizontal directions. As an example, the microlens 55a has a focal length of 0.19 mm, an NA (numerical aperture) of 0.11, and is formed from the optical glass BK7. The shape of the micro lens 55a will be described in detail later. The beam diameter of the laser beam B at the position of each microlens 55a is 41 μm.

また、アパーチャアレイ59は、マイクロレンズアレイ55の各マイクロレンズ55aに対応する多数のアパーチャ(開口)59aが形成されてなるものである。アパーチャ59aの径は、例えば、10μmである。   The aperture array 59 is formed by forming a large number of apertures (openings) 59 a corresponding to the respective micro lenses 55 a of the micro lens array 55. The diameter of the aperture 59a is, for example, 10 μm.

前記第1結像光学系は、DMD50による像を3倍に拡大してマイクロレンズアレイ55上に結像する。そして、前記第2結像光学系は、マイクロレンズアレイ55を経た像を1.6倍に拡大してパターン形成材料150上に結像、投影する。したがって全体では、DMD50による像が4.8倍に拡大してパターン形成材料150上に結像、投影されることになる。   The first imaging optical system enlarges the image by the DMD 50 three times and forms an image on the microlens array 55. The second imaging optical system enlarges the image that has passed through the microlens array 55 by 1.6 times, and forms and projects the image on the pattern forming material 150. Therefore, as a whole, the image formed by the DMD 50 is enlarged and enlarged by 4.8 times, and is imaged and projected on the pattern forming material 150.

なお、前記第2結像光学系とパターン形成材料150との間にプリズムペア73が配設され、このプリズムペア73を図12中で上下方向に移動させることにより、パターン形成材料150上における像のピントを調節可能となっている。なお同図中において、パターン形成材料150は矢印F方向に副走査送りされる。   A prism pair 73 is disposed between the second imaging optical system and the pattern forming material 150. By moving the prism pair 73 in the vertical direction in FIG. 12, an image on the pattern forming material 150 is obtained. The focus can be adjusted. In the figure, the pattern forming material 150 is sub-scanned in the direction of arrow F.

前記描素部としては、前記光照射手段からの光を受光し出射することができる限り、特に制限はなく、目的に応じて適宜選択することができ、例えば、本発明のパターン形成方法により形成されるパターンが画像パターンである場合には、画素であり、前記光変調手段がDMDを含む場合にはマイクロミラーである。
前記光変調素子が有する描素部の数(前記n)としては、特に制限はなく、目的に応じて適宜選択することができる。
前記光変調素子における描素部の配列としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、2次元状に配列していることが好ましく、格子状に配列していることがより好ましい。
The picture element portion is not particularly limited as long as it can receive and emit light from the light irradiation means, and can be appropriately selected according to the purpose. For example, it is formed by the pattern forming method of the present invention. When the pattern to be processed is an image pattern, it is a pixel, and when the light modulation means includes a DMD, it is a micromirror.
There is no restriction | limiting in particular as the number (the said n) of picture element parts which the said light modulation element has, It can select suitably according to the objective.
There is no restriction | limiting in particular as an arrangement | sequence of the pixel part in the said light modulation element, According to the objective, it can select suitably, For example, it is preferable to arrange in two dimensions, It arranges in a grid | lattice form. It is more preferable.

―――マイクロレンズアレイ―――
前記マイクロレンズアレイとしては、前記描素部における出射面の歪みによる収差を補正可能な非球面を有するマイクロレンズを配列している限り、特に制限はなく、目的に応じて適宜選択することができる。
――― Micro lens array ―――
The microlens array is not particularly limited as long as microlenses having an aspheric surface capable of correcting aberration due to distortion of the exit surface in the pixel portion are arranged, and can be appropriately selected according to the purpose. .

前記非球面としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、トーリック面が好ましい。   There is no restriction | limiting in particular as said aspherical surface, According to the objective, it can select suitably, For example, a toric surface is preferable.

以下、前記マイクロレンズアレイ、前記アパーチャアレイ及び前記結像光学系等について図面を参照しながら説明する。   Hereinafter, the microlens array, the aperture array, the imaging optical system, and the like will be described with reference to the drawings.

図14(A)は、DMD50、DMD50にレーザ光を照射する光照射手段144、DMD50で反射されたレーザ光を拡大して結像するレンズ系(結像光学系)454、458、DMD50の各描素部に対応して多数のマイクロレンズ474が配置されたマイクロレンズアレイ472、マイクロレンズアレイ472の各マイクロレンズに対応して多数のアパーチャ478が設けられたアパーチャアレイ476、アパーチャを通過したレーザ光を被露光面56に結像するレンズ系(結像光学系)480、482で構成される露光ヘッドを表す。
ここで図15に、DMD50を構成するマイクロミラー62の反射面の平面度を測定した結果を示す。同図においては、反射面の同じ高さ位置を等高線で結んで示してあり、等高線のピッチは5nmである。なお同図に示すx方向及びy方向は、マイクロミラー62の2つ対角線方向であり、マイクロミラー62はy方向に延びる回転軸を中心として前述のように回転する。また、図16の(A)及び(B)にはそれぞれ、上記x方向、y方向に沿ったマイクロミラー62の反射面の高さ位置変位を示す。
FIG. 14A shows DMD 50, light irradiation means 144 for irradiating DMD 50 with laser light, lens systems (imaging optical systems) 454, 458, DMD 50 for enlarging and imaging the laser light reflected by DMD 50. A microlens array 472 in which a large number of microlenses 474 are arranged corresponding to the picture element portion, an aperture array 476 in which a large number of apertures 478 are provided corresponding to each microlens of the microlens array 472, and a laser that has passed through the aperture An exposure head composed of lens systems (imaging optical systems) 480 and 482 for forming an image of light on an exposed surface 56 is shown.
Here, FIG. 15 shows the result of measuring the flatness of the reflection surface of the micromirror 62 constituting the DMD 50. In the figure, the same height positions of the reflecting surfaces are shown connected by contour lines, and the pitch of the contour lines is 5 nm. Note that the x direction and the y direction shown in the figure are two diagonal directions of the micromirror 62, and the micromirror 62 rotates around the rotation axis extending in the y direction as described above. 16A and 16B show the height position displacement of the reflecting surface of the micromirror 62 along the x direction and the y direction, respectively.

図15及び図16に示した通り、マイクロミラー62の反射面には歪みが存在し、そして特にミラー中央部に注目してみると、1つの対角線方向(y方向)の歪みが、別の対角線方向(x方向)の歪みよりも大きくなっている。このため、マイクロレンズアレイ55のマイクロレンズ55aで集光されたレーザ光Bの集光位置における形状が歪むという問題が発生し得る。   As shown in FIGS. 15 and 16, there is distortion on the reflecting surface of the micromirror 62, and when attention is particularly paid to the center of the mirror, distortion in one diagonal direction (y direction) is different from that in the other diagonal line. It is larger than the distortion in the direction (x direction). For this reason, the problem that the shape in the condensing position of the laser beam B condensed with the micro lens 55a of the micro lens array 55 may be distorted may occur.

本発明のパターン形成方法においては前記問題を防止するために、マイクロレンズアレイ55のマイクロレンズ55aが、従来とは異なる特殊な形状とされている。以下、その点について詳しく説明する。   In the pattern forming method of the present invention, in order to prevent the above problem, the microlens 55a of the microlens array 55 has a special shape different from the conventional one. Hereinafter, this point will be described in detail.

図17の(A)及び(B)はそれぞれ、マイクロレンズアレイ55全体の正面形状及び側面形状を詳しく示すものである。これらの図にはマイクロレンズアレイ55の各部の寸法も記入してあり、それらの単位はmmである。本発明のパターン形成方法では、先に図5を参照して説明したようにDMD50の1024個×256列のマイクロミラー62が駆動されるものであり、それに対応させてマイクロレンズアレイ55は、横方向に1024個並んだマイクロレンズ55aの列を縦方向に256列並設して構成されている。なお、同図(A)では、マイクロレンズアレイ55の並び順を横方向についてはjで、縦方向についてはkで示している。   FIGS. 17A and 17B respectively show the front and side shapes of the entire microlens array 55 in detail. These drawings also show the dimensions of each part of the microlens array 55, and the unit thereof is mm. In the pattern forming method of the present invention, as described above with reference to FIG. 5, the 1024 × 256 rows of micromirrors 62 of the DMD 50 are driven. A row of 1024 microlenses 55a arranged in the direction is arranged in parallel in the vertical direction. In FIG. 9A, the arrangement order of the microlens array 55 is indicated by j in the horizontal direction and k in the vertical direction.

また、図18の(A)及び(B)はそれぞれ、マイクロレンズアレイ55における1つのマイクロレンズ55aの正面形状及び側面形状を示すものである。なお同図(A)には、マイクロレンズ55aの等高線を併せて示してある。各マイクロレンズ55aの光出射側の端面は、マイクロミラー62の反射面の歪みによる収差を補正する非球面形状とされている。より具体的には、マイクロレンズ55aはトーリックレンズとされており、上記x方向に光学的に対応する方向の曲率半径Rx=−0.125mm、上記y方向に対応する方向の曲率半径Ry=−0.1mmである。   18A and 18B show the front shape and the side shape of one microlens 55a in the microlens array 55, respectively. In FIG. 9A, the contour lines of the micro lens 55a are also shown. The end surface of each microlens 55a on the light emitting side has an aspherical shape that corrects aberration due to distortion of the reflecting surface of the micromirror 62. More specifically, the micro lens 55a is a toric lens, and has a radius of curvature Rx = −0.125 mm in a direction optically corresponding to the x direction and a radius of curvature Ry = − in a direction corresponding to the y direction. 0.1 mm.

したがって、上記x方向及びy方向に平行な断面内におけるレーザ光Bの集光状態は、概略、それぞれ図19の(A)及び(B)に示す通りとなる。つまり、x方向に平行な断面内とy方向に平行な断面内とを比較すると、後者の断面内の方がマイクロレンズ55aの曲率半径がより小であって、焦点距離がより短くなっている。   Therefore, the condensing state of the laser beam B in the cross section parallel to the x direction and the y direction is roughly as shown in FIGS. 19A and 19B, respectively. That is, when the cross section parallel to the x direction is compared with the cross section parallel to the y direction, the radius of curvature of the microlens 55a is smaller and the focal length is shorter in the latter cross section. .

マイクロレンズ55aを前記形状とした場合の、該マイクロレンズ55aの集光位置(焦点位置)近傍におけるビーム径を計算機によってシミュレーションした結果を図20a、b、c及びdに示す。また比較のために、マイクロレンズ55aが曲率半径Rx=Ry=−0.1mmの球面形状である場合について、同様のシミュレーションを行った結果を図21a、b、c及びdに示す。なお、各図におけるzの値は、マイクロレンズ55aのピント方向の評価位置をマイクロレンズ55aのビーム出射面からの距離で示している。   FIGS. 20A, 20B, 20C, and 20D show the results of simulating the beam diameter in the vicinity of the condensing position (focal position) of the microlens 55a when the microlens 55a has the above-described shape by a computer. For comparison, FIGS. 21A, 21B, 21C, and 21D show the results of a similar simulation when the microlens 55a has a spherical shape with a radius of curvature Rx = Ry = −0.1 mm. In addition, the value of z in each figure has shown the evaluation position of the focus direction of the micro lens 55a by the distance from the beam emission surface of the micro lens 55a.

また、前記シミュレーションに用いたマイクロレンズ55aの面形状は、下記計算式で計算される。
The surface shape of the microlens 55a used for the simulation is calculated by the following calculation formula.

但し、前記計算式において、Cxは、x方向の曲率(=1/Rx)を意味し、Cyは、y方向の曲率(=1/Ry)を意味し、Xは、x方向に関するレンズ光軸Oからの距離を意味し、Yは、y方向に関するレンズ光軸Oからの距離を意味する。   In the above formula, Cx means the curvature in the x direction (= 1 / Rx), Cy means the curvature in the y direction (= 1 / Ry), and X is the lens optical axis in the x direction. The distance from O means Y, and Y means the distance from the lens optical axis O in the y direction.

図20a〜dと図21a〜dとを比較すると明らかなように、本発明のパターン形成方法ではマイクロレンズ55aを、y方向に平行な断面内の焦点距離がx方向に平行な断面内の焦点距離よりも小さいトーリックレンズとしたことにより、その集光位置近傍におけるビーム形状の歪みが抑制される。そうであれば、歪みの無い、より高精細な画像をパターン形成材料150に露光可能となる。また、図22a〜dに示す本実施形態の方が、ビーム径の小さい領域がより広い、即ち、焦点深度がより大であることが分かる。   20A to 20D and FIGS. 21A to 21D, in the pattern forming method of the present invention, the microlens 55a is focused on the micro lens 55a with a focal length in the cross section parallel to the y direction. By using a toric lens smaller than the distance, distortion of the beam shape in the vicinity of the condensing position is suppressed. If so, the pattern forming material 150 can be exposed to a higher-definition image without distortion. It can also be seen that the present embodiment shown in FIGS. 22a to 22d has a wider region with a smaller beam diameter, that is, a greater depth of focus.

なお、マイクロミラー62のx方向及びy方向に関する中央部の歪の大小関係が、上記と逆になっている場合は、x方向に平行な断面内の焦点距離がy方向に平行な断面内の焦点距離よりも小さいトーリックレンズからマイクロレンズを構成すれば、同様に、歪みの無い、より高精細な画像をパターン形成材料150に露光可能となる。   In addition, when the magnitude relation of the distortion of the center part in the x direction and the y direction of the micromirror 62 is opposite to the above, the focal length in the cross section parallel to the x direction is in the cross section parallel to the y direction. If the microlens is formed of a toric lens that is smaller than the focal length, similarly, it is possible to expose the pattern forming material 150 with a higher definition image without distortion.

また、マイクロレンズアレイ55の集光位置近傍に配置されたアパーチャアレイ59は、その各アパーチャ59aに、それと対応するマイクロレンズ55aを経た光のみが入射するように配置されたものである。即ち、このアパーチャアレイ59が設けられていることにより、各アパーチャ59aに、それと対応しない隣接のマイクロレンズ55aからの光が入射することが防止され、消光比が高められる。   In addition, the aperture array 59 disposed in the vicinity of the condensing position of the microlens array 55 is disposed such that only light having passed through the corresponding microlens 55a is incident on each aperture 59a. That is, by providing this aperture array 59, it is possible to prevent light from adjacent microlenses 55a not corresponding to each aperture 59a from entering, and to increase the extinction ratio.

本来、上記目的で設置されるアパーチャアレイ59のアパーチャ59aの径をある程度小さくすれば、マイクロレンズ55aの集光位置におけるビーム形状の歪みを抑制する効果も得られる。しかしそのようにした場合は、アパーチャアレイ59で遮断される光量がより多くなり、光利用効率が低下することになる。それに対してマイクロレンズ55aを非球面形状とする場合は、光を遮断することがないので、光利用効率も高く保たれる。   Originally, if the diameter of the aperture 59a of the aperture array 59 installed for the above purpose is reduced to some extent, an effect of suppressing the distortion of the beam shape at the condensing position of the microlens 55a can be obtained. However, in such a case, the amount of light blocked by the aperture array 59 is increased, and the light use efficiency is reduced. On the other hand, when the microlens 55a has an aspherical shape, the light utilization efficiency is kept high because the light is not blocked.

また、本発明のパターン形成方法において、マイクロレンズ55aは、2次の非球面形状であってもよく、より高次(4次、6次・・・)の非球面形状であってもよい。前記高次の非球面形状を採用することにより、ビーム形状を更に高精細にすることができる。   In the pattern forming method of the present invention, the microlens 55a may have a secondary aspherical shape or a higher order (4th, 6th,...) Aspherical shape. By adopting the higher order aspherical shape, the beam shape can be further refined.

また、以上説明した実施形態では、マイクロレンズ55aの光出射側の端面が非球面(トーリック面)とされているが、2つの光通過端面の一方を球面とし、他方をシリンドリカル面としたマイクロレンズからマイクロレンズアレイを構成して、上記実施形態と同様の効果を得ることもできる。   In the embodiment described above, the end surface on the light emission side of the micro lens 55a is an aspherical surface (toric surface). However, one of the two light passing end surfaces is a spherical surface and the other is a cylindrical surface. Thus, the microlens array can be configured to obtain the same effect as the above embodiment.

更に、以上説明した実施形態においては、マイクロレンズアレイ55のマイクロレンズ55aが、マイクロミラー62の反射面の歪みによる収差を補正する非球面形状とされているが、このような非球面形状を採用する代わりに、マイクロレンズアレイを構成する各マイクロレンズに、マイクロミラー62の反射面の歪みによる収差を補正する屈折率分布を持たせても、同様の効果を得ることができる。   Furthermore, in the embodiment described above, the microlens 55a of the microlens array 55 has an aspherical shape that corrects aberration due to distortion of the reflecting surface of the micromirror 62. Such an aspherical shape is adopted. Instead, the same effect can be obtained even if each microlens constituting the microlens array has a refractive index distribution that corrects aberration due to distortion of the reflection surface of the micromirror 62.

そのようなマイクロレンズ155aの一例を図23に示す。同図の(A)及び(B)はそれぞれ、このマイクロレンズ155aの正面形状及び側面形状を示すものであり、図示の通りこのマイクロレンズ155aの外形形状は平行平板状である。なお、同図におけるx、y方向は、既述した通りである。   An example of such a microlens 155a is shown in FIG. (A) and (B) of the same figure respectively show the front shape and side shape of the micro lens 155a, and the external shape of the micro lens 155a is a parallel plate shape as shown in the figure. The x and y directions in the figure are as described above.

また、図24の(A)及び(B)は、このマイクロレンズ155aによる上記x方向及びy方向に平行な断面内におけるレーザ光Bの集光状態を概略的に示している。このマイクロレンズ155aは、光軸Oから外方に向かって次第に増大する屈折率分布を有するものであり、同図においてマイクロレンズ155a内に示す破線は、その屈折率が光軸Oから所定の等ピッチで変化した位置を示している。図示の通り、x方向に平行な断面内とy方向に平行な断面内とを比較すると、後者の断面内の方がマイクロレンズ155aの屈折率変化の割合がより大であって、焦点距離がより短くなっている。このような屈折率分布型レンズから構成されるマイクロレンズアレイを用いても、前記マイクロレンズアレイ55を用いる場合と同様の効果を得ることが可能である。   24A and 24B schematically show the condensing state of the laser beam B in the cross section parallel to the x direction and the y direction by the microlens 155a. The microlens 155a has a refractive index distribution that gradually increases outward from the optical axis O. In the drawing, the broken line shown in the microlens 155a indicates that the refractive index is predetermined from the optical axis O. The position changed with the pitch is shown. As shown in the figure, when the cross section parallel to the x direction and the cross section parallel to the y direction are compared, the ratio of the refractive index change of the microlens 155a is larger in the latter cross section, and the focal length is larger. It is shorter. Even when a microlens array composed of such a gradient index lens is used, it is possible to obtain the same effect as when the microlens array 55 is used.

なお、先に図18及び図19に示したマイクロレンズ55aのように面形状を非球面としたマイクロレンズにおいて、併せて上述のような屈折率分布を与え、面形状と屈折率分布の双方によって、マイクロミラー62の反射面の歪みによる収差を補正するようにしてもよい。   In addition, in the microlens whose surface shape is aspherical like the microlens 55a previously shown in FIGS. 18 and 19, the refractive index distribution as described above is given together, and both by the surface shape and the refractive index distribution. The aberration due to the distortion of the reflection surface of the micromirror 62 may be corrected.

また、上記の実施形態では、DMD50を構成するマイクロミラー62の反射面の歪みによる収差を補正しているが、DMD以外の空間光変調素子を用いる本発明のパターン形成方法においても、その空間光変調素子の描素部の面に歪みが存在する場合は、本発明を適用してその歪みによる収差を補正し、ビーム形状に歪みが生じることを防止できる。   In the above embodiment, the aberration due to the distortion of the reflection surface of the micromirror 62 constituting the DMD 50 is corrected. However, in the pattern forming method of the present invention using the spatial light modulator other than the DMD, the spatial light is also corrected. In the case where distortion exists on the surface of the picture element portion of the modulation element, the present invention can be applied to correct aberration due to the distortion and prevent distortion of the beam shape.

次に、前記結像光学系について更に説明する。
前記露光ヘッドでは、光照射手段144からレーザ光が照射されると、DMD50によりオン方向に反射される光束線の断面積が、レンズ系454、458により数倍(例えば、2倍)に拡大される。拡大されたレーザ光は、マイクロレンズアレイ472の各マイクロレンズによりDMD50の各描素部に対応して集光され、アパーチャアレイ476の対応するアパーチャを通過する。アパーチャを通過したレーザ光は、レンズ系480、482により被露光面56上に結像される。
Next, the imaging optical system will be further described.
In the exposure head, when the laser beam is irradiated from the light irradiation unit 144, the cross-sectional area of the light beam reflected in the ON direction by the DMD 50 is enlarged several times (for example, two times) by the lens systems 454 and 458. The The expanded laser light is condensed by each microlens of the microlens array 472 so as to correspond to each pixel part of the DMD 50, and passes through the corresponding aperture of the aperture array 476. The laser light that has passed through the aperture is imaged on the exposed surface 56 by the lens systems 480 and 482.

この結像光学系では、DMD50により反射されたレーザ光は、拡大レンズ454、458により数倍に拡大されて被露光面56に投影されるので、全体の画像領域が広くなる。このとき、マイクロレンズアレイ472及びアパーチャアレイ476が配置されていなければ、図14(B)に示すように、被露光面56に投影される各ビームスポットBSの1描素サイズ(スポットサイズ)が露光エリア468のサイズに応じて大きなものとなり、露光エリア468の鮮鋭度を表すMTF(Modulation Transfer Function)特性が低下する。   In this imaging optical system, the laser light reflected by the DMD 50 is magnified several times by the magnifying lenses 454 and 458 and projected onto the exposed surface 56, so that the entire image area is widened. At this time, if the microlens array 472 and the aperture array 476 are not arranged, as shown in FIG. 14B, one pixel size (spot size) of each beam spot BS projected onto the exposed surface 56 is set. MTF (Modulation Transfer Function) characteristics representing the sharpness of the exposure area 468 are reduced depending on the size of the exposure area 468.

一方、マイクロレンズアレイ472及びアパーチャアレイ476を配置した場合には、DMD50により反射されたレーザ光は、マイクロレンズアレイ472の各マイクロレンズによりDMD50の各描素部に対応して集光される。これにより、図14(C)に示すように、露光エリアが拡大された場合でも、各ビームスポットBSのスポットサイズを所望の大きさ(例えば、10μm×10μm)に縮小することができ、MTF特性の低下を防止して高精細な露光を行うことができる。なお、露光エリア468が傾いているのは、描素間の隙間を無くす為にDMD50を傾けて配置しているからである。   On the other hand, when the microlens array 472 and the aperture array 476 are arranged, the laser light reflected by the DMD 50 is condensed corresponding to each pixel part of the DMD 50 by each microlens of the microlens array 472. Thereby, as shown in FIG. 14C, even when the exposure area is enlarged, the spot size of each beam spot BS can be reduced to a desired size (for example, 10 μm × 10 μm), and the MTF characteristic is obtained. It is possible to perform high-definition exposure while preventing a decrease in the image quality. The exposure area 468 is tilted because the DMD 50 is tilted and arranged in order to eliminate the gap between the pixels.

また、マイクロレンズの収差によるビームの太りがあっても、アパーチャアレイによって被露光面56上でのスポットサイズが一定の大きさになるようにビームを整形することができると共に、各描素に対応して設けられたアパーチャアレイを通過させることにより、隣接する描素間でのクロストークを防止することができる。   In addition, the aperture array can shape the beam so that the spot size on the surface to be exposed 56 is constant even if the beam is thick due to the aberration of the micro lens. Thus, crosstalk between adjacent picture elements can be prevented by passing through the aperture array.

更に、光照射手段144に後述する高輝度光源を使用することにより、レンズ458からマイクロレンズアレイ472の各マイクロレンズに入射する光束の角度が小さくなるので、隣接する描素の光束の一部が入射するのを防止することができる。即ち、高消光比を実現することができる。   Further, by using a high-intensity light source, which will be described later, as the light irradiating means 144, the angle of the light beam incident on each microlens of the microlens array 472 from the lens 458 becomes small. The incident can be prevented. That is, a high extinction ratio can be realized.

−その他の光学系−
本発明のパターン形成方法では、公知の光学系の中から適宜選択したその他の光学系と併用してもよく、例えば、1対の組合せレンズからなる光量分布補正光学系などが挙げられる。
前記光量分布補正光学系は、光軸に近い中心部の光束幅に対する周辺部の光束幅の比が入射側に比べて出射側の方が小さくなるように各出射位置における光束幅を変化させて、光照射手段からの平行光束をDMDに照射するときに、被照射面での光量分布が略均一になるように補正する。以下、前記光量分布補正光学系について図面を参照しながら説明する。
-Other optical systems-
In the pattern forming method of the present invention, it may be used in combination with other optical systems appropriately selected from known optical systems, for example, a light amount distribution correcting optical system composed of a pair of combination lenses.
The light amount distribution correcting optical system changes the light flux width at each exit position so that the ratio of the light flux width at the peripheral portion to the light flux width at the central portion close to the optical axis is smaller on the exit side than on the incident side. When the DMD is irradiated with the parallel light flux from the light irradiation means, the light amount distribution on the irradiated surface is corrected so as to be substantially uniform. Hereinafter, the light quantity distribution correcting optical system will be described with reference to the drawings.

まず、図24(A)に示したように、入射光束と出射光束とで、その全体の光束幅(全光束幅)H0、H1が同じである場合について説明する。なお、図24(A)において、符号51、52で示した部分は、前記光量分布補正光学系における入射面及び出射面を仮想的に示したものである。   First, as shown in FIG. 24A, the case where the entire luminous flux widths (total luminous flux widths) H0 and H1 are the same for the incident luminous flux and the outgoing luminous flux will be described. In FIG. 24A, the portions denoted by reference numerals 51 and 52 virtually indicate the entrance surface and the exit surface in the light quantity distribution correction optical system.

前記光量分布補正光学系において、光軸Z1に近い中心部に入射した光束と、周辺部に入射した光束とのそれぞれの光束幅h0、h1が、同一であるものとする(h0=hl)。前記光量分布補正光学系は、入射側において同一の光束幅h0,h1であった光に対し、中心部の入射光束については、その光束幅h0を拡大し、逆に、周辺部の入射光束に対してはその光束幅h1を縮小するような作用を施す。即ち、中心部の出射光束の幅h10と、周辺部の出射光束の幅h11とについて、h11<h10となるようにする。光束幅の比率で表すと、出射側における中心部の光束幅に対する周辺部の光束幅の比「h11/h10」が、入射側における比(h1/h0=1)に比べて小さくなっている((h11/h10)<1)。   In the light quantity distribution correcting optical system, it is assumed that the light flux widths h0 and h1 of the light beam incident on the central portion near the optical axis Z1 and the light flux incident on the peripheral portion are the same (h0 = hl). The light quantity distribution correcting optical system expands the light flux width h0 of the incident light flux at the central portion with respect to the light having the same light flux width h0, h1 on the incident side, and conversely changes the incident light flux at the peripheral portion. On the other hand, the light beam width h1 is reduced. That is, the width h10 of the outgoing light beam at the center and the width h11 of the outgoing light beam at the periphery are set to satisfy h11 <h10. In terms of the ratio of the luminous flux width, the ratio “h11 / h10” of the luminous flux width in the peripheral portion to the luminous flux width in the central portion on the emission side is smaller than the ratio (h1 / h0 = 1) on the incident side ( (H11 / h10) <1).

このように光束幅を変化させることにより、通常では光量分布が大きくなっている中央部の光束を、光量の不足している周辺部へと生かすことができ、全体として光の利用効率を落とさずに、被照射面での光量分布が略均一化される。均一化の度合いは、例えば、有効領域内における光量ムラが30%以内、好ましくは20%以内となるようにする。   By changing the light flux width in this way, the light flux in the central part, which normally has a large light quantity distribution, can be utilized in the peripheral part where the light quantity is insufficient, and the overall light utilization efficiency is not reduced. In addition, the light quantity distribution on the irradiated surface is made substantially uniform. The degree of uniformity is, for example, such that the unevenness in the amount of light in the effective area is within 30%, preferably within 20%.

前記光量分布補正光学系による作用、効果は、入射側と出射側とで、全体の光束幅を変える場合(図25(B),(C))においても同様である。   The operations and effects of the light quantity distribution correcting optical system are the same when the entire light beam width is changed between the incident side and the exit side (FIGS. 25B and 25C).

図25(B)は、入射側の全体の光束幅H0を、幅H2に“縮小”して出射する場合(H0>H2)を示している。このような場合においても、前記光量分布補正光学系は、入射側において同一の光束幅h0、h1であった光を、出射側において、中央部の光束幅h10が周辺部に比べて大きくなり、逆に、周辺部の光束幅h11が中心部に比べて小さくなるようにする。光束の縮小率で考えると、中心部の入射光束に対する縮小率を周辺部に比べて小さくし、周辺部の入射光束に対する縮小率を中心部に比べて大きくするような作用を施している。この場合にも、中心部の光束幅に対する周辺部の光束幅の比「H11/H10」が、入射側における比(h1/h0=1)に比べて小さくなる((h11/h10)<1)。   FIG. 25B shows a case where the entire light flux width H0 on the incident side is “reduced” to the width H2 and emitted (H0> H2). Even in such a case, the light quantity distribution correcting optical system has the same light beam width h0, h1 on the incident side, and the light beam width h10 in the central part is larger than that in the peripheral part on the emission side. Conversely, the luminous flux width h11 at the peripheral part is made smaller than that at the central part. Considering the reduction rate of the light beam, the reduction rate with respect to the incident light beam in the central part is made smaller than that in the peripheral part, and the reduction rate with respect to the incident light beam in the peripheral part is made larger than that in the central part. Also in this case, the ratio “H11 / H10” of the light flux width in the peripheral portion to the light flux width in the central portion is smaller than the ratio (h1 / h0 = 1) on the incident side ((h11 / h10) <1) .

図25(C)は、入射側の全体の光束幅H0を、幅Η3に“拡大”して出射する場合(H0<H3)を示している。このような場合においても、前記光量分布補正光学系は、入射側において同一の光束幅h0、h1であった光を、出射側において、中央部の光束幅h10が周辺部に比べて大きくなり、逆に、周辺部の光束幅h11が中心部に比べて小さくなるようにする。光束の拡大率で考えると、中心部の入射光束に対する拡大率を周辺部に比べて大きくし、周辺部の入射光束に対する拡大率を中心部に比べて小さくするような作用を施している。この場合にも、中心部の光束幅に対する周辺部の光束幅の比「h11/h10」が、入射側における比(h1/h0=1)に比べて小さくなる((h11/h10)<1)。   FIG. 25C shows a case where the entire light flux width H0 on the incident side is “enlarged” by the width Η3 and emitted (H0 <H3). Even in such a case, the light quantity distribution correcting optical system has the same light beam width h0, h1 on the incident side, and the light beam width h10 in the central part is larger than that in the peripheral part on the emission side. Conversely, the luminous flux width h11 at the peripheral part is made smaller than that at the central part. Considering the expansion rate of the light beam, the expansion rate for the incident light beam in the central portion is made larger than that in the peripheral portion, and the expansion rate for the incident light beam in the peripheral portion is made smaller than that in the central portion. Also in this case, the ratio “h11 / h10” of the light flux width in the peripheral portion to the light flux width in the central portion is smaller than the ratio (h1 / h0 = 1) on the incident side ((h11 / h10) <1). .

このように、前記光量分布補正光学系は、各出射位置における光束幅を変化させ、光軸Z1に近い中心部の光束幅に対する周辺部の光束幅の比を入射側に比べて出射側の方が小さくなるようにしたので、入射側において同一の光束幅であった光が、出射側においては、中央部の光束幅が周辺部に比べて大きくなり、周辺部の光束幅は中心部に比べて小さくなる。これにより、中央部の光束を周辺部へと生かすことができ、光学系全体としての光の利用効率を落とさずに、光量分布の略均一化された光束断面を形成することができる。   As described above, the light quantity distribution correcting optical system changes the light beam width at each emission position, and the ratio of the light beam width in the peripheral part to the light beam width in the central part near the optical axis Z1 is larger on the outgoing side than on the incident side. Since the light having the same luminous flux width on the incident side is larger on the outgoing side, the luminous flux width in the central portion is larger than that in the peripheral portion, and the luminous flux width in the peripheral portion is smaller than that in the central portion. Become smaller. As a result, it is possible to make use of the light beam at the center part to the peripheral part, and it is possible to form a light beam cross-section with a substantially uniform light amount distribution without reducing the light use efficiency of the entire optical system.

次に、前記光量分布補正光学系として使用する1対の組合せレンズの具体的なレンズデータの1例を示す。この例では、前記光照射手段がレーザアレイ光源である場合のように、出射光束の断面での光量分布がガウス分布である場合のレンズデータを示す。なお、シングルモード光ファイバの入射端に1個の半導体レーザを接続した場合には、光ファイバからの射出光束の光量分布がガウス分布になる。本発明のパターン形成方法では、このような場合の適用も可能である。また、マルチモード光ファイバのコア径を小さくしてシングルモード光ファイバの構成に近付ける等により光軸に近い中心部の光量が周辺部の光量よりも大きい場合にも適用可能である。
下記表1に基本レンズデータを示す。
Next, an example of specific lens data of a pair of combination lenses used as the light quantity distribution correcting optical system will be shown. In this example, lens data in the case where the light amount distribution in the cross section of the emitted light beam is a Gaussian distribution as in the case where the light irradiation means is a laser array light source is shown. When one semiconductor laser is connected to the incident end of the single mode optical fiber, the light quantity distribution of the emitted light beam from the optical fiber becomes a Gaussian distribution. The pattern forming method of the present invention can be applied to such a case. Further, the present invention can be applied to a case where the light amount in the central portion near the optical axis is larger than the light amount in the peripheral portion, for example, by reducing the core diameter of the multi-mode optical fiber and approaching the configuration of the single mode optical fiber.
Table 1 below shows basic lens data.

表1から分かるように、1対の組合せレンズは、回転対称の2つの非球面レンズから構成されている。光入射側に配置された第1のレンズの光入射側の面を第1面、光出射側の面を第2面とすると、第1面は非球面形状である。また、光出射側に配置された第2のレンズの光入射側の面を第3面、光出射側の面を第4面とすると、第4面が非球面形状である。   As can be seen from Table 1, the pair of combination lenses is composed of two rotationally symmetric aspherical lenses. If the light incident side surface of the first lens disposed on the light incident side is the first surface and the light exit side surface is the second surface, the first surface is aspherical. In addition, when the surface on the light incident side of the second lens disposed on the light emitting side is the third surface and the surface on the light emitting side is the fourth surface, the fourth surface is aspherical.

表1において、面番号Siはi番目(i=1〜4)の面の番号を示し、曲率半径riはi番目の面の曲率半径を示し、面間隔diはi番目の面とi+1番目の面との光軸上の面間隔を示す。面間隔di値の単位はミリメートル(mm)である。屈折率Niはi番目の面を備えた光学要素の波長405nmに対する屈折率の値を示す。
下記表2に、第1面及び第4面の非球面データを示す。
In Table 1, the surface number Si indicates the number of the i-th surface (i = 1 to 4), the curvature radius ri indicates the curvature radius of the i-th surface, and the surface interval di indicates the i-th surface and the i + 1-th surface. The distance between surfaces on the optical axis is shown. The unit of the surface interval di value is millimeter (mm). The refractive index Ni indicates the value of the refractive index with respect to the wavelength of 405 nm of the optical element having the i-th surface.
Table 2 below shows the aspheric data of the first surface and the fourth surface.

上記の非球面データは、非球面形状を表す下記式(A)における係数で表される。   The aspheric data is expressed by a coefficient in the following formula (A) that represents the aspheric shape.

上記式(A)において各係数を以下の通り定義する。
Z:光軸から高さρの位置にある非球面上の点から、非球面の頂点の接平面(光軸に垂直な平面)に下ろした垂線の長さ(mm)
ρ:光軸からの距離(mm)
K:円錐係数
C:近軸曲率(1/r、r:近軸曲率半径)
ai:第i次(i=3〜10)の非球面係数
表2に示した数値において、記号“E”は、その次に続く数値が10を底とした“べき指数″であることを示し、その10を底とした指数関数で表される数値が“E”の前の数値に乗算されることを示す。例えば、「1.0E−02」であれば、「1.0×10−2」であることを示す。
In the above formula (A), each coefficient is defined as follows.
Z: Length of a perpendicular line (mm) drawn from a point on the aspheric surface at a height ρ from the optical axis to the tangent plane (plane perpendicular to the optical axis) of the apex of the aspheric surface
ρ: Distance from optical axis (mm)
K: Conic coefficient C: Paraxial curvature (1 / r, r: Paraxial radius of curvature)
ai: i-th order (i = 3 to 10) aspheric coefficient In the numerical values shown in Table 2, the symbol “E” indicates that the subsequent numerical value is a “power index” with 10 as the base. The numerical value represented by the exponential function with the base of 10 is multiplied by the numerical value before “E”. For example, “1.0E-02” indicates “1.0 × 10 −2 ”.

図27は、前記表1及び表2に示す1対の組合せレンズによって得られる照明光の光量分布を示している。横軸は光軸からの座標を示し、縦軸は光量比(%)を示す。なお、比較のために、図26に、補正を行わなかった場合の照明光の光量分布(ガウス分布)を示す。図26及び図27から分かるように、光量分布補正光学系で補正を行うことにより、補正を行わなかった場合と比べて、略均一化された光量分布が得られている。これにより、光の利用効率を落とさずに、均一なレーザ光でムラなく露光を行うことができる。   FIG. 27 shows a light amount distribution of illumination light obtained by the pair of combination lenses shown in Tables 1 and 2. The horizontal axis indicates coordinates from the optical axis, and the vertical axis indicates the light amount ratio (%). For comparison, FIG. 26 shows a light amount distribution (Gaussian distribution) of illumination light when correction is not performed. As can be seen from FIG. 26 and FIG. 27, a light amount distribution that is substantially uniform is obtained by performing correction using the light amount distribution correcting optical system as compared with the case where correction is not performed. Thereby, it is possible to perform exposure with uniform laser light without reducing the use efficiency of light, without causing any unevenness.

―――照射手段―――
前記光照射手段としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、(超)高圧水銀灯、キセノン灯、カーボンアーク灯、ハロゲンランプ、複写機用などの蛍光管、LED、半導体レーザ等の公知光源、又は2以上の光を合成して照射可能な手段が挙げられ、これらの中でも2以上の光を合成して照射可能な手段が好ましい。
前記光照射手段から照射される光としては、例えば、支持体を介して光照射を行う場合には、該支持体を透過し、かつ用いられる光重合開始剤や増感剤を活性化する電磁波、紫外から可視光線、電子線、X線、レーザ光などが挙げられ、これらの中でもレーザ光が好ましく、2以上の光を合成したレーザ(以下、「合波レーザ」と称することがある)がより好ましい。また支持体を剥離してから光照射を行う場合でも、同様の光を用いることができる。
――― Irradiation means ―――
The light irradiation means is not particularly limited and may be appropriately selected depending on the purpose. For example, (ultra) high pressure mercury lamp, xenon lamp, carbon arc lamp, halogen lamp, copier, fluorescent tube, LED, etc. , A known light source such as a semiconductor laser, or means capable of synthesizing and irradiating two or more lights. Among these, means capable of synthesizing and irradiating two or more lights are preferable.
The light emitted from the light irradiation means is, for example, an electromagnetic wave that passes through the support and activates the photopolymerization initiator and sensitizer used when the light is irradiated through the support. In particular, ultraviolet to visible light, electron beam, X-ray, laser beam, and the like can be mentioned. Of these, laser beam is preferable, and a laser combining two or more lights (hereinafter, referred to as “combined laser”). More preferred. Even when light irradiation is performed after the support is peeled off, the same light can be used.

前記紫外から可視光線の波長としては、例えば、300〜1500nmが好ましく、320〜800nmがより好ましく、330nm〜650nmが特に好ましい。
前記レーザ光の波長としては、例えば、200〜1500nmが好ましく、300〜800nmがより好ましく、330nm〜500nmが更に好ましく、400nm〜450nmが特に好ましい。
As a wavelength of the ultraviolet to visible light, for example, 300 to 1500 nm is preferable, 320 to 800 nm is more preferable, and 330 nm to 650 nm is particularly preferable.
As a wavelength of the said laser beam, 200-1500 nm is preferable, for example, 300-800 nm is more preferable, 330 nm-500 nm is still more preferable, 400 nm-450 nm is especially preferable.

前記合波レーザを照射可能な手段としては、例えば、複数のレーザと、マルチモード光ファイバと、該複数のレーザからそれぞれ照射したレーザ光を集光して前記マルチモード光ファイバに結合させる集合光学系とを有する手段が好ましい。   Examples of means capable of irradiating the combined laser include, for example, a plurality of lasers, a multimode optical fiber, and collective optics for condensing and coupling the laser beams respectively emitted from the plurality of lasers to the multimode optical fiber. Means having a system are preferred.

以下、前記合波レーザを照射可能な手段(ファイバアレイ光源)について図を参照しながら説明する。   Hereinafter, means (fiber array light source) capable of irradiating the combined laser will be described with reference to the drawings.

ファイバアレイ光源66は図28aに示すように、複数(例えば、14個)のレーザモジュール64を備えており、各レーザモジュール64には、マルチモード光ファイバ30の一端が結合されている。マルチモード光ファイバ30の他端には、コア径がマルチモード光ファイバ30と同一で且つクラッド径がマルチモード光ファイバ30より小さい光ファイバ31が結合されている。図28bに詳しく示すように、マルチモード光ファイバ31の光ファイバ30と反対側の端部は副走査方向と直交する主走査方向に沿って7個並べられ、それが2列に配列されてレーザ出射部68が構成されている。   As shown in FIG. 28 a, the fiber array light source 66 includes a plurality of (for example, 14) laser modules 64, and one end of the multimode optical fiber 30 is coupled to each laser module 64. An optical fiber 31 having the same core diameter as that of the multimode optical fiber 30 and a smaller cladding diameter than the multimode optical fiber 30 is coupled to the other end of the multimode optical fiber 30. As shown in detail in FIG. 28b, seven end portions of the multimode optical fiber 31 opposite to the optical fiber 30 are arranged along the main scanning direction orthogonal to the sub-scanning direction, and these are arranged in two rows to form a laser. An emission unit 68 is configured.

マルチモード光ファイバ31の端部で構成されるレーザ出射部68は、図28bに示すように、表面が平坦な2枚の支持板65に挟み込まれて固定されている。また、マルチモード光ファイバ31の光出射端面には、その保護のために、ガラス等の透明な保護板が配置されるのが望ましい。マルチモード光ファイバ31の光出射端面は、光密度が高いため集塵し易く劣化し易いが、上述のような保護板を配置することにより、端面への塵埃の付着を防止し、また劣化を遅らせることができる。   As shown in FIG. 28b, the laser emitting portion 68 configured by the end portion of the multimode optical fiber 31 is sandwiched and fixed between two support plates 65 having a flat surface. In addition, a transparent protective plate such as glass is preferably disposed on the light emitting end face of the multimode optical fiber 31 for protection. The light exit end face of the multimode optical fiber 31 has high light density and is likely to collect dust and easily deteriorate. However, the protective plate as described above prevents the dust from adhering to the end face and deteriorates. Can be delayed.

この例では、クラッド径が小さい光ファイバ31の出射端を隙間無く1列に配列するために、クラッド径が大きい部分で隣接する2本のマルチモード光ファイバ30の間にマルチモード光ファイバ30を積み重ね、積み重ねられたマルチモード光ファイバ30に結合された光ファイバ31の出射端が、クラッド径が大きい部分で隣接する2本のマルチモード光ファイバ30に結合された光ファイバ31の2つの出射端の間に挟まれるように配列されている。   In this example, in order to arrange the emission ends of the optical fibers 31 with a small cladding diameter in a line without any gaps, the multimode optical fiber 30 is placed between two adjacent multimode optical fibers 30 at a portion with a large cladding diameter. Two exit ends of the optical fiber 31 coupled to the two multimode optical fibers 30 adjacent to each other at the portion where the cladding diameter is large are the exit ends of the optical fiber 31 coupled to the stacked and stacked multimode optical fibers 30. Are arranged so as to be sandwiched between them.

このような光ファイバは、例えば、図29に示すように、クラッド径が大きいマルチモード光ファイバ30のレーザ光出射側の先端部分に、長さ1〜30cmのクラッド径が小さい光ファイバ31を同軸的に結合することにより得ることができる。2本の光ファイバは、光ファイバ31の入射端面が、マルチモード光ファイバ30の出射端面に、両光ファイバの中心軸が一致するように融着されて結合されている。上述した通り、光ファイバ31のコア31aの径は、マルチモード光ファイバ30のコア30aの径と同じ大きさである。   For example, as shown in FIG. 29, such an optical fiber is coaxial with an optical fiber 31 having a length of 1 to 30 cm and a small cladding diameter at the tip of the laser beam emission side of a multimode optical fiber 30 having a large cladding diameter. Can be obtained by linking them together. In the two optical fibers, the incident end face of the optical fiber 31 is fused and joined to the outgoing end face of the multimode optical fiber 30 so that the central axes of both optical fibers coincide. As described above, the diameter of the core 31 a of the optical fiber 31 is the same as the diameter of the core 30 a of the multimode optical fiber 30.

また、長さが短くクラッド径が大きい光ファイバにクラッド径が小さい光ファイバを融着させた短尺光ファイバを、フェルールや光コネクタ等を介してマルチモード光ファイバ30の出射端に結合してもよい。コネクタ等を用いて着脱可能に結合することで、クラッド径が小さい光ファイバが破損した場合等に先端部分の交換が容易になり、露光ヘッドのメンテナンスに要するコストを低減できる。なお、以下では、光ファイバ31を、マルチモード光ファイバ30の出射端部と称する場合がある。   In addition, a short optical fiber in which an optical fiber having a short cladding diameter and a large cladding diameter is fused to an optical fiber having a short cladding diameter and a large cladding diameter may be coupled to the output end of the multimode optical fiber 30 via a ferrule or an optical connector. Good. By detachably coupling using a connector or the like, the tip portion can be easily replaced when an optical fiber having a small cladding diameter is broken, and the cost required for exposure head maintenance can be reduced. Hereinafter, the optical fiber 31 may be referred to as an emission end portion of the multimode optical fiber 30.

マルチモード光ファイバ30及び光ファイバ31としては、ステップインデックス型光ファイバ、グレーテッドインデックス型光ファイバ及び複合型光ファイバの何れでもよい。例えば、三菱電線工業株式会社製のステップインデックス型光ファイバを用いることができる。本実施の形態では、マルチモード光ファイバ30及び光ファイバ31は、ステップインデックス型光ファイバであり、マルチモード光ファイバ30は、クラッド径=125μm、コア径=25μm、NA=0.2、入射端面コートの透過率=99.5%以上であり、光ファイバ31は、クラッド径=60μm、コア径=25μm、NA=0.2である。   The multimode optical fiber 30 and the optical fiber 31 may be any of a step index type optical fiber, a graded index type optical fiber, and a composite type optical fiber. For example, a step index type optical fiber manufactured by Mitsubishi Cable Industries, Ltd. can be used. In the present embodiment, the multimode optical fiber 30 and the optical fiber 31 are step index type optical fibers, and the multimode optical fiber 30 has a cladding diameter = 125 μm, a core diameter = 25 μm, NA = 0.2, an incident end face. The transmittance of the coat is 99.5% or more, and the optical fiber 31 has a cladding diameter = 60 μm, a core diameter = 25 μm, and NA = 0.2.

一般に、赤外領域のレーザ光では、光ファイバのクラッド径を小さくすると伝搬損失が増加する。このため、レーザ光の波長帯域に応じて好適なクラッド径が決定されている。しかしながら、波長が短いほど伝搬損失は少なくなり、GaN系半導体レーザから出射された波長405nmのレーザ光では、クラッドの厚み{(クラッド径−コア径)/2}を800nmの波長帯域の赤外光を伝搬させる場合の1/2程度、通信用の1.5μmの波長帯域の赤外光を伝搬させる場合の約1/4にしても、伝搬損失は殆ど増加しない。従って、クラッド径を60μmと小さくすることができる。   In general, in laser light in the infrared region, propagation loss increases as the cladding diameter of the optical fiber is reduced. For this reason, a suitable cladding diameter is determined according to the wavelength band of the laser beam. However, the shorter the wavelength, the smaller the propagation loss. In the case of laser light having a wavelength of 405 nm emitted from a GaN-based semiconductor laser, the cladding thickness {(cladding diameter−core diameter) / 2} is set to an infrared light having a wavelength band of 800 nm. The propagation loss hardly increases even if it is about ½ of the case of propagating infrared light and about ¼ of the case of propagating infrared light in the 1.5 μm wavelength band for communication. Therefore, the cladding diameter can be reduced to 60 μm.

但し、光ファイバ31のクラッド径は60μmには限定されない。従来のファイバアレイ光源に使用されている光ファイバのクラッド径は125μmであるが、クラッド径が小さくなるほど焦点深度がより深くなるので、マルチモード光ファイバのクラッド径は80μm以下が好ましく、60μm以下がより好ましく、40μm以下が更に好ましい。一方、コア径は少なくとも3〜4μm必要であることから、光ファイバ31のクラッド径は10μm以上が好ましい。   However, the clad diameter of the optical fiber 31 is not limited to 60 μm. The clad diameter of the optical fiber used in the conventional fiber array light source is 125 μm, but the depth of focus becomes deeper as the clad diameter becomes smaller. More preferably, it is 40 μm or less. On the other hand, since the core diameter needs to be at least 3 to 4 μm, the cladding diameter of the optical fiber 31 is preferably 10 μm or more.

レーザモジュール64は、図30に示す合波レーザ光源(ファイバアレイ光源)によって構成されている。この合波レーザ光源は、ヒートブロック10上に配列固定された複数(例えば、7個)のチップ状の横マルチモード又はシングルモードのGaN系半導体レーザLD1,LD2,LD3,LD4,LD5,LD6,及びLD7と、GaN系半導体レーザLD1〜LD7の各々に対応して設けられたコリメータレンズ11,12,13,14,15,16,及び17と、1つの集光レンズ20と、1本のマルチモード光ファイバ30と、から構成されている。なお、半導体レーザの個数は7個には限定されない。例えば、クラッド径=60μm、コア径=50μm、NA=0.2のマルチモード光ファイバには、20個もの半導体レーザ光を入射することが可能であり、露光ヘッドの必要光量を実現して、且つ光ファイバ本数をより減らすことができる。   The laser module 64 includes a combined laser light source (fiber array light source) shown in FIG. This combined laser light source includes a plurality of (for example, seven) chip-like lateral multimode or single mode GaN-based semiconductor lasers LD1, LD2, LD3, LD4, LD5, LD6, arrayed and fixed on the heat block 10. And LD7, collimator lenses 11, 12, 13, 14, 15, 16, and 17 provided corresponding to each of the GaN-based semiconductor lasers LD1 to LD7, one condenser lens 20, and one multi-lens. Mode optical fiber 30. The number of semiconductor lasers is not limited to seven. For example, as many as 20 semiconductor laser beams can be incident on a multimode optical fiber having a cladding diameter = 60 μm, a core diameter = 50 μm, and NA = 0.2. In addition, the number of optical fibers can be further reduced.

GaN系半導体レーザLD1〜LD7は、発振波長が総て共通(例えば、405nm)であり、最大出力も総て共通(例えば、マルチモードレーザでは100mW、シングルモードレーザでは30mW)である。なお、GaN系半導体レーザLD1〜LD7としては、350nm〜450nmの波長範囲で、上記の405nm以外の発振波長を備えるレーザを用いてもよい。   The GaN-based semiconductor lasers LD1 to LD7 all have the same oscillation wavelength (for example, 405 nm), and the maximum output is also all the same (for example, 100 mW for the multimode laser and 30 mW for the single mode laser). As the GaN-based semiconductor lasers LD1 to LD7, lasers having an oscillation wavelength other than the above 405 nm in a wavelength range of 350 nm to 450 nm may be used.

前記合波レーザ光源は、図31及び図32に示すように、他の光学要素と共に、上方が開口した箱状のパッケージ40内に収納されている。パッケージ40は、その開口を閉じるように作成されたパッケージ蓋41を備えており、脱気処理後に封止ガスを導入し、パッケージ40の開口をパッケージ蓋41で閉じることにより、パッケージ40とパッケージ蓋41とにより形成される閉空間(封止空間)内に上記合波レーザ光源が気密封止されている。   As shown in FIGS. 31 and 32, the combined laser light source is housed in a box-shaped package 40 having an upper opening together with other optical elements. The package 40 includes a package lid 41 created so as to close the opening thereof. After the deaeration process, a sealing gas is introduced, and the package 40 and the package lid 41 are closed by closing the opening of the package 40 with the package lid 41. 41. The combined laser light source is hermetically sealed in a closed space (sealed space) formed by 41.

パッケージ40の底面にはベース板42が固定されており、このベース板42の上面には、前記ヒートブロック10と、集光レンズ20を保持する集光レンズホルダー45と、マルチモード光ファイバ30の入射端部を保持するファイバホルダー46とが取り付けられている。マルチモード光ファイバ30の出射端部は、パッケージ40の壁面に形成された開口からパッケージ外に引き出されている。   A base plate 42 is fixed to the bottom surface of the package 40, and the heat block 10, a condensing lens holder 45 that holds the condensing lens 20, and the multimode optical fiber 30 are disposed on the top surface of the base plate 42. A fiber holder 46 that holds the incident end is attached. The exit end of the multimode optical fiber 30 is drawn out of the package from an opening formed in the wall surface of the package 40.

また、ヒートブロック10の側面にはコリメータレンズホルダー44が取り付けられており、コリメータレンズ11〜17が保持されている。パッケージ40の横壁面には開口が形成され、この開口を通してGaN系半導体レーザLD1〜LD7に駆動電流を供給する配線47がパッケージ外に引き出されている。   Further, a collimator lens holder 44 is attached to the side surface of the heat block 10, and the collimator lenses 11 to 17 are held. An opening is formed in the lateral wall surface of the package 40, and wiring 47 for supplying a driving current to the GaN-based semiconductor lasers LD1 to LD7 is drawn out of the package through the opening.

なお、図32においては、図の煩雑化を避けるために、複数のGaN系半導体レーザのうちGaN系半導体レーザLD7にのみ番号を付し、複数のコリメータレンズのうちコリメータレンズ17にのみ番号を付している。   In FIG. 32, in order to avoid complication of the figure, only the GaN-based semiconductor laser LD7 among the plurality of GaN-based semiconductor lasers is numbered, and only the collimator lens 17 among the plurality of collimator lenses is numbered. is doing.

図33は、前記コリメータレンズ11〜17の取り付け部分の正面形状を示すものである。コリメータレンズ11〜17の各々は、非球面を備えた円形レンズの光軸を含む領域を平行な平面で細長く切り取った形状に形成されている。この細長形状のコリメータレンズは、例えば、樹脂又は光学ガラスをモールド成形することによって形成することができる。コリメータレンズ11〜17は、長手方向がGaN系半導体レーザLD1〜LD7の発光点の配列方向(図33の左右方向)と直交するように、上記発光点の配列方向に密接配置されている。   FIG. 33 shows the front shape of the attachment part of the collimator lenses 11-17. Each of the collimator lenses 11 to 17 is formed in a shape obtained by cutting a region including the optical axis of a circular lens having an aspherical surface into a long and narrow plane. This elongated collimator lens can be formed, for example, by molding resin or optical glass. The collimator lenses 11 to 17 are closely arranged in the arrangement direction of the light emitting points so that the longitudinal direction is orthogonal to the arrangement direction of the light emitting points of the GaN-based semiconductor lasers LD1 to LD7 (left and right direction in FIG. 33).

一方、GaN系半導体レーザLD1〜LD7としては、発光幅が2μmの活性層を備え、活性層と平行な方向、直角な方向の拡がり角が各々例えば10°、30°の状態で各々レーザ光B1〜B7を発するレーザが用いられている。これらGaN系半導体レーザLD1〜LD7は、活性層と平行な方向に発光点が1列に並ぶように配設されている。   On the other hand, each of the GaN-based semiconductor lasers LD1 to LD7 includes an active layer having a light emission width of 2 μm, and each of the laser beams B1 in a state in which the divergence angles in a direction parallel to and perpendicular to the active layer are, for example A laser emitting ~ B7 is used. These GaN-based semiconductor lasers LD1 to LD7 are arranged so that the light emitting points are arranged in a line in a direction parallel to the active layer.

したがって、各発光点から発せられたレーザ光B1〜B7は、上述のように細長形状の各コリメータレンズ11〜17に対して、拡がり角度が大きい方向が長手方向と一致し、拡がり角度が小さい方向が幅方向(長手方向と直交する方向)と一致する状態で入射することになる。つまり、各コリメータレンズ11〜17の幅が1.1mm、長さが4.6mmであり、それらに入射するレーザ光B1〜B7の水平方向、垂直方向のビーム径は各々0.9mm、2.6mmである。また、コリメータレンズ11〜17の各々は、焦点距離f1=3mm、NA=0.6、レンズ配置ピッチ=1.25mmである。 Therefore, in the laser beams B1 to B7 emitted from the respective light emitting points, the direction in which the divergence angle is large coincides with the longitudinal direction and the divergence angle is small with respect to the elongated collimator lenses 11 to 17 as described above. Is incident in a state that coincides with the width direction (direction orthogonal to the longitudinal direction). That is, the collimator lenses 11 to 17 have a width of 1.1 mm and a length of 4.6 mm, and the horizontal and vertical beam diameters of the laser beams B1 to B7 incident thereon are 0.9 mm and 2. 6 mm. Each of the collimator lenses 11 to 17 has a focal length f 1 = 3 mm, NA = 0.6, and a lens arrangement pitch = 1.25 mm.

集光レンズ20は、非球面を備えた円形レンズの光軸を含む領域を平行な平面で細長く切り取って、コリメータレンズ11〜17の配列方向、つまり水平方向に長く、それと直角な方向に短い形状に形成されている。この集光レンズ20は、焦点距離f=23mm、NA=0.2である。この集光レンズ20も、例えば、樹脂又は光学ガラスをモールド成形することにより形成される。 The condensing lens 20 is formed by cutting a region including the optical axis of a circular lens having an aspheric surface into a long and narrow shape in parallel planes, and is long in the arrangement direction of the collimator lenses 11 to 17, that is, in a horizontal direction and short in a direction perpendicular thereto. Is formed. This condenser lens 20 has a focal length f 2 = 23 mm and NA = 0.2. This condensing lens 20 is also formed by molding resin or optical glass, for example.

また、DMDを照明する光照射手段に、合波レーザ光源の光ファイバの出射端部をアレイ状に配列した高輝度のファイバアレイ光源を用いているので、高出力で且つ深い焦点深度を備えたパターン形成装置を実現することができる。更に、各ファイバアレイ光源の出力が大きくなることで、所望の出力を得るために必要なファイバアレイ光源数が少なくなり、パターン形成装置の低コスト化が図られる。   In addition, since the light emitting means for illuminating the DMD uses a high-intensity fiber array light source in which the output ends of the optical fibers of the combined laser light source are arranged in an array, it has a high output and a deep depth of focus. A pattern forming apparatus can be realized. Furthermore, since the output of each fiber array light source is increased, the number of fiber array light sources required to obtain a desired output is reduced, and the cost of the pattern forming apparatus can be reduced.

また、光ファイバの出射端のクラッド径を入射端のクラッド径よりも小さくしているので、発光部径がより小さくなり、ファイバアレイ光源の高輝度化が図られる。これにより、より深い焦点深度を備えたパターン形成装置を実現することができる。例えば、ビーム径1μm以下、解像度0.1μm以下の超高解像度露光の場合にも、深い焦点深度を得ることができ、高速且つ高精細な露光が可能となる。したがって、高解像度が必要とされる薄膜トランジスタ(TFT)の露光工程に好適である。   Further, since the cladding diameter of the output end of the optical fiber is smaller than the cladding diameter of the incident end, the diameter of the light emitting portion is further reduced, and the brightness of the fiber array light source can be increased. Thereby, a pattern forming apparatus having a deeper depth of focus can be realized. For example, even in the case of ultra-high resolution exposure with a beam diameter of 1 μm or less and a resolution of 0.1 μm or less, a deep depth of focus can be obtained, and high-speed and high-definition exposure is possible. Therefore, it is suitable for a thin film transistor (TFT) exposure process that requires high resolution.

また、前記光照射手段としては、前記合波レーザ光源を複数備えたファイバアレイ光源に限定されず、例えば、1個の発光点を有する単一の半導体レーザから入射されたレーザ光を出射する1本の光ファイバを備えたファイバ光源をアレイ化したファイバアレイ光源を用いることができる。   The light irradiating means is not limited to a fiber array light source including a plurality of the combined laser light sources, and for example, emits laser light incident from a single semiconductor laser having one light emitting point. A fiber array light source in which fiber light sources including optical fibers are arrayed can be used.

また、複数の発光点を備えた光照射手段としては、例えば、図34に示すように、ヒートブロック100上に、複数(例えば、7個)のチップ状の半導体レーザLD1〜LD7を配列したレーザアレイを用いることができる。また、図35(A)に示す、複数(例えば、5個)の発光点110aが所定方向に配列されたチップ状のマルチキャビティレーザ110が知られている。マルチキャビティレーザ110は、チップ状の半導体レーザを配列する場合と比べ、発光点を位置精度良く配列できるので、各発光点から出射されるレーザ光を合波し易い。但し、発光点が多くなるとレーザ製造時にマルチキャビティレーザ110に撓みが発生し易くなるため、発光点110aの個数は、5個以下とするのが好ましい。   Further, as a light irradiation means having a plurality of light emitting points, for example, as shown in FIG. 34, a laser in which a plurality of (for example, seven) chip-shaped semiconductor lasers LD1 to LD7 are arranged on the heat block 100. An array can be used. Further, a chip-shaped multicavity laser 110 in which a plurality of (for example, five) light emitting points 110a shown in FIG. 35A is arranged in a predetermined direction is known. Since the multicavity laser 110 can arrange the light emitting points with high positional accuracy as compared with the case where the chip-shaped semiconductor lasers are arranged, it is easy to multiplex the laser beams emitted from the respective light emitting points. However, since the multi-cavity laser 110 is likely to be bent at the time of laser manufacture when the number of light emitting points increases, the number of light emitting points 110a is preferably 5 or less.

前記光照射手段としては、このマルチキャビティレーザ110や、図35(B)に示すように、ヒートブロック100上に、複数のマルチキャビティレーザ110が各チップの発光点110aの配列方向と同じ方向に配列されたマルチキャビティレーザアレイを、レーザ光源として用いることができる。   As the light irradiation means, the multi-cavity laser 110 or a plurality of multi-cavity lasers 110 on the heat block 100 in the same direction as the arrangement direction of the light emitting points 110a of each chip as shown in FIG. An arrayed multi-cavity laser array can be used as a laser light source.

また、合波レーザ光源は、複数のチップ状の半導体レーザから出射されたレーザ光を合波するものには限定されない。例えば、図22に示すように、複数(例えば、3個)の発光点110aを有するチップ状のマルチキャビティレーザ110を備えた合波レーザ光源を用いることができる。この合波レーザ光源は、マルチキャビティレーザ110と、1本のマルチモード光ファイバ130と、集光レンズ120と、を備えて構成されている。マルチキャビティレーザ110は、例えば、発振波長が405nmのGaN系レーザダイオードで構成することができる。   The combined laser light source is not limited to one that combines laser beams emitted from a plurality of chip-shaped semiconductor lasers. For example, as shown in FIG. 22, a combined laser light source including a chip-shaped multicavity laser 110 having a plurality of (for example, three) light emitting points 110a can be used. This combined laser light source is configured to include a multi-cavity laser 110, one multi-mode optical fiber 130, and a condensing lens 120. The multi-cavity laser 110 can be composed of, for example, a GaN-based laser diode having an oscillation wavelength of 405 nm.

前記構成では、マルチキャビティレーザ110の複数の発光点110aの各々から出射したレーザ光Bの各々は、集光レンズ120によって集光され、マルチモード光ファイバ130のコア130aに入射する。コア130aに入射したレーザ光は、光ファイバ内を伝搬し、1本に合波されて出射する。   In the above configuration, each of the laser beams B emitted from each of the plurality of light emitting points 110 a of the multicavity laser 110 is collected by the condenser lens 120 and enters the core 130 a of the multimode optical fiber 130. The laser light incident on the core 130a propagates in the optical fiber, is combined into one, and is emitted.

マルチキャビティレーザ110の複数の発光点110aを、上記マルチモード光ファイバ130のコア径と略等しい幅内に並設すると共に、集光レンズ120として、マルチモード光ファイバ130のコア径と略等しい焦点距離の凸レンズや、マルチキャビティレーザ110からの出射ビームをその活性層に垂直な面内のみでコリメートするロッドレンズを用いることにより、レーザ光Bのマルチモード光ファイバ130への結合効率を上げることができる。   A plurality of light emitting points 110 a of the multicavity laser 110 are arranged in parallel within a width substantially equal to the core diameter of the multimode optical fiber 130, and a focal point substantially equal to the core diameter of the multimode optical fiber 130 is formed as the condenser lens 120. By using a convex lens of a distance or a rod lens that collimates the outgoing beam from the multi-cavity laser 110 only in a plane perpendicular to the active layer, the coupling efficiency of the laser beam B to the multi-mode optical fiber 130 can be increased. it can.

また、図36に示すように、複数(例えば、3個)の発光点を備えたマルチキャビティレーザ110を用い、ヒートブロック111上に複数(例えば、9個)のマルチキャビティレーザ110が互いに等間隔で配列されたレーザアレイ140を備えた合波レーザ光源を用いることができる。複数のマルチキャビティレーザ110は、各チップの発光点110aの配列方向と同じ方向に配列されて固定されている。   As shown in FIG. 36, a multi-cavity laser 110 having a plurality of (for example, three) emission points is used, and a plurality of (for example, nine) multi-cavity lasers 110 are equidistant from each other on the heat block 111. A combined laser light source including the laser array 140 arranged in (1) can be used. The plurality of multi-cavity lasers 110 are arranged and fixed in the same direction as the arrangement direction of the light emitting points 110a of each chip.

この合波レーザ光源は、レーザアレイ140と、各マルチキャビティレーザ110に対応させて配置した複数のレンズアレイ114と、レーザアレイ140と複数のレンズアレイ114との間に配置された1本のロッドレンズ113と、1本のマルチモード光ファイバ130と、集光レンズ120と、を備えて構成されている。レンズアレイ114は、マルチキャビティレーザ110の発光点に対応した複数のマイクロレンズを備えている。   This combined laser light source includes a laser array 140, a plurality of lens arrays 114 arranged corresponding to each multi-cavity laser 110, and a single rod arranged between the laser array 140 and the plurality of lens arrays 114. The lens 113, one multimode optical fiber 130, and a condenser lens 120 are provided. The lens array 114 includes a plurality of microlenses corresponding to the emission points of the multicavity laser 110.

上記の構成では、複数のマルチキャビティレーザ110の複数の発光点10aの各々から出射したレーザ光Bの各々は、ロッドレンズ113により所定方向に集光された後、レンズアレイ114の各マイクロレンズにより平行光化される。平行光化されたレーザ光Lは、集光レンズ120によって集光され、マルチモード光ファイバ130のコア130aに入射する。コア130aに入射したレーザ光は、光ファイバ内を伝搬し、1本に合波されて出射する。   In the above configuration, each of the laser beams B emitted from each of the plurality of light emitting points 10a of the plurality of multi-cavity lasers 110 is condensed in a predetermined direction by the rod lens 113, and then each microlens of the lens array 114. It becomes parallel light. The collimated laser beam L is condensed by the condenser lens 120 and enters the core 130a of the multimode optical fiber 130. The laser light incident on the core 130a propagates in the optical fiber, is combined into one, and is emitted.

更に他の合波レーザ光源の例を示す。この合波レーザ光源は、図37(A)及び(B)に示すように、略矩形状のヒートブロック180上に光軸方向の断面がL字状のヒートブロック182が搭載され、2つのヒートブロック間に収納空間が形成されている。L字状のヒートブロック182の上面には、複数の発光点(例えば、5個)がアレイ状に配列された複数(例えば、2個)のマルチキャビティレーザ110が、各チップの発光点110aの配列方向と同じ方向に等間隔で配列されて固定されている。   Still another example of the combined laser light source will be described. In this combined laser light source, as shown in FIGS. 37A and 37B, a heat block 182 having an L-shaped cross section in the optical axis direction is mounted on a substantially rectangular heat block 180, and two heats are provided. A storage space is formed between the blocks. On the upper surface of the L-shaped heat block 182, a plurality of (for example, two) multi-cavity lasers 110 in which a plurality of light emitting points (for example, five) are arranged in an array form the light emitting points 110a of each chip. It is arranged and fixed at equal intervals in the same direction as the arrangement direction.

略矩形状のヒートブロック180には凹部が形成されており、ヒートブロック180の空間側上面には、複数の発光点(例えば、5個)がアレイ状に配列された複数(例えば、2個)のマルチキャビティレーザ110が、その発光点がヒートブロック182の上面に配置されたレーザチップの発光点と同じ鉛直面上に位置するように配置されている。   A concave portion is formed in the substantially rectangular heat block 180, and a plurality of (for example, two) light emitting points (for example, five) are arranged in an array on the upper surface of the space side of the heat block 180. The multi-cavity laser 110 is arranged such that its emission point is located on the same vertical plane as the emission point of the laser chip arranged on the upper surface of the heat block 182.

マルチキャビティレーザ110のレーザ光出射側には、各チップの発光点110aに対応してコリメートレンズが配列されたコリメートレンズアレイ184が配置されている。コリメートレンズアレイ184は、各コリメートレンズの長手方向とレーザ光の拡がり角が大きい方向(速軸方向)とが一致し、各コリメートレンズの幅方向が拡がり角が小さい方向(遅軸方向)と一致するように配置されている。このように、コリメートレンズをアレイ化して一体化することで、レーザ光の空間利用効率が向上し合波レーザ光源の高出力化が図られると共に、部品点数が減少し低コスト化することができる。   On the laser beam emission side of the multi-cavity laser 110, a collimator lens array 184 in which collimator lenses are arranged corresponding to the light emission points 110a of the respective chips is arranged. In the collimating lens array 184, the longitudinal direction of each collimating lens coincides with the direction in which the laser beam divergence angle is large (fast axis direction), and the width direction of each collimating lens coincides with the direction in which the divergence angle is small (slow axis direction). Are arranged to be. Thus, by collimating and integrating the collimating lenses, the space utilization efficiency of the laser light can be improved, the output of the combined laser light source can be increased, and the number of parts can be reduced and the cost can be reduced. .

また、コリメートレンズアレイ184のレーザ光出射側には、1本のマルチモード光ファイバ130と、このマルチモード光ファイバ130の入射端にレーザ光を集光して結合する集光レンズ120と、が配置されている。   Further, on the laser light emitting side of the collimating lens array 184, there is one multimode optical fiber 130 and a condensing lens 120 that condenses and couples the laser light to the incident end of the multimode optical fiber 130. Is arranged.

前記構成では、レーザブロック180、182上に配置された複数のマルチキャビティレーザ110の複数の発光点10aの各々から出射したレーザ光Bの各々は、コリメートレンズアレイ184により平行光化され、集光レンズ120によって集光されて、マルチモード光ファイバ130のコア130aに入射する。コア130aに入射したレーザ光は、光ファイバ内を伝搬し、1本に合波されて出射する。   In the above configuration, each of the laser beams B emitted from each of the plurality of light emitting points 10a of the plurality of multicavity lasers 110 arranged on the laser blocks 180 and 182 is collimated by the collimating lens array 184 and condensed. The light is condensed by the lens 120 and enters the core 130 a of the multimode optical fiber 130. The laser light incident on the core 130a propagates in the optical fiber, is combined into one, and is emitted.

前記合波レーザ光源は、上記の通り、マルチキャビティレーザの多段配置とコリメートレンズのアレイ化とにより、特に高出力化を図ることができる。この合波レーザ光源を用いることにより、より高輝度なファイバアレイ光源やバンドルファイバ光源を構成することができるので、本発明のパターン形成装置のレーザ光源を構成するファイバ光源として特に好適である。   As described above, the combined laser light source can achieve particularly high output by the multistage arrangement of multicavity lasers and the array of collimating lenses. By using this combined laser light source, a higher-intensity fiber array light source or bundle fiber light source can be configured, so that it is particularly suitable as a fiber light source constituting the laser light source of the pattern forming apparatus of the present invention.

なお、前記各合波レーザ光源をケーシング内に収納し、マルチモード光ファイバ130の出射端部をそのケーシングから引き出したレーザモジュールを構成することができる。   It should be noted that a laser module in which each of the combined laser light sources is housed in a casing and the emission end of the multimode optical fiber 130 is pulled out from the casing can be configured.

また、合波レーザ光源のマルチモード光ファイバの出射端に、コア径がマルチモード光ファイバと同一で且つクラッド径がマルチモード光ファイバより小さい他の光ファイバを結合してファイバアレイ光源の高輝度化を図る例について説明したが、例えば、クラッド径が125μm、80μm、60μm等のマルチモード光ファイバを、出射端に他の光ファイバを結合せずに使用してもよい。   In addition, the other end of the multimode optical fiber of the combined laser light source is coupled with another optical fiber having the same core diameter as the multimode optical fiber and a cladding diameter smaller than the multimode optical fiber. However, for example, a multimode optical fiber having a cladding diameter of 125 μm, 80 μm, 60 μm or the like may be used without coupling another optical fiber to the emission end.

ここで、本発明の前記パターン形成方法について更に説明する。
スキャナ162の各露光ヘッド166において、ファイバアレイ光源66の合波レーザ光源を構成するGaN系半導体レーザLD1〜LD7の各々から発散光状態で出射したレーザ光B1,B2,B3,B4,B5,B6,及びB7の各々は、対応するコリメータレンズ11〜17によって平行光化される。平行光化されたレーザ光B1〜B7は、集光レンズ20によって集光され、マルチモード光ファイバ30のコア30aの入射端面に収束する。
Here, the pattern forming method of the present invention will be further described.
In each exposure head 166 of the scanner 162, laser light B1, B2, B3, B4, B5, B6 emitted in a divergent light state from each of the GaN-based semiconductor lasers LD1 to LD7 constituting the combined laser light source of the fiber array light source 66. , And B7 are collimated by corresponding collimator lenses 11-17. The collimated laser beams B <b> 1 to B <b> 7 are collected by the condenser lens 20 and converge on the incident end face of the core 30 a of the multimode optical fiber 30.

本例では、コリメータレンズ11〜17及び集光レンズ20によって集光光学系が構成され、その集光光学系とマルチモード光ファイバ30とによって合波光学系が構成されている。即ち、集光レンズ20によって上述のように集光されたレーザ光B1〜B7が、このマルチモード光ファイバ30のコア30aに入射して光ファイバ内を伝搬し、1本のレーザ光Bに合波されてマルチモード光ファイバ30の出射端部に結合された光ファイバ31から出射する。   In this example, the collimator lenses 11 to 17 and the condenser lens 20 constitute a condensing optical system, and the condensing optical system and the multimode optical fiber 30 constitute a multiplexing optical system. That is, the laser beams B1 to B7 collected as described above by the condenser lens 20 enter the core 30a of the multimode optical fiber 30 and propagate through the optical fiber to be combined with one laser beam B. The light is emitted from the optical fiber 31 coupled to the output end of the multimode optical fiber 30.

各レーザモジュールにおいて、レーザ光B1〜B7のマルチモード光ファイバ30への結合効率が0.85で、GaN系半導体レーザLD1〜LD7の各出力が30mWの場合には、アレイ状に配列された光ファイバ31の各々について、出力180mW(=30mW×0.85×7)の合波レーザ光Bを得ることができる。従って、6本の光ファイバ31がアレイ状に配列されたレーザ出射部68での出力は約1W(=180mW×6)である。   In each laser module, when the coupling efficiency of the laser beams B1 to B7 to the multimode optical fiber 30 is 0.85 and each output of the GaN-based semiconductor lasers LD1 to LD7 is 30 mW, the light arranged in an array For each of the fibers 31, a combined laser beam B with an output of 180 mW (= 30 mW × 0.85 × 7) can be obtained. Therefore, the output from the laser emitting unit 68 in which the six optical fibers 31 are arranged in an array is about 1 W (= 180 mW × 6).

ファイバアレイ光源66のレーザ出射部68には、この通り高輝度の発光点が主走査方向に沿って一列に配列されている。単一の半導体レーザからのレーザ光を1本の光ファイバに結合させる従来のファイバ光源は低出力であるため、多数列配列しなければ所望の出力を得ることができなかったが、前記合波レーザ光源は高出力であるため、少数列、例えば1列でも所望の出力を得ることができる。   In the laser emitting portion 68 of the fiber array light source 66, light emission points with high luminance are arranged in a line along the main scanning direction as described above. A conventional fiber light source that couples laser light from a single semiconductor laser to a single optical fiber has a low output, so that a desired output cannot be obtained unless multiple rows are arranged. Since the laser light source has a high output, a desired output can be obtained even with a small number of columns, for example, one column.

例えば、半導体レーザと光ファイバを1対1で結合させた従来のファイバ光源では、通常、半導体レーザとしては出力30mW(ミリワット)程度のレーザが使用され、光ファイバとしてはコア径50μm、クラッド径125μm、NA(開口数)0.2のマルチモード光ファイバが使用されているので、約1W(ワット)の出力を得ようとすれば、マルチモード光ファイバを48本(8×6)束ねなければならず、発光領域の面積は0.62mm(0.675mm×0.925mm)であるから、レーザ出射部68での輝度は1.6×10(W/m)、光ファイバ1本当りの輝度は3.2×10(W/m)である。 For example, in a conventional fiber light source in which a semiconductor laser and an optical fiber are coupled on a one-to-one basis, a laser having an output of about 30 mW (milliwatt) is usually used as the semiconductor laser, and the core diameter is 50 μm and the cladding diameter is 125 μm. Since a multimode optical fiber having a numerical aperture (NA) of 0.2 is used, if an output of about 1 W (watt) is to be obtained, 48 multimode optical fibers (8 × 6) must be bundled. Since the area of the light emitting region is 0.62 mm 2 (0.675 mm × 0.925 mm), the luminance at the laser emitting portion 68 is 1.6 × 10 6 (W / m 2 ) and one optical fiber is used. The luminance per hit is 3.2 × 10 6 (W / m 2 ).

これに対し、前記光照射手段が合波レーザを照射可能な手段である場合には、マルチモード光ファイバ6本で約1Wの出力を得ることができ、レーザ出射部68での発光領域の面積は0.0081mm(0.325mm×0.025mm)であるから、レーザ出射部68での輝度は123×10(W/m)となり、従来に比べ約80倍の高輝度化を図ることができる。また、光ファイバ1本当りの輝度は90×10(W/m)であり、従来に比べ約28倍の高輝度化を図ることができる。 On the other hand, when the light irradiating means is a means capable of irradiating a combined laser, an output of about 1 W can be obtained with six multimode optical fibers, and the area of the light emitting region at the laser emitting portion 68 can be obtained. Is 0.0081 mm 2 (0.325 mm × 0.025 mm), the luminance at the laser emitting portion 68 is 123 × 10 6 (W / m 2 ), which is about 80 times higher than the conventional luminance. be able to. Further, the luminance per optical fiber is 90 × 10 6 (W / m 2 ), and the luminance can be increased by about 28 times compared with the conventional one.

ここで、図38(A)及び(B)を参照して、従来の露光ヘッドと本実施の形態の露光ヘッドとの焦点深度の違いについて説明する。従来の露光ヘッドのバンドル状ファイバ光源の発光領域の副走査方向の径は0.675mmであり、露光ヘッドのファイバアレイ光源の発光領域の副走査方向の径は0.025mmである。図38(A)に示すように、従来の露光ヘッドでは、光照射手段(バンドル状ファイバ光源)1の発光領域が大きいので、DMD3へ入射する光束の角度が大きくなり、結果として走査面5へ入射する光束の角度が大きくなる。このため、集光方向(ピント方向のずれ)に対してビーム径が太りやすい。   Here, with reference to FIGS. 38A and 38B, the difference in depth of focus between the conventional exposure head and the exposure head of the present embodiment will be described. The diameter of the light emission region of the bundled fiber light source of the conventional exposure head in the sub-scanning direction is 0.675 mm, and the diameter of the light emission region of the fiber array light source of the exposure head in the sub-scanning direction is 0.025 mm. As shown in FIG. 38A, in the conventional exposure head, since the light emitting area of the light irradiating means (bundle-shaped fiber light source) 1 is large, the angle of the light beam incident on the DMD 3 is increased, and as a result, the scanning surface 5 is irradiated. The angle of the incident light beam increases. For this reason, the beam diameter tends to increase with respect to the light condensing direction (shift in the focus direction).

一方、図38(B)に示すように、本発明のパターン形成装置における露光ヘッドでは、ファイバアレイ光源66の発光領域の副走査方向の径が小さいので、レンズ系67を通過してDMD50へ入射する光束の角度が小さくなり、結果として走査面56へ入射する光束の角度が小さくなる。即ち、焦点深度が深くなる。この例では、発光領域の副走査方向の径は従来の約30倍になっており、略回折限界に相当する焦点深度を得ることができる。従って、微小スポットの露光に好適である。この焦点深度への効果は、露光ヘッドの必要光量が大きいほど顕著であり、有効である。この例では、露光面に投影された1描素サイズは10μm×10μmである。なお、DMDは反射型の空間光変調素子であるが、図38(A)及び(B)は、光学的な関係を説明するために展開図とした。   On the other hand, as shown in FIG. 38B, in the exposure head in the pattern forming apparatus of the present invention, the diameter of the light emitting region of the fiber array light source 66 in the sub-scanning direction is small, so that it passes through the lens system 67 and enters the DMD 50. As a result, the angle of the light beam incident on the scanning surface 56 is reduced. That is, the depth of focus becomes deep. In this example, the diameter of the light emitting region in the sub-scanning direction is about 30 times that of the conventional one, and a depth of focus substantially corresponding to the diffraction limit can be obtained. Therefore, it is suitable for exposure of a minute spot. This effect on the depth of focus is more prominent and effective as the required light quantity of the exposure head is larger. In this example, the size of one pixel projected on the exposure surface is 10 μm × 10 μm. Note that DMD is a reflective spatial light modulator, but FIGS. 38A and 38B are developed views for explaining the optical relationship.

露光パターンに応じたパターン情報が、DMD50に接続された図示しないコントローラに入力され、コントローラ内のフレームメモリに一旦記憶される。このパターン情報は、画像を構成する各描素の濃度を2値(ドットの記録の有無)で表したデータである。   Pattern information corresponding to the exposure pattern is input to a controller (not shown) connected to the DMD 50 and temporarily stored in a frame memory in the controller. This pattern information is data representing the density of each pixel constituting the image as binary values (whether or not dots are recorded).

パターン形成材料150を表面に吸着したステージ152は、図示しない駆動装置により、ガイド158に沿ってゲート160の上流側から下流側に一定速度で移動される。ステージ152がゲート160下を通過する際に、ゲート160に取り付けられた検知センサ164によりパターン形成材料150の先端が検出されると、フレームメモリに記憶されたパターン情報が複数ライン分ずつ順次読み出され、データ処理部で読み出されたパターン情報に基づいて各露光ヘッド166毎に制御信号が生成される。そして、ミラー駆動制御部により、生成された制御信号に基づいて露光ヘッド166毎にDMD50のマイクロミラーの各々がオンオフ制御される。   The stage 152 having the pattern forming material 150 adsorbed on the surface thereof is moved at a constant speed from the upstream side to the downstream side of the gate 160 along the guide 158 by a driving device (not shown). When the leading edge of the pattern forming material 150 is detected by the detection sensor 164 attached to the gate 160 while the stage 152 passes under the gate 160, the pattern information stored in the frame memory is sequentially read out for a plurality of lines. Then, a control signal is generated for each exposure head 166 based on the pattern information read by the data processing unit. Then, each of the micromirrors of the DMD 50 is controlled on and off for each exposure head 166 based on the generated control signal by the mirror drive control unit.

ファイバアレイ光源66からDMD50にレーザ光が照射されると、DMD50のマイクロミラーがオン状態のときに反射されたレーザ光は、レンズ系54、58によりパターン形成材料150の被露光面56上に結像される。このようにして、ファイバアレイ光源66から出射されたレーザ光が描素毎にオンオフされて、パターン形成材料150がDMD50の使用描素数と略同数の描素単位(露光エリア168)で露光される。また、パターン形成材料150がステージ152と共に一定速度で移動されることにより、パターン形成材料150がスキャナ162によりステージ移動方向と反対の方向に副走査され、露光ヘッド166毎に帯状の露光済み領域170が形成される。   When the DMD 50 is irradiated with laser light from the fiber array light source 66, the laser light reflected when the micromirror of the DMD 50 is in the on state is coupled onto the exposed surface 56 of the pattern forming material 150 by the lens systems 54 and 58. Imaged. In this manner, the laser light emitted from the fiber array light source 66 is turned on / off for each pixel, and the pattern forming material 150 is exposed in the number of pixel units (exposure area 168) substantially equal to the number of used pixel elements of the DMD 50. . Further, when the pattern forming material 150 is moved at a constant speed together with the stage 152, the pattern forming material 150 is sub-scanned in the direction opposite to the stage moving direction by the scanner 162, and a strip-shaped exposed region 170 is provided for each exposure head 166. Is formed.

――その他工程――
前記その他の工程としては、特に制限はなく、公知のパターン形成における工程の中から適宜選択することが挙げられるが、例えば、現像工程、エッチング工程、メッキ工程などが挙げられる。これらは、1種単独で使用してもよく、2種以上を併用してもよい。
前記現像工程は、前記露光工程により前記パターン形成材料を被処理基体上に積層してなる積層体の前記感光層を露光し、該感光層の露光した領域を硬化させた後、未効果領域を除去することにより現像し、パターンを形成する工程である。
--Other processes--
There is no restriction | limiting in particular as said other process, Although selecting suitably from the process in well-known pattern formation is mentioned, For example, a image development process, an etching process, a plating process, etc. are mentioned. These may be used alone or in combination of two or more.
The developing step exposes the photosensitive layer of the laminate formed by laminating the pattern forming material on the substrate to be processed in the exposing step, cures the exposed region of the photosensitive layer, and then removes the ineffective region. It is the process of developing by removing and forming a pattern.

前記未硬化領域の除去方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、現像液を用いて除去する方法などが挙げられる。   There is no restriction | limiting in particular as the removal method of the said unhardened area | region, According to the objective, it can select suitably, For example, the method etc. which remove using a developing solution are mentioned.

前記現像液としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、アルカリ性水溶液、水系現像液、有機溶剤などが挙げられ、これらの中でも、弱アルカリ性の水溶液が好ましい。該弱アルカリ水溶液の塩基成分としては、例えば、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、炭酸リチウム、炭酸ナトリウム、炭酸カリウム、炭酸水素リチウム、炭酸水素ナトリウム、炭酸水素カリウム、リン酸ナトリウム、リン酸カリウム、ピロリン酸ナトリウム、ピロリン酸カリウム、硼砂などが挙げられる。   There is no restriction | limiting in particular as said developing solution, According to the objective, it can select suitably, For example, alkaline aqueous solution, an aqueous developing solution, an organic solvent etc. are mentioned, Among these, weak alkaline aqueous solution is preferable. Examples of the basic component of the weak alkaline aqueous solution include lithium hydroxide, sodium hydroxide, potassium hydroxide, lithium carbonate, sodium carbonate, potassium carbonate, lithium hydrogen carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate, sodium phosphate, phosphorus Examples include potassium acid, sodium pyrophosphate, potassium pyrophosphate, and borax.

前記弱アルカリ性の水溶液のpHとしては、例えば、約8〜12が好ましく、約9〜11がより好ましい。前記弱アルカリ性の水溶液としては、例えば、0.1〜5質量%の炭酸ナトリウム水溶液又は炭酸カリウム水溶液などが挙げられる。
前記現像液の温度としては、前記感光層の現像性に合わせて適宜選択することができ、例えば、約25℃〜40℃が好ましい。
The pH of the weak alkaline aqueous solution is, for example, preferably about 8 to 12, and more preferably about 9 to 11. Examples of the weak alkaline aqueous solution include a 0.1 to 5% by mass aqueous sodium carbonate solution or an aqueous potassium carbonate solution.
The temperature of the developer can be appropriately selected according to the developability of the photosensitive layer, and is preferably about 25 ° C. to 40 ° C., for example.

前記現像液は、界面活性剤、消泡剤、有機塩基(例えば、エチレンジアミン、エタノールアミン、テトラメチルアンモニウムハイドロキサイド、ジエチレントリアミン、トリエチレンペンタミン、モルホリン、トリエタノールアミン等)や、現像を促進させるため有機溶剤(例えば、アルコール類、ケトン類、エステル類、エーテル類、アミド類、ラクトン類等)などと併用してもよい。また、前記現像液は、水又はアルカリ水溶液と有機溶剤を混合した水系現像液であってもよく、有機溶剤単独であってもよい。   The developer includes a surfactant, an antifoaming agent, an organic base (for example, ethylenediamine, ethanolamine, tetramethylammonium hydroxide, diethylenetriamine, triethylenepentamine, morpholine, triethanolamine, etc.) and accelerates development. Therefore, it may be used in combination with an organic solvent (for example, alcohols, ketones, esters, ethers, amides, lactones, etc.). The developer may be an aqueous developer obtained by mixing water or an aqueous alkali solution and an organic solvent, or may be an organic solvent alone.

前記エッチング工程としては、公知のエッチング処理方法の中から適宜選択した方法により行うことができる。
前記エッチング処理に用いられるエッチング液としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、前記金属層が銅で形成されている場合には、塩化第二銅溶液、塩化第二鉄溶液、アルカリエッチング溶液、過酸化水素系エッチング液などが挙げられ、これらの中でも、エッチングファクターの点から塩化第二鉄溶液が好ましい。
前記エッチング工程によりエッチング処理した後に前記パターンを除去することにより、前記基体の表面に永久パターンを形成することができる。
前記永久パターンとしては、特に制限はなく、目的に応じて適宜選択することができ、例えば、配線パターンなどが好適に挙げられる。
The etching step can be performed by a method appropriately selected from known etching methods.
There is no restriction | limiting in particular as an etching liquid used for the said etching process, According to the objective, it can select suitably, For example, when the said metal layer is formed with copper, a cupric chloride solution, chloride. A ferric chloride solution, an alkaline etching solution, a hydrogen peroxide-based etching solution, and the like can be given. Among these, a ferric chloride solution is preferable from the viewpoint of an etching factor.
A permanent pattern can be formed on the surface of the substrate by removing the pattern after performing the etching process in the etching step.
There is no restriction | limiting in particular as said permanent pattern, According to the objective, it can select suitably, For example, a wiring pattern etc. are mentioned suitably.

前記メッキ工程としては、公知のメッキ処理の中から適宜選択した適宜選択した方法により行うことができる。
前記メッキ処理としては、例えば、硫酸銅メッキ、ピロリン酸銅メッキ等の銅メッキ、ハイスローはんだメッキ等のはんだメッキ、ワット浴(硫酸ニッケル−塩化ニッケル)メッキ、スルファミン酸ニッケル等のニッケルメッキ、ハード金メッキ、ソフト金メッキ等の金メッキなど処理が挙げられる。
前記メッキ工程によりメッキ処理した後に前記パターンを除去することにより、また更に必要に応じて不要部をエッチング処理等で除去することにより、前記基体の表面に永久パターンを形成することができる。
The plating step can be performed by an appropriately selected method selected from known plating processes.
Examples of the plating treatment include copper plating such as copper sulfate plating and copper pyrophosphate plating, solder plating such as high-throw solder plating, watt bath (nickel sulfate-nickel chloride) plating, nickel plating such as nickel sulfamate, and hard gold plating. And gold plating such as soft gold plating.
A permanent pattern can be formed on the surface of the substrate by removing the pattern after the plating process in the plating process, and further removing unnecessary portions by an etching process or the like as necessary.

本発明のパターン形成方法は、パターン形成材料上に結像させる像の歪みを抑制することにより、永久パターンを高精細に、かつ、効率よく形成可能であるため、高精細な露光が必要とされる各種パターンの形成などに好適に使用することができ、特に高精細な配線パターンの形成に好適に使用することができる。   The pattern forming method of the present invention can form a permanent pattern with high definition and efficiency by suppressing distortion of an image formed on the pattern forming material, so that high-definition exposure is required. In particular, it can be suitably used for forming high-definition wiring patterns.

――プリント配線板の製造方法――
本発明のパターン形成方法は、プリント配線板の製造、特にスルーホール又はビアホールなどのホール部を有するプリント配線板の製造に好適に用いることができる。以下、本発明のパターン形成方法を利用したプリント配線板の製造方法について説明する。
-Manufacturing method of printed wiring board-
The pattern forming method of the present invention can be suitably used for the production of a printed wiring board, particularly for the production of a printed wiring board having a hole portion such as a through hole or a via hole. Hereinafter, the manufacturing method of the printed wiring board using the pattern formation method of this invention is demonstrated.

特に、スルーホール又はビアホールなどのホール部を有するプリント配線板の製造方法としては、(1)前記基体としてホール部を有するプリント配線板形成用基板上に、前記パターン形成材料を、その感光層が前記基体側となる位置関係にて積層して積層体形成し、(2)前記積層体の前記基体とは反対の側から、配線パターン形成領域及びホール部形成領域に光照射行い感光層を硬化させ、(3)前記積層体から前記パターン形成材料における支持体を除去し、(4)前記積層体における感光層を現像して、該積層体中の未硬化部分を除去することによりパターンを形成することができる。   In particular, as a method of manufacturing a printed wiring board having a hole portion such as a through hole or a via hole, (1) the pattern forming material is placed on the printed wiring board forming substrate having the hole portion as the base, and the photosensitive layer is (2) The photosensitive layer is cured by irradiating the wiring pattern formation region and the hole portion formation region with light from the opposite side of the laminate to the substrate. (3) The support in the pattern forming material is removed from the laminate, and (4) the photosensitive layer in the laminate is developed to form a pattern by removing uncured portions in the laminate. can do.

なお、前記(3)における前記支持体の除去は、前記(2)と前記(4)との間で行う代わりに、前記(1)と前記(2)との間で行ってもよい。   The removal of the support in (3) may be performed between (1) and (2) instead of between (2) and (4).

その後、プリント配線板を得るには、前記形成したパターンを用いて、前記プリント配線板形成用基板をエッチング処理又はメッキ処理する方法(例えば、公知のサブトラクティブ法又はアディティブ法(例えば、セミアディティブ法、フルアディティブ法))により処理すればよい。これらの中でも、工業的に有利なテンティングでプリント配線板を形成するためには、前記サブトラクティブ法が好ましい。前記処理後プリント配線板形成用基板に残存する硬化樹脂は剥離させ、また、前記セミアディティブ法の場合は、剥離後更に銅薄膜部をエッチングすることにより、所望のプリント配線板を製造することができる。また、多層プリント配線板も前記プリント配線板の製造法と同様に製造が可能である。   Thereafter, in order to obtain a printed wiring board, a method of etching or plating the printed wiring board forming substrate using the formed pattern (for example, a known subtractive method or additive method (for example, a semi-additive method) And the full additive method)). Among these, in order to form a printed wiring board by industrially advantageous tenting, the subtractive method is preferable. After the treatment, the cured resin remaining on the printed wiring board forming substrate is peeled, and in the case of the semi-additive method, a desired printed wiring board can be manufactured by further etching the copper thin film portion after peeling. it can. A multilayer printed wiring board can also be manufactured in the same manner as the printed wiring board manufacturing method.

次に、前記パターン形成材料を用いたスルーホールを有するプリント配線板の製造方法について、更に説明する。   Next, the manufacturing method of the printed wiring board which has a through hole using the said pattern formation material is further demonstrated.

まずスルーホールを有し、表面が金属メッキ層で覆われたプリント配線板形成用基板を用意する。前記プリント配線板形成用基板としては、例えば、銅張積層基板及びガラス−エポキシなどの絶縁基材に銅メッキ層を形成した基板、又はこれらの基板に層間絶縁膜を積層し、銅メッキ層を形成した基板(積層基板)を用いることができる。   First, a printed wiring board forming substrate having through holes and having a surface covered with a metal plating layer is prepared. As the printed wiring board forming substrate, for example, a copper-clad laminate substrate and a substrate in which a copper plating layer is formed on an insulating base material such as glass-epoxy, or an interlayer insulating film is laminated on these substrates, and a copper plating layer is formed. A formed substrate (laminated substrate) can be used.

次に、前記パターン形成材料上に保護フィルムを有する場合には、該保護フィルムを剥離して、前記パターン形成材料における感光層が前記プリント配線板形成用基板の表面に接するようにして加圧ローラを用いて圧着する(積層工程)。これにより、前記プリント配線板形成用基板と前記積層体とをこの順に有する積層体が得られる。
前記パターン形成材料の積層温度としては、特に制限はなく、例えば、室温(15〜30℃)、又は加熱下(30〜180℃)が挙げられ、これらの中でも、加温下(60〜140℃)が好ましい。
前記圧着ロールのロール圧としては、特に制限はなく、例えば、0.1〜1MPaが好ましい。
前記圧着の速度としては、特に制限はなく、1〜3m/分が好ましい。また、前記プリント配線板形成用基板を予備加熱しておいてもよく、また、減圧下で積層してもよい。
Next, when a protective film is provided on the pattern forming material, the protective film is peeled off so that the photosensitive layer in the pattern forming material is in contact with the surface of the printed wiring board forming substrate. Is used for pressure bonding (lamination process). Thereby, the laminated body which has the said board | substrate for printed wiring board formation and the said laminated body in this order is obtained.
There is no restriction | limiting in particular as lamination | stacking temperature of the said pattern formation material, For example, room temperature (15-30 degreeC) or under heating (30-180 degreeC) is mentioned, Among these, under heating (60-140 degreeC) ) Is preferred.
There is no restriction | limiting in particular as roll pressure of the said crimping | compression-bonding roll, For example, 0.1-1 Mpa is preferable.
There is no restriction | limiting in particular as the speed | rate of the said crimping | compression-bonding, and 1-3 m / min is preferable. The printed wiring board forming substrate may be preheated or laminated under reduced pressure.

前記積層体の形成は、前記プリント配線板形成用基板上に前記パターン形成材料を積層してもよく、また、前記パターン形成材料製造用の感光性樹脂組成物溶液を前記プリント配線板形成用基板の表面に直接塗布し、乾燥させることにより前記プリント配線板形成用基板上に感光層を積層してもよい。   In the formation of the laminate, the pattern forming material may be laminated on the printed wiring board forming substrate, and the photosensitive resin composition solution for manufacturing the pattern forming material is used as the printed wiring board forming substrate. The photosensitive layer may be laminated on the printed wiring board forming substrate by directly applying to the surface of the substrate and drying.

次に、前記積層体の基体とは反対側の面から、光を照射して感光層を硬化させる。なおこの際、必要に応じて(例えば、支持体の光透過性が不十分な場合など)支持体を剥離してから露光を行ってもよい。   Next, the photosensitive layer is cured by irradiating light from the surface of the laminate opposite to the substrate. At this time, exposure may be performed after peeling the support as necessary (for example, when the light transmittance of the support is insufficient).

この時点で、前記支持体を未だ剥離していない場合には、前記積層体から該支持体を剥がす(支持体剥離工程)。   At this point, if the support has not yet been peeled off, the support is peeled off from the laminate (support peeling step).

次に、前記プリント配線板形成用基板上の感光層の未硬化領域を、適当な現像液にて溶解除去して、配線パターン形成用の硬化層とスルーホールの金属層保護用硬化層のパターンを形成し、前記プリント配線板形成用基板の表面に金属層を露出させる(現像工程)。   Next, the uncured region of the photosensitive layer on the printed wiring board forming substrate is dissolved and removed with an appropriate developer to form a pattern of the cured layer for forming the wiring pattern and the cured layer for protecting the metal layer of the through hole. And a metal layer is exposed on the surface of the printed wiring board forming substrate (developing step).

また、現像後に必要に応じて後加熱処理や後露光処理によって、硬化部の硬化反応を更に促進させる処理をおこなってもよい。現像は上記のようなウエット現像法であってもよく、ドライ現像法であってもよい。   Moreover, you may perform the process which further accelerates | stimulates the hardening reaction of a hardening part by post-heat processing or post-exposure processing as needed after image development. The development may be a wet development method as described above or a dry development method.

次いで、前記プリント配線板形成用基板の表面に露出した金属層をエッチング液で溶解除去する(エッチング工程)。スルーホールの開口部は、硬化樹脂組成物(テント膜)で覆われているので、エッチング液がスルーホール内に入り込んでスルーホール内の金属メッキを腐食することなく、スルーホールの金属メッキは所定の形状で残ることになる。これより、前記プリント配線板形成用基板に配線パターンが形成される。   Next, the metal layer exposed on the surface of the printed wiring board forming substrate is dissolved and removed with an etching solution (etching step). Since the opening of the through hole is covered with a cured resin composition (tent film), the metal plating of the through hole is predetermined without etching liquid entering the through hole and corroding the metal plating in the through hole. It will remain in the shape. Thus, a wiring pattern is formed on the printed wiring board forming substrate.

前記エッチング液としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、前記金属層が銅で形成されている場合には、塩化第二銅溶液、塩化第二鉄溶液、アルカリエッチング溶液、過酸化水素系エッチング液などが挙げられ、これらの中でも、エッチングファクターの点から塩化第二鉄溶液が好ましい。   There is no restriction | limiting in particular as said etching liquid, According to the objective, it can select suitably, For example, when the said metal layer is formed with copper, a cupric chloride solution, a ferric chloride solution, Examples thereof include an alkaline etching solution and a hydrogen peroxide-based etching solution. Among these, a ferric chloride solution is preferable from the viewpoint of an etching factor.

次に、強アルカリ水溶液などにて前記硬化層を剥離片として、前記プリント配線板形成用基板から除去する(硬化物除去工程)。
前記強アルカリ水溶液における塩基成分としては、特に制限はなく、例えば、水酸化ナトリウム、水酸化カリウムなどが挙げられる。
前記強アルカリ水溶液のpHとしては、例えば、約12〜14が好ましく、約13〜14がより好ましい。
前記強アルカリ水溶液としては、特に制限はなく、例えば、1〜10質量%の水酸化ナトリウム水溶液又は水酸化カリウム水溶液などが挙げられる。
Next, it removes from the said board | substrate for printed wiring board formation by making the said hardened layer into a peeling piece with strong alkaline aqueous solution etc. (hardened | cured material removal process).
There is no restriction | limiting in particular as a base component in the said strong alkali aqueous solution, For example, sodium hydroxide, potassium hydroxide, etc. are mentioned.
As pH of the said strong alkali aqueous solution, about 12-14 are preferable, for example, and about 13-14 are more preferable.
There is no restriction | limiting in particular as said strong alkali aqueous solution, For example, 1-10 mass% sodium hydroxide aqueous solution or potassium hydroxide aqueous solution etc. are mentioned.

また、プリント配線板は、多層構成のプリント配線板であってもよい。
なお、前記パターン形成材料は上記のエッチングプロセスのみでなく、メッキプロセスに使用してもよい。前記メッキ法としては、例えば、硫酸銅メッキ、ピロリン酸銅メッキ等の銅メッキ、ハイスローはんだメッキ等のはんだメッキ、ワット浴(硫酸ニッケル−塩化ニッケル)メッキ、スルファミン酸ニッケル等のニッケルメッキ、ハード金メッキ、ソフト金メッキ等の金メッキなどが挙げられる。
The printed wiring board may be a multilayer printed wiring board.
The pattern forming material may be used not only for the above etching process but also for a plating process. Examples of the plating method include copper plating such as copper sulfate plating and copper pyrophosphate plating, solder plating such as high throw solder plating, watt bath (nickel sulfate-nickel chloride) plating, nickel plating such as nickel sulfamate, and hard gold plating. And gold plating such as soft gold plating.

以下、実施例により本発明を更に具体的に説明するが、本発明はこれらに限定されるものではない。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited thereto.

(実施例1)
[パターン形成材料の製造]
−支持体の製造−
平均粒径1.3μmの非定型シリカ粒子100ppmと、平均粒径1.0μmのヘキサメチレンビスベヘンアミド200ppmと、帯電防止剤としてラウリルジフェニルエーテルジスルホネート10質量%とを含有するポリエチレンレテフタレートA(以下「PET−A」と称する)及びポリエチレンレテフタレートB(以下「PET−B」と称する)を常法により調製し、共押出し法で、前記PET−A及びBを溶融押出し、冷却固化してPET−A層/PET−B層の2層からなる未延伸積層フィルムを調製した。該未延伸積層フィルムを周速の異なる85℃の一対のロール間で縦方向に3.5倍延伸して一軸延伸フィルムを得た。次いで、テンターにより98℃で横方向に3.5倍延伸した後、更に200〜210℃で熱固定して、厚み16μm(PET−A層(厚み:8μm)/PET−B層(厚み:8μm))の二軸延伸された積層ポリエステルフィルムをからなる支持体を製造した。前記支持体の条件を表3に示す。
Example 1
[Manufacture of pattern forming materials]
-Production of support-
Polyethylene terephthalate A (hereinafter referred to as 100 ppm of amorphous silica particles having an average particle size of 1.3 μm, 200 ppm of hexamethylene bisbehenamide having an average particle size of 1.0 μm, and 10% by mass of lauryl diphenyl ether disulfonate as an antistatic agent) PET-A) and polyethylene terephthalate B (hereinafter referred to as “PET-B”) are prepared by a conventional method, and the PET-A and B are melt-extruded by a co-extrusion method, cooled and solidified to form PET. An unstretched laminated film composed of two layers of -A layer / PET-B layer was prepared. The unstretched laminated film was stretched 3.5 times in the longitudinal direction between a pair of 85 ° C. rolls having different peripheral speeds to obtain a uniaxially stretched film. Next, the film was stretched 3.5 times in the transverse direction at 98 ° C. with a tenter, and further heat-set at 200 to 210 ° C. to obtain a thickness of 16 μm (PET-A layer (thickness: 8 μm) / PET-B layer (thickness: 8 μm)). A support comprising the biaxially stretched laminated polyester film of)) was produced. Table 3 shows the conditions of the support.

前記製造した前記支持体について、屈折率、表面抵抗値及び剥離帯電量を測定した。結果を表4に示す。   The manufactured support was measured for refractive index, surface resistance, and peel charge. The results are shown in Table 4.

<屈折率>
測定用サンプルとして、前記微粒子を含有しない積層ポリエステルフィルム(厚み:16μm)を製造し、屈折計(アタゴ株式会社製、デジタルアッペ屈折計4型)を使用し、光源にナトリウムランプを用いて測定した。フィルム面内の最大屈折率をηγ、直角方向の屈折率をηβ、厚み方向の屈折率をηαとし、下記の式で求められる平均屈折率の値を屈折率n1とした。結果を表3に示す。
n1=(ηγ+ηβ+ηα)/3
前記平均粒径1.3μmの非定型シリカ粒子の屈折率n2x及び平均粒径1.0μmのヘキサメチレンビスベヘンアミドの屈折率n2yを屈折計(アタゴ株式会社製、デジタルアッペ屈折計4型)で測定した。屈折率の値が大きい非定型シリカ粒子の屈折率n2xをn2とし、前記積層ポリエステルフィルムの屈折率n1との差を求めた。この結果、|n1−n2|は0.220であった。
<Refractive index>
As a measurement sample, a laminated polyester film (thickness: 16 μm) not containing the fine particles was manufactured, and a refractometer (manufactured by Atago Co., Ltd., Digital Upe Refractometer Type 4) was used, and measurement was performed using a sodium lamp as a light source. . The maximum refractive index in the film plane was ηγ, the refractive index in the perpendicular direction was ηβ, the refractive index in the thickness direction was ηα, and the value of the average refractive index obtained by the following formula was the refractive index n1. The results are shown in Table 3.
n1 = (ηγ + ηβ + ηα) / 3
The refractive index n2x of the amorphous silica particles having an average particle diameter of 1.3 μm and the refractive index n2y of hexamethylenebisbehenamide having an average particle diameter of 1.0 μm are measured with a refractometer (Atago Co., Ltd., Digital Upe Refractometer Type 4). It was measured. The refractive index n2x of the atypical silica particles having a large refractive index value was defined as n2, and the difference from the refractive index n1 of the laminated polyester film was determined. As a result, | n1-n2 | was 0.220.

<表面抵抗値>
前記表面抵抗値は、10℃、相対湿度35%の条件下において6時間保存した後、帯電防止剤を添加したPET−A(前記支持体の感光層を積層しない面)を表面抵抗測定器(アドバンテスト社製、R8340 ultra high resistance meter,R12704 resistivity chamber)を用いて測定を行った。この結果、前記表面抵抗値は7.1×1013Ω/□であった。
<Surface resistance value>
The surface resistance value was stored for 6 hours under conditions of 10 ° C. and 35% relative humidity, and then PET-A (surface on which the photosensitive layer of the support was not laminated) was added to a surface resistance measuring device ( Measurement was carried out using an R8340 ultra high resistance meter (R12704 resiliency chamber) manufactured by Advantest Corporation. As a result, the surface resistance value was 7.1 × 10 13 Ω / □.

<算術平均粗さ(Ra)>
前記算術平均粗さ(Ra)の測定は、JIS B 0601に準じ、前記支持体の前記感光層を積層する面と、該感光層を積層しない面それぞれについて、カットオフ0.08mm、測定長10cmの条件で、東京精密社製、サーフコム 1400−3DFを用いて測定した。
前記算術平均粗さ(Ra)は以下の計算式で求められる値である。
前記計算式中、Raは算術平均粗さを表し、f(x)は粗さ曲面を表し、lは基準長さを表し、l=100mmである。
<Arithmetic mean roughness (Ra)>
The arithmetic average roughness (Ra) is measured in accordance with JIS B 0601 with a cut-off of 0.08 mm and a measurement length of 10 cm for the surface of the support on which the photosensitive layer is laminated and the surface on which the photosensitive layer is not laminated. In this condition, measurement was performed using Surfcom 1400-3DF manufactured by Tokyo Seimitsu Co., Ltd.
The arithmetic average roughness (Ra) is a value obtained by the following calculation formula.
In the calculation formula, Ra represents arithmetic average roughness, f (x) represents a roughness curved surface, l represents a reference length, and l = 100 mm.

<剥離帯電量>
前記剥離帯電量は、ロール状に巻いた前記支持体を、23℃、相対湿度10%の条件下において7日間保管した後、10m/minの速度で剥離したときの剥離面の帯電量を、表面電位計(アキレス社製、AS−10)を用いて測定した。この結果、前記剥離帯電量は、600Vであった。前記剥離帯電量が5000Vを超えると、装置の静電気故障の原因となり、好ましくない。
<Peeling charge amount>
The peeling charge amount is the charge amount of the peeled surface when peeled at a speed of 10 m / min after storing the support wound in a roll shape for 7 days under conditions of 23 ° C. and 10% relative humidity. It measured using the surface potentiometer (Achilles make, AS-10). As a result, the peel charge amount was 600V. When the peeling charge amount exceeds 5000 V, it causes an electrostatic failure of the apparatus, which is not preferable.

―感光層の形成―
前記支持体上に、下記の組成からなる感光性樹脂組成物溶液を塗布し乾燥させて、15μm厚の感光層を形成し、前記パターン形成材料を製造した。
-Formation of photosensitive layer-
On the support, a photosensitive resin composition solution having the following composition was applied and dried to form a photosensitive layer having a thickness of 15 μm, thereby producing the pattern forming material.

[感光性樹脂組成物溶液の組成]
・メチルメタクリレート/2−エチルへキシルアクリレート/ベンジルメタクリレート
/メタクリル酸共重合体(共重合体組成(質量比):50/20/7/23、質量平均
分子量:90,000、酸価150) 15質量部
・下記構造式(73)で表される重合性モノマー 7.0質量部
・ヘキサメチレンジイソシアネートとテトラエチレンオキシドモノメタアクリレートの
1/2モル比付加物 7.0質量部
・N−メチルアクリドン 0.11質量部
・2,2−ビス(o−クロロフェニル)−4,4’,5,5’−テトラフェニルビイミ
ダゾール 2.17質量部
・2−メルカプトベンズイミダゾール 0.23質量部
・マラカイトグリーンシュウ酸塩 0.02質量部
・ロイコクリスタルバイオレレット 0.26質量部
・メチルエチルケトン 40質量部
・1−メトキシ−2−プロパノール 20質量部
[Composition of photosensitive resin composition solution]
Methyl methacrylate / 2-ethylhexyl acrylate / benzyl methacrylate / methacrylic acid copolymer (copolymer composition (mass ratio): 50/20/7/23, mass average molecular weight: 90,000, acid value 150) 15 7.0 parts by mass of a polymerizable monomer represented by the following structural formula (73): 1/2 part by mass of hexamethylene diisocyanate and tetraethylene oxide monomethacrylate 7.0 parts by mass: N-methylacridone 0.11 parts by mass, 2,2-bis (o-chlorophenyl) -4,4 ′, 5,5′-tetraphenylbiimidazole 2.17 parts by mass, 0.23 parts by mass of 2-mercaptobenzimidazole, malachite green Oxalate 0.02 parts by mass, leuco crystal violetlet 0.26 parts by mass, methyl ethyl ketone 40 The amount part
・ 20 parts by mass of 1-methoxy-2-propanol

但し、構造式(73)中、m+nは、10を表す。なお、構造式(73)は、前記構造式(38)で表される化合物の一例である。 However, in Structural Formula (73), m + n represents 10. Structural formula (73) is an example of a compound represented by structural formula (38).

―積層体の調製―
前記パターン形成材料の感光層の上に、前記保護フィルムとして20μm厚のポリエチレンフィルムを積層した。次に、前記基体として、表面を研磨、水洗、乾燥した銅張積層板(スルーホールなし、銅厚み12μm)の表面に、前記パターン形成材料の保護フィルムを剥がしながら、該パターン形成材料の感光層が前記銅張積層板に接するようにしてラミネーター(MODEL8B−720−PH、大成ラミネーター(株)製)を用いて圧着させ、前記銅張積層板と、前記感光層と、前記ポリエチレンテレフタレートフィルム(支持体)とがこの順に積層された積層体を調製した。
圧着条件は、圧着ロール温度105℃、圧着ロール圧力0.3MPa、ラミネート速度1m/分とした。
前記製造した前記積層体について、全光線透過率、ヘイズ値、算術平均粗さ(Ra)、熱収縮率、解像度、パターン欠陥及び巻取りしわの発生の有無の評価を行った。結果を表4及び5に示す。
―Preparation of laminates―
A 20 μm thick polyethylene film was laminated as the protective film on the photosensitive layer of the pattern forming material. Next, a photosensitive layer of the pattern forming material is peeled off from the surface of a copper-clad laminate (no through-hole, copper thickness 12 μm) whose surface is polished, washed and dried as the substrate. Is bonded to the copper-clad laminate using a laminator (MODEL8B-720-PH, manufactured by Taisei Laminator Co., Ltd.), and the copper-clad laminate, the photosensitive layer, and the polyethylene terephthalate film (support) Body) was laminated in this order.
The pressure bonding conditions were a pressure roll temperature of 105 ° C., a pressure roll pressure of 0.3 MPa, and a laminating speed of 1 m / min.
About the manufactured said laminated body, the total light transmittance, haze value, arithmetic mean roughness (Ra), thermal contraction rate, resolution, pattern defect, and the presence or absence of generation | occurrence | production of a winding wrinkle were evaluated. The results are shown in Tables 4 and 5.

<全光線透過率>
前記全光線透過率は、分光光度計(島津製作所社製、UV−2400)に積分球を組み込んだ装置を用いて、前記支持体に対して405nmのレーザ光を照射することにより測定した。
<Total light transmittance>
The total light transmittance was measured by irradiating the support with 405 nm laser light using an apparatus incorporating an integrating sphere in a spectrophotometer (manufactured by Shimadzu Corporation, UV-2400).

<ヘイズ値>
前記全光線透過率の測定方法において、前記積分球を使用しない以外は前記全光線透過率の測定方法と同様にして平行光線透過率を測定した。次に、次計算式、拡散光透過率=前記全光線透過率−前記平行光線透過率、を計算し、更に、次計算式、ヘイズ値=前記拡散光透過率/前記全光線透過率×100、を計算することにより求めた。
<Haze value>
In the total light transmittance measurement method, parallel light transmittance was measured in the same manner as the total light transmittance measurement method except that the integrating sphere was not used. Next, the following calculation formula, diffuse light transmittance = the total light transmittance−the parallel light transmittance, is calculated, and further, the following calculation formula, haze value = the diffuse light transmittance / the total light transmittance × 100. , By calculating.

<拡散角度>
前記パターン形成材料について、拡散角度を図1に示す方法で測定した。即ち、レーザ発振器1(ULSU405B−02 株式会社デジタルストリーム製)から140mm離れた位置に、被測定サンプル1の平面がレーザ発振器1の発振部分と対向するように設置し、更にサンプル1の表面から400mm離れた位置に、センサー3(FUJIX DIGITAL CAMERA HC−2500 3CCD 富士フイルム(株)製)の受光面がサンプル3に対向するように設置した。
レーザ発振器1から波長405nmのレーザ光をサンプル2に向けて照射し、サンプルを透過する平行光線5をセンサー3で受光するとともに、サンプル3を透過する際に屈折した拡散光線4を測定した。図1に示すように、レーザ発振器1から照射される平行光線5と拡散光線4とがなす角を拡散角度θとして測定した。また、前記拡散角度θの測定と同時にセンサー3により拡散光エネルギー(mJ/cm)も同時に測定した。前記拡散角度θが1.5°における照射光エネルギーA(mJ/cm)に対する拡散光エネルギーB(mJ/cm)の百分率を求めた。即ち、B/A×100を計算することによりにより求めた。
前記測定は、センサー受光面積エネルギー調整用として、1mmφスリットを使用し、レーザ発振器より140mmの位置に固定し、レーザ発振器を支点とした440mmの位置に左右に、任意に角度調製可能なCCDセンサーを設置し、室温23゜C、相対湿度50%RHの条件の下で行った。結果を表4に示す。
<Diffusion angle>
About the said pattern formation material, the diffusion angle was measured by the method shown in FIG. In other words, the plane of the sample 1 to be measured is placed 140 mm away from the laser oscillator 1 (ULSU405B-02 manufactured by Digital Stream Co., Ltd.) so that the plane of the sample 1 is opposed to the oscillation portion of the laser oscillator 1, and further 400 mm from the surface of the sample 1 The sensor 3 (FUJIX DIGITAL CAMERA HC-2500 3CCD manufactured by FUJIFILM Corporation) was installed at a remote position so that the light receiving surface of the sensor 3 was opposed to the sample 3.
Laser light having a wavelength of 405 nm was irradiated from the laser oscillator 1 toward the sample 2, and the parallel light beam 5 transmitted through the sample was received by the sensor 3, and the diffused light beam 4 refracted when transmitted through the sample 3 was measured. As shown in FIG. 1, the angle formed by the parallel light beam 5 and the diffused light beam 4 irradiated from the laser oscillator 1 was measured as the diffusion angle θ. Simultaneously with the measurement of the diffusion angle θ, the diffused light energy (mJ / cm 2 ) was also measured by the sensor 3 at the same time. The percentage of diffused light energy B (mJ / cm 2 ) with respect to irradiation light energy A (mJ / cm 2 ) when the diffusion angle θ was 1.5 ° was determined. That is, it calculated | required by calculating B / Ax100.
The measurement uses a 1 mmφ slit for adjusting the light receiving area energy of the sensor, fixed at a position of 140 mm from the laser oscillator, and a CCD sensor capable of adjusting the angle at right and left at a position of 440 mm with the laser oscillator as a fulcrum. It was installed under the conditions of room temperature 23 ° C. and relative humidity 50% RH. The results are shown in Table 4.

<摩擦係数>
前記パターン形成材料の摩擦係数について、HEIDON製Static Friction TESTER HEIDON−10を用いて、傾斜法(静摩擦)により求めた。
−測定方法−
測定するサンプルを、室温23゜C±2゜C、相対湿度50±5%RHに24時間以上調湿した後、金属板(固定側)に長さ200mm×幅100mmのサンプルを貼り付け、滑り片(長さ40mm×幅20mm×厚み26mm、重量25gf)にサンプルを貼り付ける。このサンプルを付けた滑り片をサンプル付の金属板上に載せ、傾き0°から叙々に金属板を傾斜させ、滑り片が移動し始めた角度(tanθ)を読み取った。
データは、n>5回の平均とした。その結果を表4に示した。
<Friction coefficient>
The friction coefficient of the pattern forming material was determined by a gradient method (static friction) using a Static Friction Tester HEIDON-10 manufactured by HEIDON.
-Measurement method-
The sample to be measured was conditioned at room temperature 23 ° C ± 2 ° C and relative humidity 50 ± 5% RH for at least 24 hours, and then a sample of length 200mm x width 100mm was attached to the metal plate (fixed side) and slipped. A sample is stuck on a piece (length 40 mm × width 20 mm × thickness 26 mm, weight 25 gf). The sliding piece with the sample was placed on a metal plate with the sample, and the metal plate was tilted from 0 ° to read the angle (tan θ) at which the sliding piece started to move.
Data were averaged over n> 5. The results are shown in Table 4.

<熱収縮率>
前記熱収縮率は、JIS C2318に準じ、幅20mm、長さ150mmの試験片を用いて、該試験片の中央部に約100mmの間隔で2本の標点を入れ、該間隔を正確に測定する(これをAmmとする)。前記試験片を無張力下で160±3℃の熱風オーブン中で5分間保存し、その後室温で30分間放置した後、標点間の間隔を測定し(これをBmm)、次式、熱収縮率=100×(A−B)/A、を計算することにより測定する。
<Heat shrinkage>
The heat shrinkage rate is measured in accordance with JIS C2318, using a test piece having a width of 20 mm and a length of 150 mm, putting two marks at a distance of about 100 mm in the center of the test piece, and measuring the distance accurately. (This is referred to as Amm). The test piece was stored for 5 minutes in a hot air oven at 160 ± 3 ° C. under no tension, and then allowed to stand at room temperature for 30 minutes, and then the interval between the gauge points was measured (this is Bmm). Measure by calculating the rate = 100 × (A−B) / A.

<解像度>
(1)最短現像時間の測定方法
前記積層体からポリエチレンテレフタレートフィルム(支持体)を剥がし取り、銅張積層板上の前記感光層の全面に30℃の1質量%炭酸ナトリウム水溶液を0.15MPaの圧力にてスプレーし、炭酸ナトリウム水溶液のスプレー開始から銅張積層板上の感光層が溶解除去されるまでに要した時間を測定し、これを最短現像時間とした。
この結果、前記最短現像時間は、10秒であった。
<Resolution>
(1) Measuring method of shortest development time The polyethylene terephthalate film (support) is peeled off from the laminate, and a 1 mass% sodium carbonate aqueous solution at 30 ° C. is added to the entire surface of the photosensitive layer on the copper clad laminate at 0.15 MPa. Spraying was performed under pressure, and the time required from the start of spraying of the aqueous sodium carbonate solution until the photosensitive layer on the copper clad laminate was dissolved and removed was measured, and this was taken as the shortest development time.
As a result, the shortest development time was 10 seconds.

(2)感度の測定
前記調製した積層体におけるパターン形成材料の感光層に対し、ポリエチレンテレフタレートフィルム(支持体)側から、前に説明したパターン形成装置を用いて、0.1mJ/cmから21/2倍間隔で100mJ/cmまでの光エネルギー量の異なる光を照射して露光し、前記感光層の一部の領域を硬化させた。室温にて10分間静置した後、前記積層体からポリエチレンテレフタレートフィルム(支持体)を剥がし取り、銅張積層板上の感光層の全面に、30℃の1質量%炭酸ナトリウム水溶液をスプレー圧0.15MPaにて前記(1)で求めた最短現像時間の2倍の時間スプレーし、未硬化の領域を溶解除去して、残った硬化領域の厚みを測定した。次いで、光の照射量と、硬化層の厚みとの関係をプロットして感度曲線を得る。こうして得た感度曲線から硬化領域の厚みが15μmとなった時の光エネルギー量を、感光層を硬化させるために必要な光エネルギー量とした。
この結果、前記感光層を硬化させるために必要な光エネルギー量は、3mJ/cmであった。
(2) Measurement of sensitivity From the polyethylene terephthalate film (support) side to the photosensitive layer of the pattern forming material in the prepared laminate, from the methylene / terephthalate film (support) side, using the pattern forming apparatus described above, 0.1 mJ / cm 2 to 2 Exposure was performed by irradiating with light having different light energy amounts up to 100 mJ / cm 2 at ½ times intervals to cure a part of the photosensitive layer. After standing at room temperature for 10 minutes, the polyethylene terephthalate film (support) is peeled off from the laminate, and a 1 mass% sodium carbonate aqueous solution at 30 ° C. is sprayed on the entire surface of the photosensitive layer on the copper clad laminate. Spraying was performed at a time of .15 MPa twice as long as the shortest development time determined in (1) above, the uncured area was dissolved and removed, and the thickness of the remaining cured area was measured. Next, a sensitivity curve is obtained by plotting the relationship between the amount of light irradiation and the thickness of the cured layer. From the sensitivity curve thus obtained, the amount of light energy when the thickness of the cured region was 15 μm was determined as the amount of light energy necessary for curing the photosensitive layer.
As a result, the amount of light energy necessary for curing the photosensitive layer was 3 mJ / cm 2 .

(3)解像度の測定
前記(1)の最短現像時間の評価方法と同じ方法及び条件で前記積層体を作成し、室温(23℃、55%RH)にて10分間静置した。得られた積層体のポリエチレンテレフタレートフィルム(支持体)上から、前記パターン形成装置を用いて、ライン/スペース=1/1でライン幅10μm〜50μmまで5μm刻みで各線幅の露光を行う。この際の露光量は、前記(2)で測定した前記パターン形成材料の感光層を硬化させるために必要な光エネルギー量である。室温にて10分間静置した後、前記積層体からポリエチレンテレフタレートフィルム(支持体)を剥がし取る。銅張積層板上の感光層の全面に30℃の1質量%炭酸ナトリウム水溶液をスプレー圧0.15MPaにて前記(1)で求めた最短現像時間の2倍の時間スプレーし、未硬化領域を溶解除去する。この様にして得られた硬化樹脂パターン付き銅張積層板の表面を光学顕微鏡で観察し、硬化樹脂パターンのラインにツマリ、ヨレ等の異常のない最小のライン幅を測定し、これを解像度とした。該解像度は数値が小さいほど良好である。
(3) Measurement of resolution The laminate was prepared by the same method and conditions as the evaluation method for the shortest development time in (1) and allowed to stand at room temperature (23 ° C., 55% RH) for 10 minutes. From the obtained polyethylene terephthalate film (support) of the laminate, exposure is performed for each line width in increments of 5 μm from line widths of 10 μm to 50 μm at a line / space = 1/1 using the pattern forming apparatus. The exposure amount at this time is the amount of light energy necessary for curing the photosensitive layer of the pattern forming material measured in (2). After standing at room temperature for 10 minutes, the polyethylene terephthalate film (support) is peeled off from the laminate. A 1 mass% sodium carbonate aqueous solution at 30 ° C. is sprayed over the entire surface of the photosensitive layer on the copper-clad laminate at a spray pressure of 0.15 MPa for twice the shortest development time determined in (1) above, and uncured areas are sprayed. Dissolve and remove. The surface of the copper-clad laminate with the cured resin pattern thus obtained was observed with an optical microscope, and the minimum line width without any abnormalities such as tsumari and twisting was measured on the cured resin pattern line. did. The smaller the numerical value, the better the resolution.

<エッチング処理>
前記解像度の測定において形成したパターンを有する積層体を用いて、該積層体における露出した銅張積層板の表面に、塩化鉄エッチャント(塩化第二鉄含有エッチング溶液、40°ボーメ、液温40℃)を0.25MPaで、36秒スプレーして、硬化層で覆われていない露出した領域の銅層を溶解除去することによりエッチング処理を行った。次いで、2質量%の水酸化ナトリウム水溶液をスプレーすることにより前記形成したパターンを除去して、表面に前記永久パターンとして銅層の配線パターンを備えたプリント配線板を調製した。
<Etching process>
Using a laminate having a pattern formed in the resolution measurement, an iron chloride etchant (ferric chloride-containing etching solution, 40 ° Baume, liquid temperature 40 ° C. is formed on the exposed copper-clad laminate in the laminate. ) Was sprayed at 0.25 MPa for 36 seconds to dissolve and remove the exposed copper layer not covered with the hardened layer. Next, the formed pattern was removed by spraying a 2% by mass aqueous sodium hydroxide solution to prepare a printed wiring board having a copper layer wiring pattern on the surface as the permanent pattern.

<パターン欠陥>
前記解像度の測定において形成したパターン面(50μm×50μm)について走査型電子顕微鏡(SEM)により撮影し、形成したパターン及び配線パターンの形状について以下の評価基準に従って評価を行った。
−評価基準−
A・・・・・欠陥が全くないか、又は1〜5個の欠陥があり、形成したパターンの形状に影響がなく、エッチング後の配線パターンに断線が観られなかった。
B・・・・・5〜10個の欠陥があるが、形成したパターンの形状に影響がなく、エッチング後の配線パターンに断線が観られなかった。
C・・・・・11〜20個の欠陥があり、該欠陥がパターンの端面において形状異常を生じさせ、エッチング後の配線パターンに断線が観られた。
D・・・・・21個異常の欠陥があり、該欠陥がパターンの端面において形状異常を生じさせ、エッチング後の配線パターンに断線が観られた。
<Pattern defect>
The pattern surface (50 μm × 50 μm) formed in the resolution measurement was photographed with a scanning electron microscope (SEM), and the formed pattern and the shape of the wiring pattern were evaluated according to the following evaluation criteria.
-Evaluation criteria-
A: There were no defects or 1 to 5 defects, the shape of the formed pattern was not affected, and no disconnection was observed in the wiring pattern after etching.
B: Although there were 5 to 10 defects, the shape of the formed pattern was not affected, and no disconnection was observed in the wiring pattern after etching.
C: There were 11 to 20 defects, and the defects caused a shape abnormality on the end face of the pattern, and disconnection was observed in the wiring pattern after etching.
D: There were 21 abnormal defects, and the defects caused a shape abnormality on the end face of the pattern, and disconnection was observed in the wiring pattern after etching.

<パターン欠陥の大きさ>
前記解像度の測定において形成したパターン面(50μm×50μm)について、レーザ顕微鏡(キーエンス社製、VK−9500)を用いて最大20個までのパターン欠陥の内、最大径と最大の深さを測定した。なお、前記最大深さが、前記感光層の厚み(15μm)の1/2以内である場合には、エッチング処理後に形成される配線パターンに断線が生じていなかった。
<Size of pattern defects>
With respect to the pattern surface (50 μm × 50 μm) formed in the measurement of the resolution, the maximum diameter and the maximum depth among the maximum 20 pattern defects were measured using a laser microscope (VK-9500, manufactured by Keyence Corporation). . Note that when the maximum depth was within ½ of the thickness (15 μm) of the photosensitive layer, no disconnection occurred in the wiring pattern formed after the etching process.

<巻取りしわの発生の有無>
前記支持体(幅24cm)上に前記感光性樹脂組成物溶液を9m/minの速度で塗布し、120℃で60秒間乾燥してパターン形成材料を製造し、該パターン形成材料を3kg/26cmの巻取りテンションで巻き取った場合における巻取りしわの発生の有無を目視で観察した。
<Presence of winding wrinkles>
The photosensitive resin composition solution is applied onto the support (width 24 cm) at a speed of 9 m / min, and dried at 120 ° C. for 60 seconds to produce a pattern forming material. The pattern forming material is 3 kg / 26 cm. The presence or absence of winding wrinkles in the case of winding with the winding tension was visually observed.

(実施例2)
実施例1において、支持体を下記の製造方法により製造したポリエチレンテレフタレートフィルムに代えた以外は、実施例1と同様にしてパターン形成材料を製造した。前記支持体の条件を表3に示す。製造した支持体を用いて、実施例1と同様にして屈折率、表面抵抗値、算術平均粗さ(Ra)及び剥離帯電量の評価を行った。
更に、製造したパターン形成材料を用いて実施例1と同様にして全光線透過率、ヘイズ値、拡散角度θ、拡散角度θが1.5°における照射光エネルギーに対する拡散光エネルギーの百分率、摩擦係数、熱収縮率、解像度、パターン欠陥及び巻取りしわの発生の有無の評価を行った。結果を表4及び5に示す。
なお、最短現像時間は10秒であり、感光層を硬化させるために必要な光エネルギー量は3mJ/cmであった。
(Example 2)
In Example 1, a pattern forming material was produced in the same manner as in Example 1 except that the support was replaced with a polyethylene terephthalate film produced by the following production method. Table 3 shows the conditions of the support. Using the manufactured support, the refractive index, surface resistance value, arithmetic average roughness (Ra), and peel charge amount were evaluated in the same manner as in Example 1.
Further, using the produced pattern forming material, the total light transmittance, the haze value, the diffusion angle θ, the percentage of the diffused light energy with respect to the irradiation light energy when the diffusion angle θ is 1.5 °, and the friction coefficient in the same manner as in Example 1. The thermal shrinkage rate, resolution, pattern defects, and the presence or absence of winding wrinkles were evaluated. The results are shown in Tables 4 and 5.
The shortest development time was 10 seconds, and the amount of light energy required to cure the photosensitive layer was 3 mJ / cm 2 .

−支持体の製造‐
平均粒径1.0μmの非定型シリカ粒子80ppmと、帯電防止剤としてラウリルジフェニルエーテルジスルホネート7.5質量%とを含有するポリエチレンレテフタレートA(以下「PET−A」と称する)及びポリエチレンレテフタレートB(以下「PET−B」と称する)を常法により調製し、共押出し法で、前記PET−A及びBを溶融押出し、冷却固化してPET−A層/PET−B層の2層からなる未延伸積層フィルムを調製した。該未延伸積層フィルムを周速の異なる85℃の一対のロール間で縦方向に3.5倍延伸して一軸延伸フィルムを得た。次いで、テンターにより98℃で横方向に3.5倍延伸した後、更に200〜210℃で熱固定して、厚み16μm(PET−A層(厚み:8μm)/PET−B層(厚み:8μm))の二軸延伸された積層ポリエステルフィルムからなるし支持体を製造した。
-Production of support-
Polyethylene terephthalate A (hereinafter referred to as “PET-A”) and polyethylene terephthalate B containing 80 ppm of atypical silica particles having an average particle diameter of 1.0 μm and 7.5% by mass of lauryl diphenyl ether disulfonate as an antistatic agent (Hereinafter referred to as “PET-B”) is prepared by a conventional method, and the PET-A and B are melt-extruded by a co-extrusion method, cooled and solidified, and consists of two layers of PET-A layer / PET-B layer. An unstretched laminated film was prepared. The unstretched laminated film was stretched 3.5 times in the longitudinal direction between a pair of 85 ° C. rolls having different peripheral speeds to obtain a uniaxially stretched film. Next, the film was stretched 3.5 times in the transverse direction at 98 ° C. with a tenter, and further heat-set at 200 to 210 ° C. to obtain a thickness of 16 μm (PET-A layer (thickness: 8 μm) / PET-B layer (thickness: 8 μm)). )) And a support was produced.

(実施例3)
実施例1において、支持体を下記の製造方法により製造したポリエチレンテレフタレートフィルムに代えた以外は、実施例1と同様にしてパターン形成材料を製造した。前記支持体の条件を表3に示す。製造した支持体を用いて、実施例1と同様にして屈折率、表面抵抗値、算術平均粗さ(Ra)及び剥離帯電量の評価を行った。
更に、製造したパターン形成材料を用いて実施例1と同様にして全光線透過率、ヘイズ値、拡散角度θ、拡散角度θが1.5°における照射光エネルギーに対する拡散光エネルギーの百分率、摩擦係数、熱収縮率、解像度、パターン欠陥及び巻取りしわの発生の有無の評価を行った。結果を表4及び5に示す。
なお、最短現像時間は10秒であり、感光層を硬化させるために必要な光エネルギー量は3mJ/cmであった。
(Example 3)
In Example 1, a pattern forming material was produced in the same manner as in Example 1 except that the support was replaced with a polyethylene terephthalate film produced by the following production method. Table 3 shows the conditions of the support. Using the manufactured support, the refractive index, surface resistance value, arithmetic average roughness (Ra), and peel charge amount were evaluated in the same manner as in Example 1.
Further, using the produced pattern forming material, the total light transmittance, the haze value, the diffusion angle θ, the percentage of the diffused light energy with respect to the irradiation light energy when the diffusion angle θ is 1.5 °, and the friction coefficient in the same manner as in Example 1. The thermal shrinkage rate, resolution, pattern defects, and the presence or absence of winding wrinkles were evaluated. The results are shown in Tables 4 and 5.
The shortest development time was 10 seconds, and the amount of light energy required to cure the photosensitive layer was 3 mJ / cm 2 .

−支持体の製造‐
平均粒径0.1μmの球状シリカ粒子40ppmと、平均粒径0.6μmの炭酸カルシウム50ppmと、帯電防止剤としてラウリルジフェニルエーテルジスルホネート5質量%とを含有するポリエチレンレテフタレートA(以下「PET−A」と称する)及びポリエチレンレテフタレートB(以下「PET−B」と称する)を常法により調製し、共押出し法で、前記PET−A及びBを溶融押出し、冷却固化してPET−A層/PET−B層の2層からなる未延伸積層フィルムを調製した。該未延伸積層フィルムを周速の異なる85℃の一対のロール間で縦方向に3.5倍延伸して一軸延伸フィルムを得た。次いで、テンターにより98℃で横方向に3.5倍延伸した後、更に200〜210℃で熱固定して、厚み16μm(PET−A層(厚み:6μm)/PET−B層(厚み:10μm))の二軸延伸された積層ポリエステルフィルムからなる支持体を製造した。
-Production of support-
Polyethylene terephthalate A (hereinafter referred to as “PET-A”) containing 40 ppm of spherical silica particles having an average particle diameter of 0.1 μm, 50 ppm of calcium carbonate having an average particle diameter of 0.6 μm, and 5% by mass of lauryl diphenyl ether disulfonate as an antistatic agent. ) And polyethylene terephthalate B (hereinafter referred to as “PET-B”) are prepared by a conventional method, and the PET-A and B are melt-extruded by a co-extrusion method, cooled and solidified to obtain a PET-A layer / An unstretched laminated film consisting of two PET-B layers was prepared. The unstretched laminated film was stretched 3.5 times in the longitudinal direction between a pair of 85 ° C. rolls having different peripheral speeds to obtain a uniaxially stretched film. Subsequently, the film was stretched 3.5 times in the transverse direction at 98 ° C. with a tenter, and further heat-set at 200 to 210 ° C. to obtain a thickness of 16 μm (PET-A layer (thickness: 6 μm) / PET-B layer (thickness: 10 μm). The support body which consists of the laminated polyester film by which biaxial stretching of ()) was manufactured.

(実施例4)
実施例1において、支持体を下記の製造方法により製造したポリエチレンテレフタレートフィルムに代えた以外は、実施例1と同様にしてパターン形成材料を製造した。前記支持体の条件を表3に示す。製造した支持体を用いて、実施例1と同様にして屈折率、表面抵抗値、算術平均粗さ(Ra)及び剥離帯電量の評価を行った。
更に、製造したパターン形成材料を用いて実施例1と同様にして全光線透過率、ヘイズ値、拡散角度θ、拡散角度θが1.5°における照射光エネルギーに対する拡散光エネルギーの百分率、摩擦係数、熱収縮率、解像度、パターン欠陥及び巻取りしわの発生の有無の評価を行った。結果を表4及び5に示す。
なお、最短現像時間は10秒であり、感光層を硬化させるために必要な光エネルギー量は3mJ/cmであった。
Example 4
In Example 1, a pattern forming material was produced in the same manner as in Example 1 except that the support was replaced with a polyethylene terephthalate film produced by the following production method. Table 3 shows the conditions of the support. Using the manufactured support, the refractive index, surface resistance value, arithmetic average roughness (Ra), and peel charge amount were evaluated in the same manner as in Example 1.
Further, using the produced pattern forming material, the total light transmittance, the haze value, the diffusion angle θ, the percentage of the diffused light energy with respect to the irradiation light energy when the diffusion angle θ is 1.5 °, and the friction coefficient in the same manner as in Example 1. The thermal shrinkage rate, resolution, pattern defects, and the presence or absence of winding wrinkles were evaluated. The results are shown in Tables 4 and 5.
The shortest development time was 10 seconds, and the amount of light energy required to cure the photosensitive layer was 3 mJ / cm 2 .

−支持体の製造‐
平均粒径1.0μmの非定型シリカ粒子200ppmと、帯電防止剤としてラウリルジフェニルエーテルジスルホネート2質量%とを含有するポリエチレンレテフタレートを常法により調製し、溶融押出し、冷却固化して未延伸フィルムを調製した。該未延伸フィルムを周速の異なる85℃の一対のロール間で縦方向に3.5倍延伸して一軸延伸フィルムを得た。次いで、テンターにより98℃で横方向に3.5倍延伸した後、更に200〜210℃で熱固定して、厚み16μmの二軸延伸されたポリエステルフィルムからなる支持体を製造した。
-Production of support-
Polyethylene terephthalate containing 200 ppm of atypical silica particles having an average particle size of 1.0 μm and 2% by mass of lauryl diphenyl ether disulfonate as an antistatic agent is prepared by a conventional method, melt-extruded, cooled and solidified to form an unstretched film. Prepared. The unstretched film was stretched 3.5 times in the longitudinal direction between a pair of 85 ° C. rolls having different peripheral speeds to obtain a uniaxially stretched film. Next, the film was stretched 3.5 times in the transverse direction at 98 ° C. with a tenter, and further heat-set at 200 to 210 ° C. to produce a support made of a biaxially stretched polyester film having a thickness of 16 μm.

(実施例5)
実施例1において、支持体を下記の製造方法により製造したポリエチレンテレフタレートフィルムに代えた以外は、実施例1と同様にしてパターン形成材料を製造した。前記支持体の条件を表3に示す。製造した支持体を用いて、実施例1と同様にして屈折率、表面抵抗値、算術平均粗さ(Ra)及び剥離帯電量の評価を行った。
更に、製造したパターン形成材料を用いて実施例1と同様にして全光線透過率、ヘイズ値、拡散角度θ、拡散角度θが1.5°における照射光エネルギーに対する拡散光エネルギーの百分率、摩擦係数、熱収縮率、解像度、パターン欠陥及び巻取りしわの発生の有無の評価を行った。結果を表4及び5に示す。
なお、最短現像時間は10秒であり、感光層を硬化させるために必要な光エネルギー量は3mJ/cmであった。
(Example 5)
In Example 1, a pattern forming material was produced in the same manner as in Example 1 except that the support was replaced with a polyethylene terephthalate film produced by the following production method. Table 3 shows the conditions of the support. Using the manufactured support, the refractive index, surface resistance value, arithmetic average roughness (Ra), and peel charge amount were evaluated in the same manner as in Example 1.
Further, using the produced pattern forming material, the total light transmittance, the haze value, the diffusion angle θ, the percentage of the diffused light energy with respect to the irradiation light energy when the diffusion angle θ is 1.5 °, and the friction coefficient in the same manner as in Example 1. The thermal shrinkage rate, resolution, pattern defects, and the presence or absence of winding wrinkles were evaluated. The results are shown in Tables 4 and 5.
The shortest development time was 10 seconds, and the amount of light energy required to cure the photosensitive layer was 3 mJ / cm 2 .

−支持体の製造‐
平均粒径0.1μmの非定型シリカ粒子50ppmと、平均粒径0.06μmの真球シリカ100ppmと、帯電防止剤としてラウリルジフェニルエーテルジスルホネート5質量%とを含有するポリエチレンレテフタレートを常法により調製し、溶融押出し、冷却固化して未延伸フィルムを調製した。該未延伸フィルムを周速の異なる85℃の一対のロール間で縦方向に3.5倍延伸して一軸延伸フィルムを得た。次いで、テンターにより98℃で横方向に3.5倍延伸した後、更に200〜210℃で熱固定して、厚み16μmの二軸延伸されたポリエステルフィルムからなる支持体を製造した。
-Production of support-
A polyethylene retephthalate containing 50 ppm of atypical silica particles having an average particle size of 0.1 μm, 100 ppm of true spherical silica having an average particle size of 0.06 μm, and 5% by mass of lauryl diphenyl ether disulfonate as an antistatic agent is prepared by a conventional method. Then, it was melt-extruded and cooled and solidified to prepare an unstretched film. The unstretched film was stretched 3.5 times in the longitudinal direction between a pair of 85 ° C. rolls having different peripheral speeds to obtain a uniaxially stretched film. Next, the film was stretched 3.5 times in the transverse direction at 98 ° C. with a tenter, and further heat-set at 200 to 210 ° C. to produce a support made of a biaxially stretched polyester film having a thickness of 16 μm.

(実施例6)
実施例1において、支持体をポリエチレンテレフタレートフィルム(東レ 16μmPET 16QS52)に代えた以外は、実施例1と同様にしてパターン形成材料を製造した。前記支持体の条件を表3に示す。製造した支持体を用いて、実施例1と同様にして屈折率、表面抵抗値、算術平均粗さ(Ra)及び剥離帯電量の評価を行った。
更に、製造したパターン形成材料を用いて実施例1と同様にして全光線透過率、ヘイズ値、拡散角度θ、拡散角度θが1.5°における照射光エネルギーに対する拡散光エネルギーの百分率、摩擦係数、熱収縮率、解像度、パターン欠陥及び巻取りしわの発生の有無の評価を行った。結果を表4及び5に示す。
なお、最短現像時間は10秒であり、感光層を硬化させるために必要な光エネルギー量は3mJ/cmであった。
(Example 6)
A pattern forming material was produced in the same manner as in Example 1 except that the support was replaced with a polyethylene terephthalate film (Toray 16 μm PET 16QS52). Table 3 shows the conditions of the support. Using the manufactured support, the refractive index, surface resistance value, arithmetic average roughness (Ra), and peel charge amount were evaluated in the same manner as in Example 1.
Further, using the produced pattern forming material, the total light transmittance, the haze value, the diffusion angle θ, the percentage of the diffused light energy with respect to the irradiation light energy when the diffusion angle θ is 1.5 °, and the friction coefficient in the same manner as in Example 1. The thermal shrinkage rate, resolution, pattern defects, and the presence or absence of winding wrinkles were evaluated. The results are shown in Tables 4 and 5.
The shortest development time was 10 seconds, and the amount of light energy required to cure the photosensitive layer was 3 mJ / cm 2 .

(実施例7)
実施例1において、支持体をポリエチレンテレフタレートフィルム(東洋紡 16μmPET A1517)に代えた以外は、実施例1と同様にしてパターン形成材料を製造した。前記支持体の条件を表3に示す。製造した支持体を用いて、実施例1と同様にして屈折率、表面抵抗値、算術平均粗さ(Ra)及び剥離帯電量の評価を行った。
更に、製造したパターン形成材料を用いて実施例1と同様にして全光線透過率、ヘイズ値、拡散角度θ、拡散角度θが1.5°における照射光エネルギーに対する拡散光エネルギーの百分率、摩擦係数、熱収縮率、解像度、パターン欠陥及び巻取りしわの発生の有無の評価を行った。結果を表4及び5に示す。
なお、最短現像時間は10秒であり、感光層を硬化させるために必要な光エネルギー量は3mJ/cmであった。
(Example 7)
A pattern forming material was produced in the same manner as in Example 1 except that the support was replaced with a polyethylene terephthalate film (Toyobo 16 μm PET A1517). Table 3 shows the conditions of the support. Using the manufactured support, the refractive index, surface resistance value, arithmetic average roughness (Ra), and peel charge amount were evaluated in the same manner as in Example 1.
Further, using the produced pattern forming material, the total light transmittance, the haze value, the diffusion angle θ, the percentage of the diffused light energy with respect to the irradiation light energy when the diffusion angle θ is 1.5 °, and the friction coefficient in the same manner as in Example 1. The thermal shrinkage rate, resolution, pattern defects, and the presence or absence of winding wrinkles were evaluated. The results are shown in Tables 4 and 5.
The shortest development time was 10 seconds, and the amount of light energy required to cure the photosensitive layer was 3 mJ / cm 2 .

(実施例8)
実施例1において、支持体をポリエチレンテレフタレートフィルム(三菱化学ポリエステルフィルム R340G)に代えた以外は、実施例1と同様にしてパターン形成材料を製造した。前記支持体の条件を表3に示す。製造した支持体を用いて、実施例1と同様にして屈折率、表面抵抗値、算術平均粗さ(Ra)及び剥離帯電量の評価を行った。
更に、製造したパターン形成材料を用いて実施例1と同様にして全光線透過率、ヘイズ値、拡散角度θ、拡散角度θが1.5°における照射光エネルギーに対する拡散光エネルギーの百分率、摩擦係数、熱収縮率、解像度、パターン欠陥及び巻取りしわの発生の有無の評価を行った。結果を表4及び5に示す。
なお、最短現像時間は10秒であり、感光層を硬化させるために必要な光エネルギー量は3mJ/cmであった。
(実施例9)
実施例1において、支持体をポリエチレンテレフタレートフィルム(東レ 16μmPET 16QS52)に代え、更に、感光性樹脂組成物溶液の「メチルメタクリレート/2−エチルへキシルアクリレート/ベンジルメタクリレート/メタクリル酸共重合体(共重合体組成(質量比):50/20/7/23、質量平均分子量:90,000、酸価150) 15質量部」を「メタクリル酸メチル/メタクリル酸/スチレン共重合体(共重合体組成(質量比):19/29/29/52、質量平均分子量:60,000、酸価189) 15質量部」に代えた以外は、実施例1と同様にしてパターン形成材料を製造した。前記支持体の条件を表3に示す。製造した支持体を用いて、実施例1と同様にして屈折率、表面抵抗値、算術平均粗さ(Ra)及び剥離帯電量の評価を行った。
更に、製造したパターン形成材料を用いて実施例1と同様にして全光線透過率、ヘイズ値、拡散角度θ、拡散角度θが1.5°における照射光エネルギーに対する拡散光エネルギーの百分率、摩擦係数、熱収縮率、解像度、パターン欠陥及び巻取りしわの発生の有無の評価を行った。結果を表4及び5に示す。
なお、最短現像時間は10秒であり、感光層を硬化させるために必要な光エネルギー量は3mJ/cmであった。
(Example 8)
A pattern forming material was produced in the same manner as in Example 1 except that the support was replaced with a polyethylene terephthalate film (Mitsubishi Chemical Polyester Film R340G) in Example 1. Table 3 shows the conditions of the support. Using the manufactured support, the refractive index, surface resistance value, arithmetic average roughness (Ra), and peel charge amount were evaluated in the same manner as in Example 1.
Further, using the produced pattern forming material, the total light transmittance, the haze value, the diffusion angle θ, the percentage of the diffused light energy with respect to the irradiation light energy when the diffusion angle θ is 1.5 °, and the friction coefficient in the same manner as in Example 1. The thermal shrinkage rate, resolution, pattern defects, and the presence or absence of winding wrinkles were evaluated. The results are shown in Tables 4 and 5.
The shortest development time was 10 seconds, and the amount of light energy required to cure the photosensitive layer was 3 mJ / cm 2 .
Example 9
In Example 1, the support was replaced with a polyethylene terephthalate film (Toray 16 μm PET 16QS52), and further a “methyl methacrylate / 2-ethylhexyl acrylate / benzyl methacrylate / methacrylic acid copolymer (copolymer) of the photosensitive resin composition solution. "Mixed composition (mass ratio): 50/20/7/23, mass average molecular weight: 90,000, acid value 150) 15 parts by mass" is "methyl methacrylate / methacrylic acid / styrene copolymer (copolymer composition ( (Mass ratio): 19/29/29/52, mass average molecular weight: 60,000, acid value 189) A pattern forming material was produced in the same manner as in Example 1 except that it was changed to 15 parts by mass. Table 3 shows the conditions of the support. Using the manufactured support, the refractive index, surface resistance value, arithmetic average roughness (Ra), and peel charge amount were evaluated in the same manner as in Example 1.
Further, using the produced pattern forming material, the total light transmittance, the haze value, the diffusion angle θ, the percentage of the diffused light energy with respect to the irradiation light energy when the diffusion angle θ is 1.5 °, and the friction coefficient in the same manner as in Example 1. The thermal shrinkage rate, resolution, pattern defects, and the presence or absence of winding wrinkles were evaluated. The results are shown in Tables 4 and 5.
The shortest development time was 10 seconds, and the amount of light energy required to cure the photosensitive layer was 3 mJ / cm 2 .

(比較例1)
実施例1において、支持体を下記の製造方法により製造したポリエチレンテレフタレートフィルムに代えた以外は、実施例1と同様にしてパターン形成材料を製造した。前記支持体の条件を表3に示す。製造した支持体を用いて、実施例1と同様にして屈折率、表面抵抗値、算術平均粗さ(Ra)及び剥離帯電量の評価を行った。
更に、製造したパターン形成材料を用いて実施例1と同様にして全光線透過率、ヘイズ値、拡散角度θ、拡散角度θが1.5°における照射光エネルギーに対する拡散光エネルギーの百分率、摩擦係数、熱収縮率、解像度、パターン欠陥及び巻取りしわの発生の有無の評価を行った。結果を表4及び5に示す。
なお、最短現像時間は10秒であり、感光層を硬化させるために必要な光エネルギー量は3mJ/cmであった。
(Comparative Example 1)
In Example 1, a pattern forming material was produced in the same manner as in Example 1 except that the support was replaced with a polyethylene terephthalate film produced by the following production method. Table 3 shows the conditions of the support. Using the manufactured support, the refractive index, surface resistance value, arithmetic average roughness (Ra), and peel charge amount were evaluated in the same manner as in Example 1.
Further, using the produced pattern forming material, the total light transmittance, the haze value, the diffusion angle θ, the percentage of the diffused light energy with respect to the irradiation light energy when the diffusion angle θ is 1.5 °, and the friction coefficient in the same manner as in Example 1. The thermal shrinkage rate, resolution, pattern defects, and the presence or absence of winding wrinkles were evaluated. The results are shown in Tables 4 and 5.
The shortest development time was 10 seconds, and the amount of light energy required to cure the photosensitive layer was 3 mJ / cm 2 .

−支持体の製造‐
平均粒径1.0μmの酸化チタン500ppmを含有するポリエチレンレテフタレートA(以下「PET−A」と称する)及びポリエチレンレテフタレートB(以下「PET−B」と称する)を常法により調製し、共押出し法で、前記PET−A及びBを溶融押出し、冷却固化してPET−A層/PET−B層の2層からなる未延伸積層フィルムを調製した。該未延伸積層フィルムを周速の異なる85℃の一対のロール間で縦方向に3.5倍延伸して一軸延伸フィルムを得た。次いで、テンターにより98℃で横方向に3.5倍延伸した後、更に200〜210℃で熱固定して、厚み16μm(PET−A層(厚み:8μm)/PET−B層(厚み:8μm))の二軸延伸された積層ポリエステルフィルムからなる支持体を製造した。
-Production of support-
Polyethylene terephthalate A (hereinafter referred to as “PET-A”) and polyethylene terephthalate B (hereinafter referred to as “PET-B”) containing 500 ppm of titanium oxide having an average particle diameter of 1.0 μm were prepared by a conventional method. By the extrusion method, the PET-A and B were melt-extruded and cooled and solidified to prepare an unstretched laminated film consisting of two layers of PET-A layer / PET-B layer. The unstretched laminated film was stretched 3.5 times in the longitudinal direction between a pair of 85 ° C. rolls having different peripheral speeds to obtain a uniaxially stretched film. Next, the film was stretched 3.5 times in the transverse direction at 98 ° C. with a tenter, and further heat-set at 200 to 210 ° C. to obtain a thickness of 16 μm (PET-A layer (thickness: 8 μm) / PET-B layer (thickness: 8 μm)). The support body which consists of the laminated polyester film by which biaxial stretching of ()) was manufactured.

(比較例2)
実施例1において、支持体を下記の製造方法により製造したポリエチレンテレフタレートフィルムに代えた以外は、実施例1と同様にしてパターン形成材料を製造した。前記支持体の条件を表3に示す。製造した支持体を用いて、実施例1と同様にして屈折率、表面抵抗値、算術平均粗さ(Ra)及び剥離帯電量の評価を行った。
更に、製造したパターン形成材料を用いて実施例1と同様にして全光線透過率、ヘイズ値、拡散角度θ、拡散角度θが1.5°における照射光エネルギーに対する拡散光エネルギーの百分率、摩擦係数、熱収縮率、解像度、パターン欠陥及び巻取りしわの発生の有無の評価を行った。結果を表4及び5に示す。
なお、最短現像時間は10秒であり、感光層を硬化させるために必要な光エネルギー量は3mJ/cmであった。
(Comparative Example 2)
In Example 1, a pattern forming material was produced in the same manner as in Example 1 except that the support was replaced with a polyethylene terephthalate film produced by the following production method. Table 3 shows the conditions of the support. Using the manufactured support, the refractive index, surface resistance value, arithmetic average roughness (Ra), and peel charge amount were evaluated in the same manner as in Example 1.
Further, using the produced pattern forming material, the total light transmittance, the haze value, the diffusion angle θ, the percentage of the diffused light energy with respect to the irradiation light energy when the diffusion angle θ is 1.5 °, and the friction coefficient in the same manner as in Example 1. The thermal shrinkage rate, resolution, pattern defects, and the presence or absence of winding wrinkles were evaluated. The results are shown in Tables 4 and 5.
The shortest development time was 10 seconds, and the amount of light energy required to cure the photosensitive layer was 3 mJ / cm 2 .

−支持体の製造‐
平均粒径2.0μmの酸化ジルコニウム100ppmを含有するポリエチレンレテフタレートを常法により調製し、溶融押出し、冷却固化して未延伸フィルムを調製した。該未延伸フィルムを周速の異なる85℃の一対のロール間で縦方向に3.5倍延伸して一軸延伸フィルムを得た。次いで、テンターにより98℃で横方向に3.5倍延伸した後、更に200〜210℃で熱固定して、厚み19μmの二軸延伸されたポリエステルフィルムからなる支持体を製造した。
-Production of support-
A polyethylene terephthalate containing 100 ppm of zirconium oxide having an average particle size of 2.0 μm was prepared by a conventional method, melt-extruded, and cooled and solidified to prepare an unstretched film. The unstretched film was stretched 3.5 times in the longitudinal direction between a pair of 85 ° C. rolls having different peripheral speeds to obtain a uniaxially stretched film. Next, the film was stretched 3.5 times in the transverse direction at 98 ° C. with a tenter, and further heat-set at 200 to 210 ° C. to produce a support made of a biaxially stretched polyester film having a thickness of 19 μm.

(比較例3)
実施例1において、支持体を下記の製造方法により製造したポリエチレンテレフタレートフィルムに代えた以外は、実施例1と同様にしてパターン形成材料を製造した。前記支持体の条件を表3に示す。製造した支持体を用いて、実施例1と同様にして屈折率、表面抵抗値、算術平均粗さ(Ra)及び剥離帯電量の評価を行った。
更に、製造したパターン形成材料を用いて実施例1と同様にして全光線透過率、ヘイズ値、拡散角度θ、拡散角度θが1.5°における照射光エネルギーに対する拡散光エネルギーの百分率、摩擦係数、熱収縮率、解像度、パターン欠陥及び巻取りしわの発生の有無の評価を行った。結果を表4及び5に示す。
なお、最短現像時間は10秒であり、感光層を硬化させるために必要な光エネルギー量は3mJ/cmであった。
(Comparative Example 3)
In Example 1, a pattern forming material was produced in the same manner as in Example 1 except that the support was replaced with a polyethylene terephthalate film produced by the following production method. Table 3 shows the conditions of the support. Using the manufactured support, the refractive index, surface resistance value, arithmetic average roughness (Ra), and peel charge amount were evaluated in the same manner as in Example 1.
Further, using the produced pattern forming material, the total light transmittance, the haze value, the diffusion angle θ, the percentage of the diffused light energy with respect to the irradiation light energy when the diffusion angle θ is 1.5 °, and the friction coefficient in the same manner as in Example 1. The thermal shrinkage rate, resolution, pattern defects, and the presence or absence of winding wrinkles were evaluated. The results are shown in Tables 4 and 5.
The shortest development time was 10 seconds, and the amount of light energy required to cure the photosensitive layer was 3 mJ / cm 2 .

−支持体の製造‐
平均粒径3.0μmの炭酸カルシウム200ppmを含有するポリエチレンレテフタレートを常法により調製し、溶融押出し、冷却固化して未延伸フィルムを調製した。該未延伸フィルムを周速の異なる85℃の一対のロール間で縦方向に3.5倍延伸して一軸延伸フィルムを得た。次いで、テンターにより98℃で横方向に3.5倍延伸した後、更に200〜210℃で熱固定して、厚み16μmの二軸延伸されたポリエステルフィルムからなる支持体を製造した。
-Production of support-
Polyethylene terephthalate containing 200 ppm of calcium carbonate having an average particle size of 3.0 μm was prepared by a conventional method, melt-extruded, and cooled and solidified to prepare an unstretched film. The unstretched film was stretched 3.5 times in the longitudinal direction between a pair of 85 ° C. rolls having different peripheral speeds to obtain a uniaxially stretched film. Next, the film was stretched 3.5 times in the transverse direction at 98 ° C. with a tenter, and further heat-set at 200 to 210 ° C. to produce a support made of a biaxially stretched polyester film having a thickness of 16 μm.

(比較例4)
実施例1において、支持体をポリエチレンテレフタレートフィルム(帝人デュポン 20μmPET G2−20)に代えた以外は、実施例1と同様にしてパターン形成材料を製造した。前記支持体の条件を表3に示す。製造した支持体を用いて、実施例1と同様にして屈折率、表面抵抗値、算術平均粗さ(Ra)及び剥離帯電量の評価を行った。
更に、製造したパターン形成材料を用いて実施例1と同様にして全光線透過率、ヘイズ値、拡散角度θ、拡散角度θが1.5°における照射光エネルギーに対する拡散光エネルギーの百分率、摩擦係数、熱収縮率、解像度、パターン欠陥及び巻取りしわの発生の有無の評価を行った。結果を表4及び5に示す。
なお、最短現像時間は10秒であり、感光層を硬化させるために必要な光エネルギー量は3mJ/cmであった。
(Comparative Example 4)
A pattern forming material was produced in the same manner as in Example 1 except that in Example 1, the support was replaced with a polyethylene terephthalate film (Teijin DuPont 20 μm PET G2-20). Table 3 shows the conditions of the support. Using the manufactured support, the refractive index, surface resistance value, arithmetic average roughness (Ra), and peel charge amount were evaluated in the same manner as in Example 1.
Further, using the produced pattern forming material, the total light transmittance, the haze value, the diffusion angle θ, the percentage of the diffused light energy with respect to the irradiation light energy when the diffusion angle θ is 1.5 °, and the friction coefficient in the same manner as in Example 1. The thermal shrinkage rate, resolution, pattern defects, and the presence or absence of winding wrinkles were evaluated. The results are shown in Tables 4 and 5.
The shortest development time was 10 seconds, and the amount of light energy required to cure the photosensitive layer was 3 mJ / cm 2 .

<摩擦係数のMD(Machine Direction)方向>
滑らす方向は、フィルムどうしがいずれも図39に示すMD方向とする。
<MD (Machine Direction) direction of friction coefficient>
The sliding direction is the MD direction shown in FIG.

表3〜5の結果より、比較例1〜4のパターン形成材料と比較して、実施例1〜9のパターン形成材料は、全光透過率が88%以上、かつ拡散角度が2度以内であって、拡散角度1.5度における前記拡散光エネルギーが0.5%以内となり極めて光学特性が優れレジスト形状も良好であり、ライン/ススペースが20/20μmのレジスト幅も20.4μm以内となり、また摩擦係数も低く搬送性に優れ、更に支持体が好適な操作性と透明性とを両立し、現像後に高精細なパターンが得られることがわかった。   From the results of Tables 3 to 5, the pattern forming materials of Examples 1 to 9 have a total light transmittance of 88% or more and a diffusion angle within 2 degrees as compared with the pattern forming materials of Comparative Examples 1 to 4. Therefore, the diffused light energy at a diffusion angle of 1.5 degrees is within 0.5%, the optical characteristics are excellent, the resist shape is also good, and the resist width when the line / space is 20/20 μm is also within 20.4 μm. Further, it was found that the coefficient of friction is low, the conveyance property is excellent, and the support has both suitable operability and transparency, and a high-definition pattern can be obtained after development.

本発明のパターン形成材料は、微粒子を含有する合成樹脂製フィルムからなる支持体上に、少なくとも感光層を有し、波長405nmの全光線透過率が80%以上であり、かつ照射する光の光軸と拡散光とのなす角である拡散角度が2度以内であり、また、拡散角度が、1.5度における照射光エネルギー(mJ/cm)に対する拡散光エネルギー(mJ/cm)が、1%以内にあり、更に該微粒子の少なくとも1種の屈折率と、合成樹脂製フィルムの屈折率とが一定の数値範囲であることにより、前記パターン形成材料の操作性を損なうことなく、欠陥のない配線パターンを高精細に、かつ、効率よく形成可能である。そのため、各種パターンの形成、配線パターン等の永久パターンの形成、カラーフィルタ、柱材、リブ材、スペーサー、隔壁等の液晶構造部材の製造、ホログラム、マイクロマシン、プルーフの製造などに好適に用いることができ、特に高精細な配線パターンの形成に好適に用いることができる。
本発明のパターン形成装置及び形成方法は、本発明の前記パターン形成材料を備えているため、各種パターンの形成、配線パターン等の永久パターンの形成、カラーフィルタ、柱材、リブ材、スペーサー、隔壁等の液晶構造部材の製造、ホログラム、マイクロマシン、プルーフの製造などに好適に用いることができ、特に高精細な配線パターンの形成に好適に用いることができる。
The pattern forming material of the present invention has at least a photosensitive layer on a support made of a synthetic resin film containing fine particles, has a total light transmittance of 80% or more at a wavelength of 405 nm, and emits light of light. diffusion angle is an angle formed between the axis and the diffused light is within 2 degrees, the diffusion angle is diffused light energy to the irradiated light energy at 1.5 degrees (mJ / cm 2) (mJ / cm 2) 1% or less, and at least one kind of refractive index of the fine particles and the refractive index of the synthetic resin film are within a certain numerical range, so that the operability of the pattern forming material is not impaired. It is possible to efficiently form a wiring pattern without any defects with high definition. Therefore, it is preferably used for various patterns, permanent patterns such as wiring patterns, color filters, pillar materials, rib materials, spacers, liquid crystal structure members such as partition walls, holograms, micromachines, and proofs. In particular, it can be suitably used for forming a high-definition wiring pattern.
Since the pattern forming apparatus and the forming method of the present invention include the pattern forming material of the present invention, formation of various patterns, formation of permanent patterns such as wiring patterns, color filters, pillar materials, rib materials, spacers, partition walls It can be suitably used for the production of liquid crystal structural members such as holograms, micromachines, and proofs, and can be particularly suitably used for forming high-definition wiring patterns.

図1は、支持体の光透過率を測定する方法の説明図である。FIG. 1 is an explanatory diagram of a method for measuring the light transmittance of a support. 図2は、デジタル・マイクロミラー・デバイス(DMD)の構成を示す部分拡大図の一例である。FIG. 2 is an example of a partially enlarged view showing a configuration of a digital micromirror device (DMD). 図3(A)及び(B)は、DMDの動作を説明するための説明図の一例である。3A and 3B are examples of explanatory diagrams for explaining the operation of the DMD. 図4(A)及び(B)は、DMDを傾斜配置しない場合と傾斜配置する場合とで、露光ビームの配置及び走査線を比較して示した平面図の一例である。FIGS. 4A and 4B are examples of plan views showing the arrangement of exposure beams and scanning lines in a case where the DMD is not inclined and in a case where the DMD is inclined. 図5(A)及び(B)は、DMDの使用領域の例を示す図の一例である。5A and 5B are examples of diagrams illustrating examples of DMD usage areas. 図6は、スキャナによる1回の走査でパターン形成材料を露光する露光方式を説明するための平面図の一例である。FIG. 6 is an example of a plan view for explaining an exposure method in which the pattern forming material is exposed by one scanning by the scanner. 図7(A)及び(B)は、スキャナによる複数回の走査でパターン形成材料を露光する露光方式を説明するための平面図の一例である。FIGS. 7A and 7B are examples of plan views for explaining an exposure method for exposing a pattern forming material by a plurality of scans by a scanner. 図8は、パターン形成装置の一例の外観を示す概略斜視図の一例である。FIG. 8 is an example of a schematic perspective view showing an appearance of an example of the pattern forming apparatus. 図9は、パターン形成装置のスキャナの構成を示す概略斜視図の一例である。FIG. 9 is an example of a schematic perspective view illustrating the configuration of the scanner of the pattern forming apparatus. 図10(A)は、パターン形成材料に形成される露光済み領域を示す平面図の一例であり、図10(B)は、各露光ヘッドによる露光エリアの配列を示す図の一例である。FIG. 10A is an example of a plan view showing an exposed region formed on the pattern forming material, and FIG. 10B is an example of a diagram showing an array of exposure areas by each exposure head. 図11は、光変調手段を含む露光ヘッドの概略構成を示す斜視図の一例である。FIG. 11 is an example of a perspective view showing a schematic configuration of an exposure head including a light modulation unit. 図12は、図10に示す露光ヘッドの構成を示す光軸に沿った副走査方向の断面図の一例である。FIG. 12 is an example of a sectional view in the sub-scanning direction along the optical axis showing the configuration of the exposure head shown in FIG. 図13は、パターン情報に基づいて、DMDの制御をするコントローラの一例である。FIG. 13 is an example of a controller that controls DMD based on pattern information. 図14(A)は、結合光学系の異なる他の露光ヘッドの構成を示す光軸に沿った断面図の一例であり、図14(B)は、マイクロレンズアレイ等を使用しない場合に被露光面に投影される光像を示す平面図の一例であり、図14(C)は、マイクロレンズアレイ等を使用した場合に被露光面に投影される光像を示す平面図の一例である。FIG. 14A is an example of a cross-sectional view along the optical axis showing the configuration of another exposure head having a different coupling optical system, and FIG. 14B shows an object to be exposed when a microlens array or the like is not used. FIG. 14C is an example of a plan view showing a light image projected on the surface to be exposed when a microlens array or the like is used. 図15は、DMDを構成するマイクロミラーの反射面の歪みを等高線で示す図の一例である。FIG. 15 is an example of a diagram showing the distortion of the reflection surface of the micromirror constituting the DMD with contour lines. 図16は、前記マイクロミラーの反射面の歪みを、該ミラーの2つの対角線方向について示すグラフの一例である。FIG. 16 is an example of a graph showing the distortion of the reflection surface of the micromirror in two diagonal directions of the mirror. 図17は、パターン形成装置に用いられたマイクロレンズアレイの正面図(A)と側面図(B)の一例である。FIG. 17 is an example of a front view (A) and a side view (B) of a microlens array used in the pattern forming apparatus. 図18は、マイクロレンズアレイを構成するマイクロレンズの正面図(A)と側面図(B)の一例である。FIG. 18 is an example of a front view (A) and a side view (B) of a microlens constituting a microlens array. 図19は、マイクロレンズによる集光状態を1つの断面内(A)と別の断面内(B)について示す概略図の一例である。FIG. 19 is an example of a schematic diagram illustrating a condensing state by a microlens in one cross section (A) and another cross section (B). 図20aは、マイクロレンズの集光位置近傍におけるビーム径をシミュレーションした結果を示す図の一例である。FIG. 20a is an example of a diagram showing a result of simulating the beam diameter in the vicinity of the condensing position of the microlens. 図20bは、図20aと同様のシミュレーション結果を、別の位置について示す図の一例である。FIG. 20b is an example of a diagram showing the same simulation result as in FIG. 20a at another position. 図20cは、図20aと同様のシミュレーション結果を、別の位置について示す図の一例である。FIG. 20c is an example of a diagram showing the same simulation result as in FIG. 20a for another position. 図20dは、図20aと同様のシミュレーション結果を、別の位置について示す図の一例である。FIG. 20d is an example of a diagram illustrating simulation results similar to those in FIG. 20a at different positions. 図21aは、従来のパターン形成方法において、マイクロレンズの集光位置近傍におけるビーム径をシミュレーションした結果を示す図の一例である。FIG. 21a is an example of a diagram showing a result of simulating the beam diameter in the vicinity of the condensing position of the microlens in the conventional pattern forming method. 図21bは、図21aと同様のシミュレーション結果を、別の位置について示す図の一例である。FIG. 21 b is an example of a diagram showing the same simulation result as in FIG. 21 a for another position. 図21cは、図21aと同様のシミュレーション結果を、別の位置について示す図の一例である。FIG. 21c is an example of a diagram showing the same simulation result as in FIG. 21a at another position. 図21dは、図21aと同様のシミュレーション結果を、別の位置について示す図の一例である。FIG. 21d is an example of a diagram showing the same simulation result as in FIG. 21a at another position. 図22は、合波レーザ光源の他の構成を示す平面図の一例である。FIG. 22 is an example of a plan view showing another configuration of the combined laser light source. 図23は、マイクロレンズアレイを構成するマイクロレンズの正面図(A)の一例と側面図(B)の一例である。FIG. 23 is an example of a front view (A) and an example of a side view (B) of a microlens constituting a microlens array. 図24は、図22のマイクロレンズによる集光状態を1つの断面内(A)の一例と別の断面内(B)について示す概略図の一例である。FIG. 24 is an example of a schematic diagram illustrating a light collection state by the microlens of FIG. 22 in one cross section (A) and another cross section (B). 図25は、光量分布補正光学系による補正の概念についての説明図の一例である。FIG. 25 is an example of an explanatory diagram about the concept of correction by the light amount distribution correction optical system. 図26は、光照射手段がガウス分布で且つ光量分布の補正を行わない場合の光量分布を示すグラフの一例である。FIG. 26 is an example of a graph showing the light amount distribution when the light irradiation means has a Gaussian distribution and the light amount distribution is not corrected. 図27は、光量分布補正光学系による補正後の光量分布を示すグラフの一例である。FIG. 27 is an example of a graph showing the light amount distribution after correction by the light amount distribution correcting optical system. 図28a(A)は、ファイバアレイ光源の構成を示す斜視図であり、図28a(B)は、(A)の部分拡大図の一例であり、図28a(C)及び(D)は、レーザ出射部における発光点の配列を示す平面図の一例である。28A (A) is a perspective view showing the configuration of the fiber array light source, FIG. 28A (B) is an example of a partially enlarged view of (A), and FIGS. 28A (C) and (D) are lasers. It is an example of the top view which shows the arrangement | sequence of the light emission point in an emission part. 図28bは、ファイバアレイ光源のレーザ出射部における発光点の配列を示す正面図の一例である。FIG. 28 b is an example of a front view showing the arrangement of light emitting points in the laser emitting section of the fiber array light source. 図29は、マルチモード光ファイバの構成を示す図の一例である。FIG. 29 is an example of a diagram illustrating a configuration of a multimode optical fiber. 図30は、合波レーザ光源の構成を示す平面図の一例である。FIG. 30 is an example of a plan view showing the configuration of the combined laser light source. 図31は、レーザモジュールの構成を示す平面図の一例である。FIG. 31 is an example of a plan view showing the configuration of the laser module. 図32は、図31に示すレーザモジュールの構成を示す側面図の一例である。FIG. 32 is an example of a side view illustrating the configuration of the laser module illustrated in FIG. 31. 図33は、図31に示すレーザモジュールの構成を示す部分側面図である。FIG. 33 is a partial side view showing the configuration of the laser module shown in FIG. 図34は、レーザアレイの構成を示す斜視図の一例である。FIG. 34 is an example of a perspective view showing a configuration of a laser array. 図35(A)は、マルチキャビティレーザの構成を示す斜視図の一例であり、図35(B)は、(A)に示すマルチキャビティレーザをアレイ状に配列したマルチキャビティレーザアレイの斜視図の一例である。FIG. 35A is an example of a perspective view showing a configuration of a multi-cavity laser, and FIG. 35B is a perspective view of a multi-cavity laser array in which the multi-cavity lasers shown in FIG. It is an example. 図36は、合波レーザ光源の他の構成を示す平面図の一例である。FIG. 36 is an example of a plan view showing another configuration of the combined laser light source. 図37(A)は、合波レーザ光源の他の構成を示す平面図の一例であり、図37(B)は、(A)の光軸に沿った断面図の一例である。FIG. 37A is an example of a plan view showing another configuration of the combined laser light source, and FIG. 37B is an example of a cross-sectional view taken along the optical axis of FIG. 図38(A)及び(B)は、従来の露光装置における焦点深度と本発明のパターン形成方法(パターン形成装置)による焦点深度との相違を示す光軸に沿った断面図の一例である。FIGS. 38A and 38B are examples of cross-sectional views along the optical axis showing the difference between the depth of focus in the conventional exposure apparatus and the depth of focus by the pattern forming method (pattern forming apparatus) of the present invention. 図39は、摩擦係数の測定における支持体フィルムを滑らすMD方向を示す斜視図である。FIG. 39 is a perspective view showing the MD direction in which the support film is slid in the measurement of the friction coefficient.

符号の説明Explanation of symbols

1 レーザ発振器
2 サンプル
3 センサー部
4 拡散光線
5 平行光線
6 支持体フィルム
LD1〜LD7 GaN系半導体レーザ
10 ヒートブロック
11〜17 コリメータレンズ
20 集光レンズ
30〜31 マルチモード光ファイバ
44 コリメータレンズホルダー
45 集光レンズホルダー
46 ファイバホルダー
50 デジタル・マイクロミラー・デバイス(DMD)
52 レンズ系
53 反射光像(露光ビーム)
54 第2結像光学系のレンズ
55 マイクロレンズアレイ
55a マイクロレンズ
56 被露光面(走査面)
57 第2結像光学系のレンズ
58 第2結像光学系のレンズ
59 アパーチャアレイ
64 レーザモジュール
66 ファイバアレイ光源
67 レンズ系
68 レーザ出射部
69 ミラー
70 プリズム
71 集光レンズ
72 ロッドインテグレータ
73 組合せレンズ
74 結像レンズ
100 ヒートブロック
110 マルチキャビティレーザ
111 ヒートブロック
113 ロッドレンズ
120 集光レンズ
130 マルチモード光ファイバ
130a コア
140 レーザアレイ
144 光照射手段
150 パターン形成材料
152 ステージ
155a マイクロレンズ
156 設置台
158 ガイド
160 ゲート
162 スキャナ
164 センサ
166 露光ヘッド
168 露光エリア
170 露光済み領域
180 ヒートブロック
184 コリメートレンズアレイ
302 コントローラ
304 ステージ駆動装置
454 レンズ系
468 露光エリア
472 マイクロレンズアレイ
474 マイクロレンズ
476 アパーチャアレイ
478 アパーチャ
480 レンズ系
DESCRIPTION OF SYMBOLS 1 Laser oscillator 2 Sample 3 Sensor part 4 Diffuse light 5 Parallel light 6 Support film LD1-LD7 GaN-type semiconductor laser 10 Heat block 11-17 Collimator lens 20 Condensing lens 30-31 Multimode optical fiber 44 Collimator lens holder 45 Collection Optical lens holder 46 Fiber holder 50 Digital micromirror device (DMD)
52 Lens system 53 Reflected light image (exposure beam)
54 Lens of second imaging optical system 55 Micro lens array 55a Micro lens 56 Surface to be exposed (scanning surface)
57 Lens of second imaging optical system 58 Lens of second imaging optical system 59 Aperture array 64 Laser module 66 Fiber array light source 67 Lens system 68 Laser emitting unit 69 Mirror 70 Prism 71 Condensing lens 72 Rod integrator 73 Combination lens 74 Imaging lens 100 Heat block 110 Multi cavity laser 111 Heat block 113 Rod lens 120 Condensing lens 130 Multimode optical fiber 130a Core 140 Laser array 144 Light irradiation means 150 Pattern forming material 152 Stage 155a Micro lens 156 Installation table 158 Guide 160 Gate 162 Scanner 164 Sensor 166 Exposure head 168 Exposure area 170 Exposed area 180 Heat block 184 Collimating lens Ray 302 controller 304 stage driver 454 lens system 468 exposure area 472 microlens array 474 microlens 476 aperture array 478 aperture 480 lens system

Claims (18)

光を照射する場合における全光線透過率が、80%以上であり、かつ照射する前記光の光軸と拡散光とのなす角である拡散角度が2度以内である支持体上に、感光性樹脂組成物からなる感光層を有することを特徴とするパターン形成材料。   Photosensitive on a support having a total light transmittance of 80% or more in the case of irradiating light and a diffusion angle which is an angle formed by the optical axis of the irradiating light and the diffused light within 2 degrees. A pattern forming material comprising a photosensitive layer made of a resin composition. 照射する光の波長が、405nmである請求項1に記載のパターン形成材料。   The pattern forming material according to claim 1, wherein the wavelength of the irradiated light is 405 nm. 拡散角度が、1.5度における照射光エネルギー(mJ/cm)に対する拡散光エネルギー(mJ/cm)が、1%以内にある請求項1から2のいずれかに記載のパターン形成材料。 The pattern forming material according to claim 1, wherein the diffusion light energy (mJ / cm 2 ) with respect to the irradiation light energy (mJ / cm 2 ) at a diffusion angle of 1.5 degrees is within 1%. 支持体が、不活性粒子を含むポリエステルフィルムからなり、前記不活性粒子が、平均粒子径0.01〜2μmの粒子である請求項1から3のいずれかに記載のパターン形成材料。   The pattern forming material according to claim 1, wherein the support is made of a polyester film containing inert particles, and the inert particles are particles having an average particle diameter of 0.01 to 2 μm. 支持体上に感光層及び保護フィルムをこの順に積層した請求項1から4のいずれかに記載のパターン形成材料。   The pattern formation material in any one of Claim 1 to 4 which laminated | stacked the photosensitive layer and the protective film on the support body in this order. 支持体が積層体であり、該積層体における各層を形成する複数種の組成物のうち、少なくとも2種が互いに異なる請求項1から5のいずれかに記載のパターン形成材料。   The pattern forming material according to claim 1, wherein the support is a laminate, and at least two of the plurality of types of compositions forming each layer in the laminate are different from each other. 支持体の感光層が積層される面の算術平均粗さ(Ra)が、0.3以下であり、かつ、感光層が積層されない面の算術平均粗さ(Ra)が、0.02〜0.5μmである請求項1から6のいずれかに記載のパターン形成材料。   The arithmetic average roughness (Ra) of the surface on which the photosensitive layer of the support is laminated is 0.3 or less, and the arithmetic average roughness (Ra) of the surface on which the photosensitive layer is not laminated is 0.02 to 0. The pattern forming material according to claim 1, which has a thickness of 0.5 μm. 支持体の少なくとも感光層が積層されない面の表面に帯電防止剤を含有し、該表面の表面抵抗が、温度10℃、相対湿度35%の環境下において、1×1018Ω/□以下である請求項1から7のいずれかに記載のパターン形成材料。 An antistatic agent is contained on at least the surface of the support on which the photosensitive layer is not laminated, and the surface resistance of the surface is 1 × 10 18 Ω / □ or less in an environment of a temperature of 10 ° C. and a relative humidity of 35%. The pattern formation material in any one of Claim 1 to 7. 支持体の感光層が積層されていない面の摩擦係数が、0.3〜1.0である請求項1から8のいずれかに記載のパターン形成材料。   The pattern forming material according to claim 1, wherein a coefficient of friction of a surface of the support on which the photosensitive layer is not laminated is 0.3 to 1.0. 感光層が、重合性化合物を含み、該重合性化合物がウレタン基及びアリール基の少なくともいずれかを有するモノマーを含む請求項1から9のいずれかに記載のパターン形成材料。   The pattern forming material according to claim 1, wherein the photosensitive layer contains a polymerizable compound, and the polymerizable compound contains a monomer having at least one of a urethane group and an aryl group. 感光層が、光重合開始剤を含み、該光重合開始剤が、ハロゲン化炭化水素誘導体、ヘキサアリールビイミダゾール、オキシム誘導体、有機過酸化物、チオ化合物、ケトン化合物、芳香族オニウム塩及びメタロセン類から選択される少なくとも1種を含む請求項1から10のいずれかに記載のパターン形成材料。   The photosensitive layer contains a photopolymerization initiator, and the photopolymerization initiator is a halogenated hydrocarbon derivative, hexaarylbiimidazole, oxime derivative, organic peroxide, thio compound, ketone compound, aromatic onium salt, and metallocenes. The pattern forming material according to claim 1, comprising at least one selected from the group consisting of: 請求項1から11のいずれかに記載のパターン形成材料における感光層に対し、露光を行うことを少なくとも含むことを特徴とするパターン形成方法。   The pattern formation method characterized by including exposing at least the photosensitive layer in the pattern formation material in any one of Claims 1-11. 感光層が、被処理基体上に積層された後、光照射手段からの光を受光し出射する描素部をn個有する光変調手段により、前記光照射手段からの光を変調させた後、前記描素部における出射面の歪みによる収差を補正可能な非球面を有するマイクロレンズを配列したマイクロレンズアレイを通した光で、露光される請求項12に記載のパターン形成方法。   After the photosensitive layer is laminated on the substrate to be processed, the light modulation means having n picture elements for receiving and emitting the light from the light irradiation means is used to modulate the light from the light irradiation means, The pattern forming method according to claim 12, wherein exposure is performed with light passing through a microlens array in which microlenses having aspherical surfaces capable of correcting an aberration due to distortion of an exit surface in the image element portion are arranged. 露光が、形成するパターン情報に基づいて制御信号を生成し、該制御信号に応じて変調させた光を用いて行われる請求項12から13のいずれかに記載のパターン形成方法。   The pattern formation method according to any one of claims 12 to 13, wherein the exposure is performed using a light generated by generating a control signal based on pattern information to be formed and modulated in accordance with the control signal. 露光が、光変調手段により光を変調させた後、前記光変調手段における描素部の出射面の歪みによる収差を補正可能な非球面を有するマイクロレンズを配列したマイクロレンズアレイを通して行われる請求項12から14のいずれかに記載のパターン形成方法。   The exposure is performed through a microlens array in which microlenses having aspherical surfaces capable of correcting aberrations due to distortion of the exit surface of the picture element portion in the light modulation means after the light is modulated by the light modulation means. The pattern formation method according to any one of 12 to 14. 非球面が、トーリック面である請求項15に記載のパターン形成方法。   The pattern forming method according to claim 15, wherein the aspherical surface is a toric surface. 露光が行われた後、感光層の現像を行う請求項12から16のいずれかに記載のパターン形成方法。   The pattern forming method according to claim 12, wherein the photosensitive layer is developed after the exposure. 現像が行われた後、永久パターンの形成を行う請求項12から17のいずれかに記載のパターン形成方法。
The pattern forming method according to claim 12, wherein a permanent pattern is formed after the development.
JP2004348428A 2004-12-01 2004-12-01 Pattern forming material and pattern forming method Pending JP2006154622A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2004348428A JP2006154622A (en) 2004-12-01 2004-12-01 Pattern forming material and pattern forming method
PCT/JP2005/021598 WO2006059534A1 (en) 2004-12-01 2005-11-24 Pattern forming material and pattern forming method
TW094141994A TW200628989A (en) 2004-12-01 2005-11-30 Pattern-forming material and pattern-forming method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004348428A JP2006154622A (en) 2004-12-01 2004-12-01 Pattern forming material and pattern forming method

Publications (1)

Publication Number Publication Date
JP2006154622A true JP2006154622A (en) 2006-06-15

Family

ID=36564968

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004348428A Pending JP2006154622A (en) 2004-12-01 2004-12-01 Pattern forming material and pattern forming method

Country Status (3)

Country Link
JP (1) JP2006154622A (en)
TW (1) TW200628989A (en)
WO (1) WO2006059534A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008139679A (en) * 2006-12-04 2008-06-19 Asahi Kasei Electronics Co Ltd Photosensitive resin composition and its use
WO2008093643A1 (en) * 2007-01-31 2008-08-07 Hitachi Chemical Company, Ltd. Photosensitive element
KR101132057B1 (en) 2006-12-19 2012-04-02 히다치 가세고교 가부시끼가이샤 Photosensitive element
KR20180118577A (en) * 2014-06-30 2018-10-31 다이요 잉키 세이조 가부시키가이샤 Photosensitive dry film and method for producing printed wiring board using same
JP2019152828A (en) * 2018-03-06 2019-09-12 東レ株式会社 Biaxially oriented polyester film for dry film resist carrier

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101734425B1 (en) * 2013-09-24 2017-05-11 주식회사 엘지화학 Preparation method for dry film solder resist and film laminate used therein
TW202413119A (en) 2014-04-25 2024-04-01 日商力森諾科股份有限公司 Photosensitive element, laminate, permanent mask resist, method for producing same, and method for producing semiconductor package
JP6227617B2 (en) * 2014-06-30 2017-11-08 太陽インキ製造株式会社 Photosensitive dry film and method for producing printed wiring board using the same
JP2016086000A (en) * 2014-10-22 2016-05-19 太陽インキ製造株式会社 Dry film and printed wiring board
WO2018179367A1 (en) * 2017-03-31 2018-10-04 日立化成株式会社 Photosensitive element
WO2018179370A1 (en) * 2017-03-31 2018-10-04 日立化成株式会社 Photosensitive element and photosensitive element roll
KR102487940B1 (en) * 2018-03-19 2023-01-16 삼성디스플레이 주식회사 Etchant composition, and method for manufacturing metal pattern and array substrate using the same

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62139547A (en) * 1985-12-13 1987-06-23 Daicel Chem Ind Ltd Photosensitive laminate body having anti electrostatic property
JP2697176B2 (en) * 1989-08-28 1998-01-14 ダイアホイルヘキスト株式会社 Biaxially oriented polyester film for dry film
JPH06130657A (en) * 1991-08-20 1994-05-13 Mitsubishi Rayon Co Ltd Dry film resist
JP3789144B2 (en) * 1994-06-14 2006-06-21 三菱化学ポリエステルフィルム株式会社 Laminated polyester film for photoresist
JPH1039504A (en) * 1996-07-24 1998-02-13 Nitto Chem Ind Co Ltd Dry film resist
JP3820101B2 (en) * 2000-12-14 2006-09-13 帝人株式会社 Biaxially oriented laminated polyester film
JP2004106322A (en) * 2002-09-18 2004-04-08 Toray Ind Inc Laminated polyester film for dry-film photoresist
JP4096682B2 (en) * 2002-10-04 2008-06-04 三菱化学株式会社 Blue-violet laser photosensitive composition, and image forming material, image forming material, and image forming method using the same
JP4305732B2 (en) * 2003-04-17 2009-07-29 日立化成工業株式会社 Photosensitive resin composition, photosensitive element using the same, method for producing resist pattern, and method for producing printed wiring board
JP2004325596A (en) * 2003-04-22 2004-11-18 Fuji Photo Film Co Ltd Dry film photoresist
JP2004335639A (en) * 2003-05-06 2004-11-25 Fuji Photo Film Co Ltd Projection aligner
JP4244156B2 (en) * 2003-05-07 2009-03-25 富士フイルム株式会社 Projection exposure equipment
JP4159094B2 (en) * 2003-10-15 2008-10-01 東京応化工業株式会社 Photosensitive resin composition and photosensitive dry film using the same
JP2005227398A (en) * 2004-02-10 2005-08-25 Fuji Photo Film Co Ltd Photosensitive transfer sheet
JP4515123B2 (en) * 2004-03-18 2010-07-28 旭化成イーマテリアルズ株式会社 Photosensitive resin laminate and use thereof
JP4485239B2 (en) * 2004-04-01 2010-06-16 富士フイルム株式会社 Pattern formation method
JP2005292734A (en) * 2004-04-05 2005-10-20 Fuji Photo Film Co Ltd Photosensitive transfer sheet and laminate, image pattern forming method, and wiring pattern forming method
JP4493385B2 (en) * 2004-04-15 2010-06-30 旭化成イーマテリアルズ株式会社 Photosensitive resin composition and use thereof
JP2005331695A (en) * 2004-05-19 2005-12-02 Fuji Photo Film Co Ltd Photosensitive transfer sheet, photosensitive laminate, image pattern forming method, and wiring pattern forming method

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008139679A (en) * 2006-12-04 2008-06-19 Asahi Kasei Electronics Co Ltd Photosensitive resin composition and its use
KR101132057B1 (en) 2006-12-19 2012-04-02 히다치 가세고교 가부시끼가이샤 Photosensitive element
WO2008093643A1 (en) * 2007-01-31 2008-08-07 Hitachi Chemical Company, Ltd. Photosensitive element
KR101102186B1 (en) 2007-01-31 2012-01-02 히다치 가세고교 가부시끼가이샤 Photosensitive element
US8092980B2 (en) 2007-01-31 2012-01-10 Hitachi Chemical Company, Ltd. Photosensitive element
KR20180118577A (en) * 2014-06-30 2018-10-31 다이요 잉키 세이조 가부시키가이샤 Photosensitive dry film and method for producing printed wiring board using same
KR20180118578A (en) * 2014-06-30 2018-10-31 다이요 잉키 세이조 가부시키가이샤 Photosensitive dry film and method for producing printed wiring board using same
KR102135507B1 (en) * 2014-06-30 2020-07-17 다이요 잉키 세이조 가부시키가이샤 Photosensitive dry film and method for producing printed wiring board using same
KR102135506B1 (en) * 2014-06-30 2020-07-17 다이요 잉키 세이조 가부시키가이샤 Photosensitive dry film and method for producing printed wiring board using same
JP2019152828A (en) * 2018-03-06 2019-09-12 東レ株式会社 Biaxially oriented polyester film for dry film resist carrier
JP7040137B2 (en) 2018-03-06 2022-03-23 東レ株式会社 Biaxially oriented polyester film for dry film resist supports

Also Published As

Publication number Publication date
TW200628989A (en) 2006-08-16
WO2006059534A1 (en) 2006-06-08

Similar Documents

Publication Publication Date Title
JP4546367B2 (en) Pattern forming material, pattern forming apparatus and pattern forming method
JP2006011371A (en) Pattern forming method
JP4322757B2 (en) Pattern forming material and pattern forming method
JP2006251385A (en) Pattern forming material, pattern forming apparatus and pattern forming method
JP2006243546A (en) Pattern forming material, pattern forming apparatus, and pattern forming method
JP2006154622A (en) Pattern forming material and pattern forming method
JP2006284842A (en) Pattern forming method
JP4500657B2 (en) Pattern forming material, pattern forming apparatus and pattern forming method
JP2005258431A (en) Pattern forming process
JP2006184840A (en) Pattern forming material, and apparatus and method for forming pattern
JP4546393B2 (en) Pattern forming material, pattern forming apparatus and pattern forming method
JP2006251562A (en) Pattern forming material, pattern forming apparatus and pattern forming method
JP2006220858A (en) Pattern formation material, pattern formation device, and pattern formation method
KR101116669B1 (en) Pattern forming material, pattern forming device and pattern forming method
JP4422562B2 (en) Pattern forming material, pattern forming apparatus and pattern forming method
JP4485239B2 (en) Pattern formation method
JP4942969B2 (en) Pattern forming material and pattern forming method
JP4520879B2 (en) Pattern forming material, pattern forming apparatus, and pattern forming method
JP2006208734A (en) Pattern forming method
JP4549891B2 (en) Pattern forming material, pattern forming apparatus and pattern forming method
JP2006292889A (en) Pattern forming material, pattern forming apparatus and pattern forming method
JP2006003436A (en) Pattern forming material, pattern forming apparatus, and pattern forming method
JP2005286308A (en) Pattern forming method
JP2006308701A (en) Pattern forming material, pattern forming apparatus and pattern forming method
JP2007017722A (en) Pattern forming method

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20061205