Nothing Special   »   [go: up one dir, main page]

JP2006029598A - Air conditioner, and its control method - Google Patents

Air conditioner, and its control method Download PDF

Info

Publication number
JP2006029598A
JP2006029598A JP2004204315A JP2004204315A JP2006029598A JP 2006029598 A JP2006029598 A JP 2006029598A JP 2004204315 A JP2004204315 A JP 2004204315A JP 2004204315 A JP2004204315 A JP 2004204315A JP 2006029598 A JP2006029598 A JP 2006029598A
Authority
JP
Japan
Prior art keywords
temperature
humidity
air
detecting
conditioned area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004204315A
Other languages
Japanese (ja)
Other versions
JP4147556B2 (en
Inventor
Koyu Tanaka
航祐 田中
Koji Yamashita
浩司 山下
Yasufumi Hatamura
康文 畑村
Hiroshi Tsutsumi
博司 堤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2004204315A priority Critical patent/JP4147556B2/en
Publication of JP2006029598A publication Critical patent/JP2006029598A/en
Application granted granted Critical
Publication of JP4147556B2 publication Critical patent/JP4147556B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a practical air conditioner with a high degree of freedom in setting allowing changing of a control target position of temperature and humidity with respect to a user by allowing control of local temperature and humidity in an air-conditioned area. <P>SOLUTION: The air conditioner is provided with a temperature and humidity adjusting indoor unit 12 comprised by arranging an indoor blower 1a, a humidifier 2, a cooling dehumidifier 34, and a reheater 5b in an interior or an adjacent space of the air-conditioned area, a temperature sensor 7a detecting a temperature of a position in any one of a blowout part or a suction part of the indoor unit 12, or the interior of the air-conditioned area, a humidity sensor 8b positioned in any one of the blowout part, the suction part, or the interior of the air-conditioned area, and detecting humidity of a position different from a position of the temperature sensor 7a, and a controller 6 capable of controlling the temperature and humidity in the air-conditioned area by setting a target temperature of the position detected by the temperature sensor 7a and a target humidity of the position detected by the humidity sensor 8b, and controlling the indoor blower 1a, the humidifier 2, the cooling dehumidifier 34, and the reheater 5b on the basis of the settings. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明は、機械室、クリーンルーム、美術館、収蔵庫等室内環境の温度と湿度を制御する空気調和装置に関するものである。   The present invention relates to an air conditioner that controls the temperature and humidity of an indoor environment such as a machine room, a clean room, a museum, or a storage.

従来、博物館、美術館、精密機械工場、印刷工場、収蔵庫、手術室、製薬工場、醸造等においては品質保持、歩留まり向上、生産性向上のため室内環境の温度、湿度が一定に保たれる必要がある。   Conventionally, in museums, art galleries, precision machinery factories, printing factories, storage rooms, operating rooms, pharmaceutical factories, brewing, etc., the temperature and humidity of the indoor environment must be kept constant in order to maintain quality, improve yield, and improve productivity. There is.

例えば、24℃、50%前後の温湿度環境が要求される環境で使用される電算機室用空気調和装置では、吸込温度もしくは吹出温度の目標温度を設定するとともに、運転時の吸込温度もしくは吹出温度が上記の目標温度を含む所定の範囲内となるように制御し、吸込温度もしくは吹出温度が所定の範囲の上限を超えた時は、目標蒸発温度を露点温度以下とならない範囲で低くし、上記所定の範囲の下限を下回った時は目標蒸発温度を高くするように制御している(例えば特許文献1参照)。   For example, in a computer room air conditioner used in an environment where a temperature and humidity environment of around 24% and 50% is required, a target temperature of the suction temperature or blowout temperature is set, and the suction temperature or blowout during operation is set. The temperature is controlled so as to be within a predetermined range including the above target temperature, and when the suction temperature or the blowing temperature exceeds the upper limit of the predetermined range, the target evaporation temperature is lowered within a range that does not fall below the dew point temperature, When the value falls below the lower limit of the predetermined range, the target evaporation temperature is controlled to be high (see, for example, Patent Document 1).

また、別の従来の空気調和装置は、ダクトの空気取入口から空気供給口に向かって、熱電冷凍サイクルを用いた空気冷却装置、電熱ヒータからなる空気加熱器、空気流路中に設置した加湿皿中に電熱ヒータを備えた加湿器、送風機を、この順序に配設し、空気供給口に装着された温度センサの検出信号を空気加熱器の制御部に入力し、目標温度である設定値と比較して、その偏差出力を空気加熱器にフィードバックすることにより、空気温度を目標温度に維持し、温度調整された空気は、同様に、湿度センサの検出信号により、制御器が電熱ヒータの作動を制御することにより、目標湿度に加湿され、目的空間に供給されるようにしている(例えば特許文献2参照)。   In addition, another conventional air conditioner includes an air cooling device using a thermoelectric refrigeration cycle, an air heater composed of an electric heater, and a humidifier installed in an air flow channel from the air intake port of the duct toward the air supply port. A humidifier and blower equipped with an electric heater in the dish are arranged in this order, and the detection signal of the temperature sensor attached to the air supply port is input to the control unit of the air heater to set the target temperature Compared with the above, the deviation output is fed back to the air heater to maintain the air temperature at the target temperature. By controlling the operation, it is humidified to the target humidity and supplied to the target space (see, for example, Patent Document 2).

特開2003−130430号公報(第1図)Japanese Patent Laid-Open No. 2003-130430 (FIG. 1) 特開平10−288382号公報(第1図)Japanese Patent Laid-Open No. 10-288382 (FIG. 1)

従来の空気調和機では、除湿負荷が発生している場合には、蒸発器による冷却除湿効果で、吹出温度は飽和温度近くになるため冷却対象物へそのまま送風した場合、結露しやすくなるという問題があった。   In a conventional air conditioner, when a dehumidifying load is generated, the cooling dehumidification effect by the evaporator causes the blowing temperature to be close to the saturation temperature, so that when the air is blown as it is to the object to be cooled, the problem is that condensation tends to occur. was there.

また、電子計算機のような発熱する機器では、機器全体が発熱しているのではなく、部分的に発熱していない部分もある。また機器が非稼動時は発熱していない場合もある。このような場合には、空気調和装置によって送り込まれる冷却空気によって機器の筐体まで冷やされ、機器周囲の空気状態によっては、機器の筐体表面に結露する可能性がある。   Further, in a device that generates heat such as an electronic computer, the entire device does not generate heat, and there is a portion that does not generate heat partially. In addition, when the device is not in operation, it may not generate heat. In such a case, the cooling air sent by the air conditioner cools the device casing, and depending on the air condition around the device, there is a possibility of condensation on the surface of the device casing.

また、従来の空気調和装置では、吸込空気の設定温度と設定湿度により露点温度が決定され、吹出空気の結露を防止するため、蒸発温度を露点温度以上に制御している。従って、蒸発温度の下限値が露点温度となってしまい、被空調域の冷却負荷、除湿負荷が大きい高温高湿度の条件下では露点温度が高くなり十分な顕熱能力、除湿能力が得られず所望の温湿度となるまでのプルダウン時間が長くなるといった問題あった。   Further, in the conventional air conditioner, the dew point temperature is determined by the set temperature and the set humidity of the intake air, and the evaporation temperature is controlled to be equal to or higher than the dew point temperature in order to prevent condensation of the blown air. Therefore, the lower limit of the evaporating temperature becomes the dew point temperature, and the dew point temperature becomes high and sufficient sensible heat capacity and dehumidifying capacity cannot be obtained under conditions of high temperature and high humidity where the cooling load and dehumidification load of the air-conditioned area are large There was a problem that the pull-down time until the desired temperature and humidity were reached was long.

また、従来の空気調和装置では、加湿による湿度制御を行っていないため、冬場等の低湿度の外気が換気によって室内へ流入する場合、室内が低湿度環境になり、電算室では静電気の発生によりコンピュータに悪影響が生じたり、居室等の人間の居住空間においては風邪等のウィルスが発生する問題があった。   In addition, humidity control by humidification is not performed in conventional air conditioners, so when low humidity outside air flows into the room by ventilation, such as in winter, the room becomes a low humidity environment, and in the computer room, static electricity is generated. There have been problems such as adverse effects on computers and viruses such as colds in human living spaces such as living rooms.

また、従来の空気調和装置では、除湿後の再加熱器に電気加熱器を用いているため、空気調和装置の必要電気容量および消費電力が大きくなり、さらに電気加熱器は高温であるため、火災等の事故に対する信頼性が低く、装置を耐火構造とする必要があり、構造が複雑化し、装置が高価になってしまうという問題があった。   Moreover, in the conventional air conditioner, since the electric heater is used for the reheater after dehumidification, the required electric capacity and power consumption of the air conditioner are increased, and furthermore, the electric heater is at a high temperature. There is a problem that the reliability of accidents such as these is low, the apparatus needs to have a fireproof structure, the structure becomes complicated, and the apparatus becomes expensive.

この発明は、上記問題を解決するためになされたもので、被空調領域内の局所的な温湿度の制御を可能とし、ユーザーに対して温度、湿度の制御対象位置が変更可能な設定自由度の高い実用的な空気調和装置を提供することを目的としている。   The present invention has been made to solve the above-described problem, and enables local temperature / humidity control in the air-conditioned area, and allows the user to change the control target position of temperature / humidity. The purpose is to provide a practical air conditioning device with high performance.

またこの発明は、被空調域への吹出空気が飽和空気になるのを防ぎ、電算機等の冷却対象物への結露防止を目的としている。   Another object of the present invention is to prevent the air blown into the air-conditioned area from becoming saturated air and to prevent condensation on a cooling object such as a computer.

またこの発明は、電算機や製造工程において必要とされる室内環境の湿度を維持した状態で、空気調和装置に接続されたダクトまたは床下スラブ等からの吹出温度を一定にすることで、局所的な空調を行い、省エネ性が高い空気調和装置の提供を目的としている。   In addition, the present invention provides a local temperature by maintaining a constant temperature of air blown from a duct connected to an air conditioner or an underfloor slab while maintaining the humidity of an indoor environment required in a computer or a manufacturing process. The purpose is to provide an air conditioner that performs high-performance air conditioning and high energy savings.

またこの発明は、除湿後に再加熱が必要な場合に再加熱用の必要電気容量および消費電力を小さくでき、また火災等の事故に対しても信頼性が高い空気調和機を得る事を目的としている。   It is another object of the present invention to provide an air conditioner that can reduce the required electric capacity and power consumption for reheating when reheating is required after dehumidification, and that is highly reliable against accidents such as fires. Yes.

またこの発明は、電算機等の発熱機器が冷却対象物である場合に、それらの非稼動時における過度の冷却を防止し、冷却対象物への結露防止を目的としている。   Moreover, this invention aims at preventing the excessive cooling at the time of a non-operation and preventing dew condensation to a cooling target object, when exothermic apparatuses, such as a computer, are a cooling target object.

またこの発明は、冬場等の低湿度環境において、静電気防止あるいは人間の快適性の向上が図れる信頼性の高い空気調和装置を得ることを目的としている。   Another object of the present invention is to obtain a highly reliable air conditioner that can prevent static electricity or improve human comfort in a low humidity environment such as winter.

本発明の空気調和装置は、送風手段と加湿手段と除湿手段と加熱手段と冷却手段とを被空調域の内部あるいは隣接した空間に配置してなる温湿度調整手段と、前記温湿度調整手段の吹出部、吸込部または被空調域内のいずれかの位置の温度を検出する温度検出手段と、前記温湿度調整手段の吹出部、吸込部または被空調域内のいずれかの位置であって前記温度検出手段のある位置と異なる位置の湿度を検出する湿度検出手段と、前記温度検出手段が検出している位置の目標温度と前記湿度検出手段が検出している位置の目標湿度とを設定し、前記送風手段、前記加湿手段、前記除湿手段、前記加熱手段および前記冷却手段を制御し、前記被空調域内の温湿度を制御可能とする制御手段とを備えたものである。
また、本発明の空気調和装置の制御方法は、加湿手段と除湿手段と加熱手段と冷却手段とを被空調域の内部あるいは隣接した空間に配置してなる温湿度調整手段と、前記温湿度調整手段の吹出部、吸込部または被空調域内のいずれかの位置の温度を検出する温度検出手段と、前記温湿度調整手段の吹出部、吸込部または被空調域内のいずれかの位置であって前記温度検出手段のある位置と異なる位置の湿度を検出する湿度検出手段とを備え、前記温度検出手段が検出している位置の目標温度と前記湿度検出手段が検出している位置の目標湿度とを設定し、前記温度検出手段の検出温度と前記目標温度との偏差および前記湿度検出手段の検出湿度と前記目標湿度との偏差に基づき、前記加湿手段の加湿量、前記除湿手段の除湿量、前記加熱手段の加熱量および前記冷却手段の冷却量を制御して、前記被空調域内の温湿度を制御するものである。
An air conditioner according to the present invention includes a temperature / humidity adjusting unit in which a blowing unit, a humidifying unit, a dehumidifying unit, a heating unit, and a cooling unit are arranged in an air-conditioned area or in a space adjacent thereto, and the temperature / humidity adjusting unit Temperature detection means for detecting the temperature at any position in the blowout section, suction section or air-conditioned area, and temperature detection at any position in the blowout section, suction section or air-conditioned area of the temperature / humidity adjusting means A humidity detecting means for detecting the humidity at a position different from the position where the means is located, a target temperature at the position detected by the temperature detecting means, and a target humidity at the position detected by the humidity detecting means, Control means for controlling the temperature and humidity in the air-conditioned area by controlling the air blowing means, the humidifying means, the dehumidifying means, the heating means and the cooling means.
The control method for an air conditioner according to the present invention includes a temperature / humidity adjusting unit in which a humidifying unit, a dehumidifying unit, a heating unit, and a cooling unit are arranged in an air-conditioned area or in an adjacent space; A temperature detecting means for detecting the temperature of any position in the blowing section, suction section or air-conditioned area of the means, and any position in the blowing section, suction section or air-conditioned area of the temperature / humidity adjusting means, Humidity detecting means for detecting humidity at a position different from the position where the temperature detecting means is provided, and the target temperature at the position detected by the temperature detecting means and the target humidity at the position detected by the humidity detecting means Set, based on the deviation between the detection temperature of the temperature detection means and the target temperature, and the deviation between the detection humidity of the humidity detection means and the target humidity, the humidification amount of the humidification means, the dehumidification amount of the dehumidification means, Heating means By controlling the amount of cooling heat amount and the cooling means, the controls the temperature and humidity of the air conditioning region.

本発明は、温度検知手段と湿度検知手段とを、被空調領域の異なる位置に取り付けることにより、被空調領域での局所的な温湿度を所望の設定値に制御でき、温度管理対象物の結露の防止および静電気の発生防止が可能となる。   According to the present invention, the local temperature and humidity in the air-conditioned area can be controlled to a desired set value by attaching the temperature detecting means and the humidity detecting means at different positions in the air-conditioned area. Prevention and generation of static electricity can be prevented.

実施の形態1.
図1は、この発明を実施するための実施の形態1に係る空気調和装置を示すものである。ここでは、空気調和装置を構成する温湿度調整手段である室内機12を、被空調室10の内部または隣接した空間に配置している。室内機12は、その筐体内の風の流路に加湿手段としての加湿器2、冷却および除湿手段としての冷却除湿器34、加熱手段としての再熱器5bおよび送風手段としての室内送風機1aを配置してなる。室内機12は、室内送風機1aにより、空気を矢印で示すように吸込部である吸込口18から流入させ、温湿度調節した後、吹出部である吹出口17より被空調室10へ吹出す構造となっている。 室内機12の吹出口17には吹出空気の温度検出手段としての吹出温度センサ7aを設け、吸込口18には吸込空気の湿度検出手段としての吸込湿度センサ8bを設けている。 また、ここでは、加熱および冷却手段に、冷媒を圧縮および搬送するための容量可変型の圧縮機101、圧縮機101から吐出された冷媒と周囲空気との熱交換を行う凝縮器(熱源側熱交換器)5a、および凝縮器5aに空気を搬送する室外送風機1bからなる室外機13と、室外で一部凝縮した冷媒を室内機12にて凝縮液化させる再熱器5bと、液冷媒を減圧するための絞り装置102と、減圧された冷媒と室内送風機1aにより送風された空気との熱交換を行う冷却除湿器34からなるヒートポンプ型冷凍サイクルを用いる。
加湿器2は蒸気式、気化式、超音波式、吸着脱着式等が適用されるが、いずれの場合も貯水槽や水分吸着装置を設けてある。さらに、所望の位置における温度、湿度を設定するための温湿度設定手段である温湿度設定装置11により入力された値に基づき、加湿器2、圧縮機101、室内送風機1a、室外送風機1b、絞り装置102を制御する制御手段としての制御装置6が設けてある。
Embodiment 1 FIG.
FIG. 1 shows an air conditioner according to Embodiment 1 for carrying out the present invention. Here, the indoor unit 12 which is a temperature / humidity adjusting means constituting the air conditioner is arranged in the air-conditioned room 10 or in a space adjacent thereto. The indoor unit 12 includes a humidifier 2 as a humidifying unit, a cooling / dehumidifying unit 34 as a cooling and dehumidifying unit, a reheater 5b as a heating unit, and an indoor blower 1a as a blowing unit in a wind passage in the casing. Arranged. The indoor unit 12 has a structure in which air is introduced from the air inlet 18 which is a suction portion as indicated by an arrow by the indoor blower 1a, the temperature and humidity are adjusted, and then blown out from the air outlet 17 which is a blowout portion to the air-conditioned room 10 It has become. The blowout port 17 of the indoor unit 12 is provided with a blowout temperature sensor 7a as a blown air temperature detection means, and the suction port 18 is provided with a suction humidity sensor 8b as a blown air humidity detection means. Further, here, the variable capacity compressor 101 for compressing and transporting the refrigerant, and a condenser (heat source side heat) for exchanging heat between the refrigerant discharged from the compressor 101 and the ambient air are used as the heating and cooling means. (Exchanger) 5a, an outdoor unit 13 consisting of an outdoor fan 1b that conveys air to the condenser 5a, a reheater 5b that condenses and liquefies the partially condensed refrigerant in the outdoor unit 12 in the indoor unit 12, and a reduced pressure of the liquid refrigerant A heat pump type refrigeration cycle comprising a throttle device 102 for cooling and a cooling dehumidifier 34 that performs heat exchange between the decompressed refrigerant and the air blown by the indoor blower 1a is used.
As the humidifier 2, a steam type, a vaporization type, an ultrasonic type, an adsorption / desorption type, or the like is applied. In any case, a water storage tank and a moisture adsorption device are provided. Further, the humidifier 2, the compressor 101, the indoor blower 1a, the outdoor blower 1b, the throttle based on the values inputted by the temperature and humidity setting device 11 which is a temperature and humidity setting means for setting the temperature and humidity at a desired position. A control device 6 is provided as control means for controlling the device 102.

次に、上記空気調和装置を利用し、その吹出温度を一定に制御した状態で、その吸込湿度を制御する方法について述べる。図2は、この吹出温度・吸込湿度制御時の吹出、吸込の空気状態を空気線図上に示したものであり、冷却除湿の過程を示している。図2では横軸方向に乾球温度TDB[℃]、縦軸方向に絶対湿度[kg/kg’]、斜め方向に相対湿度[%]をそれぞれ示してあり、温度は左から右に高くなり、湿度は下から上に高くなる。なお、TroDBsは吹出温度設定値(目標値)を示し、温湿度設定装置11への設定入力によって決定される。また、Φrsは室内湿度設定値(目標値)を示し、温湿度設定装置11への設定入力によって決定される。   Next, a description will be given of a method of controlling the suction humidity using the air conditioner while keeping the blowing temperature constant. FIG. 2 shows the air state of the blowout and suction during the blowout temperature / suction humidity control on the air diagram, and shows the process of cooling and dehumidification. In Fig. 2, the dry bulb temperature TDB [° C] is shown on the horizontal axis, the absolute humidity [kg / kg '] is shown on the vertical axis, and the relative humidity [%] is shown on the diagonal, and the temperature increases from left to right. The humidity increases from bottom to top. In addition, TroDBs shows the blowing temperature setting value (target value), and is determined by setting input to the temperature / humidity setting device 11. Further, Φrs indicates the indoor humidity setting value (target value), and is determined by setting input to the temperature / humidity setting device 11.

建物の顕熱負荷QLSは、理論上、室外乾球温度ToDBと室内乾球温度TrDBの差に比例するため、一般に次式で表わされる。なお、Aは建物仕様で決まる定数である。   Since the sensible heat load QLS of a building is theoretically proportional to the difference between the outdoor dry bulb temperature ToDB and the indoor dry bulb temperature TrDB, it is generally expressed by the following equation. A is a constant determined by building specifications.

QLS=A×(ToDB-TrDB) ・・・(1)     QLS = A x (ToDB-TrDB) (1)

空調機の顕熱能力QASは、吸込乾球温度(室内温度または吸込温度)TrDBと吹出乾球温度(吹出温度)TroDBの差に比例するため次式で表わされる。なお、Bは室内機風量で決まる定数である。   The sensible heat capacity QAS of the air conditioner is proportional to the difference between the suction dry bulb temperature (room temperature or suction temperature) TrDB and the blown dry bulb temperature (blowing temperature) TroDB, and is expressed by the following equation. B is a constant determined by the indoor unit air volume.

QAS=B×(TroDB-TrDB) ・・・(2)     QAS = B x (TroDB-TrDB) (2)

定常状態では、数式(1)と数式(2)より
QLS+QAS=0 ・・・(3)
が成り立つ。
In steady state, from Equation (1) and Equation (2)
QLS + QAS = 0 (3)
Holds.

したがって、吹出温度センサ7aによって検出される吹出温度TroDBが一定であれば、吸込温度TrDBはある温度に収束することになる。このことから、室内送風機1aの風量を一定とした状態で、冷却除湿器34の冷却量および再熱器5bの加熱量を調整し、吹出空気温度TroDB1を設定温度TroDBsに制御すれば、顕熱能力は(2)より一定となり室内温度TrDBはある温度TrDB1に収束する。なお、図2ではこの時の吹出空気の相対湿度をΦr1としている。また、この時の再熱器5b手前の空気状態を点Aで示している。   Therefore, if the blowing temperature TroDB detected by the blowing temperature sensor 7a is constant, the suction temperature TrDB converges to a certain temperature. Therefore, if the cooling amount of the cooling dehumidifier 34 and the heating amount of the reheater 5b are adjusted with the air volume of the indoor blower 1a kept constant, and the blown air temperature TroDB1 is controlled to the set temperature TroDBs, the sensible heat The capacity becomes constant from (2), and the room temperature TrDB converges to a certain temperature TrDB1. In FIG. 2, the relative humidity of the blown air at this time is Φr1. Further, the air state before the reheater 5b at this time is indicated by a point A.

次に、この吹出温度を設定値のTroDBs一定の状態で、吸込相対湿度をΦr1から設定湿度Φrsに下げる場合は、冷却除湿器34の配管温度Tc1を、圧縮機101の周波数を上げることでTc2まで下げて、室内空気の除湿量を上げる。
そして、室外送風機1bの送風量を下げることで凝縮器5aでの熱交換量が減少し、その分再熱器5bでの再熱量が増加するので、吹出温度TroDBsが一定となるように室外送風機1bの風量を制御すればよい。なお、この時の再熱器5b手前の空気状態を点Bで示している。室内送風機1aの風量が一定であれば、室内温度は数式(3)より一定となる。
また、吹出温度TroDB一定の状態で吸込相対湿度Φr2を上げたい場合は、加湿器2により吹出空気を加湿してやることで、吸込空気の相対湿度を上げることができる。
Next, when the blowout temperature is constant at the set value TroDBs and the suction relative humidity is lowered from Φr1 to the set humidity Φrs, the piping temperature Tc1 of the cooling dehumidifier 34 is increased by increasing the frequency of the compressor 101. To reduce the amount of room air dehumidification.
Since the amount of heat exchange in the condenser 5a is reduced by reducing the amount of air blown from the outdoor blower 1b and the amount of reheat in the reheater 5b is increased accordingly, the outdoor blower is set so that the blowing temperature TroDBs is constant. What is necessary is just to control the air volume of 1b. In addition, the air state before the reheater 5b at this time is indicated by a point B. If the air volume of the indoor blower 1a is constant, the room temperature is constant from Equation (3).
In addition, when it is desired to increase the suction relative humidity Φr2 with the blowing temperature TroDB being constant, the humidification of the blowing air by the humidifier 2 can increase the relative humidity of the suction air.

このように空気調和装置を制御することによって、吹出温度を所望の設定値に制御した状態で、吸込湿度を所望の設定値に制御することが可能となる。   By controlling the air conditioner in this way, it is possible to control the suction humidity to a desired set value in a state where the blowout temperature is controlled to a desired set value.

図3は、上記実施の形態1の運転方法を示すフローチャートであり、これを基に空気調和装置の制御方法を詳細に説明する。
まず、ステップST1にて温度T1の制御対象位置、湿度Φ2の制御対象位置を設定する。ここでは、温度T1については吹出位置に、湿度Φ2については吸込位置に設定する。ステップST2で温湿度設定装置11を利用してそれらの位置における目標温度である設定温度Ts1、目標湿度である設定湿度Φs2を設定する。ステップST3で温度センサ7aにより吹出空気温度T1を検知する。ステップST4で湿度センサ8bにより吸込空気湿度Φ2を検知する。
次に、ステップST5で顕熱能力制御を行う。これは、設定温度Ts1と制御対象温度T1の偏差から設定温度Ts1に対し温度T1が高い場合は冷却量を増やし、設定温度Ts1に対し温度T1が低い場合は加熱量を増やすように冷却除湿器34、再熱器5b等を制御し目標値Ts1に近づける。なお、図1の構成では、冷却除湿器34は圧縮機101を制御することで、また再熱器5bは室外送風機1bを制御することで、それぞれ間接的に制御される。そして、ステップST6で制御対象温度T1が目標値Ts1を含む所定の範囲内に入ったか否かを判定し、入っていれば次のステップST7へ進み、入っていなければフィードバックをかけ再度顕熱能力制御を行う(ステップST6→ST3)。なお、ここでは設定温度Ts1に対して±ΔTs1の範囲を所定の範囲としている。この吹出温度T1が一定の定常状態になれば被空調室10の室温も定常値となる。
次に、ステップST7で潜熱能力制御を行う。ここでは、吹出温度T1を維持した状態で潜熱能力を制御するので、冷却除湿器34の配管温度を低くすれば除湿量が増えて相対湿度が低下していく。一方、相対湿度を上げたい場合は加湿器2を稼動させて加湿量を増やす。そして、ステップST8で相対湿度Φ2がΦs2を含む所定の範囲内に入っているかを判定し、相対湿度Φ2が所定の範囲内に入っていれば、ステップST9にて現在の運転状態を保持し、ステップST3に戻る。一方、相対湿度Φ2が所定の範囲内に入っていなければフィードバックをかけ、加熱量、冷却量、除湿量、加湿量を、設定温度Ts1、設定湿度Φs2に対する偏差に応じて制御する(ステップST8→ST3)。なお、ここでは設定湿度Φs2に対して±ΔΦs2の範囲を所定の範囲としている。
FIG. 3 is a flowchart showing the operation method of the first embodiment, and the control method of the air conditioner will be described in detail based on this.
First, in step ST1, a control target position of temperature T1 and a control target position of humidity Φ2 are set. Here, the temperature T1 is set to the blowing position, and the humidity Φ2 is set to the suction position. In step ST2, the temperature / humidity setting device 11 is used to set a set temperature Ts1, which is a target temperature at those positions, and a set humidity Φs2, which is a target humidity. In step ST3, the temperature sensor 7a detects the blown air temperature T1. In step ST4, the intake air humidity Φ2 is detected by the humidity sensor 8b.
Next, sensible heat capacity control is performed in step ST5. This is a cooling dehumidifier that increases the amount of cooling when the temperature T1 is higher than the set temperature Ts1 from the deviation between the set temperature Ts1 and the control target temperature T1, and increases the amount of heating when the temperature T1 is lower than the set temperature Ts1. 34. The reheater 5b and the like are controlled to approach the target value Ts1. In the configuration of FIG. 1, the cooling dehumidifier 34 is indirectly controlled by controlling the compressor 101, and the reheater 5b is indirectly controlled by controlling the outdoor fan 1b. Then, in step ST6, it is determined whether or not the temperature T1 to be controlled is within a predetermined range including the target value Ts1, and if so, the process proceeds to the next step ST7. Control is performed (step ST6 → ST3). Here, a range of ± ΔTs1 with respect to the set temperature Ts1 is set as a predetermined range. If this blowing temperature T1 becomes a constant steady state, the room temperature of the air-conditioned room 10 also becomes a steady value.
Next, latent heat capability control is performed in step ST7. Here, since the latent heat capability is controlled in a state where the blowing temperature T1 is maintained, if the piping temperature of the cooling dehumidifier 34 is lowered, the amount of dehumidification increases and the relative humidity decreases. On the other hand, when it is desired to increase the relative humidity, the humidifier 2 is operated to increase the humidification amount. In step ST8, it is determined whether or not the relative humidity Φ2 is within a predetermined range including Φs2. If the relative humidity Φ2 is within the predetermined range, the current operating state is maintained in step ST9. Return to step ST3. On the other hand, if the relative humidity Φ2 is not within the predetermined range, feedback is applied, and the heating amount, cooling amount, dehumidifying amount, and humidifying amount are controlled according to the deviation from the set temperature Ts1 and the set humidity Φs2 (step ST8 → ST3). Here, the range of ± ΔΦs2 with respect to the set humidity Φs2 is a predetermined range.

制御装置6を利用してこのように空気調和装置の制御を行うことによって、吹出温度、吸込湿度を所望の温湿度に近づけることができる。
また、上記の空気調和装置は室内機12での再熱を熱回収による冷媒レヒートで行っているため、電気加熱式に比較し電気容量を小さくできるため消費電力が小さく省エネ性が高い。
By controlling the air conditioner in this way using the control device 6, the blowing temperature and the suction humidity can be brought close to the desired temperature and humidity.
Further, since the air conditioner performs reheating in the indoor unit 12 by refrigerant reheating by heat recovery, the electric capacity can be reduced as compared with the electric heating type, so that power consumption is small and energy saving is high.

また、再熱用に電気加熱器を用いていないため、電気加熱器が高温となることでの火災等の事故に対する信頼性が高く、装置を耐火構造とする必要が無いため室内機が簡単かつ小型になる。   In addition, since the electric heater is not used for reheating, the electric heater is highly reliable against accidents such as fire due to high temperature, and the indoor unit is simple and easy because there is no need to make the device a fireproof structure. It becomes small.

図4はこの実施の形態1の別の運転方法のフローチャートであり、これを基に空気調和装置の制御方法の別の例を説明する。
まず、ステップST201にて温度T1の制御対象位置、湿度Φ2の制御対象位置を設定する。ここでは、温度T1については吹出位置に、湿度Φ2については吸込位置に設定する。ST202で温湿度設定装置11から設定温度Ts1、設定湿度Φs2を設定する。ステップST203で凝縮温度目標値CTmおよび蒸発温度目標値ETmを仮設定する。ステップST204で温度センサ7aにより吹出空気温度T1を検知する。ステップST205で湿度センサ8bにより吸込空気湿度Φ2を検知する。
次に、ステップST206でT1が設定温度Ts1±ΔTs1の所定の温度範囲に入っているかを判定する。所定の温度範囲に入っていない場合はST207で現在の温度T1と設定温度Ts1の偏差を基に凝縮温度目標値CTmを変更し、その目標値CTmを基に再熱器5b等を制御する。その変更はST207に示す数式に基づいて行われる。ここでαは正の係数である。なお、ステップST206で温度T1が所定の温度範囲に入っていれば、そのままステップST208に進む。
次に、ステップST208でΦ2が設定湿度Φs2±ΔΦs2の所定の湿度範囲に入っているかを判定する。Φ2が所定の湿度範囲に入っていない場合はST209で現在の湿度Φ2と設定湿度Φs2の偏差を基に蒸発温度目標値ETmを変更し、その目標値ETmを基に冷却除湿器34等を制御する。その変更はSDT209に示す数式に基づいて行われる。ここでβは正の係数である。なお、ステップST208で湿度Φ2が所定の湿度範囲に入っている場合はステップST210で現在の運転状態を保持する。
FIG. 4 is a flowchart of another operation method of the first embodiment, and another example of the control method of the air conditioner will be described based on this flowchart.
First, in step ST201, a control target position of temperature T1 and a control target position of humidity Φ2 are set. Here, the temperature T1 is set to the blowing position, and the humidity Φ2 is set to the suction position. In ST202, the set temperature Ts1 and set humidity Φs2 are set from the temperature and humidity setting device 11. In step ST203, the condensation temperature target value CTm and the evaporation temperature target value ETm are temporarily set. In step ST204, the temperature sensor 7a detects the blown air temperature T1. In step ST205, the humidity sensor 8b detects the intake air humidity Φ2.
Next, in step ST206, it is determined whether T1 is within a predetermined temperature range of set temperature Ts1 ± ΔTs1. If not within the predetermined temperature range, the condensation temperature target value CTm is changed based on the deviation between the current temperature T1 and the set temperature Ts1 in ST207, and the reheater 5b and the like are controlled based on the target value CTm. The change is made based on the mathematical formula shown in ST207. Here, α is a positive coefficient. If the temperature T1 is within the predetermined temperature range in step ST206, the process proceeds to step ST208 as it is.
Next, in step ST208, it is determined whether Φ2 is within a predetermined humidity range of set humidity Φs2 ± ΔΦs2. If Φ2 is not within the predetermined humidity range, the evaporating temperature target value ETm is changed based on the difference between the current humidity Φ2 and the set humidity Φs2 in ST209, and the cooling dehumidifier 34 and the like are controlled based on the target value ETm. To do. The change is made based on the mathematical formula shown in SDT209. Here, β is a positive coefficient. If the humidity Φ2 is within the predetermined humidity range in step ST208, the current operating state is held in step ST210.

制御装置6を利用してこのように空気調和装置の制御を行うことによって、温度と湿度がほぼ同時に制御されるため、設定温度や設定湿度到達までのプルダウン時間をより短くできる。   By controlling the air conditioner in this way using the control device 6, the temperature and humidity are controlled almost simultaneously, so that the pull-down time until reaching the set temperature or set humidity can be further shortened.

また、図5に示すように、図1の再熱器5bの熱交換器の各パスの合流部に電磁弁201〜203を付加してもよい。この場合は図6に示すように、それらの電磁弁の開閉の組合せで、再熱器5bへ流れる冷媒が0パスから12パスまでの7段階に可変となるため、再熱量の調整範囲が拡大し、温湿度制御範囲が拡大する。さらに、図5では熱交換器出口に逆止弁210を設け冷媒が再熱器5bに逆流するのを防止している。なお、再熱器5bの熱交換量の調整方法は、これに限るものではなく他の任意の方法を採用してよい。   Moreover, as shown in FIG. 5, you may add the solenoid valves 201-203 to the junction part of each path | pass of the heat exchanger of the reheater 5b of FIG. In this case, as shown in FIG. 6, the refrigerant flowing into the reheater 5b is variable in seven stages from 0 pass to 12 passes by the combination of opening and closing of these solenoid valves, so the reheat amount adjustment range is expanded. And the temperature and humidity control range is expanded. Further, in FIG. 5, a check valve 210 is provided at the heat exchanger outlet to prevent the refrigerant from flowing back to the reheater 5b. In addition, the adjustment method of the heat exchange amount of the reheater 5b is not restricted to this, You may employ | adopt other arbitrary methods.

また、図7に示すように、再熱器5bの熱交換器の出口に冷却除湿器34をバイパスする分岐管路を設けその途中に絞り装置102aを付加してもよい。こうすることで冷却除湿器34へ流れる冷媒流量を調整できるため、再熱器5bの熱交換器容量が最大であっても、絞り装置102aを開けることで冷却除湿器34を流れる冷媒流量が減少するので、相対的に再熱量が増え温湿度制御範囲が拡大する。   Further, as shown in FIG. 7, a branch pipe that bypasses the cooling dehumidifier 34 may be provided at the outlet of the heat exchanger of the reheater 5b, and a throttle device 102a may be added in the middle thereof. In this way, since the flow rate of the refrigerant flowing to the cooling dehumidifier 34 can be adjusted, even if the heat exchanger capacity of the reheater 5b is maximum, the flow rate of the refrigerant flowing through the cooling dehumidifier 34 is reduced by opening the expansion device 102a. Therefore, the amount of reheat increases relatively and the temperature and humidity control range is expanded.

また、図8に示すように、冷却除湿器34と再熱器5bを別系統の冷凍サイクルに接続するように構成してもよい。この場合、冷却除湿器34にて蒸発温度を制御して湿度センサ8bにて検出する湿度を調整し、再熱器5bにて再熱量を制御して温度センサ7aにて検出する温度を調整する。このように温度、湿度を別々の冷凍サイクルにて制御することで、冷凍サイクルによる制約が大きく緩和され、温湿度制御範囲が広くなるという効果がある。また、プルダウン速度、温湿度制御性もより向上し、精密な温湿度の制御性が求められる場合に有効である。なお、図8中、符号3aは蒸発器を表している。   Moreover, as shown in FIG. 8, you may comprise so that the cooling dehumidifier 34 and the reheater 5b may be connected to the refrigerating cycle of another system | strain. In this case, the evaporating temperature is controlled by the cooling dehumidifier 34 and the humidity detected by the humidity sensor 8b is adjusted, and the reheat amount is controlled by the reheater 5b and the temperature detected by the temperature sensor 7a is adjusted. . By controlling the temperature and humidity in separate refrigeration cycles in this way, there are effects that the restrictions due to the refrigeration cycle are greatly relaxed and the temperature and humidity control range is widened. Further, the pull-down speed and temperature / humidity controllability are further improved, which is effective when precise temperature / humidity controllability is required. In FIG. 8, reference numeral 3a represents an evaporator.

ところで、これまでの説明では、冷却除湿器34は冷媒直膨方式のものとして説明したが、冷却除湿器34は冷水コイルやその他の冷却方式でもよい。また、冷却除湿器34、冷却器3、除湿機4は、制御装置6により直接制御する構成としてもよい。
また、これまでの説明では、吹出部に温度センサ7aを、吸込部に湿度センサ8bを備えた構成を例に説明を行ったが、本発明においては、任意の位置での温度と任意の位置での湿度を制御する事ができる。例えば、図9は吹出温度と吸込湿度、図10は吹出湿度と吸込温度、図11吸込湿度と遠方温度、図12は吸込温度と遠方湿度、図13は吹出温度と遠方湿度、図14は吹出湿度と遠方温度、を検知する構成の例であり、いずれの構成においても温度センサのある位置の温度、湿度センサのある位置の湿度の制御が可能である。ここで、遠方温度とは吹出部および吸込部の周辺を除いた被空調室10内の任意の位置の温度を指し、遠方湿度とは吹出部および吸込部の周辺を除いた被空調室10内の任意の位置の湿度を指している。このようにしても、図9〜図14の空気調和装置の制御フローチャートは図3、図4と同じ原理で動作可能であるため、センサ位置を変更した場合でも制御アルゴリズムを変更する必要がない。なお、本発明はこれ以外の構成でもよく、冷却除湿、加湿、加熱が制御可能であれば、どんな構成でもセンサを配置した位置の温度、湿度が制御できる。
In the above description, the cooling dehumidifier 34 has been described as a refrigerant direct expansion type, but the cooling dehumidifier 34 may be a cold water coil or other cooling type. The cooling dehumidifier 34, the cooler 3, and the dehumidifier 4 may be directly controlled by the control device 6.
In the above description, the temperature sensor 7a is provided in the blowout part and the humidity sensor 8b is provided in the suction part. However, in the present invention, the temperature at any position and the arbitrary position are provided. It is possible to control the humidity at. For example, FIG. 9 shows blowing temperature and suction humidity, FIG. 10 shows blowing humidity and suction temperature, FIG. 11 suction humidity and far temperature, FIG. 12 shows suction temperature and far humidity, FIG. 13 shows blowing temperature and far humidity, and FIG. 14 shows blowing. This is an example of a configuration that detects humidity and a distant temperature. In any configuration, the temperature at a position where the temperature sensor is located and the humidity at the position where the humidity sensor is located can be controlled. Here, the distant temperature refers to the temperature at an arbitrary position in the air-conditioned room 10 excluding the periphery of the blowing part and the suction part, and the far humidity refers to the inside of the air-conditioned room 10 excluding the periphery of the blowing part and the suction part. Refers to the humidity at any position. Even if it does in this way, since the control flowchart of the air conditioning apparatus of FIGS. 9-14 can operate | move on the same principle as FIG. 3, FIG. 4, even if it changes a sensor position, it is not necessary to change a control algorithm. The present invention may have other configurations, and the temperature and humidity at the position where the sensor is disposed can be controlled by any configuration as long as cooling dehumidification, humidification, and heating can be controlled.

このように、ユーザーが温度、湿度を制御したい位置に温度センサ、湿度センサを配置することによって、被空調域内の局所的な位置の空調が可能となる。また、図15に示すように、吹出の位置にダクト15を接続してやれば、全体空調に比較し省エネ性が高い運転が実現できる。   As described above, by arranging the temperature sensor and the humidity sensor at a position where the user wants to control the temperature and humidity, air conditioning at a local position in the air-conditioned area becomes possible. Moreover, as shown in FIG. 15, if the duct 15 is connected to the blowing position, an operation with higher energy saving performance can be realized as compared with the entire air conditioning.

さらに、上記冷却除湿器34は、図16に示すように、冷却器3と除湿器4を別にした構成にしてもよい。なお、ここではこれまでの再熱器5aを加熱器5として表示している。除湿器4としては冷水コイルまたは冷媒直膨または化学吸着剤等が利用でき、加熱器5としては温水コイルやヒーター等が使用できる。また、冷却器3と加熱器5は送風方向に直列に設けられ、一方が冷熱を他方が温熱を空気に供給する構成を示しているが、室内の負荷が加熱加湿負荷であり、冷却や除湿を行う必要がない場合は、運転モードを切り替え、図17に示すように、両方が温熱を供給する構成にしてもよい。
また、室内負荷が冷却除湿負荷であり、加熱を行う必要がない場合は、運転モードを切り替え、図18に示すように、両方が冷熱を供給する構成でも良い。さらに、図19に示すように、冷却除湿器34と加熱器5(または再熱器5b)とを送風に対し並列に配置し同様な温冷熱を供給する構成にしても良い。なお、冷却除湿器を冷却器と除湿器に分けた場合には、冷却器、除湿器、加熱器のうち、少なくとも2つを並列に配置してよい。これにより、室内機12の形状を様々に変更することが可能となる。
Furthermore, the cooling dehumidifier 34 may have a configuration in which the cooler 3 and the dehumidifier 4 are separated as shown in FIG. Here, the reheater 5a so far is indicated as the heater 5. As the dehumidifier 4, a cold water coil, a direct refrigerant expansion, a chemical adsorbent, or the like can be used. As the heater 5, a hot water coil, a heater, or the like can be used. In addition, the cooler 3 and the heater 5 are provided in series in the air blowing direction, one of which is cold and the other is supplying warm air to the air, but the indoor load is a heating and humidifying load, and cooling and dehumidification When it is not necessary to perform the operation, the operation mode may be switched, and both may supply heat as shown in FIG.
Further, when the indoor load is a cooling and dehumidifying load and heating is not required, the operation mode may be switched, and both may supply cold as shown in FIG. Further, as shown in FIG. 19, the cooling dehumidifier 34 and the heater 5 (or the reheater 5 b) may be arranged in parallel with the air blowing so as to supply the same hot and cold heat. When the cooling dehumidifier is divided into a cooler and a dehumidifier, at least two of the cooler, the dehumidifier, and the heater may be arranged in parallel. Thereby, it becomes possible to change the shape of the indoor unit 12 variously.

また、図20に示すように、温度センサ7a、8a、9aと、湿度センサ7b,8b,9bとを、室内機12の吹出部と、吸込部と、被空調室10内の任意の位置とのそれぞれの位置に対にして配置し、温湿度設定装置11あるいはディップスイッチ等の切り替えによって、各位置での設定温度位置および設定湿度位置を選択できるようにしておいてもよい。こうすることで、図3のステップST1または図4のステップST201において制御対象位置の様々な組合せ設定が可能となり、室内の任意の位置の温度とそれと異なる位置の湿度を所望の値に制御でき、ユーザーニーズにあった設定自由度が高く快適性がより向上した室内環境を得ることができる。   In addition, as shown in FIG. 20, the temperature sensors 7 a, 8 a, 9 a, the humidity sensors 7 b, 8 b, 9 b are connected to the blowing unit, the suction unit, and any position in the air-conditioned room 10. A set temperature position and a set humidity position at each position may be selected by switching the temperature / humidity setting device 11 or a dip switch. In this way, various combinations of control target positions can be set in step ST1 of FIG. 3 or step ST201 of FIG. 4, and the temperature at any position in the room and the humidity at a position different from that can be controlled to a desired value. It is possible to obtain an indoor environment with a high degree of freedom in setting that meets user needs and improved comfort.

実施の形態2.
図21は、この発明の実施の形態2に係る空気調和装置を示すものである。この空気調和機の構成図は、図1の構成に、室内機12の吸込部分に吸込温度センサ8aを付加した構成となっており、そこでは制御装置6の制御態様が実施の形態1と相違している。なお、冷却除湿器34の冷却量、再熱器5bの再熱量を調整するヒートポンプ部分の構成についてはここでは省略した。従って、ここでは再熱器5bと冷却除湿器34も、制御装置6により直接制御されるように表示されている。図22は、実施の形態2の制御アルゴリズムを適用した場合の冷却除湿負荷運転時の空気線図上の変化を表わしたもの、図23はこの空気調和装置の温湿度制御アルゴリズムを示すフローチャートである。
Embodiment 2. FIG.
FIG. 21 shows an air-conditioning apparatus according to Embodiment 2 of the present invention. The configuration diagram of this air conditioner has a configuration in which a suction temperature sensor 8a is added to the suction portion of the indoor unit 12 in the configuration of FIG. 1, in which the control mode of the control device 6 is different from that of the first embodiment. is doing. In addition, about the structure of the heat pump part which adjusts the cooling amount of the cooling dehumidifier 34 and the reheat amount of the reheater 5b, it abbreviate | omitted here. Accordingly, here, the reheater 5b and the cooling dehumidifier 34 are also displayed so as to be directly controlled by the control device 6. FIG. 22 shows changes on the air diagram during cooling and dehumidifying load operation when the control algorithm of the second embodiment is applied, and FIG. 23 is a flowchart showing the temperature and humidity control algorithm of this air conditioner. .

次に、図23のフローチャートを基に実施の形態2の温湿度制御方法について説明する。まず、ステップST11にて異なる2点の温度T1,T2の制御対象位置、湿度Φ2の制御対象位置を設定する。ここでは、温度T1は吹出位置に、温度T2は吸込位置に、湿度Φ2は吸込位置にそれぞれ設定するものとする。ステップST12で温湿度設定装置11によって、上記各位置における目標温度である設定温度Ts1、Ts2および目標湿度である設定湿度Φs2を設定する。ステップST13で温度センサ7a,8aにより吹出空気温度T1と吸込空気温度T2を検知する。ステップST14で湿度センサ8bにより吸込空気湿度Φ2を検知する。
次に、ステップST15で顕熱能力制御を行う。すなわち、設定温度Ts1と吹出位置温度T1の偏差から設定温度Ts1に対し温度T1が高い場合は冷却除湿機34を制御して冷却量を増やし、設定温度Ts1に対し温度T1が低い場合は再熱器5bを制御して加熱量を増やして目標値Ts1に近づける。そして、ステップST16で制御対象温度T1が目標値Ts1を含む所定の範囲内に入ったかどうかを判定する。その結果、温度T1が所定温度範囲に入っている場合には温度が安定したと判断し、ステップST17に進み、入っていない場合にはステップST13に戻る。ここでは、設定温度Ts1に対して±ΔTs1の範囲を所定の範囲としている。吹出温度T1が一定値となれば被空調室10の室温も一定の値となる。
次に、ステップST17において室内送風機1aを制御してその風量制御を行い、吸込位置の温度T2が設定温度Ts2に近づくようにする。図22に、この空気調和装置の室内送風機1aの風量を減少させた時の空気線図上の動きを示す。図22に示すように、吹出温度TroDB1が一定の時、風量を少なくすれば空気調和装置の能力が低下し吸込温度TrDB2と吹出温度TroDB1との差が大きくなる方向に変化し、吸込温度TrDBは非空調時の温湿度収束点方向に変化する。一方、室内送風機1aの風量を増加すれば、空気調和装置の能力が大きくなるため吸込温度TrDB2は吹出温度TroDB1との差が小さくなる方向に変化する。
次に、ステップST18で制御対象位置温度T2が目標値Ts2を含む所定の範囲内に入ったかどうかを判定する。その結果、温度T2が所定の温度範囲に入っている場合には温度が安定したと判断し、ステップST19に進み、入っていない場合には、ステップST13に戻る。なお、ここでは設定温度Ts2に対して±ΔTs2の範囲を所定の範囲としている。
次に、ステップST19において潜熱能力制御を行う。吹出温度T1を維持した状態で、冷却除湿器34の熱交換器温度を低くすれば除湿量が増大して相対湿度が低下していく。一方相対湿度を上げたい場合は、加湿器2を稼動して加湿量を増やす。
次に、ステップST20で吸込空気湿度(相対湿度)Φ2がΦs2を含む所定の範囲内に入っているかを判定する。その結果、湿度Φ2が所定湿度範囲に入っている場合には、ステップST21に進んでその運転状態を保持し、入っていない場合には、ステップST13に戻る。なお、ここでは設定温度Φs2に対して±ΔΦs2の範囲を所定の範囲としている。
Next, the temperature / humidity control method of the second embodiment will be described with reference to the flowchart of FIG. First, in step ST11, two different control target positions of temperatures T1 and T2 and a control target position of humidity Φ2 are set. Here, the temperature T1 is set at the blowing position, the temperature T2 is set at the suction position, and the humidity Φ2 is set at the suction position. In step ST12, the temperature / humidity setting device 11 sets the set temperatures Ts1 and Ts2 that are target temperatures at the respective positions and the set humidity Φs2 that is a target humidity. In step ST13, the temperature sensors 7a and 8a detect the blown air temperature T1 and the intake air temperature T2. In step ST14, the intake air humidity Φ2 is detected by the humidity sensor 8b.
Next, sensible heat capacity control is performed in step ST15. That is, when the temperature T1 is higher than the set temperature Ts1 from the deviation between the set temperature Ts1 and the blowout position temperature T1, the cooling dehumidifier 34 is controlled to increase the cooling amount, and when the temperature T1 is lower than the set temperature Ts1, reheating is performed. The device 5b is controlled to increase the heating amount so as to approach the target value Ts1. In step ST16, it is determined whether the control target temperature T1 is within a predetermined range including the target value Ts1. As a result, if the temperature T1 is within the predetermined temperature range, it is determined that the temperature is stable, and the process proceeds to step ST17. If not, the process returns to step ST13. Here, a range of ± ΔTs1 with respect to the set temperature Ts1 is set as a predetermined range. If the blowing temperature T1 becomes a constant value, the room temperature of the air-conditioned room 10 also becomes a constant value.
Next, in step ST17, the indoor blower 1a is controlled to control the air flow so that the temperature T2 at the suction position approaches the set temperature Ts2. FIG. 22 shows the movement on the air diagram when the air volume of the indoor blower 1a of the air conditioner is reduced. As shown in FIG. 22, when the blowout temperature TroDB1 is constant, if the air volume is reduced, the capacity of the air conditioner decreases, and the difference between the suction temperature TrDB2 and the blowout temperature TroDB1 changes, and the suction temperature TrDB is It changes in the direction of the temperature and humidity convergence point during non-air conditioning. On the other hand, if the air volume of the indoor blower 1a is increased, the capacity of the air conditioner increases and the suction temperature TrDB2 changes in a direction in which the difference from the blowout temperature TroDB1 decreases.
Next, in step ST18, it is determined whether or not the control target position temperature T2 is within a predetermined range including the target value Ts2. As a result, if the temperature T2 is within the predetermined temperature range, it is determined that the temperature has stabilized, and the process proceeds to step ST19. If not, the process returns to step ST13. Here, a range of ± ΔTs2 with respect to the set temperature Ts2 is set as a predetermined range.
Next, latent heat capability control is performed in step ST19. If the heat exchanger temperature of the cooling dehumidifier 34 is lowered while the blowout temperature T1 is maintained, the dehumidification amount increases and the relative humidity decreases. On the other hand, when it is desired to increase the relative humidity, the humidifier 2 is operated to increase the humidification amount.
Next, in step ST20, it is determined whether the intake air humidity (relative humidity) Φ2 is within a predetermined range including Φs2. As a result, when the humidity Φ2 is within the predetermined humidity range, the process proceeds to step ST21 and the operation state is maintained, and when not, the process returns to step ST13. Here, a range of ± ΔΦs2 with respect to the set temperature Φs2 is set as a predetermined range.

制御装置6を利用して以上のように空気調和装置を制御することにより、吸込空気の温度と湿度、吹出空気の温度を同時に制御することが可能となる。
なお、室内機12の吹出部、吸込部または被空調域内のいずれかの位置のうちの2箇所、あるいは被空調室10内の異なる位置の2箇所に温度センサを備え、吹出部、吸込部または被空調域内のいずれかの位置のうちの1箇所に湿度センサを備えることで、制御対象位置の様々な組合せが可能となり、室内の異なる2箇所の温度と、1箇所の湿度を所望の値に制御でき、設定自由度が高い室内環境を得ることができる。
By controlling the air conditioner using the control device 6 as described above, the temperature and humidity of the intake air and the temperature of the blown air can be controlled simultaneously.
It should be noted that the temperature sensor is provided at two locations of the indoor unit 12 at any one of the positions in the blowing portion, the suction portion, or the air-conditioned area, or at two different positions in the air-conditioned room 10, and the blowing portion, the suction portion, or By providing a humidity sensor at one of the positions in the air-conditioned area, various combinations of the positions to be controlled are possible, and two different indoor temperatures and one humidity can be set to desired values. It can be controlled and an indoor environment with a high degree of freedom of setting can be obtained.

実施の形態3.
図24は、この発明の実施の形態3に係る空気調和装置により冷却除湿を行った場合の空気線図上の変化を示し、図25はその空気調和装置の温湿度制御アルゴリズムを示すフローチャートである。なお、実施の形態3で使用する空気調和機の構成は図21の空気調和機の構成を流用でき、そこでは制御装置6の制御態様が実施の形態2と相違している。
Embodiment 3 FIG.
FIG. 24 shows changes on the air diagram when cooling and dehumidification is performed by the air conditioning apparatus according to Embodiment 3 of the present invention, and FIG. 25 is a flowchart showing the temperature and humidity control algorithm of the air conditioning apparatus. . In addition, the structure of the air conditioner used in Embodiment 3 can divert the structure of the air conditioner of FIG. 21, and the control aspect of the control apparatus 6 is different from Embodiment 2 there.

図25のフローチャートを基に実施の形態3における装置の温湿度制御方法について説明する。
まず、ステップST101にて温度T1の制御対象位置、湿度Φ2の制御対象位置を設定する。ここでは、温度T1は吹出位置に、湿度Φ2は吸込位置にそれぞれ設定するものとする。ステップST102で、温湿度設定装置11からそれらの設定温度Ts1、設定湿度Φs2を設定する。ステップST103で吹出空気温度T1を温度センサ7aにより検知する。ステップST104で吸込空気の温度T2と湿度Φ2とを、温度センサ8aと湿度センサ8bによりそれぞれ検知する。ステップST105でST104で得た吸込空気温湿度T2,Φ2より露点温度Td2を演算して求める。ステップST106では設定温度Tsと露点温度Td2を比較してその大小を判定する。設定温度Ts1が露点温度Td2より小さい場合はST107に移り、設定温度Ts1を露点温度Td2とし、吹出温度の目標下限値を常に露点温度以上にする。
次に、ステップST106で設定温度Ts1が露点温度Td2より大きいと判定された場合、あるいはステップST107の終了後、ステップST108で顕熱能力制御を行う。ここでは、設定温度Ts1と吹出位置温度T1の偏差から設定温度Ts1に対し温度T1が高い場合は冷却除湿器34を制御して冷却量を増やし、設定温度Ts1に対し温度T1が低い場合は再熱器5bを制御して加熱量を増やして目標値Ts1に近づける。ステップST109で吹出位置温度T1が目標値Ts1を含む所定の範囲内に入った場合は温度が安定したと判断し、ステップST110に進む。これに対して、T1が所定範囲内にない場合にはステップST103に戻る。なお、ここでは設定温度Ts1に対して±ΔTs1の範囲を所定の範囲としている。
次に、ステップST110で潜熱能力制御を行う。ここでは、吹出温度T1を維持した状態で吸込相対湿度Φ2を設定相対湿度Φs2に近づけるように潜熱能力を制御する。図24に示すように相対湿度Φ2が設定湿度Φs2より高い場合には冷却除湿器34の熱交換器温度をTc1からTc2に低くすることで除湿が進み相対湿度が低下していく。一方相対湿度を上げたい場合は、加湿器2を稼動して加湿量を増大させる。次にステップST111で相対湿度Φ2がΦs2を含む所定の範囲内に入っているか否かを判定する。図のフローチャートでは設定温度Φs2に対して±ΔΦs2の範囲を所定の範囲としている。温度T1、湿度Φ2ともに設定温度、設定湿度に維持されている場合はST112に移行し、現在の運転状態を保持する。これに対して、湿度Φ2が設定湿度に維持されていない場合にはステップST103に戻る。
A method for controlling the temperature and humidity of the apparatus in the third embodiment will be described with reference to the flowchart of FIG.
First, in step ST101, a control target position of temperature T1 and a control target position of humidity Φ2 are set. Here, the temperature T1 is set to the blowing position, and the humidity Φ2 is set to the suction position. In step ST102, the set temperature Ts1 and set humidity Φs2 are set from the temperature and humidity setting device 11. In step ST103, the air temperature T1 is detected by the temperature sensor 7a. In step ST104, the temperature T2 and humidity Φ2 of the intake air are detected by the temperature sensor 8a and the humidity sensor 8b, respectively. In step ST105, the dew point temperature Td2 is calculated from the intake air temperature and humidity T2 and Φ2 obtained in ST104. In step ST106, the set temperature Ts and the dew point temperature Td2 are compared to determine their magnitude. If the set temperature Ts1 is lower than the dew point temperature Td2, the process proceeds to ST107, where the set temperature Ts1 is set to the dew point temperature Td2, and the target lower limit value of the blow-out temperature is always set to the dew point temperature or higher.
Next, when it is determined in step ST106 that the set temperature Ts1 is higher than the dew point temperature Td2, or after the completion of step ST107, sensible heat capacity control is performed in step ST108. Here, when the temperature T1 is higher than the set temperature Ts1 from the deviation between the set temperature Ts1 and the blowout position temperature T1, the cooling dehumidifier 34 is controlled to increase the cooling amount, and when the temperature T1 is lower than the set temperature Ts1, The heating device 5b is controlled to increase the heating amount so as to approach the target value Ts1. If the blowing position temperature T1 falls within a predetermined range including the target value Ts1 in step ST109, it is determined that the temperature has stabilized, and the process proceeds to step ST110. On the other hand, when T1 is not within the predetermined range, the process returns to step ST103. Here, a range of ± ΔTs1 with respect to the set temperature Ts1 is set as a predetermined range.
Next, latent heat capability control is performed in step ST110. Here, the latent heat capacity is controlled so that the suction relative humidity Φ2 is brought close to the set relative humidity Φs2 while the blowing temperature T1 is maintained. As shown in FIG. 24, when the relative humidity Φ2 is higher than the set humidity Φs2, the heat exchanger temperature of the cooling dehumidifier 34 is lowered from Tc1 to Tc2, so that dehumidification proceeds and the relative humidity decreases. On the other hand, when it is desired to increase the relative humidity, the humidifier 2 is operated to increase the humidification amount. Next, in step ST111, it is determined whether or not the relative humidity Φ2 is within a predetermined range including Φs2. In the flowchart of the figure, a range of ± ΔΦs2 is set to a predetermined range with respect to the set temperature Φs2. When both the temperature T1 and the humidity Φ2 are maintained at the set temperature and the set humidity, the process proceeds to ST112 and the current operation state is maintained. On the other hand, when the humidity Φ2 is not maintained at the set humidity, the process returns to step ST103.

制御装置6を利用して以上のように空気調和装置を制御することにより、吸込空気の湿度が所望の値に保持された状態で、吹出温度が吸込空気の露点温度以下となることがないため、吹出空気による結露が確実に防止される。また、除湿負荷が発生している場合でも、再熱器5bによって再熱されるため吹出温度は吸込空気の露点温度以上となるため、温度管理対象物への結露を防ぐことができる。   By controlling the air conditioner as described above using the control device 6, the blowing temperature does not become lower than the dew point temperature of the intake air while the humidity of the intake air is maintained at a desired value. Condensation due to blown air is reliably prevented. Even when a dehumidifying load is generated, since the reheater 5b reheats the blowout temperature to be higher than the dew point temperature of the intake air, it is possible to prevent dew condensation on the temperature management object.

なお、実施の形態3では吸込空気の位置で露点を演算したが、図26に示すようにこの温湿度検出位置を冷却対象物(温度管理対象物)14付近に設置すれば、局所的な結露の防止が可能となる、また、被空調域内に複数の温湿度センサを設置してもよく、それぞれの位置で露点温度を演算し最も露点温度の高い値を設定温度の目標値下限値とすれば、吹出空気による結露が防止可能となり信頼性の高い空気調和装置を得る事ができる。   In the third embodiment, the dew point is calculated at the position of the intake air. However, if this temperature / humidity detection position is installed near the cooling object (temperature management object) 14 as shown in FIG. In addition, multiple temperature and humidity sensors may be installed in the air-conditioned area, and the dew point temperature is calculated at each position, and the highest dew point temperature value is set as the target temperature lower limit value. In this case, condensation due to the blown air can be prevented, and a highly reliable air conditioner can be obtained.

また、この発明の制御においては相対湿度を用いて制御するとしているが、相対湿度ではなく、絶対湿度、露点温度、湿球温度を用いた制御をするようにしても良いのは勿論である。   In the control of the present invention, the control is performed using the relative humidity, but it is needless to say that the control may be performed using the absolute humidity, the dew point temperature, and the wet bulb temperature instead of the relative humidity.

また、ここでは室内ユニット1台の空気調和装置について説明したが、本発明は、複数の室内ユニットを備えたマルチ型のものであってもよく、また複数台の室外ユニットを備えたものであっても良いのは勿論である。
また、実施の形態2,3においても、冷却除湿器34、冷却器3、除湿機4、再熱器5b等は、冷凍サイクルにより構成する以外に、実施の形態1のなかで説明したような他の手段から構成してもよい。
さらに、実施の形態1乃至3において示した制御装置6は、通常は、CPUと各フローチャートに示すような手順に従って各処理を規定する制御プログラム等からなるものである。
In addition, although an air conditioner with one indoor unit has been described here, the present invention may be of a multi-type including a plurality of indoor units, or includes a plurality of outdoor units. Of course, it may be.
Also in the second and third embodiments, the cooling dehumidifier 34, the cooler 3, the dehumidifier 4, the reheater 5b and the like are configured by a refrigeration cycle, as described in the first embodiment. You may comprise from other means.
Furthermore, the control device 6 shown in the first to third embodiments is usually composed of a CPU and a control program for defining each process according to the procedure shown in each flowchart.

本発明の実施の形態1における空気調和装置の構成図。The block diagram of the air conditioning apparatus in Embodiment 1 of this invention. 本発明の実施の形態1における吸込空気、吹出空気の状態を示す空気線図。The air line figure which shows the state of the suction air in the Embodiment 1 of this invention, and blowing air. 本発明の実施の形態1における空気調和装置の制御フローチャート。The control flowchart of the air conditioning apparatus in Embodiment 1 of this invention. 本発明の実施の形態1における空気調和装置の別の制御フローチャート。The another control flowchart of the air conditioning apparatus in Embodiment 1 of this invention. 本発明の実施の形態1における再熱器の構成図。The block diagram of the reheater in Embodiment 1 of this invention. 図5に示す再熱器の電磁弁の開閉とパスとの関係を示す図。The figure which shows the relationship between opening and closing of the solenoid valve of the reheater shown in FIG. 5, and a path | pass. 本発明の実施の形態1における空気調和装置の別の構成図。The another block diagram of the air conditioning apparatus in Embodiment 1 of this invention. 本発明の実施の形態1における空気調和装置の別の構成図。The another block diagram of the air conditioning apparatus in Embodiment 1 of this invention. 本発明の実施の形態1における空気調和装置の別の構成図。The another block diagram of the air conditioning apparatus in Embodiment 1 of this invention. 本発明の実施の形態1における空気調和装置の別の構成図。The another block diagram of the air conditioning apparatus in Embodiment 1 of this invention. 本発明の実施の形態1における空気調和装置の別の構成図。The another block diagram of the air conditioning apparatus in Embodiment 1 of this invention. 本発明の実施の形態1における空気調和装置の別の構成図。The another block diagram of the air conditioning apparatus in Embodiment 1 of this invention. 本発明の実施の形態1における空気調和装置の別の構成図。The another block diagram of the air conditioning apparatus in Embodiment 1 of this invention. 本発明の実施の形態1における空気調和装置の別の構成図。The another block diagram of the air conditioning apparatus in Embodiment 1 of this invention. 本発明の実施の形態1における空気調和装置の別の構成図。The another block diagram of the air conditioning apparatus in Embodiment 1 of this invention. 本発明の実施の形態1における空気調和装置の別の構成図。The another block diagram of the air conditioning apparatus in Embodiment 1 of this invention. 本発明の実施の形態1における空気調和装置の別の構成図。The another block diagram of the air conditioning apparatus in Embodiment 1 of this invention. 本発明の実施の形態1における空気調和装置の別の構成図。The another block diagram of the air conditioning apparatus in Embodiment 1 of this invention. 本発明の実施の形態1における空気調和装置の別の構成図。The another block diagram of the air conditioning apparatus in Embodiment 1 of this invention. 本発明の実施の形態1における空気調和装置の別の構成図。The another block diagram of the air conditioning apparatus in Embodiment 1 of this invention. 本発明の実施の形態2または3における空気調和装置の構成図。The block diagram of the air conditioning apparatus in Embodiment 2 or 3 of this invention. 本発明の実施の形態2における吸込空気、吹出空気の状態を示す空気線図。The air line figure which shows the state of the suction air in the Embodiment 2 of this invention, and blowing air. 本発明の実施の形態2における空気調和装置の制御フローチャート。The control flowchart of the air conditioning apparatus in Embodiment 2 of this invention. 本発明の実施の形態3における吸込空気、吹出空気の状態を示す空気線図。The air line figure which shows the state of the suction air in the Embodiment 3 of this invention, and blowing air. 本発明の実施の形態3における空気調和装置の制御フローチャート。The control flowchart of the air conditioning apparatus in Embodiment 3 of this invention. 本発明の実施の形態3における空気調和装置の別の構成図。Another block diagram of the air conditioning apparatus in Embodiment 3 of this invention.

符号の説明Explanation of symbols

1a 室内送風機、1b 室外送風機、2 加湿器、3 冷却器、3a 蒸発器、4 除湿器、5 加熱器、5a 凝縮器、5b 再熱器、6 制御装置、7a 吹出温度センサ、7b 吹出湿度センサ、8a 吸込温度センサ、8b 吸込湿度センサ、9a 遠方温度センサ、9b 遠方湿度センサ、10 被空調室、11 温湿度設定装置、12 室内機、13 室外機、14 冷却対象物、15 ダクト、34 冷却除湿器、101 圧縮機、102 絞り装置、102a 絞り装置、201 電磁弁、202 電磁弁、203 電磁弁、210 逆止弁。
DESCRIPTION OF SYMBOLS 1a Indoor blower, 1b Outdoor blower, 2 Humidifier, 3 Cooler, 3a Evaporator, 4 Dehumidifier, 5 Heater, 5a Condenser, 5b Reheater, 6 Control device, 7a Outlet temperature sensor, 7b Outlet humidity sensor , 8a Suction temperature sensor, 8b Suction humidity sensor, 9a Remote temperature sensor, 9b Remote humidity sensor, 10 Air-conditioned room, 11 Temperature / humidity setting device, 12 Indoor unit, 13 Outdoor unit, 14 Cooling object, 15 Duct, 34 Cooling Dehumidifier, 101 compressor, 102 throttle device, 102a throttle device, 201 solenoid valve, 202 solenoid valve, 203 solenoid valve, 210 check valve.

Claims (18)

送風手段と加湿手段と除湿手段と加熱手段と冷却手段とを被空調域の内部あるいは隣接した空間に配置してなる温湿度調整手段と、
前記温湿度調整手段の吹出部、吸込部または被空調域内のいずれかの位置の温度を検出する温度検出手段と、
前記温湿度調整手段の吹出部、吸込部または被空調域内のいずれかの位置であって前記温度検出手段のある位置と異なる位置の湿度を検出する湿度検出手段と、
前記温度検出手段が検出している位置の目標温度と前記湿度検出手段が検出している位置の目標湿度とを設定し、前記送風手段、前記加湿手段、前記除湿手段、前記加熱手段および前記冷却手段を制御し、前記被空調域内の温湿度を制御可能とする制御手段と、
を備えたことを特徴とする空気調和装置。
A temperature / humidity adjusting means in which a blowing means, a humidifying means, a dehumidifying means, a heating means, and a cooling means are arranged in an air-conditioned area or in a space adjacent thereto;
Temperature detecting means for detecting the temperature of any position in the blowing part, the suction part or the air-conditioned area of the temperature and humidity adjusting means;
Humidity detection means for detecting the humidity at a position different from the position where the temperature detection means is located at any one of the blowing part, the suction part or the air-conditioned area of the temperature / humidity adjustment means,
The target temperature at the position detected by the temperature detecting means and the target humidity at the position detected by the humidity detecting means are set, and the air blowing means, the humidifying means, the dehumidifying means, the heating means and the cooling are set. Control means for controlling the means and controlling the temperature and humidity in the air-conditioned area;
An air conditioner comprising:
送風手段と加湿手段と冷却除湿手段と加熱手段とを被空調域の内部あるいは隣接した空間に配置してなる温湿度調整手段と、
前記温湿度調整手段の吹出部、吸込部または被空調域内のいずれかの位置の温度を検出する温度検出手段と、
前記温湿度調整手段の吹出部、吸込部または被空調域内のいずれかの位置であって前記温度検出手段のある位置と異なる位置の湿度を検出する湿度検出手段と、
前記温度検出手段が検出している位置の目標温度と前記湿度検出手段が検出している位置の目標湿度とを設定し、前記送風手段、前記加湿手段、前記加熱手段および前記冷却除湿手段を制御し、前記被空調域内の温湿度を制御可能とする制御手段と、
を備えたことを特徴とする空気調和装置。
A temperature / humidity adjusting means in which the air blowing means, the humidifying means, the cooling / dehumidifying means, and the heating means are arranged in the air-conditioned area or in an adjacent space;
Temperature detecting means for detecting the temperature of any position in the blowing part, the suction part or the air-conditioned area of the temperature and humidity adjusting means;
Humidity detection means for detecting the humidity at a position different from the position where the temperature detection means is located at any one of the blowing part, the suction part or the air-conditioned area of the temperature / humidity adjustment means,
The target temperature at the position detected by the temperature detecting means and the target humidity at the position detected by the humidity detecting means are set, and the air blowing means, the humidifying means, the heating means, and the cooling and dehumidifying means are controlled. And control means capable of controlling the temperature and humidity in the air-conditioned area;
An air conditioner comprising:
圧縮機、熱源側熱交換器、絞り手段、利用側熱交換器を冷媒配管で接続して冷凍サイクルを構成し、前記利用側熱交換器を前記加熱手段とすることを特徴とした請求項1または2に記載の空気調和装置。   The compressor, the heat source side heat exchanger, the throttle means, and the use side heat exchanger are connected by refrigerant piping to form a refrigeration cycle, and the use side heat exchanger is used as the heating means. Or the air conditioning apparatus of 2. 圧縮機、熱源側熱交換器、絞り手段、利用側熱交換器を冷媒配管で接続して冷凍サイクルを構成し、前記利用側熱交換器を前記冷却手段、前記除湿手段、または前記冷却除湿手段とすることを特徴とした請求項1または2に記載の空気調和装置。   A compressor, a heat source side heat exchanger, an expansion means, and a use side heat exchanger are connected by a refrigerant pipe to constitute a refrigeration cycle, and the use side heat exchanger is the cooling means, the dehumidifying means, or the cooling and dehumidifying means. The air conditioner according to claim 1 or 2, wherein 圧縮機、熱源側熱交換器、第一の利用側熱交換器、絞り手段、第二の利用側熱交換器を冷媒配管で接続して冷凍サイクルを構成し、前記第一の利用側熱交換器を前記加熱手段とし、前記第二の利用側熱交換器を前記冷却手段、前記除湿手段、または前記冷却除湿手段とすることを特徴とした請求項1または2に記載の空気調和装置。   A compressor, a heat source side heat exchanger, a first usage side heat exchanger, a throttle means, and a second usage side heat exchanger are connected by a refrigerant pipe to constitute a refrigeration cycle, and the first usage side heat exchange The air conditioner according to claim 1 or 2, wherein a heating device is the heating unit, and the second usage-side heat exchanger is the cooling unit, the dehumidifying unit, or the cooling and dehumidifying unit. 前記第一の利用側熱交換器の冷媒流路に少なくとも1つの開閉弁を設け、前記温度検出手段にて検出した温度と目標温度との温度差に応じて前記開閉弁を開閉することを特徴とする請求項5記載の空気調和装置。   At least one open / close valve is provided in the refrigerant flow path of the first use side heat exchanger, and the open / close valve is opened / closed according to a temperature difference between the temperature detected by the temperature detecting means and a target temperature. The air conditioning apparatus according to claim 5. 前記第一の利用側熱交換器から絞り手段へ至る流路のいずれかの位置と前記第二の利用側熱交換器から圧縮機へ至る流路のいずれかの位置との間に分岐管路を設け、前記分岐管路の途中に流量調整手段を設けたことを特徴とする請求項5または6に記載の空気調和装置。   A branch pipe between any position of the flow path from the first use side heat exchanger to the throttle means and any position of the flow path from the second use side heat exchanger to the compressor The air conditioner according to claim 5 or 6, wherein a flow rate adjusting means is provided in the middle of the branch pipe. 前記冷却手段、前記除湿手段および前記加熱手段が前記温湿度調整手段の空気通路の空気の流れ方向に対して直列に配置されていることを特徴とする請求項1乃至7のいずれかに記載の空気調和装置。   The said cooling means, the said dehumidification means, and the said heating means are arrange | positioned in series with respect to the flow direction of the air of the air path of the said temperature / humidity adjustment means, The Claim 1 thru | or 7 characterized by the above-mentioned. Air conditioner. 前記冷却手段、前記除湿手段および前記加熱手段のうち、少なくとも2つが前記温湿度調整手段の空気通路の空気の流れ方向に対して並列に配置されていることを特徴とする請求項1乃至7のいずれかに記載の空気調和装置。   The at least two of the cooling means, the dehumidifying means and the heating means are arranged in parallel to the air flow direction of the air passage of the temperature / humidity adjusting means. The air conditioning apparatus in any one. 前記温湿度調整手段の吹出部、吸込部または被空調域内のいずれかの位置のうちの2箇所、あるいは被空調域内の異なる位置の2箇所の温度を検出する温度検出手段を備え、これら2つの温度検出手段のある位置の温度を設定し、設定された2点の温度差を前記送風手段の風量を変化させることにより所定の範囲内の温度差にすることを特徴とした請求項1乃至9のいずれかに記載の空気調和装置。   The temperature / humidity adjusting means includes a temperature detecting means for detecting temperatures at two positions of any one of the positions in the blowing section, the suction section, or the air-conditioned area, or two positions at different positions in the air-conditioned area. 10. The temperature at a certain position of the temperature detecting means is set, and the temperature difference between the two set points is changed to a temperature difference within a predetermined range by changing the air volume of the air blowing means. The air conditioning apparatus in any one of. 前記温湿度調整手段の吹出部、吸込部または被空調域内のいずれかの位置のうちの1箇所に温度検出手段と湿度検出手段と対にして備え、それらの手段で検出された値から前記1箇所付近の温度を露点温度以下とならない所定の範囲内となるように前記制御手段を動作させることを特徴とする請求項1乃至9のいずれかに記載の空気調和装置。   A temperature detection means and a humidity detection means are provided as a pair at one of the positions in the blowing portion, the suction portion, or the air-conditioned area of the temperature and humidity adjustment means, and the value 1 detected from the values detected by these means. The air conditioner according to any one of claims 1 to 9, wherein the control means is operated so that a temperature in the vicinity of the location falls within a predetermined range that does not become the dew point temperature or lower. 前記加熱手段と前記冷却および除湿に関する手段とを、別系統の冷凍サイクルで構成したことを特徴とする請求項1または2に記載の空気調和装置。   The air conditioning apparatus according to claim 1 or 2, wherein the heating means and the means for cooling and dehumidification are configured by separate refrigeration cycles. 送風手段と加湿手段と加熱手段とを被空調域の内部あるいは隣接した空間に配置してなる温湿度調整手段と、
前記温湿度調整手段の吹出部、吸込部または被空調域内のいずれかの位置の温度を検出する温度検出手段と、
前記温湿度調整手段の吹出部、吸込部または被空調域内のいずれかの位置であって前記温度検出手段のある位置と異なる位置の湿度を検出する湿度検出手段と、
前記温度検出手段が検出している位置の目標温度と前記湿度検出手段が検出している位置の目標湿度とを設定し、前記送風手段、前記加湿手段および前記加熱手段を制御し、前記被空調域内の温湿度を制御可能とする制御手段と、
を備えたことを特徴とする空気調和装置。
A temperature / humidity adjusting means in which the air blowing means, the humidifying means, and the heating means are arranged in the space to be air-conditioned or in an adjacent space;
Temperature detecting means for detecting the temperature of any position in the blowing part, the suction part or the air-conditioned area of the temperature and humidity adjusting means;
Humidity detection means for detecting the humidity at a position different from the position where the temperature detection means is located at any one of the blowing part, the suction part or the air-conditioned area of the temperature / humidity adjustment means,
The target temperature at the position detected by the temperature detecting means and the target humidity at the position detected by the humidity detecting means are set, the air blowing means, the humidifying means and the heating means are controlled, and the air-conditioned Control means that can control the temperature and humidity in the region;
An air conditioner comprising:
送風手段と加湿手段と冷却および除湿手段とを被空調域の内部あるいは隣接した空間に配置してなる温湿度調整手段と、
前記温湿度調整手段の吹出部、吸込部または被空調域内のいずれかの位置の温度を検出する温度検出手段と、
前記温湿度調整手段の吹出部、吸込部または被空調域内のいずれかの位置であって前記温度検出手段のある位置と異なる位置の湿度を検出する湿度検出手段と、
前記温度検出手段が検出している位置の目標温度と前記湿度検出手段が検出している位置の目標湿度とを設定し、前記送風手段、前記加湿手段、および前記冷却および除湿手段を制御し、前記被空調域内の温湿度を制御可能とする制御手段と、
を備えたことを特徴とする空気調和装置。
A temperature / humidity adjusting means in which the air blowing means, the humidifying means, and the cooling and dehumidifying means are arranged in the air-conditioned area or in a space adjacent thereto;
Temperature detecting means for detecting the temperature of any position in the blowing part, the suction part or the air-conditioned area of the temperature and humidity adjusting means;
Humidity detection means for detecting the humidity at a position different from the position where the temperature detection means is located at any one of the blowing part, the suction part or the air-conditioned area of the temperature / humidity adjustment means,
Setting a target temperature at a position detected by the temperature detecting means and a target humidity at a position detected by the humidity detecting means, and controlling the air blowing means, the humidifying means, and the cooling and dehumidifying means; Control means capable of controlling the temperature and humidity in the air-conditioned area;
An air conditioner comprising:
加湿手段と除湿手段と加熱手段と冷却手段とを被空調域の内部あるいは隣接した空間に配置してなる温湿度調整手段と、
前記温湿度調整手段の吹出部、吸込部または被空調域内のいずれかの位置の温度を検出する温度検出手段と、
前記温湿度調整手段の吹出部、吸込部または被空調域内のいずれかの位置であって前記温度検出手段のある位置と異なる位置の湿度を検出する湿度検出手段とを備え、
前記温度検出手段が検出している位置の目標温度と前記湿度検出手段が検出している位置の目標湿度とを設定し、前記温度検出手段の検出温度と前記目標温度との偏差および前記湿度検出手段の検出湿度と前記目標湿度との偏差に基づき、前記加湿手段の加湿量、前記除湿手段の除湿量、前記加熱手段の加熱量および前記冷却手段の冷却量を制御して、前記被空調域内の温湿度を制御することを特徴とする空気調和装置の制御方法。
Humidification means, dehumidification means, heating means, and cooling means are arranged in the interior of the air-conditioned area or in a space adjacent to the temperature / humidity adjusting means,
Temperature detecting means for detecting the temperature of any position in the blowing part, the suction part or the air-conditioned area of the temperature and humidity adjusting means;
Humidity detection means for detecting the humidity at a position different from the position where the temperature detection means is located at any position within the blowout part, suction part or air-conditioned area of the temperature and humidity adjustment means,
The target temperature at the position detected by the temperature detecting means and the target humidity at the position detected by the humidity detecting means are set, and the deviation between the detected temperature of the temperature detecting means and the target temperature and the humidity detection And controlling the humidification amount of the humidification means, the dehumidification amount of the dehumidification means, the heating amount of the heating means and the cooling amount of the cooling means based on the deviation between the detected humidity of the means and the target humidity, A control method for an air conditioner characterized by controlling the temperature and humidity of the air.
加湿手段と加熱手段とを被空調域の内部あるいは隣接した空間に配置してなる温湿度調整手段と、
前記温湿度調整手段の吹出部、吸込部または被空調域内のいずれかの位置の温度を検出する温度検出手段と、
前記温湿度調整手段の吹出部、吸込部または被空調域内のいずれかの位置であって前記温度検出手段のある位置と異なる位置の湿度を検出する湿度検出手段とを備え、
前記温度検出手段が検出している位置の目標温度と前記湿度検出手段が検出している位置の目標湿度とを設定し、前記温度検出手段の検出温度と前記目標温度との偏差および前記湿度検出手段の検出湿度と前記目標湿度との偏差に基づき、前記加湿手段の加湿量および前記加熱手段の加熱量を制御して、前記被空調域内の温湿度を制御することを特徴とする空気調和装置の制御方法。
A temperature / humidity adjusting means in which the humidifying means and the heating means are arranged in the space to be air-conditioned or in the adjacent space;
Temperature detecting means for detecting the temperature of any position in the blowing part, the suction part or the air-conditioned area of the temperature and humidity adjusting means;
Humidity detection means for detecting the humidity at a position different from the position where the temperature detection means is located at any position within the blowout part, suction part or air-conditioned area of the temperature and humidity adjustment means,
The target temperature at the position detected by the temperature detecting means and the target humidity at the position detected by the humidity detecting means are set, and the deviation between the detected temperature of the temperature detecting means and the target temperature and the humidity detection An air conditioner for controlling the temperature and humidity in the air-conditioned area by controlling a humidification amount of the humidification unit and a heating amount of the heating unit based on a deviation between a detected humidity of the unit and the target humidity Control method.
加湿手段と冷却および除湿手段とを被空調域の内部あるいは隣接した空間に配置してなる温湿度調整手段と、
前記温湿度調整手段の吹出部、吸込部または被空調域内のいずれかの位置の温度を検出する温度検出手段と、
前記温湿度調整手段の吹出部、吸込部または被空調域内のいずれかの位置であって前記温度検出手段のある位置と異なる位置の湿度を検出する湿度検出手段とを備え、
前記温度検出手段が検出している位置の目標温度と前記湿度検出手段が検出している位置の目標湿度とを設定し、前記温度検出手段の検出温度と前記目標温度との偏差および前記湿度検出手段の検出湿度と前記目標湿度との偏差に基づき、前記加湿手段の加湿量、および前記冷却および除湿手段の冷却量および除湿量を制御して、前記被空調域内の温湿度を制御することを特徴とする空気調和装置の制御方法。
A temperature / humidity adjusting means in which a humidifying means and a cooling and dehumidifying means are arranged in an air-conditioned area or in a space adjacent thereto;
Temperature detecting means for detecting the temperature of any position in the blowing part, the suction part or the air-conditioned area of the temperature and humidity adjusting means;
Humidity detection means for detecting the humidity at a position different from the position where the temperature detection means is located at any position within the blowout part, suction part or air-conditioned area of the temperature and humidity adjustment means,
The target temperature at the position detected by the temperature detecting means and the target humidity at the position detected by the humidity detecting means are set, and the deviation between the detected temperature of the temperature detecting means and the target temperature and the humidity detection Controlling the temperature and humidity in the air-conditioned area by controlling the humidification amount of the humidification means and the cooling amount and dehumidification amount of the cooling and dehumidifying means based on the deviation between the detected humidity of the means and the target humidity. A control method for an air conditioner.
前記温湿度調整手段にさらに送風手段を備え、前記温度検出手段の検出温度と前記目標温度との偏差に基づき、前記送風手段の風量も制御して、前記被空調域内の温湿度を制御することを特徴とする請求項15乃至17のいずれかに記載の空気調和装置の制御方法。
The temperature / humidity adjusting means further includes a blowing means, and based on the deviation between the detected temperature of the temperature detecting means and the target temperature, the air volume of the blowing means is also controlled to control the temperature and humidity in the air-conditioned area. The control method of the air conditioning apparatus in any one of Claims 15 thru | or 17 characterized by these.
JP2004204315A 2004-07-12 2004-07-12 Air conditioning apparatus and control method thereof Expired - Fee Related JP4147556B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004204315A JP4147556B2 (en) 2004-07-12 2004-07-12 Air conditioning apparatus and control method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004204315A JP4147556B2 (en) 2004-07-12 2004-07-12 Air conditioning apparatus and control method thereof

Publications (2)

Publication Number Publication Date
JP2006029598A true JP2006029598A (en) 2006-02-02
JP4147556B2 JP4147556B2 (en) 2008-09-10

Family

ID=35896177

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004204315A Expired - Fee Related JP4147556B2 (en) 2004-07-12 2004-07-12 Air conditioning apparatus and control method thereof

Country Status (1)

Country Link
JP (1) JP4147556B2 (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008140072A1 (en) * 2007-05-15 2008-11-20 Espec Corp. Humidity control equipment, environment test equipment and temperature/humidity controller
JP2010203685A (en) * 2009-03-03 2010-09-16 Mitsubishi Electric Corp Air conditioning device and method for controlling the same
JP2011508307A (en) * 2007-12-21 2011-03-10 ヒューレット−パッカード デベロップメント カンパニー エル.ピー. Moisture control system
CN102141288A (en) * 2010-02-03 2011-08-03 株式会社山武 Air-conditioning controlling method and device
WO2011155069A1 (en) 2010-06-11 2011-12-15 三菱電機株式会社 Ventilation and air-conditioning apparatus and method for controlling same
JP2012017889A (en) * 2010-07-07 2012-01-26 Daikin Industries Ltd Air conditioner
JP2013011460A (en) * 2011-06-28 2013-01-17 Seiko Instruments Inc Sensor network system
WO2015166541A1 (en) * 2014-04-28 2015-11-05 三菱電機株式会社 Outdoor unit
CN106482248A (en) * 2015-08-25 2017-03-08 中南大学 Control system of machine room air conditioner based on multi-connected air conditioner and method
JP2017180966A (en) * 2016-03-30 2017-10-05 大阪瓦斯株式会社 Air conditioning system
CN107763763A (en) * 2017-11-20 2018-03-06 山东雅士股份有限公司 Depth dehumidification air conditioner unit with step-less adjustment and condensing units function
US10203122B2 (en) 2014-07-04 2019-02-12 Mitsubishi Electric Corporation Air-conditioning and ventilation apparatus
CN110221639A (en) * 2019-06-04 2019-09-10 合肥皖信信息工程有限责任公司 Central machine room temperature and humidity control device and method
JP2020204427A (en) * 2019-06-17 2020-12-24 ミサワホーム株式会社 Arrangement structure of temperature and humidity sensor and air conditioning system
CN113757954A (en) * 2021-09-07 2021-12-07 重庆海尔空调器有限公司 Control method for air conditioner and air conditioner
CN114251800A (en) * 2021-12-24 2022-03-29 珠海格力电器股份有限公司 Air conditioner control method and air conditioner
CN114659186A (en) * 2022-03-28 2022-06-24 青岛海尔空调器有限总公司 Control method and device for linkage humidity adjustment of dehumidifier and mopping robot
CN114811764A (en) * 2022-03-28 2022-07-29 青岛海尔空调器有限总公司 Control method and device for linkage humidification of dehumidifier and mopping robot
CN115218256A (en) * 2022-05-20 2022-10-21 上海睿珑欣图工业智能科技有限公司 Method and system for setting temperature of household electric heating equipment based on temperature and humidity matrix table
CN115789883A (en) * 2022-12-02 2023-03-14 珠海格力电器股份有限公司 Method and device for determining temperature compensation value of air conditioner

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2937637A1 (en) * 2007-05-15 2015-10-28 Espec Corp. Humidity control apparatus, environment test apparatus, and temperature and humidity control apparatus
KR101419970B1 (en) * 2007-05-15 2014-07-15 에스펙 가부시키가이샤 Humidity control equipment, environment test equipment and temperature/humidity controller
JPWO2008140072A1 (en) * 2007-05-15 2010-08-05 エスペック株式会社 Humidity control device, environmental test device, and temperature control device
WO2008140072A1 (en) * 2007-05-15 2008-11-20 Espec Corp. Humidity control equipment, environment test equipment and temperature/humidity controller
US20150159888A1 (en) * 2007-05-15 2015-06-11 Espec Corp. Humidity control apparatus, environment test apparatus, and temperature and humidity control apparatus
US20150153120A1 (en) * 2007-05-15 2015-06-04 Espec Corp. Humidity control apparatus, environment test apparatus, and temperature and humidity control apparatus
US8973383B2 (en) 2007-05-15 2015-03-10 Espec Corp. Humidity control apparatus, environment test apparatus, and temperature and humidity control apparatus
EP2148146A1 (en) * 2007-05-15 2010-01-27 Espec Corp. Humidity control equipment, environment test equipment and temperature/humidity controller
US10012400B2 (en) 2007-05-15 2018-07-03 Espec Corp. Humidity control apparatus, environment test apparatus, and temperature and humidity control apparatus
CN101688673B (en) * 2007-05-15 2012-06-27 爱斯佩克株式会社 Humidity control equipment, environment test equipment and temperature/humidity controller
US9885485B2 (en) 2007-05-15 2018-02-06 Espec Corp. Humidity control apparatus, environment test apparatus, and temperature and humidity control apparatus
JP5248488B2 (en) * 2007-05-15 2013-07-31 エスペック株式会社 Humidity control device, environmental test device, and temperature control device
TWI414733B (en) * 2007-05-15 2013-11-11 Espec Corp Humidity control device, environmental testing device and temperature control and humidity control device
EP2148146A4 (en) * 2007-05-15 2014-10-01 Espec Corp Humidity control equipment, environment test equipment and temperature/humidity controller
JP2011508307A (en) * 2007-12-21 2011-03-10 ヒューレット−パッカード デベロップメント カンパニー エル.ピー. Moisture control system
JP2010203685A (en) * 2009-03-03 2010-09-16 Mitsubishi Electric Corp Air conditioning device and method for controlling the same
JP2011158219A (en) * 2010-02-03 2011-08-18 Yamatake Corp Air conditioning control method and device
CN102141288A (en) * 2010-02-03 2011-08-03 株式会社山武 Air-conditioning controlling method and device
WO2011155069A1 (en) 2010-06-11 2011-12-15 三菱電機株式会社 Ventilation and air-conditioning apparatus and method for controlling same
JP2012017889A (en) * 2010-07-07 2012-01-26 Daikin Industries Ltd Air conditioner
JP2013011460A (en) * 2011-06-28 2013-01-17 Seiko Instruments Inc Sensor network system
WO2015166541A1 (en) * 2014-04-28 2015-11-05 三菱電機株式会社 Outdoor unit
JP5868552B1 (en) * 2014-04-28 2016-02-24 三菱電機株式会社 External air conditioner
US10203122B2 (en) 2014-07-04 2019-02-12 Mitsubishi Electric Corporation Air-conditioning and ventilation apparatus
CN106482248A (en) * 2015-08-25 2017-03-08 中南大学 Control system of machine room air conditioner based on multi-connected air conditioner and method
CN106482248B (en) * 2015-08-25 2019-07-19 中南大学 Control system of machine room air conditioner based on multi-connected air conditioner
JP2017180966A (en) * 2016-03-30 2017-10-05 大阪瓦斯株式会社 Air conditioning system
CN107763763A (en) * 2017-11-20 2018-03-06 山东雅士股份有限公司 Depth dehumidification air conditioner unit with step-less adjustment and condensing units function
CN110221639A (en) * 2019-06-04 2019-09-10 合肥皖信信息工程有限责任公司 Central machine room temperature and humidity control device and method
JP2020204427A (en) * 2019-06-17 2020-12-24 ミサワホーム株式会社 Arrangement structure of temperature and humidity sensor and air conditioning system
CN113757954A (en) * 2021-09-07 2021-12-07 重庆海尔空调器有限公司 Control method for air conditioner and air conditioner
CN113757954B (en) * 2021-09-07 2022-07-19 重庆海尔空调器有限公司 Control method for air conditioner and air conditioner
CN114251800A (en) * 2021-12-24 2022-03-29 珠海格力电器股份有限公司 Air conditioner control method and air conditioner
CN114659186A (en) * 2022-03-28 2022-06-24 青岛海尔空调器有限总公司 Control method and device for linkage humidity adjustment of dehumidifier and mopping robot
CN114811764A (en) * 2022-03-28 2022-07-29 青岛海尔空调器有限总公司 Control method and device for linkage humidification of dehumidifier and mopping robot
CN115218256A (en) * 2022-05-20 2022-10-21 上海睿珑欣图工业智能科技有限公司 Method and system for setting temperature of household electric heating equipment based on temperature and humidity matrix table
CN115789883A (en) * 2022-12-02 2023-03-14 珠海格力电器股份有限公司 Method and device for determining temperature compensation value of air conditioner

Also Published As

Publication number Publication date
JP4147556B2 (en) 2008-09-10

Similar Documents

Publication Publication Date Title
JP4147556B2 (en) Air conditioning apparatus and control method thereof
US11867413B2 (en) HVAC unit with hot gas reheat
JP6494765B2 (en) Air conditioning system
JP5280370B2 (en) Air conditioning equipment, radiant air conditioning system, and control method of radiant air conditioning system
JP4207166B2 (en) Dehumidifying air conditioner
JP4892305B2 (en) Outside air conditioning air conditioner
WO2015092895A1 (en) Air-conditioning device
EP2835589B1 (en) Air conditioner
JP2006207856A (en) Air conditioner for conditioning outside air
US11428422B2 (en) Air conditioning system
EP3611439A1 (en) Air conditioner
US20220090816A1 (en) Multi-air conditioner for heating, cooling, and ventilation
WO2019155614A1 (en) Air-conditioning device, air-conditioning system, and heat exchange unit
JPH0814389B2 (en) Clean room with direct expansion heat exchanger
KR20140129403A (en) air conditioning apparatus saving energy and method thereof
JP7374633B2 (en) Air conditioners and air conditioning systems
JP2010071497A (en) Air conditioner
JP4317792B2 (en) Air conditioner indoor unit
JP7058250B2 (en) Air conditioner with dehumidifying function and its control method
JP7189472B2 (en) air conditioning system
JP2018040514A (en) Air conditioning system
JP2649986B2 (en) Clean room using a direct expansion type heat exchanger
JP2006336971A (en) Ventilating and air conditioning device
KR101979950B1 (en) Heat pump type speed heating apparatus inter locking with Air conditioner and operating method thereof
JP2018054255A (en) Air conditioner

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070918

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080610

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080613

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110704

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4147556

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110704

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120704

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120704

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130704

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees