Nothing Special   »   [go: up one dir, main page]

JP2006028604A - Method for transferring minute shape, method for manufacturing casting mold, surface treatment method for casting mold, and casting mold - Google Patents

Method for transferring minute shape, method for manufacturing casting mold, surface treatment method for casting mold, and casting mold Download PDF

Info

Publication number
JP2006028604A
JP2006028604A JP2004210801A JP2004210801A JP2006028604A JP 2006028604 A JP2006028604 A JP 2006028604A JP 2004210801 A JP2004210801 A JP 2004210801A JP 2004210801 A JP2004210801 A JP 2004210801A JP 2006028604 A JP2006028604 A JP 2006028604A
Authority
JP
Japan
Prior art keywords
mold
oxide film
film
substrate
aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004210801A
Other languages
Japanese (ja)
Inventor
Kunio Ikeda
邦夫 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2004210801A priority Critical patent/JP2006028604A/en
Publication of JP2006028604A publication Critical patent/JP2006028604A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an inexpensive method for manufacturing a casting mold which does not require an electroforming duplication process and does not degrade the flatness of a master disk, a surface treatment method for the casting mold, and the casting mold. <P>SOLUTION: A resist 3 is applied onto the surface of an oxide film 2 formed on a substrate 1 having optical surface accuracy and a resist portion 4 is formed by a photomask forming, exposure and development steps. The anodically oxidized film exposed in an aperture 4a is selectively removed and the casting mold imparted with the groove pattern of from a submicron level to several tens micron level is obtained. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、微細形状パターンを具備した微細形状転写方法、鋳型製作方法及びこの方法により製作された鋳型に関するものである。   The present invention relates to a fine shape transfer method having a fine shape pattern, a mold manufacturing method, and a mold manufactured by this method.

従来、微細形状転写方法は、微細形状パターンを具備した鋳型の製作方法、原盤素材、フォトリソグラフィ、エッチング、めっき成膜などのマイクロ加工技術において、電着応力を伴わない鋳型製作法の提供、原盤平坦度を損なわない成形用鋳型及びその製作法の提供、複製工程を不要とした鋳型及びその製作法の提供、工程短縮した安価な鋳型及びその製作法の提供等を主眼としている(例えば、特許文献1及び2参照)。
また、微細形状転写方法は、パターン段差精度の優れた鋳型及びその製作法の提供、パターン密着性の良い鋳型及びその製作法の提供、パターン耐久性の良い鋳型及びその製作法の提供、熱伝導性に優れ、成形サイクル短縮可能な鋳型及びその制作方法の提供を主眼としている。
特許文献1は、光学的面精度の結晶状シリコン、非晶質シリコン、または石英からなる母材にレジストパターンを形成してイオンエッチングで微細パターンを形成するようにしたプラスチック製の光記録媒体成形用鋳型の製造方法を開示している。
特許文献2は、単結晶シリコン基板をホトリソブラフイ技術でエッチングして窪みをアレイ状に形成する。このアレイ状の窪みを電鋳等によりニッケルを付着させてレプリカを取った金型を作製し、この金型で透明樹脂材料をプレス成形することを開示している。
しかしながら、特許文献1では、シリコン、石英基板をイオンエッチングして細線パターンを形成したままで成形用鋳型にしたので繰り返しの転写複製における精度劣化がなく、ゴミ異物などの欠陥が少ない利点はあるものの、射出成形用の鋳型としては二次加工性、耐熱特性、機械的強度面で実用に供し得ない欠点がある。
また、特許文献2では、凹凸パターンを形成したシリコン基板からニッケル電鋳で前記窪みパターンを転写させる。成形用鋳型はニッケル厚さが3〜5ミリ程必要で電鋳複製日数の他に機械加工などの日数を含めると10日間も要する。
さらには、電鋳時のめっき内部応力による反り・変形で初期シリコン基板の平坦度より50〜100倍程度悪化した鋳型となってしまうプロセス上の欠点を有している。
Conventionally, a fine shape transfer method is a method for producing a mold having a fine shape pattern, a master material, photolithography, etching, plating processing, and other micro processing techniques such as providing a mold production method without electrodeposition stress. The main focus is to provide molding molds and manufacturing methods that do not impair flatness, to provide molds and manufacturing methods that do not require a duplication process, and to provide inexpensive molds and manufacturing methods that shorten processes (for example, patents). Reference 1 and 2).
In addition, the fine shape transfer method includes the provision of a mold with excellent pattern step accuracy and its manufacturing method, the provision of a mold with good pattern adhesion and its manufacturing method, the provision of a mold with good pattern durability and its manufacturing method, and heat conduction. The main purpose is to provide a mold that is excellent in performance and capable of shortening the molding cycle and a method for producing the mold.
Patent Document 1 discloses a plastic optical recording medium molding in which a resist pattern is formed on a base material made of crystalline silicon, amorphous silicon, or quartz with optical surface accuracy, and a fine pattern is formed by ion etching. Disclosed is a method for producing a casting mold.
In Patent Document 2, a single crystal silicon substrate is etched by a photolithographic technique to form depressions in an array. It is disclosed that a mold having a replica obtained by depositing nickel by electrocasting or the like in the array of depressions and press-molding a transparent resin material with the mold is disclosed.
However, in Patent Document 1, although the silicon and quartz substrates are ion-etched to form a molding mold while the fine line pattern is formed, there is no deterioration in accuracy in repeated transfer duplication, and there is an advantage that there are few defects such as dust particles. The mold for injection molding has disadvantages that cannot be put into practical use in terms of secondary processability, heat resistance, and mechanical strength.
Moreover, in patent document 2, the said hollow pattern is transcribe | transferred by nickel electroforming from the silicon substrate in which the uneven | corrugated pattern was formed. The molding mold needs to have a nickel thickness of about 3 to 5 mm, and it takes 10 days if the number of days such as machining is included in addition to the number of days of electroforming replication.
Furthermore, there is a process defect that becomes a mold that is deteriorated by about 50 to 100 times from the flatness of the initial silicon substrate due to warpage and deformation due to plating internal stress during electroforming.

図5は従来のシリコン鋳型作成ないしNi電鋳複製プロセスを示す概略断面図である。図5の従来の鋳型製造プロセスにおいて、まず、シリコン単結晶基板(以下、シリコン基板)1を用意する。
鏡面状に研磨されたシリコン基板1は、平面度、表面粗さともに優れた性状を示し、精密ものの鋳型に適する。一般に入手可能なシリコン基板の厚さは0.5mm以下である。
両面に熱酸化膜2を形成したシリコン基板1(図5(a))の片面上にレジスト3を塗布(図5(b))した後、露光・現像プロセス(図5(c))を経て所望のレジスト開口パターン4を形成する(図5(d))。
電子ビーム用レジストと電子ビーム直描によればナノオーダーのレジストパターンを形成できる。以下、紫外線感光型のレジストパターン形成の例で説明する。
フォトリソプロセスで形成したレジスト開口部の熱酸化膜2を弗酸希薄水溶液で溶解除去する(h)。シリコン酸化膜をエッチングレジストとして加温した水酸化カリウム水溶液でエッチングすると熱酸化膜2の無いところは凹状に食刻される(i)。
図6はエンボシング成形プロセスを説明する概略断面図である。シリコン基板1の結晶方位によりエッチング速度が異なり、結晶方位にしたがった形状の凹凸パターンを形成することができる。
一般にシリコン基板1の厚さは0.5ミリ以下で、食刻したシリコン基板1をそのままエンボス成形に用いると鋳型が割れてしまう問題があった(図6)。そこで、シリコン鋳型を原盤としてニッケル電鋳で転写複製する。
ニッケル複製型にすればハンドリング時に破損する欠点は改善される。シリコン鋳型5上にニッケル電鋳して、最終的にシリコンとニッケル部を分離(図5(j))するとシリコン原盤パターンと反転一致したニッケル複製型が得られる(図5(k))。
特許第2531472号 特開2001−133772公報
FIG. 5 is a schematic sectional view showing a conventional silicon mold making or Ni electroforming replication process. In the conventional mold manufacturing process of FIG. 5, first, a silicon single crystal substrate (hereinafter referred to as a silicon substrate) 1 is prepared.
The mirror-polished silicon substrate 1 exhibits excellent properties in terms of both flatness and surface roughness, and is suitable for a precision mold. A generally available silicon substrate has a thickness of 0.5 mm or less.
A resist 3 is applied on one side of a silicon substrate 1 (FIG. 5 (a)) having a thermal oxide film 2 formed on both sides (FIG. 5 (b)), and then subjected to an exposure / development process (FIG. 5 (c)). A desired resist opening pattern 4 is formed (FIG. 5D).
According to the electron beam resist and electron beam direct drawing, a nano-order resist pattern can be formed. Hereinafter, an example of forming an ultraviolet photosensitive resist pattern will be described.
The thermal oxide film 2 in the resist opening formed by the photolithography process is dissolved and removed with a dilute hydrofluoric acid solution (h). When the silicon oxide film is etched with a heated potassium hydroxide aqueous solution as an etching resist, the portion without the thermal oxide film 2 is etched into a concave shape (i).
FIG. 6 is a schematic sectional view for explaining an embossing molding process. The etching rate varies depending on the crystal orientation of the silicon substrate 1, and an uneven pattern having a shape according to the crystal orientation can be formed.
In general, the thickness of the silicon substrate 1 is 0.5 mm or less, and if the etched silicon substrate 1 is used as it is for embossing, there is a problem that the mold is broken (FIG. 6). Therefore, the silicon mold is used as a master and is transferred and duplicated by nickel electroforming.
If the nickel replica type is used, the disadvantage of breakage during handling is improved. Nickel electroforming on the silicon mold 5 and finally separating the silicon and nickel parts (FIG. 5 (j)) yields a nickel replica that is inversion-matched with the silicon master pattern (FIG. 5 (k)).
Japanese Patent No. 2531472 JP 2001-133772 A

一般に、厚さ3ミリ程度のニッケル複製型を作成するには最終的な外形加工まで含めると5〜10日間ほど要する。シリコン原盤が薄いことと、ニッケル電鋳時の電着応力の作用で、ニッケル複製型の平坦度は原盤より低下する。
複製型の外形寸法によっても異なるが、直径50ミリで約50ミクロン程の平坦度となる。シリコン原盤の平坦度が約1ミクロンレベルなので50倍ほど悪化する。
複製では平坦度が悪化する大きな問題があった。反り変形が大きいと、転写対象物の基板と接触しない領域が生じ狙いの転写ができないことになる。反り変形要因である電着応力制御には、液管理、膜厚管理、応力減少剤の添加など、多くのノウハウと経験を必要とする。
そこで、本発明の目的は、上述した実情を考慮して、電鋳複製工程不要でシンプルな加工プロセスにより原盤平坦度を悪化させない安価な鋳型製作方法、鋳型表面処理方法及び鋳型を提供することにある。
In general, it takes about 5 to 10 days to produce a nickel replica mold having a thickness of about 3 mm, including the final outline processing. Due to the thinness of the silicon master and the electrodeposition stress during nickel electroforming, the flatness of the nickel replica mold is lower than that of the master.
Although it depends on the external dimensions of the replica type, the flatness is about 50 microns with a diameter of 50 mm. Since the flatness of the silicon master disk is about 1 micron level, it deteriorates about 50 times.
There was a big problem that the flatness deteriorated in the duplication. When warping deformation is large, a region that does not come into contact with the substrate of the transfer object is generated, and the target transfer cannot be performed. Electrodeposition stress control, which is a warping deformation factor, requires a lot of know-how and experience, such as liquid management, film thickness management, and addition of stress reducing agents.
Accordingly, an object of the present invention is to provide an inexpensive mold manufacturing method, mold surface treatment method, and mold that do not deteriorate the flatness of the master disk by a simple processing process that does not require an electroforming duplication process in consideration of the above-described circumstances. is there.

上記の課題を解決するために、請求項1に記載の発明は、光学的面精度を有する基板上に形成した酸化膜を選択的に除去して形成した微細パターンで形状転写するようにした微細形状転写方法を特徴とする。
また、請求項2に記載の発明は、光学的面精度を有する基板上に形成した酸化膜を選択的に除去して形成した微細パターンで形状転写するようにした鋳型製作方法を特徴とする。
また、請求項3に記載の発明は、前記酸化膜としてアルミ酸化膜を形成した請求項2記載の鋳型製作方法を特徴とする。
また、請求項4に記載の発明は、前記基板として、アルミニウム基板、アルミスパッタ膜を成膜したガラス、セラミックス基板を用いるようにした請求項3記載の鋳型製作方法を特徴とする。
また、請求項5に記載の発明は、前記酸化膜として、自然酸化膜、化学酸化膜、陽極酸化膜を用いるようにした請求項3及び4記載の鋳型製作方法を特徴とする。
また、請求項6に記載の発明は、前記酸化膜を狙いの形状に食刻して鋳型パターンとした請求項5記載の鋳型製作方法を特徴とする。
また、請求項7に記載の発明は、陽極酸化膜のビッカース硬度をHv150〜350とした鋳型表面処理法を特徴とする。
In order to solve the above-mentioned problem, the invention according to claim 1 is a fine pattern in which shape transfer is performed with a fine pattern formed by selectively removing an oxide film formed on a substrate having optical surface accuracy. Features a shape transfer method.
The invention described in claim 2 is characterized by a mold manufacturing method in which shape transfer is performed with a fine pattern formed by selectively removing an oxide film formed on a substrate having optical surface accuracy.
According to a third aspect of the present invention, there is provided a mold manufacturing method according to the second aspect in which an aluminum oxide film is formed as the oxide film.
According to a fourth aspect of the present invention, there is provided a mold manufacturing method according to the third aspect, wherein an aluminum substrate, a glass with a sputtered aluminum film, or a ceramic substrate is used as the substrate.
The invention according to claim 5 is characterized in that the mold manufacturing method according to claims 3 and 4 is such that a natural oxide film, a chemical oxide film, or an anodic oxide film is used as the oxide film.
The invention described in claim 6 is characterized by the mold manufacturing method according to claim 5, wherein the oxide film is etched into a target shape to form a mold pattern.
The invention according to claim 7 is characterized by a mold surface treatment method in which the Vickers hardness of the anodized film is Hv150 to 350.

また、請求項8に記載の発明は、陽極酸化膜のアンダー膜ビッカース硬度をHv150〜200、最外殻膜ビッカース硬度をHv200〜350の2層構成とした鋳型製作方法を特徴とする。
また、請求項9に記載の発明は、前記陽極酸化膜の形成法において電解初期の液温度を0〜10℃とし、その後、電解液温度を20±2℃の2段階で陽極酸化処理するようにした請求項8記載の鋳型製作方法を特徴とする。
また、請求項10に記載の発明は、鋳型裏面に薄膜抵抗体を一体的に配置するようにした鋳型を特徴とする。
また、請求項11に記載の発明は、鋳型裏面に薄膜抵抗体を一体的に配置するようにした鋳型製作方法を特徴とする。
また、請求項12に記載の発明は、前記鋳型構造において、鋳型パターン配置と対応した形で薄膜抵抗体を形成するようにしたことを特徴とする請求項10記載の鋳型を特徴とする。
また、請求項13に記載の発明は、前記鋳型構造において、アルミ陽極酸化膜を薄膜抵抗体の電気絶縁層とした請求項10記載の鋳型を特徴とする。
また、請求項14に記載の発明は、前記鋳型構造において、アルミ陽極酸化膜を薄膜抵抗体の電気絶縁層とした請求項11記載の鋳型製作方法を特徴とする。
The invention according to claim 8 is characterized by a mold manufacturing method in which the under film Vickers hardness of the anodized film is Hv150-200 and the outermost film Vickers hardness is Hv200-350.
According to a ninth aspect of the present invention, in the method for forming the anodic oxide film, the liquid temperature at the initial stage of electrolysis is set to 0 to 10 ° C., and then the anodic oxidation treatment is performed in two stages of 20 ± 2 ° C. The mold manufacturing method according to claim 8 is characterized.
The invention described in claim 10 is characterized by a mold in which a thin film resistor is integrally disposed on the back surface of the mold.
The invention according to claim 11 is characterized in that a mold manufacturing method is provided in which a thin film resistor is integrally disposed on the back surface of the mold.
According to a twelfth aspect of the present invention, there is provided the mold according to the tenth aspect, wherein the thin film resistor is formed in a form corresponding to the mold pattern arrangement in the mold structure.
The invention according to claim 13 is characterized in that, in the mold structure, the aluminum anodic oxide film is an electrical insulating layer of a thin film resistor.
The invention according to claim 14 is characterized in that, in the mold structure, the aluminum anodic oxide film is an electric insulating layer of a thin film resistor, and the mold manufacturing method according to claim 11.

本発明によれば、陽極酸化膜処理はニッケル電鋳のような電着応力が発生しないので反り変形を生じないので、前面転写性に優れた鋳型及び鋳型製作方法が得られる効果を有する。   According to the present invention, since the anodic oxide film treatment does not generate electrodeposition stress as in nickel electroforming, warping deformation does not occur, so that there is an effect that a mold having excellent front surface transferability and a mold manufacturing method can be obtained.

以下、図面を参照して、本発明の実施の形態を詳細に説明する。図1は本発明による鋳型製造プロセスの第1の実施の形態を示す概略断面図である。図1において、まず、鋳型原盤の基となる基板材料1を用意する(図1(a))。
本実施の形態では陽極酸化性の優れたアルミニウムA5052材を用いた。原盤所望の平坦度、表面粗さに基板面を機械加工で仕上げる。本実施の形態ではアルミ基板1面をシリコン単結晶の切削バイトで超精密切削して基板平坦度5μm以下、表面粗さRz0.1μm以下とした。
このアルミ基板1を図示しない治具に固定した後、硫酸水溶液10〜20Vol%、電解温度20±1℃、電圧10〜20Vで陽極電解し、陽極酸化膜2を形成する。陰極には、アルミニウム、白金、鉛、のいずれかの平板を用いる。
電解中のジュール熱による液温上昇を防ぐため冷却器と液循環ポンプを併用した。陽極酸化膜2の厚さは或る厚さまではファラデー則にしたがう。狙いの厚さになったら通電を停止する。
液中より引き出し水洗乾燥後、前記基板1を治具より取り外す。アルミの陽極電解では基板板厚方向にアルミニウム陽極酸化膜2が成長する。通電量により、サブミクロン領域から数十ミクロンオーダーまで膜厚制御できる。
次にフォトリソ工程に移る。基板1の陽極酸化膜2面に光感光性樹脂(レジスト)3を塗布する(図1(c))。レジスト3塗布後、フォトマスク形成と、露光・現像工程(図1(d))を経て狙いのレジストパターン4(3)を形成する。
レジストパターン4に形成された開口部4a内には陽極酸化膜2が露出する。スルファミン酸水溶液、若しくは、燐酸水溶液でレジスト開口部の陽極酸化膜2をエッチング除去する(e)。レジスト開口部の陽極酸化膜が溶解除去され基板金属1のアルミニウムが露出する(f)。
陽極酸化膜2とアルミニウム基板金属のエッチング速度に差があるので陽極酸化膜の厚さで鋳型溝深さはほぼ決定づけられる。陽極酸化とエッチングプロセスのみでサブミクロンから数十ミクロンレベルの溝パターンを付与した鋳型5が製作できる。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a schematic cross-sectional view showing a first embodiment of a mold manufacturing process according to the present invention. In FIG. 1, first, a substrate material 1 to be a base of a mold master is prepared (FIG. 1 (a)).
In this embodiment, an aluminum A5052 material having excellent anodizing properties is used. The master surface is finished by machining to the desired flatness and surface roughness. In the present embodiment, one surface of the aluminum substrate is ultra-precisely cut with a silicon single crystal cutting tool to obtain a substrate flatness of 5 μm or less and a surface roughness Rz of 0.1 μm or less.
After this aluminum substrate 1 is fixed to a jig (not shown), an anodic oxide film 2 is formed by anodic electrolysis at a sulfuric acid aqueous solution of 10-20 Vol%, an electrolysis temperature of 20 ± 1 ° C., and a voltage of 10-20 V. A flat plate of aluminum, platinum, or lead is used for the cathode.
A cooler and a liquid circulation pump were used in combination to prevent the liquid temperature from rising due to Joule heat during electrolysis. When the thickness of the anodic oxide film 2 is a certain thickness, it follows the Faraday rule. When the target thickness is reached, stop energization.
The substrate 1 is removed from the jig after being drawn out from the liquid, washed with water and dried. In the anodic electrolysis of aluminum, an aluminum anodic oxide film 2 grows in the thickness direction of the substrate. The film thickness can be controlled from the submicron range to the order of several tens of microns depending on the amount of current.
Next, the photolithography process is started. A photosensitive resin (resist) 3 is applied to the surface of the anodic oxide film 2 of the substrate 1 (FIG. 1C). After applying the resist 3, a target resist pattern 4 (3) is formed through a photomask formation and exposure / development steps (FIG. 1 (d)).
In the opening 4a formed in the resist pattern 4, the anodic oxide film 2 is exposed. The anodic oxide film 2 in the resist opening is removed by etching with a sulfamic acid aqueous solution or a phosphoric acid aqueous solution (e). The anodic oxide film in the resist opening is dissolved and removed to expose the aluminum of the substrate metal 1 (f).
Since there is a difference in the etching rate between the anodized film 2 and the aluminum substrate metal, the depth of the mold groove is almost determined by the thickness of the anodized film. A mold 5 provided with a groove pattern of submicron to several tens of microns can be manufactured only by anodizing and etching processes.

このように本発明に係る微細形状転写方法、或いは鋳型製作方法の第1の特徴は、光学的面精度を有する基板1上に形成した酸化膜2を選択的に除去して形成した微細パターン2で形状転写するようにした点にある。光学的面精度を有する基板上に形成した酸化膜を選択的に除去して形成した微細パターンで形状転写するようにした点にある。
酸化膜2としては、例えばアルミ酸化膜を使用する。また、酸化膜として、自然酸化膜、化学酸化膜、或いは陽極酸化膜を用いる。酸化膜2を狙いの形状に食刻して鋳型パターンとする。
基板1としては、アルミニウム基板、アルミスパッタ膜を成膜したガラス、或いはセラミックス基板を用いることができる。
陽極酸化膜2のビッカース硬度をHv150〜350とする。
陽極酸化膜2のアンダー膜ビッカース硬度をHv150〜200、最外殻膜ビッカース硬度をHv200〜350の2層構成としてもよい。
陽極酸化膜2の形成法において電解初期の液温度を0〜10℃とし、その後、電解液温度を20±2℃の2段階で陽極酸化処理する点も特徴的である。
As described above, the first feature of the fine shape transfer method or the mold manufacturing method according to the present invention is the fine pattern 2 formed by selectively removing the oxide film 2 formed on the substrate 1 having optical surface accuracy. The point is that the shape is transferred at the point. The point is that shape transfer is performed with a fine pattern formed by selectively removing an oxide film formed on a substrate having optical surface accuracy.
As the oxide film 2, for example, an aluminum oxide film is used. Further, a natural oxide film, a chemical oxide film, or an anodic oxide film is used as the oxide film. The oxide film 2 is etched into a target shape to form a mold pattern.
As the substrate 1, an aluminum substrate, a glass on which an aluminum sputtered film is formed, or a ceramic substrate can be used.
The Vickers hardness of the anodic oxide film 2 is set to Hv 150 to 350.
The under film Vickers hardness of the anodic oxide film 2 may be a two-layer structure of Hv 150 to 200, and the outermost shell film Vickers hardness may be Hv 200 to 350.
In the method of forming the anodic oxide film 2, the liquid temperature at the initial stage of electrolysis is set to 0 to 10 ° C., and thereafter, the anodic oxidation treatment is performed in two steps of 20 ± 2 ° C.

図2は本発明による鋳型製造プロセスの第2の実施の形態を示す概略断面図である。本発明の第2の実施の形態では、原盤素材に、ガラス、セラミックスなどの非金属基板11を用いる(図2(a))。
例えば、板ガラス基板を用いれば鏡面性と平坦性に優れ、安価かつ容易に光学面精度の基板11を入手できる。ガラス基板11そのままでは陽極酸化はできないのでアルミニウムのスパッタ膜を成膜する必要がある。
ガラス基板11洗浄後、鋳型パターン形成面に透明導電膜(ITO)12を厚さ500〜1000nm程度成膜する(図2(b))。引き続き、アルミニウムのスパッタ膜13を厚さ1000〜2000nm成膜する(図2(c))。
燐酸を主成分とした電解液中で陽極酸化する(図2(d))。所望の鋳型パターン厚さまで陽極酸化して陽極酸化膜14を形成する。陽極酸化が終了したら水洗乾燥を経て基板11を取り出す。
第1の実施の形態と同様のフォトリソ工程でレジストパターンを形成し(図2(e))、露光マスクを用いて露光、現像して陽極酸化膜14のパターンを形成してから((f)、(g))、陽極酸化膜14の開口部内のスパッタ膜13をエッチング除去し(図2(h))、更に陽極酸化膜14を除去するとアルミニウムスパッタ膜13の段差、ITO基板面12、非金属基板11からなる微細形状パターンの鋳型15が完成する(図2(i))。元の基板平坦度とほぼ一致した平坦度の鋳型原盤15が得られる。
本発明による鋳型製造プロセスの第3の実施の形態は第1の実施の形態と同様に、アルミニウム陽極酸化膜を食刻して酸化膜と基板露出面からなる微細形状パターンを鋳型としたものである。
アルミ陽極酸化における電解液温度を、0〜10℃の範囲内で処理するようにした。結果として陽極酸化膜の硬度はHv200〜350の硬質膜となりエンボシング成形用鋳型としたとき、鋳型耐磨耗性が向上する。
本発明による鋳型製造プロセスの第4の実施の形態は、第1の実施の形態と同様に、アルミニウム陽極酸化膜を食刻して酸化膜と基板露出面からなる微細形状パターンを鋳型としたものである。
アルミ陽極酸化の電解液初期温度を、0〜10℃の範囲内で処理した後、電解液を昇温させて20±1℃内で連続して電解処理するようにした。陽極酸化膜最外殻層がHv200〜350硬質膜で、基板側アンダー層がHv150〜200の膜硬度的に2層構造になるようにして素材との急激な硬度変化を防止した。
2層構造にしたことにより膜のひび割れ(クラック)や耐衝撃性を改善できた。樹脂型成における対象材料、転写成形条件、用途などにより前記第3の実施の形態と使い分ける。
FIG. 2 is a schematic cross-sectional view showing a second embodiment of a mold manufacturing process according to the present invention. In the second embodiment of the present invention, a non-metallic substrate 11 such as glass or ceramics is used as a master material (FIG. 2A).
For example, if a plate glass substrate is used, the substrate 11 having excellent specularity and flatness and having an optical surface accuracy can be easily obtained at low cost. Since the glass substrate 11 cannot be anodized as it is, it is necessary to form a sputtered aluminum film.
After the glass substrate 11 is cleaned, a transparent conductive film (ITO) 12 is formed to a thickness of about 500 to 1000 nm on the mold pattern formation surface (FIG. 2B). Subsequently, a sputtered aluminum film 13 having a thickness of 1000 to 2000 nm is formed (FIG. 2C).
Anodization is performed in an electrolytic solution containing phosphoric acid as a main component (FIG. 2D). Anodizing film 14 is formed by anodizing to a desired mold pattern thickness. When the anodic oxidation is completed, the substrate 11 is taken out after washing and drying.
A resist pattern is formed by the same photolithography process as in the first embodiment (FIG. 2E), and exposure and development are performed using an exposure mask to form a pattern of the anodic oxide film 14 ((f) , (G)), the sputtered film 13 in the opening of the anodic oxide film 14 is removed by etching (FIG. 2 (h)), and if the anodic oxide film 14 is further removed, the step of the aluminum sputtered film 13, the ITO substrate surface 12, A mold 15 having a fine pattern made of the metal substrate 11 is completed (FIG. 2 (i)). A mold master 15 having a flatness substantially equal to the original substrate flatness is obtained.
As in the first embodiment, the third embodiment of the mold manufacturing process according to the present invention uses an aluminum anodic oxide film etched to form a fine pattern consisting of an oxide film and a substrate exposed surface as a mold. is there.
The electrolytic solution temperature in aluminum anodic oxidation was processed within a range of 0 to 10 ° C. As a result, the hardness of the anodic oxide film becomes a hard film of Hv 200 to 350, and the mold wear resistance is improved when an embossing mold is used.
In the fourth embodiment of the mold manufacturing process according to the present invention, as in the first embodiment, an aluminum anodic oxide film is etched and a fine shape pattern consisting of an oxide film and a substrate exposed surface is used as a mold. It is.
After the initial temperature of the electrolytic solution for aluminum anodization was processed within the range of 0 to 10 ° C., the electrolytic solution was heated to continuously perform electrolytic processing within 20 ± 1 ° C. The outermost shell layer of the anodic oxide film is a hard film of Hv 200 to 350, and the substrate-side under layer has a two-layer structure in terms of film hardness of Hv 150 to 200, thereby preventing a rapid change in hardness with the material.
The two-layer structure improved the film cracking and impact resistance. Depending on the target material in resin molding, transfer molding conditions, application, etc., the third embodiment is properly used.

図3は本発明による第5の実施の形態であるヒータ内蔵型鋳型を示す概略断面図である。図4は図3のヒータ内蔵型鋳型裏面を示す平面図である。図3及び図4において、鋳型は片面に陽極酸化膜パターン16を、更に陽極酸化膜パターン16の裏面に電熱ヒーターパターン17を形成したヒータ内蔵型の鋳型である。
第1の実施の形態と同様にアルミニウム基板11を用意する。この第5の実施の形態では基板11両面を陽極酸化処理する。片面は第1の実施の形態と同様に、陽極酸化膜形成、エッチングパターンを形成して狙いの陽極酸化膜による鋳型パターン12を形成する。裏面の陽極酸化膜16上に薄膜ヒータ部材(薄膜抵抗体)17を接着接合する。
この鋳型構造において、アルミ陽極酸化膜16を薄膜ヒータ部材(薄膜抵抗体)17の電気絶縁層とするのが好ましい。
薄膜ヒータ部材17は、ポリイミドフイルム上にポリイミド系耐熱接着剤でNi−Crの金属箔を接合し、抵抗体パターン状に細線エッチング加工したものである。または、陽極酸化基板面の片面にポリイミド系耐熱接着剤でNi−Crの合金箔を接合してから電気抵抗体の細線パターンを形成する。
いずれも、陽極酸化膜のエッチングで形成された鋳型パターンと対応した関係で抵抗パターンを部分的にレイアウトして局部加熱できるようにしてある。陽極酸化膜とアルミ基板露出部から形成された微細形状パターンの鋳型が得られる。
陽極酸化膜は基板金属から、直接、膜成長するので密着性が極めてよい。ニッケル電鋳のような電着応力の発生が無いので元の基板平坦度を持続した微細形状の鋳型が得られる。金属なので割れや破損がない。エッチングしただけの複製不要なので工程短縮でき安価な鋳型が提供できる。
アルミニウムなので表面を切削と陽極酸化すれば繰り返し使用できる。最終的には原材料としてリサイクルできるので省材料という観点で環境的にも有利なものである。
金属アルミニウムを電解液中で陽極酸化膜するとアルミナAl22の硬質物質が密着性よく成膜できる作用によりこのアルミナAl22部分をフォトリソグラフィでエッチングすると硬質な微細パターンを付与した鋳型原盤を製作できる効果がある。
FIG. 3 is a schematic cross-sectional view showing a heater built-in mold according to a fifth embodiment of the present invention. 4 is a plan view showing the back surface of the heater built-in mold in FIG. 3 and 4, the mold is a heater built-in mold in which an anodic oxide film pattern 16 is formed on one surface and an electric heater pattern 17 is formed on the back surface of the anodic oxide film pattern 16.
Similar to the first embodiment, an aluminum substrate 11 is prepared. In the fifth embodiment, both surfaces of the substrate 11 are anodized. On one side, as in the first embodiment, an anodized film is formed and an etching pattern is formed to form a template pattern 12 with a target anodized film. A thin film heater member (thin film resistor) 17 is bonded and bonded onto the anodized film 16 on the back surface.
In this mold structure, the aluminum anodic oxide film 16 is preferably used as an electrically insulating layer of the thin film heater member (thin film resistor) 17.
The thin-film heater member 17 is obtained by bonding a Ni—Cr metal foil onto a polyimide film with a polyimide heat-resistant adhesive and performing thin line etching into a resistor pattern. Alternatively, after a Ni—Cr alloy foil is bonded to one surface of the anodized substrate surface with a polyimide heat-resistant adhesive, a thin line pattern of an electric resistor is formed.
In either case, the resistance pattern is partially laid out in a relationship corresponding to the template pattern formed by etching the anodic oxide film so that local heating can be performed. A mold having a fine pattern formed from the anodized film and the exposed portion of the aluminum substrate is obtained.
Since the anodic oxide film is grown directly from the substrate metal, the adhesion is extremely good. Since there is no generation of electrodeposition stress as in nickel electroforming, a mold having a fine shape that maintains the flatness of the original substrate can be obtained. Because it is metal, there is no crack or damage. Since it is not necessary to duplicate only by etching, the process can be shortened and an inexpensive mold can be provided.
Since it is aluminum, it can be used repeatedly by cutting and anodizing the surface. Ultimately, it can be recycled as a raw material, which is advantageous from the viewpoint of saving materials.
A mold master that gives a hard fine pattern when the alumina Al 2 O 2 portion is etched by photolithography because the hard material of alumina Al 2 O 2 can be formed with good adhesion by anodizing metal aluminum in the electrolyte There is an effect that can be produced.

陽極酸化膜処理はニッケル電鋳のような電着応力が発生しないので反り変形を生じないので前面転写性に優れた鋳型が得られる効果を有する。陽極酸化膜は基板から直接膜成長するので極めて密着性の優れた鋳型パターンが得られる効果を有する。
アルミニウムを鋳型材料に用いるので熱伝導性に優れるのでエンボシング鋳型に応用すると成形サイクルを短縮できる効果がある。アルミニウムを鋳型材料としたので転写、ハンドリング時に割れ、破損しない鋳型が得られる効果を有する。
安価なアルミニウム基板を用い陽極酸化とエッチングだけの安価な鋳型を提供できる効果がある。鋳型材料がアルミニウムなので再使用、原材料リサイクルができるので省材料、環境側面に優れる効果を有する。
陽極酸化膜は容易に厚さ一定化できるので凹凸パターンの段差一定な鋳型を形成できる効果がある。電解条件制御で硬質の陽極酸化膜を成膜できるので耐磨耗性、耐久性の優れた鋳型が得られる効果を有する。
陽極酸化膜には微細孔を設け、金属充填により異なった特性が得られる効果を有する。陽極酸化膜と基板材料とのエッチングレイトの差より段差パターンの一定な鋳型を形成できる効果を有する。
エッチング容易性によりパターンの粗密が自由な鋳型を容易に形成できる効果を有する。二次元的にパターンレイアウトの自由度大な鋳型が得られる効果を有する。陽極酸化膜のエッチングパターンを鋳型とするので複製工程を不要とする鋳型が得られる効果を有する。
基板鏡面性、平坦性の良いガラス、セラミックス基板にアルミスパッタした膜を陽極酸化とエッチングしたのでナノメータレベルの鋳型が容易に得られる効果を有する。
本発明は、原盤素材、フォトリソグラフィ、エッチング、めっき成膜などのマイクロ加工技術を応用したマイクロ部品及びその鋳型製作方法、エンボシング、ナノインプリンテイングなどの微細形状転写技術に関する。
また、導光板成形法及び鋳型製作分野、インクジェット式記録ヘッド用流路板成形及び鋳型製作分野、マイクロ流体素子及び成形用鋳型製作分野、光書き込みヘッド導光路製作分野、微小三次元構造部品の成形及び鋳型製作分野においても利用可能である。
The anodic oxide film treatment does not generate warping deformation because no electrodeposition stress is generated as in nickel electroforming, and thus has an effect of obtaining a mold having excellent front surface transferability. Since the anodic oxide film is grown directly from the substrate, it has the effect of obtaining a template pattern with excellent adhesion.
Since aluminum is used as a mold material, it has excellent thermal conductivity, and therefore, when applied to an embossing mold, the molding cycle can be shortened. Since aluminum is used as a mold material, it has an effect of obtaining a mold that does not break or break during transfer and handling.
There is an effect that it is possible to provide an inexpensive mold using only an anodizing and etching using an inexpensive aluminum substrate. Since the mold material is aluminum, it can be reused and recycled, so it has excellent effects in terms of material saving and environmental aspects.
Since the thickness of the anodic oxide film can be easily made constant, there is an effect that it is possible to form a casting mold having a uniform uneven pattern. Since a hard anodic oxide film can be formed by controlling electrolytic conditions, it has an effect of obtaining a mold having excellent wear resistance and durability.
The anodic oxide film is provided with fine holes, and has an effect that different characteristics can be obtained by metal filling. Due to the difference in etching rate between the anodic oxide film and the substrate material, there is an effect that a mold having a constant step pattern can be formed.
Due to the ease of etching, it is possible to easily form a mold free of pattern density. There is an effect that a template having a large degree of freedom in pattern layout can be obtained two-dimensionally. Since the etching pattern of the anodic oxide film is used as a mold, it is possible to obtain a mold that does not require a replication process.
Glass having good substrate specularity and flatness, and an aluminum sputtered film on a ceramic substrate are anodized and etched, so that a nanometer level mold can be easily obtained.
The present invention relates to a micro component applying a micro processing technology such as a master material, photolithography, etching, plating film formation, and a mold manufacturing method thereof, embossing, and a fine shape transfer technology such as nanoimprinting.
In addition, light guide plate forming method and mold manufacturing field, ink jet recording head channel plate forming and mold manufacturing field, microfluidic device and molding mold manufacturing field, optical writing head light guide path manufacturing field, and molding of micro three-dimensional structural parts. It can also be used in the mold manufacturing field.

本発明による鋳型製造プロセスの第1の実施の形態を示す概略断面図。1 is a schematic sectional view showing a first embodiment of a mold manufacturing process according to the present invention. 本発明による鋳型製造プロセスの第2の実施の形態を示す概略断面図。The schematic sectional drawing which shows 2nd Embodiment of the mold manufacturing process by this invention. 本発明による第5の実施の形態であるヒータ内蔵型鋳型を示す概略断面図。The schematic sectional drawing which shows the heater built-in type | mold mold | die which is 5th Embodiment by this invention. 図3のヒータ内蔵型鋳型裏面を示す平面図。The top view which shows the heater built-in type | mold mold back surface of FIG. 従来のシリコン鋳型作成ないしNi電鋳複製プロセスを示す概略断面図。Schematic sectional view showing a conventional silicon mold making or Ni electroforming replication process. エンボシング成形プロセスを説明する概略断面図。The schematic sectional drawing explaining an embossing shaping | molding process.

符号の説明Explanation of symbols

1 基板(アルミ基板)
2 アルミ陽極酸化膜
3 レジスト
5 鋳型
11 基板(ガラス基板)
12 ITO膜(透明導電膜)
13 アルミ酸化膜
14 レジスト
15 鋳型
16 陽極酸化膜(電気絶縁層)
17 薄膜抵抗体(薄膜ヒータ部材)
1 substrate (aluminum substrate)
2 Aluminum anodic oxide film 3 Resist 5 Mold 11 Substrate (glass substrate)
12 ITO film (transparent conductive film)
13 Aluminum oxide film 14 Resist 15 Mold 16 Anodized film (electrical insulating layer)
17 Thin film resistor (thin film heater member)

Claims (14)

光学的面精度を有する基板上に形成した酸化膜を選択的に除去して形成した微細パターンで形状転写するようにしたことを特徴とする微細形状転写方法。   A fine shape transfer method characterized in that shape transfer is performed with a fine pattern formed by selectively removing an oxide film formed on a substrate having optical surface accuracy. 光学的面精度を有する基板上に形成した酸化膜を選択的に除去して形成した微細パターンで形状転写するようにしたことを特徴とする鋳型製作方法。   A mold manufacturing method characterized in that shape transfer is performed with a fine pattern formed by selectively removing an oxide film formed on a substrate having optical surface accuracy. 前記酸化膜としてアルミ酸化膜を形成したことを特徴する請求項2記載の鋳型製作方法。   3. The mold manufacturing method according to claim 2, wherein an aluminum oxide film is formed as the oxide film. 前記基板として、アルミニウム基板、アルミスパッタ膜を成膜したガラス、或いはセラミックス基板を用いるようにしたことを特徴とする請求項3記載の鋳型製作方法。   4. The mold manufacturing method according to claim 3, wherein an aluminum substrate, a glass on which an aluminum sputtered film is formed, or a ceramic substrate is used as the substrate. 前記酸化膜として、自然酸化膜、化学酸化膜、或いは陽極酸化膜を用いるようにしたことを特徴とする請求項3または4記載の鋳型製作方法。   5. The mold manufacturing method according to claim 3, wherein a natural oxide film, a chemical oxide film, or an anodic oxide film is used as the oxide film. 前記酸化膜を狙いの形状に食刻して鋳型パターンとしたことを特徴とする請求項5記載の鋳型製作方法。   6. The mold manufacturing method according to claim 5, wherein the oxide film is etched into a target shape to form a mold pattern. 陽極酸化膜のビッカース硬度をHv150〜350としたことを特徴とする鋳型表面処理法。   A mold surface treatment method characterized in that the Vickers hardness of the anodized film is Hv 150 to 350. 陽極酸化膜のアンダー膜ビッカース硬度をHv150〜200、最外殻膜ビッカース硬度をHv200〜350の2層構成としたことを特徴とする鋳型製作方法。   2. A method for producing a mold, characterized in that the anodized film has a two-layer structure of an under film Vickers hardness of Hv 150 to 200 and an outermost shell film Vickers hardness of Hv 200 to 350. 前記陽極酸化膜の形成法において電解初期の液温度を0〜10℃とし、その後、電解液温度を20±2℃の2段階で陽極酸化処理するようにしたことを特徴とする請求項8記載の鋳型製作方法。   9. The method of forming an anodic oxide film according to claim 8, wherein a liquid temperature at an initial stage of electrolysis is set to 0 to 10 [deg.] C., and thereafter an electrolytic temperature is anodized in two steps of 20 ± 2 [deg.] C. Mold making method. 鋳型裏面に薄膜抵抗体を一体的に配置するようにしたことを特徴とする鋳型。   A mold characterized in that a thin film resistor is integrally disposed on the back of the mold. 鋳型裏面に薄膜抵抗体を一体的に配置するようにしたことを特徴とする鋳型製作方法。   A method for producing a mold, characterized in that a thin film resistor is integrally disposed on the back surface of the mold. 前記鋳型構造において、鋳型パターン配置と対応した形で薄膜抵抗体を形成するようにしたことを特徴とする請求項10記載の鋳型。   11. The mold according to claim 10, wherein in the mold structure, a thin film resistor is formed in a form corresponding to the mold pattern arrangement. 前記鋳型構造において、アルミ陽極酸化膜を薄膜抵抗体の電気絶縁層としたことを特徴とする請求項10記載の鋳型。   11. The mold according to claim 10, wherein in the mold structure, the aluminum anodic oxide film is an electric insulating layer of a thin film resistor. 前記鋳型構造において、アルミ陽極酸化膜を薄膜抵抗体の電気絶縁層としたことを特徴とする請求項11記載の鋳型製作方法。   12. The mold manufacturing method according to claim 11, wherein in the mold structure, the aluminum anodic oxide film is an electrically insulating layer of a thin film resistor.
JP2004210801A 2004-07-16 2004-07-16 Method for transferring minute shape, method for manufacturing casting mold, surface treatment method for casting mold, and casting mold Pending JP2006028604A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004210801A JP2006028604A (en) 2004-07-16 2004-07-16 Method for transferring minute shape, method for manufacturing casting mold, surface treatment method for casting mold, and casting mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004210801A JP2006028604A (en) 2004-07-16 2004-07-16 Method for transferring minute shape, method for manufacturing casting mold, surface treatment method for casting mold, and casting mold

Publications (1)

Publication Number Publication Date
JP2006028604A true JP2006028604A (en) 2006-02-02

Family

ID=35895309

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004210801A Pending JP2006028604A (en) 2004-07-16 2004-07-16 Method for transferring minute shape, method for manufacturing casting mold, surface treatment method for casting mold, and casting mold

Country Status (1)

Country Link
JP (1) JP2006028604A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007245474A (en) * 2006-03-15 2007-09-27 Seiko Epson Corp Method for manufacturing inkjet head and inkjet head
JP2008075175A (en) * 2006-08-24 2008-04-03 Canon Inc Method of producing structure
JP2010131985A (en) * 2008-11-07 2010-06-17 Canon Inc Optical element molding die, and method of molding optical element
WO2010116728A1 (en) * 2009-04-09 2010-10-14 シャープ株式会社 Die and method of manufacturing same
JP2013057102A (en) * 2011-09-08 2013-03-28 Kanagawa Acad Of Sci & Technol Method for forming fine structure and mold for nanoimprint having fine structure, and method of producing porus alumina composite
US11097532B2 (en) 2016-02-01 2021-08-24 Ricoh Company, Ltd. Method for making mold, method for molding model material, and mold making apparatus

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007245474A (en) * 2006-03-15 2007-09-27 Seiko Epson Corp Method for manufacturing inkjet head and inkjet head
JP4640222B2 (en) * 2006-03-15 2011-03-02 セイコーエプソン株式会社 Inkjet head manufacturing method
JP2008075175A (en) * 2006-08-24 2008-04-03 Canon Inc Method of producing structure
JP2010131985A (en) * 2008-11-07 2010-06-17 Canon Inc Optical element molding die, and method of molding optical element
WO2010116728A1 (en) * 2009-04-09 2010-10-14 シャープ株式会社 Die and method of manufacturing same
JP4648995B2 (en) * 2009-04-09 2011-03-09 シャープ株式会社 Mold and manufacturing method thereof
US8580135B2 (en) 2009-04-09 2013-11-12 Sharp Kabushiki Kaisha Die and method of manufacturing same
JP2013057102A (en) * 2011-09-08 2013-03-28 Kanagawa Acad Of Sci & Technol Method for forming fine structure and mold for nanoimprint having fine structure, and method of producing porus alumina composite
US11097532B2 (en) 2016-02-01 2021-08-24 Ricoh Company, Ltd. Method for making mold, method for molding model material, and mold making apparatus

Similar Documents

Publication Publication Date Title
JP5239056B2 (en) Electroforming mold manufacturing method, electroforming mold and electroformed part manufacturing method
US8070970B2 (en) UV-LIGA process for fabricating a multilayer metal structure having adjacent layers that are not entirely superposed, and the structure obtained
JP3848303B2 (en) Structure, functional structure, and method of manufacturing magnetic recording medium
JP2001001349A (en) Mold or mold master for micro-lens and manufacture of them
US20100308496A1 (en) Method of manufacturing stamper
JP2006028604A (en) Method for transferring minute shape, method for manufacturing casting mold, surface treatment method for casting mold, and casting mold
US20080217819A1 (en) Micro/Nano-Pattern Film Contact Transfer Process
JP5030618B2 (en) Electroforming mold and manufacturing method thereof
KR102532840B1 (en) Method for manufacturing a horological component and component produced according to said method
JP5799393B2 (en) Ni-W electroforming liquid for molding dies, method for producing molding dies, method for producing molding dies and molded products
JP5200726B2 (en) Imprint method, pre-imprint mold, pre-imprint mold manufacturing method, imprint apparatus
WO2008001487A1 (en) Microstructural body and process for producing the same
JP2008260160A (en) Imprinting mold and imprinting apparatus equipped with it
JP2006303454A (en) Nano imprint mold and methods for manufacturing same, transcribing method of convexo-concave pattern, and manufacturing method of member with concave
JP2006297571A (en) Method for manufacturing micro metallic structure, and micro metallic structure
TWI233423B (en) Method of fabricating a stamper with microstructure patterns
CN108732863A (en) Flexible nano-imprinting template and preparation method thereof
JP5073880B1 (en) Method of manufacturing transfer mold and transfer mold
JP2006299371A (en) Method for producing fine metal structure, and fine metal structure
TW201325884A (en) Pressing roller for producing optical film and manufacturing method of the press roller
JP4650113B2 (en) Laminated structure, donor substrate, and manufacturing method of laminated structure
JP5058297B2 (en) Stamper manufacturing method
JP5621436B2 (en) Mold, manufacturing method thereof, element and optical element
JP5477562B2 (en) Imprint method and assembly imprint mold
KR100727371B1 (en) Method for manufacturing a metal mask using multilayer photoresist film and a metal mask using the same