JP2006025651A - Method for improving storage stability of algaecidal virus against red tide - Google Patents
Method for improving storage stability of algaecidal virus against red tide Download PDFInfo
- Publication number
- JP2006025651A JP2006025651A JP2004206746A JP2004206746A JP2006025651A JP 2006025651 A JP2006025651 A JP 2006025651A JP 2004206746 A JP2004206746 A JP 2004206746A JP 2004206746 A JP2004206746 A JP 2004206746A JP 2006025651 A JP2006025651 A JP 2006025651A
- Authority
- JP
- Japan
- Prior art keywords
- virus
- red tide
- added
- algaecidal
- glycerin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Agricultural Chemicals And Associated Chemicals (AREA)
Abstract
Description
本発明は、有害赤潮原因藻ヘテロシグマ・アカシオに対して強い殺藻活性を有するウイルスHaV(Heterosigma akashiwo virus)ならびにヘテロカプサ・サーキュラリスカーマに対して殺藻活性を有するウイルスHcV(Heterocapsa circularisquama virus)を生物学的赤潮防除剤として実用的に利用するために製剤化して保存する場合に活性を維持した状態で長期間保存するための方法において、抗生物質ならびに保護剤を添加して保存安定性を向上させる方法。 The present invention relates to a virus HaV ( Heterosigma akashiwo virus ) having a strong algicidal activity against the harmful red tide causing alga Heterosigma akashio and a virus HcV ( Heterocapsa circularisquama viru s) having an algicidal activity against the heterocapsa circulariskama. When formulated and stored for practical use as a biological red tide control agent, storage stability is improved by adding antibiotics and protective agents in a method for long-term storage while maintaining activity. How to make.
有用赤潮殺藻ウイルスHaV、HcVは直径約200nmの正二十面体の二本鎖DNAウイルスである。これらの赤潮殺藻ウイルスは、養殖魚類に対する漁業被害の原因となる赤潮原因藻ヘテロシグマ・アカシオあるいは二枚貝に甚大な漁業被害を及ぼすヘテロカプサ・サーキュラリスカーマが発生した天然の海域から分離された強い殺藻活性を有する天然海域に常在する赤潮殺藻ウイルスであり、有用な赤潮制御因子としての実用化に期待がもたれている(特許文献1、特許文献2)。
Useful red tide algae viruses HaV and HcV are icosahedral double-stranded DNA viruses having a diameter of about 200 nm. These red tide algae viruses are strong algicides isolated from the natural seas where the red tide-causing algae heterosigma, acacio, or heterocapsae, which cause enormous fishery damage to bivalves, cause fishery damage to cultured fish. It is a red tide algae virus that is resident in active natural sea areas and is expected to be put to practical use as a useful red tide control factor (
しかしながら、これらの大型DNAウイルスは、宿主細胞の非存在下において温度あるいは光がある条件下では、殺藻活性を容易に失活しやすい(非特許文献1)。そのため、これらの赤潮殺藻ウイルスを長期間保存するためには10−20%のジメチルスルホキシドなどの凍結保護剤を利用し液体窒素中で半永久的に保存する方法が開発されているものの(非特許文献2)、これらの赤潮殺藻ウイルスを商業的に利用するためには、液体窒素による保存では、使用者すなわち養殖漁業者への提供、保管には不向きである。 However, these large DNA viruses easily inactivate algicidal activity under conditions where temperature or light is present in the absence of host cells (Non-patent Document 1). Therefore, in order to preserve these red tide algae viruses for a long period of time, a method for semipermanently storing them in liquid nitrogen using a cryoprotectant such as 10-20% dimethyl sulfoxide has been developed (non-patented). In order to use these red tide-killing algae viruses commercially, it is unsuitable for providing them to users, that is, aquaculture fishers, and for storage in order to use these red tide algae viruses.
従って、これらの有用赤潮殺藻ウイルスを赤潮防除剤として供給するためには、養殖漁業者などの赤潮防除を必要とする使用者が赤潮防除(制御)製剤として、利用、普及しやすいような簡便かつ安価な長期保存技術が必要となる。 Therefore, in order to supply these useful red tide algae viruses as red tide control agents, users who need red tide control, such as aquaculture fishermen, can easily use and disseminate as red tide control (control) preparations. In addition, inexpensive long-term storage technology is required.
これらの有用赤潮殺藻ウイルスHaV、HcVは、その殺藻活性喪失の主要な要因となる光、温度の影響に対し、遮光性の容器に封入し、凍結しない程度の低温すなわち冷蔵条件で保存することである程度、殺藻活性を維持することは可能である。 These useful red tide algae viruses HaV and HcV are sealed in a light-shielding container against the effects of light and temperature, which are the main causes of loss of algaecidal activity, and stored at a temperature that does not freeze, that is, refrigerated conditions. Thus, it is possible to maintain algaecidal activity to some extent.
しかしながら、冷蔵条件での保存では、細菌や糸状菌など、他の雑菌が混在していると、環境の悪化あるいは赤潮殺藻ウイルスが混入雑菌によって産生される酵素などで分解され、殺藻活性の低下につながる可能性があり、これらの雑菌混入を抑止する方法が必要である。これまで慣例的に試験研究用の材料として赤潮殺藻ウイルスを保存する場合、アジ化ナトリウムを0.1%程度添加する方法がとられることがあったが、雑菌抑制効果はあるものの、殺藻活性の低下などの赤潮殺藻ウイルスに対する影響もあり、更に、人畜毒性が高いため安全性の面からも利用は難しいものと思われる。 However, in storage under refrigerated conditions, if other bacteria such as bacteria and filamentous fungi are present, the environment deteriorates or the red tide algae virus is degraded by enzymes produced by the contaminated bacteria, and the algaecidal activity is reduced. There is a need for a method that can reduce these contaminations, which can lead to a decrease. Conventionally, when red tide algae virus is preserved as a material for testing and research, a method of adding about 0.1% of sodium azide has been used. There is also an effect on the red tide algae virus, such as a decrease in activity, and it is considered that it is difficult to use from the viewpoint of safety because of its high human toxicity.
一方、これらの有用赤潮殺藻ウイルスが、光などの影響によって殺藻活性を失う原因は現在のところ解明されていないが、赤潮殺藻ウイルスが宿主細胞に感染し、ゲノムを注入、宿主細胞内で増殖するという一連の感染機構から考えて、赤潮殺藻ウイルス粒子表層に宿主細胞に対して特異的な感染構造を有しているものと考えられる。失活の一要因としてこれらの赤潮殺藻ウイルス表層構造が光、温度などの要因によって、破壊されている可能性が考えられる。 On the other hand, the reason why these useful red tide algae viruses lose their algicidal activity due to the effects of light has not been elucidated at present, but red tide algae viruses infect host cells, inject genomes, In view of a series of infectious mechanisms of proliferation in the red tide algae virus particle surface layer, it is considered to have an infection structure specific to the host cell. As a factor of inactivation, the surface structure of these red tide algae viruses may be destroyed by factors such as light and temperature.
従って、このような赤潮殺藻ウイルスの感染に関わる表層構造を外部要因から保護する効果がある有効な添加剤を見出すことで、更なる保存期間の延長が可能になると考えられる。 Therefore, it is considered that the storage period can be further extended by finding an effective additive having an effect of protecting the surface layer structure related to infection with such red tide algae virus from external factors.
本発明の目的は、HaV、HcVなどの有用赤潮殺藻ウイルスを赤潮防除剤として実用的に利用するために、これらの赤潮殺藻ウイルスを長期間安定的に保存する方法を提供することにある。 An object of the present invention is to provide a method for stably storing these red tide algae viruses for a long period of time in order to practically use useful red tide algae viruses such as HaV and HcV as a red tide control agent. .
本発明者らは、これらの赤潮殺藻ウイルスを遮光、低温条件で保存することに加えて、雑菌などによる腐敗を抑制し、更に、赤潮殺藻ウイルス粒子表層構造を保護する方法について鋭意検討を行った。その結果、赤潮殺藻ウイルスの殺藻活性に影響が無い濃度の複数の抗生物質を添加し、更に表層構造を保護するためにグリセリンを添加することが有効であることを見出し、本発明を完成するに至った。
すなわち、本発明は、
[1] 生物学的赤潮防除剤として有用な赤潮殺藻ウイルスに抗生物質および保護剤を添加して保存安定性を向上させる方法
[2] 有用な赤潮殺藻ウイルスがヘテロシグマ・アカシオの殺藻ウイルスであるHaV(Heterosigma akashiwo virus)およびヘテロカプサ・サーキュラリスカーマの殺藻ウイルスであるHcV(Heterocapsa circularisquama virus)である前記1に記載の方法
[3] 添加する抗生物質が硫酸ストレプトマイシンおよびクロラムフェニコールである前記1に記載の方法
[4] 添加する硫酸ストレプトマイシンの濃度が50〜5000ppmおよびクロラムフェニコールの濃度が5〜500ppmである前記3に記載の方法
[5] 好ましくは、添加する硫酸ストレプトマイシンの濃度が100〜1000ppmおよびクロラムフェニコールの濃度が10から100ppmである前記3に記載の方法
[6] 添加する保護剤がグリセリンである前記1に記載の方法
[7] 添加するグリセリンの量が1〜20%である前記6に記載の方法
[8] 好ましくは添加するグリセリンの量が5〜10%である前記6に記載の方法
In addition to storing these red tide killing algae viruses under light-shielding and low temperature conditions, the present inventors have conducted extensive studies on a method for suppressing spoilage caused by various bacteria and protecting the surface structure of the red tide killing algae virus particles. went. As a result, it was found that it is effective to add a plurality of antibiotics at a concentration that does not affect the algicidal activity of the red tide algae virus, and to add glycerin to protect the surface layer structure, and the present invention was completed. It came to do.
That is, the present invention
[1] A method for improving storage stability by adding an antibiotic and a protective agent to a red tide algae virus useful as a biological red tide control agent. [2] A useful red tide algae virus is a heterosigma acacio algicidal virus. The method according to 1 above, wherein the antibiotics to be added are Hav ( Heterosigma akashiwo virus ) and HcV ( Heterocapsa circularisquama viru s), which is an algicidal virus of heterocapsa circulariskama [3] The antibiotics added are streptomycin sulfate and chloramphenicol [4] The method according to 1 above, wherein the concentration of streptomycin sulfate to be added is 50 to 5000 ppm and the concentration of chloramphenicol is 5 to 500 ppm [5] Preferably, the streptomycin sulfate to be added Concentration of 100-1000 ppm and chloramphenicol The method according to 3 above, wherein the concentration of the glycerol is 10 to 100 ppm [6] The method according to 1 above, wherein the protective agent to be added is glycerin [7] The amount of glycerin to be added is 1 to 20%. [8] The method according to 6 above, wherein the amount of glycerin added is preferably 5 to 10%.
本発明は、本来容易にその有用な殺藻活性を失活しやすい赤潮殺藻ウイルスHaV、HcVについて長期間安定的にその活性を維持することができるようになるため、これらの赤潮殺藻ウイルスを生物的赤潮防除剤として商業的に利用するための汎用性の向上に繋がる。 In the present invention, the red tide algae virus HaV, HcV that can easily inactivate its useful algaecidal activity can be stably maintained for a long period of time. Leads to improved versatility for commercial use as a biological red tide control agent.
以下に本発明を実施するための好ましい例として、各工程を詳細に説明する。
HaV、HcVは、それぞれの宿主となる赤潮原因藻を一般的な藻類用海水培地(SWM3培地、ESM培地、F/2培地、ASP系培地等)を用いて培養し、その対数増殖初期にそれぞれに感染する赤潮殺藻ウイルスを接種し、宿主がウイルス感染により溶藻した培養液を有用赤潮殺藻ウイルス懸濁液として作成する。得られた赤潮殺藻ウイルス懸濁液は、中空糸膜ろ過などの方法により、不要な培養液を除去することによって濃縮し、高密度の赤潮殺藻ウイルス懸濁液を調整する。これらの過程で雑菌類が赤潮殺藻ウイルス懸濁液中に混入しないよう、培養は宿主細胞と赤潮殺藻ウイルスだけの二者培養とし、更にろ過工程なども無菌条件下で実施するのが望ましい。このようにして得られた雑菌混入がない高密度赤潮殺藻ウイルス懸濁液に、二次的な混入雑菌の増殖抑止剤として、抗生物質硫酸ストレプトマイシンを50(これ以下の濃度では全く雑菌抑制効果が期待できない)から5000ppm(これ以上の濃度では、赤潮殺藻ウイルスの殺藻活性に悪影響を及ぼす)好ましくは最も雑菌生育抑止の安定した効果が見られ、赤潮殺藻ウイルスに対する悪影響がない100から1000ppm、クロラムフェニコールを5から500ppm(雑菌抑制効果が期待でき、赤潮殺藻ウイルスに悪影響を及ぼさない範囲)好ましくは最も安定した雑菌の生育抑制効果が得られ、赤潮殺藻ウイルスに対する悪影響もない10から100ppm濃度となるように添加、溶解し、更に保護剤として、更に赤潮殺藻ウイルス粒子表層構造の保護の目的で、グリセリンを無添加の場合よりは保護効果が期待できるグリセリンを1から20%、好ましくは保護効果による保存安定性向上に効果が認められる5から10%添加して十分に混合した後、遮光性素材の容器に封入し、凍結しない冷蔵条件下で保存する。
Hereinafter, each step will be described in detail as a preferred example for carrying out the present invention.
As for HaV and HcV, red tide-causing algae serving as the respective hosts are cultured using a general seawater medium for algae (SWM3 medium, ESM medium, F / 2 medium, ASP medium, etc.), and at the initial stage of logarithmic growth, respectively. Inoculated with the red tide killing algae virus, the culture solution in which the host dissolved by viral infection is made as a useful red tide killing algae virus suspension. The obtained red tide killing algae virus suspension is concentrated by removing unnecessary culture solution by a method such as hollow fiber membrane filtration to prepare a high density red tide killing algae virus suspension. It is desirable to culture the host cell and the red tide algae virus only in a two-part culture, and to carry out the filtration process under aseptic conditions so that various bacteria are not mixed in the red tide algae virus suspension during these processes. . The thus obtained high-density red tide algae virus suspension free from various germs is mixed with 50 antibiotic streptomycin sulfate as a secondary germ-inhibiting growth inhibitor (at a concentration below this level, the effect of inhibiting germs is completely eliminated. To 5000 ppm (at higher concentrations, it adversely affects the algicidal activity of the red tide algae virus) Preferably, the most stable effect of inhibiting the growth of miscellaneous bacteria is seen, and there is no adverse effect on the red
以下に実施例をあげて本発明をさらに詳しく説明するが、本発明はこれらの実施例のみに限定されるものではない。
[実施例1]
1)硫酸ストレプトマイシンおよびクロラムフェニコールの有効性
HcVの保存中の雑菌汚染を抑制するために有効な成分を明確にするために、幾つかの薬剤についてその効果とHcVの殺藻活性に対する影響性を調査した。
HcVの感染宿主となるヘテロカプサ・サーキュラリスカーマは、2nMのNa2SeO3含有改変SWM3培地(Chenら,1969,J.Phycol 5:211−220;Itoh&Imai,1987,Shuwa,Tokyo,p.122−130)10Lに初期密度6000細胞/mlとなるように接種し、16時間明、8時間暗の明暗周期条件、温度25±2℃、光強度100μmol photons m-2s-1(蛍光灯による照明)の条件で3日間培養し、対数増殖初期の宿主細胞が105細胞/ml以上となっていることを確認した培養液を準備した。得られたヘテロカプサ・サーキュラリスカーマの培養液を充填したウイルス生産槽にFalcon社製750ml容量通気孔付組織培養用角型フラスコを用いて培養したHcV懸濁液を1000ml接種した。その後、4日間23±2℃で静置培養して得られたHcV溶液を中空糸膜(旭化成microza(登録商標)MFモジュールPSP−113)でろ過することにより濃縮回収し、HcV高密度濃縮懸濁液(9.71×102感染単位/ml)を得た。このHcV高密度濃縮懸濁液には、抗生物質による雑菌抑制効果を判別しやすいように、予め本溶液中で増殖可能な雑菌混入が確認されている溶液を添加した。調整した約50mlのHcV懸濁液を遮光アルミラミネートバッグに入れ、一晩冷蔵保管したのち、(ア)硫酸ストレプトマイシン100ppm、(イ)クロラムフェニコール10ppm、(ウ)硫酸ストレプトマイシン1000ppm+クロラムフェニコール100ppm、(エ)硫酸ストレプトマイシン100ppm+クロラムフェニコール10ppm、(オ)アジ化ナトリウム1000ppm、(カ)アジ化ナトリウム100ppm、(キ)ペニシリンGカリウム1000ppm、(ク)非添加原液(薬剤等一切投入していないHcV高密度濃縮懸濁液)となるように各供試薬剤を添加し、ただちに、限界希釈法によって調整直後の各懸濁液のウイルス力価を調査した。残った試料は、遮光冷蔵保存し、一ヵ月後に同様の方法でウイルス力価を調査して活性赤潮殺藻ウイルスの劣化程度を調査した。
その結果、(ク)非添加原液および(オ)アジ化ナトリウム1000ppm添加区では、一ヶ月後に著しく力価が低下した(調整時6.81×105感染単位/ml、1ヵ月後3.01×102感染単位/ml)。すなわち、アジ化ナトリウムの高濃度添加では、赤潮殺藻ウイルスの殺藻活性に直接的なダメージがあることが分かった。また、(カ)アジ化ナトリウム100ppm添加区ならびに(キ)ペニシリンGカリウム添加区では、一ヵ月後の調査でウイルス力価は比較的高く検出されたが((カ)5.15×105感染単位/ml、(キ)5.82×104感染単位/ml)、雑菌も多く検出され、長期的な雑菌抑制によるHcVの保存安定性向上の効果はないことが分かった。これに対し、硫酸ストレプトマイシンおよびクロラムフェニコールの単用または混用処理区では雑菌の抑制とウイルス力価の劣化抑制が認められた(1ヵ月後(ア)1.38×105感染単位/ml、(イ)7.1×105感染単位/ml、(ウ)9.38×105感染単位/mlおよび1.61×106感染単位/ml)。特に、雑菌の抑制ならびにウイルス力価ともに混用した場合の方が効果が高かった。また、混用した場合は、低濃度での混合(硫酸ストレプトマイシン100ppm+クロラムフェニコール10ppm)の方が薬剤のウイルス力価に対するダメージが少ないのと同時に混入雑菌に対する増殖抑制効果も十分にあり、本赤潮殺藻ウイルスの安定保存のために効果的であることが確認された。(図1)
The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to these examples.
[Example 1]
1) Efficacy of streptomycin sulfate and chloramphenicol In order to clarify the effective components for suppressing the contamination of bacteria during storage of HcV, the effects of some drugs and their effects on the algicidal activity of HcV investigated.
Heterocapsa circulariskerma that is an HcV-infected host is a modified SWM3 medium containing 2 nM Na 2 SeO 3 (Chen et al., 1969, J. Physol 5: 211-220; Itoh & Imai, 1987, Shuwa, Tokyo, p. 122- 130) 10 L inoculated to an initial density of 6000 cells / ml, light / dark cycle conditions of 16 hours light and 8 hours dark,
As a result, in the (ku) non-addition stock solution and (e)
[実施例2]
2)HcVに対する数種保護剤の評価
長期保存が困難なHcVについて、保存安定性向上効果が期待できる数種保護剤について、その添加効果を調査した。供試した保護剤はポリエチレングリコール(#6000)10%、グリセリン50%および5%、蔗糖12%、硫酸マグネシウム0.2%であり、最終的に保存状態とする際に上記濃度となるように調整した。
調整した直後に、各溶液から適当量をとり、ヘテロカプサ・サーキュラリスカーマ HU9433P株(高知県浦の内湾から分離された株)に対する限界希釈法により1mlあたりのウイルス感染単位量を調査した。その後、アルミラミネートパックに各溶液を充填、遮光状態とし、5℃下に保存した。保存開始から1ヵ月後および2ヵ月後に同様の方法で赤潮殺藻ウイルスの殺藻活性を測定して各条件下における保存安定性を調査した。
その結果、グリセリン50%、蔗糖12%では、いずれも調整直後にHcV密度が100感染単位/ml以下となり、殺藻活性の著しい低下(調整直後、グリセリン50%では49.1感染単位/ml、蔗糖12%では40.6感染単位/mlしか検出されなかった)が認められた。更に、一ヶ月後にはいずれも検出限界(3.01感染単位/ml)以下となった。このことからこれらの処理では保護剤としての機能を果たさないことが明らかとなった。一方、ポリエチレングリコールおよび硫酸マグネシウムの添加は、調整直後の劣化は認められないものの、1ヵ月後には無処理区(2500感染単位/ml)と同等(硫酸マグネシウム0.2%添加区、2180感染単位/ml)かそれ以下(ポリエチレングリコール10%添加区、5.15感染単位/ml)に減少し、更に2ヵ月後には、硫酸マグネシウム0.2%添加区では103.2感染単位/ml、ポリエチレングリコール添加区では検出限界以下までに劣化が進行した。
唯一、グリセリン5%添加区で、無処理区と比較して2ヵ月後までの保存安定性が向上する傾向が認められ、調整直後1.19×105感染単位/mlが1ヵ月後に7.08×105感染単位/ml、2ヵ月後でも3.73×104感染単位/mlとなった。すなわち、5%のグリセリンの添加が本赤潮殺藻ウイルスの保存に効果的であることが明らかとなった(図2)。
[Example 2]
2) Evaluation of several protective agents against HcV With respect to HcV that is difficult to store for a long period of time, the effect of addition of several protective agents that can be expected to improve storage stability was investigated. The protective agents tested were 10% polyethylene glycol (# 6000), 50% and 5% glycerin, 12% sucrose, and 0.2% magnesium sulfate, so that the final concentration was as described above. It was adjusted.
Immediately after the preparation, an appropriate amount was taken from each solution, and the viral infection unit amount per 1 ml was examined by the limiting dilution method for Heterocapsa circulariskerma HU9433P strain (a strain isolated from Uchi Bay in Kochi Prefecture). Thereafter, the aluminum laminate pack was filled with each solution, kept in a light-shielded state, and stored at 5 ° C. One month and two months after the start of storage, the algicidal activity of the red tide algavirus was measured in the same manner, and the storage stability under each condition was investigated.
As a result, in both glycerin 50% and sucrose 12%, the HcV density was 100 infectious units / ml or less immediately after adjustment, and the algicidal activity was significantly reduced (immediately after adjustment, glycerin 50% was 49.1 infectious units / ml, Only 40.6 infectious units / ml were detected with 12% sucrose). Furthermore, after one month, all were below the detection limit (3.01 infectious units / ml). This revealed that these treatments do not function as protective agents. On the other hand, the addition of polyethylene glycol and magnesium sulfate is equivalent to the non-treated group (2500 infectious units / ml) after 1 month (magnesium sulfate 0.2% added group, 2180 infectious units), although deterioration immediately after adjustment is not recognized. / Ml) or less (10% polyethylene glycol added group, 5.15 infectious units / ml), and two months later, 103.2 infectious units / ml polyethylene in 0.2% magnesium sulfate group In the glycol addition section, the deterioration progressed to below the detection limit.
Only in the group with 5% glycerin, the storage stability up to 2 months later was observed compared to the untreated group, and 1.19 × 10 5 infectious units / ml immediately after adjustment was 7. The result was 08 × 10 5 infectious units / ml, and 3.73 × 10 4 infectious units / ml after 2 months. That is, it was revealed that the addition of 5% glycerin is effective for preserving the red tide algae virus (FIG. 2).
[実施例3]
3)グリセリン濃度の最適化
保護剤として添加するグリセリンの最適濃度について、抗生物質(硫酸ストレプトマイシン、クロラムフェニコール)との併用による効果とともに評価を行った。
試験は、実施例1)と同様に、感染宿主となるヘテロカプサ・サーキュラリスカーマは、2nMのNa2SeO3含有改変SWM3培地(Chenら,1969,J.Phycol 5:211−220;Itoh&Imai,1987,Shuwa,Tokyo,p.122−130)10Lに初期密度6000細胞/mlとなるように接種し、16時間明、8時間暗の明暗周期条件、温度25±2℃、光強度100μmol photons m-2s-1(蛍光灯による照明)の条件で3日間培養し、対数増殖初期の宿主細胞が105細胞/ml以上となっていることを確認した培養液を準備した。得られたヘテロカプサ・サーキュラリスカーマの培養液を充填したウイルス生産槽にFalcon社製750ml容量通気孔付組織培養用角型フラスコを用いて培養したHcV懸濁液を1000ml接種した。その後、4日間23±2℃で静置培養して得られた赤潮殺藻ウイルスHcV懸濁液を中空糸膜(旭化成microza(登録商標)MFモジュールPSP−113)でろ過することにより濃縮回収し、HcV高密度濃縮懸濁液を得た。本試験では、雑菌混入がないことを確認したHcV懸濁液を使用し、以下の手順で、各成分を調整した。すなわち、準備したHcV懸濁液に対してグリセリンを2.5%、5.0%および10.0%の添加濃度となるように添加し、対照としては2nMのNa2SeO3含有改変SWM3培地で同様の希釈濃度となるように調整したHcV懸濁液(無処理区)を実験に用いた。また、雑菌制御による保存安定性向上に効果があると思われた抗生物質である硫酸ストレプトマイシン100ppmならびにクロラムフェニコール10ppmを共に添加した区を設け、併用した場合の保護効果についても評価を行った。なお、グリセリンの添加量により、実験に供試したHcV溶液が希釈される割合が変わるため、実験の精度をより高くするために、グリセリン添加区それぞれの濃度ごとにグリセリンならびに抗生物質溶液の代わりにSWM3培地添加による無処理区を設定した。
[Example 3]
3) Optimization of glycerin concentration The optimum concentration of glycerin to be added as a protective agent was evaluated together with the effect of combined use with antibiotics (streptomycin sulfate, chloramphenicol).
In the test, as in Example 1), the heterocapsa circulariskerma used as the infected host was modified with 2 nM Na 2 SeO 3 -containing modified SWM3 medium (Chen et al., 1969, J. Physol 5: 211-220; Itoh & Imai, 1987). , Shuwa, Tokyo, p. 122-130) 10 L was inoculated so as to have an initial density of 6000 cells / ml, light / dark cycle conditions of 16 hours light and 8 hours dark,
その結果、グリセリン2.5%比較区では、抗生物質を添加しない場合、1ヶ月後には、グリセリン非添加ならびに2.5%添加の場合でそれぞれ9.4×104感染単位/mlならびに1.99×105感染単位/ml、抗生物質を添加した場合でも、グリセリン非添加ならびに2.5%添加の場合でそれぞれ1.03×105感染単位/mlならびに3.35×105感染単位/mlとほとんど差はなく、グリセリン5.0%比較区では、抗生物質を添加しない場合、グリセリン非添加ならびに5.0%グリセリン添加の場合それぞれ4.45×104感染単位/mlならびに6.98×105感染単位/ml、抗生物質を添加した場合は、グリセリン非添加ならびに5.0%添加の場合でそれぞれ1.11×105感染単位/mlならびに8.67×105感染単位/mlとなり、抗生物質ならびに5%グリセリン添加区でウイルス感染単位密度が高くなる傾向が認められた。一方、グリセリン10.0%比較区では、この傾向がより顕著に現れ、抗生物質を添加しない場合、グリセリン非添加ならびに10.0%グリセリン添加の場合でそれぞれ検出限界以下ならびに3.01×103感染単位/ml、抗生物質を添加した場合は、グリセリン非添加ならびに10.0%添加の場合でそれぞれ7.18×103感染単位/mlならびに9.82×103感染単位/mlとなった。グリセリン10%比較区では、調整1日後のウイルス感染単位密度が他の試験区よりも低くなっているが、これは、試験に供試したHcV懸濁液の違いとともに、各調査用保存懸濁液の調整の際に希釈される割合が他の区より高かったことによる。
As a result, in the glycerin 2.5% comparison group, when no antibiotic was added, 9.4 × 10 4 infectious units / ml and 1. 99 × 10 5 infectious units / ml, 1.03 × 10 5 infectious units / ml and 3.35 × 10 5 infectious units / ml with and without glycerin added and with 2.5% added, respectively There is almost no difference from ml, and in the glycerin 5.0% comparative group, when no antibiotic is added, glycerin is not added, and 5.0% glycerin is added, 4.45 × 10 4 infectious units / ml and 6.98, respectively. × 10 5 infectious units / ml, 1.11 × 10 5 infectious units / ml and 8.6 when glycerin is not added and 5.0% is added, respectively, when antibiotics are added It became 7 × 10 5 infectious units / ml, and a tendency was found that the density of viral infectious units increased in the antibiotic and 5% glycerol-added sections. On the other hand, glycerol in 10.0% compared ku, appears this tendency more remarkably, without the addition of antibiotics, glycerol was not added and 10.0% glycerol, respectively, below the detection limit and 3.01 × 10 3 in the case of addition Infectious units / ml, when antibiotics were added, the glycerin-free and 10.0% additions were 7.18 × 10 3 infectious units / ml and 9.82 × 10 3 infectious units / ml, respectively. . In the
3ヶ月後の調査では、グリセリン2.5%比較区では、抗生物質非添加系で、グリセリン非添加ならびに2.5%添加の場合でそれぞれ3.01感染単位/mlならびに18感染単位/ml、抗生物質添加系でも、グリセリン非添加ならびに2.5%添加の場合でそれぞれ30.1感染単位/mlならびに70.2感染単位/mlとなり、抗生物質とグリセリンを同時に添加した場合に赤潮殺藻ウイルス感染単位密度が最も高くなった。この傾向は、グリセリン5.0%比較区でもみられ、抗生物質非添加系で、グリセリン非添加ならびに5.0%グリセリン添加の場合でそれぞれ3.85感染単位/mlならびに9.89×102感染単位/ml、抗生物質添加系で、グリセリン非添加ならびに5.0%グリセリン添加の場合でそれぞれ30.1感染単位/mlならびに2.32×104感染単位/mlであった。グリセリン10.0%比較区では、更にこの傾向が顕著になり、抗生物質非添加系で、グリセリン非添加ならびに10.0%グリセリン添加の場合でそれぞれ9.82感染単位/mlならびに44.5感染単位/ml、抗生物質添加系で、グリセリン非添加ならびに10.0%添加の場合でそれぞれ30.1感染単位/mlならびに1.39×102感染単位/mlとなった。試験開始直後の活性赤潮殺藻ウイルス密度が、グリセリン5%添加区の10分の1から100分の1と低かったにも関わらず、3ヶ月後の活性赤潮殺藻ウイルス密度がほぼ等しかったことから、グリセリン10%での保護効果が高いことが明らかとなった。(図3)。 In the investigation after 3 months, in the glycerin 2.5% comparison group, the antibiotic-free system, the glycerin-free system and the 2.5% -added system, 3.01 infectious unit / ml and 18 infectious unit / ml, Even in the antibiotic addition system, the glycerin-free and 2.5% additions were 30.1 infectious units / ml and 70.2 infectious units / ml, respectively, and when the antibiotic and glycerin were added simultaneously, the red tide algavirus Infectious unit density was highest. This tendency is also observed in the glycerin 5.0% comparison group, in the case of no antibiotics added, 3.85 infectious units / ml and 9.89 × 10 2 in the case of no glycerin and 5.0% glycerin, respectively. Infectious units / ml, antibiotic addition system, 30.1 infectious units / ml and 2.32 × 10 4 infectious units / ml, respectively, with no glycerin added and 5.0% glycerin added. In the glycerin 10.0% comparative group, this tendency becomes more prominent. In the non-antibiotic-added system, 9.82 infectious units / ml and 44.5 infectious cases with no glycerin and 10.0% glycerin, respectively. In the case of the unit / ml, antibiotic addition system, in the case of no glycerin addition and 10.0% addition, respectively, it was 30.1 infectious units / ml and 1.39 × 10 2 infectious units / ml. Although the active red tide algae virus density immediately after the start of the test was as low as 1/10 to 1/100 of the glycerin 5% addition group, the active red tide algae virus density after 3 months was almost equal. From this, it was revealed that the protective effect with 10% glycerin is high. (Figure 3).
[実施例4]
4)硫酸ストレプトマイシン、クロラムフェニコール、グリセリン各至適濃度での保存安定性
硫酸ストレプトマイシン、クロラムフェニコールならびにグリセリンの至適濃度における長期保存性を調査した。
20Lのウイルス生産用培養容器を用いて生産した赤潮殺藻ウイルスHcV懸濁液を中空糸膜ろ過することで濃縮回収し、HcV高密度濃縮懸濁液(感染ウイルス粒子数約1.8×1010感染単位/ml)を得た。
得られたHcV高密度濃縮懸濁液に硫酸ストレプトマイシン100ppm、クロラムフェニコール10ppm(以下抗生物質混液と略す)並びにグリセリン10%を添加し、遮光性アルミラミネート袋に100ml充填し冷蔵(5℃)保存した。また、比較対照として、HcV高密度濃縮懸濁液に抗生物質混液のみ添加した試験区、グリセリン10%のみ添加した試験区、そして無添加の無処理区を設け、それぞれ100mlずつ作製して実験に供試した。保存開始直後、調整1日後、2週間後、1ヵ月後、3ヵ月後および6ヵ月後のウイルス感染単位密度を限界希釈法で測定し、長期的なウイルス保存安定性を確認した。
[Example 4]
4) Storage stability at optimal concentrations of streptomycin sulfate, chloramphenicol, and glycerin The long-term storage stability at optimal concentrations of streptomycin sulfate, chloramphenicol, and glycerin was investigated.
The red tide algae virus HcV suspension produced using a 20 L virus production culture vessel was concentrated and recovered by filtration through a hollow fiber membrane, and the HcV high-density concentrated suspension (the number of infected virus particles was about 1.8 × 10 10 infectious units / ml) was obtained.
To the resulting HcV high-density concentrated suspension, 100 ppm of streptomycin sulfate, 10 ppm of chloramphenicol (hereinafter abbreviated as antibiotic mixture) and 10% glycerin are added, and 100 ml is filled in a light-shielding aluminum laminate bag and refrigerated (5 ° C.). saved. In addition, as a comparative control, a test group in which only an antibiotic mixture was added to a HcV high-density concentrated suspension, a test group in which only 10% glycerin was added, and an untreated group without addition were prepared, and 100 ml each was prepared for the experiment. I tried it. Immediately after the start of storage, after 1 day of adjustment, 2 weeks, 1 month, 3 months, and 6 months, the virus infection unit density was measured by the limiting dilution method to confirm long-term virus storage stability.
HcV濃縮懸濁液原液のみを冷蔵、遮光保存した場合、1ヵ月後にはウイルス感染単位密度の著しい減少がみられ(6.45×106感染単位/ml)、6ヵ月後には検出限界以下(0感染単位/ml)となった。これに対し、抗生物質混液ならびにグリセリン10%を加用した区では、保存開始後1ヶ月目までは、殆ど劣化が認められず(調整時1.82×1010感染単位/ml、1ヶ月後1.77×1010感染単位/ml)、その後、3ヵ月後ならびに6ヶ月後にはそれぞれ1.09×109感染単位/ml、1.82×103感染単位/mlとなった。一方、抗生物質混液を単独で添加した試験区では3ヵ月後ならびに6ヵ月後にそれぞれ3.05×107感染単位/ml、16.3感染単位/mlとなり、また、グリセリンを単独で添加した試験区では3ヵ月後ならびに6ヵ月後にそれぞれ1.07×107感染単位/ml、8.8感染単位/mlまで減少していた(図4)。
以上の結果から、抗生物質混液の添加によって、保存開始後の雑菌汚染を制御するとともに、グリセリン10%を加用しHcV粒子に対する保護効果を加味することによって、HcVの保存安定性が向上することが明らかとなった。
When only the HcV concentrated suspension stock solution was refrigerated and stored in the dark, a significant decrease in the density of viral infectious units was observed after 1 month (6.45 × 10 6 infectious units / ml), and below the detection limit after 6 months ( 0 infection units / ml). In contrast, in the group to which 10% of glycerin mixed with antibiotics was added, almost no deterioration was observed until the first month after the start of storage (1.82 × 10 10 infectious units / ml at the time of adjustment, one month later) 1.77 × 10 10 infectious units / ml), and thereafter, after 3 months and 6 months, they were 1.09 × 10 9 infectious units / ml and 1.82 × 10 3 infectious units / ml, respectively. On the other hand, in the test group to which the antibiotic mixture was added alone, it was 3.05 × 10 7 infectious units / ml and 16.3 infectious units / ml after 3 months and 6 months, respectively, and the test in which glycerin was added alone In the ward, it decreased to 1.07 × 10 7 infectious units / ml and 8.8 infectious units / ml after 3 months and 6 months, respectively (FIG. 4).
From the above results, the storage stability of HcV is improved by controlling the contamination of bacteria after the start of storage by adding an antibiotic mixture and adding 10% glycerin to the protective effect against HcV particles. Became clear.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004206746A JP2006025651A (en) | 2004-07-14 | 2004-07-14 | Method for improving storage stability of algaecidal virus against red tide |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004206746A JP2006025651A (en) | 2004-07-14 | 2004-07-14 | Method for improving storage stability of algaecidal virus against red tide |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2006025651A true JP2006025651A (en) | 2006-02-02 |
Family
ID=35892700
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004206746A Pending JP2006025651A (en) | 2004-07-14 | 2004-07-14 | Method for improving storage stability of algaecidal virus against red tide |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2006025651A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112322500A (en) * | 2020-11-17 | 2021-02-05 | 江苏海洋大学 | Sterile treatment method of red tide heterosigma benthamiana |
CN113549672A (en) * | 2021-05-28 | 2021-10-26 | 江苏百世诺医疗科技有限公司 | Anti-freezing virus sampling and preserving liquid and sampling tube |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1198979A (en) * | 1997-07-28 | 1999-04-13 | Suisancho Nanseikaiku Suisan Kenkyusho | Virus capable of carrying out proliferation and lysing algae by specifically infecting red tide plankton and control of red tide utilizing the same virus and red tide controlling agent and storage of the same virus |
WO2003049764A1 (en) * | 2001-12-12 | 2003-06-19 | Fh Faulding & Co Limited | Composition for viral preservation |
-
2004
- 2004-07-14 JP JP2004206746A patent/JP2006025651A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1198979A (en) * | 1997-07-28 | 1999-04-13 | Suisancho Nanseikaiku Suisan Kenkyusho | Virus capable of carrying out proliferation and lysing algae by specifically infecting red tide plankton and control of red tide utilizing the same virus and red tide controlling agent and storage of the same virus |
WO2003049764A1 (en) * | 2001-12-12 | 2003-06-19 | Fh Faulding & Co Limited | Composition for viral preservation |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112322500A (en) * | 2020-11-17 | 2021-02-05 | 江苏海洋大学 | Sterile treatment method of red tide heterosigma benthamiana |
CN113549672A (en) * | 2021-05-28 | 2021-10-26 | 江苏百世诺医疗科技有限公司 | Anti-freezing virus sampling and preserving liquid and sampling tube |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Cohen et al. | Phage therapy treatment of the coral pathogen V ibrio coralliilyticus | |
He et al. | Experimental transmission, pathogenicity and physical–chemical properties of infectious spleen and kidney necrosis virus (ISKNV) | |
US6284793B1 (en) | Process for preventing contamination of the aquatic environment with organisms from ballast water | |
Feng et al. | Inactivation of a human norovirus surrogate, human norovirus virus-like particles, and vesicular stomatitis virus by gamma irradiation | |
Banach et al. | Microbiological reduction strategies of irrigation water for fresh produce | |
BG107108A (en) | Method of controlling zoological and aquatic plant growth | |
Pereira et al. | Application of bacteriophages during depuration reduces the load of Salmonella Typhimurium in cockles | |
Lawrence et al. | Latent virus‐like infections are present in a diverse range of S ymbiodinium spp.(Dinophyta) | |
Kasai et al. | Elimination of Escherichia coli from oysters using electrolyzed seawater | |
Lasagabaster et al. | Bacteriophage biocontrol to fight Listeria outbreaks in seafood | |
Amtmann et al. | Virucidal effects of various agents—including protease—against koi herpesvirus and viral haemorrhagic septicaemia virus | |
EP3305892B1 (en) | Method for the prevention and/or the biological control of wilt caused by ralstonia solanacearum | |
Araud et al. | High-pressure inactivation of rotaviruses: Role of treatment temperature and strain diversity in virus inactivation | |
Momoyama et al. | Cryopreservation of penaeid rodshaped DNA virus (PRDV) and its survival in sea water at different temperatures | |
TWI826874B (en) | Antibiotic-free compositions for the prevention or control of coccidiosis | |
Tomaru et al. | Growth rate-dependent cell death of diatoms due to viral infection and their subsequent coexistence in a semi-continuous culture system | |
Afonso et al. | Use of ultraviolet C (UVC) radiation to inactivate infectious hematopoietic necrosis virus (IHNV) and viral haemorrhagic septicaemia virus (VHSV) in fish processing plant effluent | |
JP2006025651A (en) | Method for improving storage stability of algaecidal virus against red tide | |
Tomaru et al. | Effects of temperature and light on stability of microalgal viruses, HaV, HcV and HcRNAV | |
Balompapueng et al. | Preservation of resting eggs of the euryhaline rotifer Brachionus plicatilis OF Müller by canning | |
JP2955657B2 (en) | Virus which can specifically infect red tide plankton and proliferate and lyse alga, red tide control method and red tide control agent using the virus, and storage method of the virus | |
Whittington et al. | Removal of oyster pathogens from seawater | |
Maillard et al. | Efficacy and mechanisms of action of sodium hypochlorite on Pseudomonas aeruginosa PAO1 phage F116 | |
Nagasaki et al. | Cryopreservation of a virus (HaV) infecting a harmful bloom causing microalga, Heterosigma akashiwo (Raphidophyceae) | |
JP6316497B1 (en) | Composition and method for controlling scourtworms containing Alexandrium dinoflagellate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070713 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100810 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20110308 |