Nothing Special   »   [go: up one dir, main page]

JP2006019198A - High dielectric composite material - Google Patents

High dielectric composite material Download PDF

Info

Publication number
JP2006019198A
JP2006019198A JP2004197558A JP2004197558A JP2006019198A JP 2006019198 A JP2006019198 A JP 2006019198A JP 2004197558 A JP2004197558 A JP 2004197558A JP 2004197558 A JP2004197558 A JP 2004197558A JP 2006019198 A JP2006019198 A JP 2006019198A
Authority
JP
Japan
Prior art keywords
dielectric
composite material
ceramic powder
dielectric ceramic
high dielectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004197558A
Other languages
Japanese (ja)
Inventor
Minoru Karaki
稔 唐木
Masaki Suzumura
政毅 鈴村
Takeshi Masutani
武 増谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2004197558A priority Critical patent/JP2006019198A/en
Publication of JP2006019198A publication Critical patent/JP2006019198A/en
Pending legal-status Critical Current

Links

Landscapes

  • Inorganic Insulating Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high dielectric composite material having a high dielectric constant with a low dielectric loss tangent which can be formed easily by injection molding or the like, and of which the dielectric constant hardly changes against changes in temperature environment. <P>SOLUTION: The high dielectric composite material comprises dielectric ceramic powder of a crushed state constituted of an element as expressed by an xBaO-yTiO<SB>2</SB>-zNd<SB>2</SB>O<SB>3</SB>system having a wide particle size distribution mixed 40-60 vol% against a thermoplastic resin, and has a high dielectric constant and a low dielectric loss tangent and hardly changes in dielectric constant against the changes in the temperature environment. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、自動車用等の移動体通信アンテナに使用され、誘電体セラミックス粉体が高分子樹脂に混練された高誘電体複合材料に関するものである。   The present invention relates to a high dielectric composite material used in a mobile communication antenna for automobiles and the like, in which dielectric ceramic powder is kneaded with a polymer resin.

近年、自動車等に取り付けられるナビゲーション・システムのグローバル・ポジショニング・システム(以下GPSと称す)などの移動体通信機器が普及している。   In recent years, mobile communication devices such as a global positioning system (hereinafter referred to as GPS) of a navigation system attached to an automobile or the like have become widespread.

そして、それらに用いられるアンテナとしても、セラミックスのみからなる誘電体材料等で形成するものに対し、Biを含有する誘電体セラミックス粉体を高分子樹脂中に混練した誘電体複合材料等も数多く提案され、種々の形状の移動体通信アンテナが上記誘電体複合材料を用いて製造されるようになってきた。特に、その誘電体複合材料の中でも射出成形等が可能なものは、上記セラミックスのみからなる誘電体材料に比べて加工性やコストでのメリットが大きいため、好まれて使用されるようになってきた。   And for antennas used for them, many proposals have been made for dielectric composite materials in which Bi-containing dielectric ceramic powders are kneaded in polymer resin, in contrast to those made of dielectric materials made only of ceramics. Therefore, mobile communication antennas having various shapes have been manufactured using the dielectric composite material. In particular, among the dielectric composite materials, those that can be injection-molded are preferred because they have greater workability and cost advantages than the above-mentioned dielectric materials made only of ceramics. It was.

なお、この出願の発明に関連する先行技術文献情報としては、例えば、特許文献1、特許文献2が知られている。
特開平8−69712号公報 特開平9−147626号公報
As prior art document information related to the invention of this application, for example, Patent Document 1 and Patent Document 2 are known.
JP-A-8-69712 JP-A-9-147626

上記従来のBiを含有する誘電体セラミックス粉体を用いた誘電体複合材料は、そのBiを配合させたことにより、誘電率(以下εrと称す)が大きく、高周波の受信が可能な小型アンテナを容易に形成することができ、また、その誘電正接(以下tanδと称す)も小さいため、受信感度がよいものにできるという利点を有する。   The above-mentioned conventional dielectric composite material using Bi-containing dielectric ceramic powder has a large dielectric constant (hereinafter referred to as εr) and is capable of receiving a high frequency by incorporating Bi. Since it can be formed easily and its dielectric loss tangent (hereinafter referred to as tan δ) is small, it has an advantage that the receiving sensitivity can be improved.

しかしながら、配合されているBiの影響により、εrの温度依存性が高くなってしまうという課題があった。   However, there has been a problem that the temperature dependence of εr becomes high due to the effect of Bi contained.

本発明は、このような従来の課題を解決するものであり、誘電体セラミックス粉体にBiを含有させずに、高εrおよび低tanδで、車載用途での要望の高い使用温度環境(−40℃〜85℃)内においてもεrの変化が著しく低減できる射出成形に適合可能な高誘電体複合材料を提供することを目的とする。   The present invention solves such a conventional problem, and does not contain Bi in the dielectric ceramic powder, has a high εr and a low tan δ, and has a high use temperature environment (−40) for automotive applications. It is an object of the present invention to provide a high-dielectric composite material that can be adapted for injection molding, in which the change in εr can be remarkably reduced even within a temperature range of 0 ° C to 85 ° C.

上記目的を達成するために本発明は、以下の構成を有するものである。   In order to achieve the above object, the present invention has the following configuration.

本発明の請求項1に記載の発明は、熱可塑性樹脂に対し、xBaO・yTiO2・zNd23系で示される元素で構成され、そのモル比が4≦x≦6、50≦y≦60、34≦z≦46である誘電体セラミックス粉体を40〜60容量%配合した高誘電体複合材料としたものである。当該仕様であれば、Biを含有しない誘電体セラミックス粉体を用いて、εrが大きく、tanδが小さい射出成形に適合可能な加工性にも優れたものにできる。また、Biを含有しないものを用いたため、εrの温度依存性が極めて小さく且つ安定したものにでき、自動車用等の移動体アンテナの小形化ならびに低コスト化などを容易に実現し得るという作用を有する。 According to a first aspect of the present invention, of the thermoplastic resin, composed of elements represented by xBaO · yTiO 2 · zNd 2 O 3 system, the molar ratio of 4 ≦ x ≦ 6,50 ≦ y ≦ This is a high dielectric composite material in which 40 to 60% by volume of dielectric ceramic powder satisfying 60, 34 ≦ z ≦ 46 is blended. If it is the said specification, it can be excellent also in the workability adaptable to injection molding with large (epsilon) r and small tan (delta) using the dielectric ceramic powder which does not contain Bi. In addition, since a material not containing Bi is used, the temperature dependency of εr can be made extremely small and stable, and the mobile antenna for automobiles and the like can be easily reduced in size and cost. Have.

請求項2に記載の発明は、請求項1記載の発明において、誘電体セラミックス粉体が、粒子径(メジアン径)D50が3μm以下の破砕状粒子で、その粒度において、D90(累計90%粒子径)とD10(累計10%粒子径)で1≦|(D90−D10)/D50|である広い幅の粒度分布を有するものであり、粉砕等の手段または、同成分系の違うメジアン径を有した同成分系粒子を混合した上記範囲の誘電体セラミックス粉体であれば、誘電体セラミックス粉体として大径のものから小径のものまでの様々な粒子径が混在するものとなるため、当該誘電体セラミックス粉体が樹脂中へ密な状態に充填され、高充填状態のものが容易に得られる。また、その誘電体セラミックス粉体として粉砕状粒子を用いたため、樹脂へのヌレ性が向上し、樹脂中にむらなく均一分散して誘電特性の安定した高誘電体複合材料にできるという作用を有する。   The invention according to claim 2 is the invention according to claim 1, wherein the dielectric ceramic powder is crushed particles having a particle diameter (median diameter) D50 of 3 μm or less. Diameter) and D10 (cumulative 10% particle diameter) have a wide particle size distribution such that 1 ≦ | (D90−D10) / D50 |, and a means such as pulverization or a different median diameter of the same component system is used. If the dielectric ceramic powder in the above-mentioned range in which the same component-based particles are mixed, various particle sizes from large to small are mixed as the dielectric ceramic powder. The dielectric ceramic powder is filled into the resin in a dense state, and a highly filled one can be easily obtained. In addition, since the pulverized particles are used as the dielectric ceramic powder, the wettability to the resin is improved, and evenly dispersed in the resin evenly and can be made into a high dielectric composite material having stable dielectric properties. .

請求項3に記載の発明は、請求項1記載の発明において、熱可塑性樹脂として、300℃において溶融粘度が100〜500ポイズのポリフェニレンサルファイド(PPS)を粉砕して用いるようにしたものであり、誘電体セラミックス粉体が凝集塊になり難く、むらなくPPSに混練でき、安定した高充填状態の均一分散されたものにできる上、混練作業などの短縮化も図れるという作用を有する。   The invention according to claim 3 is the invention according to claim 1, wherein polyphenylene sulfide (PPS) having a melt viscosity of 100 to 500 poise at 300 ° C. is used as the thermoplastic resin. The dielectric ceramic powder is unlikely to become an agglomerate, can be uniformly kneaded into PPS, and can be stably dispersed in a highly filled state, and can shorten the kneading operation.

以上のように本発明によれば、熱可塑性樹脂に混練する誘電体セラミックス粉体の組成や配合率などを特定することにより、高εrおよび低tanδで、車載用途での要望の高い使用温度環境(−40℃〜85℃)内においてもεrの変化の少ない射出成形にも適合可能な高誘電体複合材料が実現できるという有利な効果が得られる。そして、この材料を用いて形成した自動車用等の移動体アンテナは、外形を小型化した場合でも、感度よく高周波の受発信が可能で、その使用温度環境(−40℃〜85℃)内においても電波の受発信状態が安定したものとして安価に構成できるという効果も得られる。   As described above, according to the present invention, by specifying the composition and blending ratio of the dielectric ceramic powder to be kneaded with the thermoplastic resin, the use temperature environment is highly demanded for in-vehicle applications with high εr and low tan δ. Even within the range of (−40 ° C. to 85 ° C.), an advantageous effect that a high dielectric composite material that can be adapted to injection molding with little change in εr can be realized. And, the mobile antenna for automobiles and the like formed using this material can receive and transmit high frequency with high sensitivity even when the outer shape is downsized, and within its operating temperature environment (−40 ° C. to 85 ° C.). In addition, it is possible to obtain an effect that the radio wave can be configured at low cost as the radio wave transmission / reception state is stable.

以下、本発明の実施の形態について説明する。   Embodiments of the present invention will be described below.

(実施の形態)
まず当該実施の形態における高誘電体複合材料として、300℃での溶融粘度が300ポイズの粉砕したPPS樹脂60容量%と、xBaO・yTiO2・zNd23系で示される元素で構成され、そのモル比がx:5、y:55、z:40である複合酸化物のチタン酸ネオジウムバリウムからなる誘電体セラミックス粉体40容量%を混ぜ、二軸押出機で樹脂温度max310℃で可塑化混練を行い、複合材料のペレットを得る。
(Embodiment)
First, the high dielectric composite material in the embodiment is composed of 60% by volume of a pulverized PPS resin having a melt viscosity at 300 ° C. of 300 poise and an element represented by xBaO · yTiO 2 · zNd 2 O 3 system, Mixing 40% by volume of dielectric ceramic powder composed of neodymium barium titanate, a complex oxide with molar ratios of x: 5, y: 55, z: 40, and plasticizing at a resin temperature of max 310 ° C with a twin screw extruder Kneading is performed to obtain composite material pellets.

なお、上記のように誘電体セラミックス粉体を高充填する際、流動性が低くなって成形が困難になる場合があるため、上記複合材料に金属石けん系(例えばステアリン酸カルシウムなど)の滑性助材を添加して分散性を向上させてもよい。その際の添加量としては、上記複合材料の誘電特性を劣化させない程度で設定すればよい。   In addition, when the dielectric ceramic powder is highly filled as described above, the fluidity may be low and molding may be difficult. Therefore, the above-mentioned composite material may be provided with a metal soap-based (for example, calcium stearate) slip aid. A material may be added to improve dispersibility. What is necessary is just to set as the addition amount in that case in the grade which does not degrade the dielectric property of the said composite material.

そして、上記ペレットを用いて射出成形し、1.8×1.8×80mmの高誘電体複合材料の成形品を製作して実施試料1とした。   Then, injection molding was performed using the above pellets, and a molded product of a high dielectric composite material of 1.8 × 1.8 × 80 mm was produced as an execution sample 1.

また、実施試料1と同様に、実施試料1に対して誘電体セラミックス粉末であるxBaO・yTiO2・zNd23の配合容量比率(容量%)を変えて製作した高誘電体複合材料を実施試料2〜4とした。実施試料2は、誘電体セラミックス粉体の配合比率を35容量%と少なくしたもの、実施試料3及び4は、誘電体セラミックス粉体の配合比率を60及び65容量%と多くしたものである。 In addition, similar to the working sample 1, a high dielectric composite material manufactured by changing the mixing capacity ratio (capacity%) of the dielectric ceramic powder xBaO · yTiO 2 · zNd 2 O 3 to the working sample 1 was carried out. Samples 2 to 4 were used. In the working sample 2, the mixing ratio of the dielectric ceramic powder was reduced to 35% by volume, and in the working samples 3 and 4, the mixing ratio of the dielectric ceramic powder was increased to 60 and 65% by volume.

更に、構成元素モル比が上記実施試料1〜4のものとは異なる誘電体セラミックス粉体を用いて同様に実施試料5及び6として準備した。その実施試料5及び6のものの誘電体セラミックス粉体の配合比率は、実施試料1と同じく40容量%の配合とした。そして、実施試料5のものの誘電体セラミックス粉体の構成元素モル比は、x:10、y:60、z:30、実施試料6のものの誘電体セラミックス粉体の構成元素モル比は、x:15、y:25、z:60であるものを用いた。   Furthermore, using the dielectric ceramic powder having a constituent element molar ratio different from that of the above-described Examples 1 to 4, the same as Examples 5 and 6 were prepared. The blending ratio of the dielectric ceramic powders of the working samples 5 and 6 was 40 vol% as in the working sample 1. The constituent element molar ratio of the dielectric ceramic powder of Example 5 is x: 10, y: 60, z: 30, and the constituent element molar ratio of the dielectric ceramic powder of Example 6 is x: 15, y: 25, z: 60 were used.

そして、上記実施試料1〜6に対し、周波数800MHzで誘電率(εr)と誘電正接(tanδ)を測定した。なお、εrの測定は、常温、−40℃放置、85℃放置の各々で測定した。   And the dielectric constant ((epsilon) r) and dielectric loss tangent (tan-delta) were measured with the frequency of 800 MHz with respect to the said implementation samples 1-6. Note that εr was measured at room temperature, at −40 ° C. and at 85 ° C.

以上の各実施試料1〜6の組成および、各々の測定結果を(表1)にまとめて示す。   The composition of each of the above execution samples 1 to 6 and each measurement result are shown together in (Table 1).

Figure 2006019198
Figure 2006019198

上記(表1)の測定結果によれば、実施試料1のものは、εrが常温で10.9と高く、しかもtanδが0.0010と低いものであった。また、実施試料3のものも、同様にεrが常温で12.8と高く、tanδが0.0011と低いものであった。そして、上記実施試料1および3のいずれのものも、εrの温度依存性が少なく、−40℃および85℃放置でのεrの変化は0.1に留まるものであった。   According to the measurement results of the above (Table 1), the sample of Example 1 had a high εr of 10.9 at room temperature and a low tan δ of 0.0010. In the case of Example 3, the εr was also as high as 12.8 at room temperature and the tan δ was as low as 0.0011. In all of the above-mentioned samples 1 and 3, the temperature dependence of εr was small, and the change in εr after standing at −40 ° C. and 85 ° C. remained at 0.1.

一方、誘電体セラミックス粉体の配合比率が35容量%と少ないものである実施試料2では、tanδは0.0011と低いものの、εrも8.8と低くなった。また、配合比率が65容量%と多いものである実施試料4では、誘電体セラミックス粉体量が多いため、成形後の表面が凹凸状になって粗さが目立ち、特性を評価するための形状形成が難しかった。   On the other hand, in Example 2 in which the blending ratio of the dielectric ceramic powder was as small as 35% by volume, tan δ was as low as 0.0011, but εr was as low as 8.8. In addition, in Example 4 in which the blending ratio is as large as 65% by volume, since the amount of the dielectric ceramic powder is large, the surface after molding becomes uneven, the roughness is conspicuous, and the shape for evaluating the characteristics Formation was difficult.

更に、誘電体セラミックス粉体のxBaO・yTiO2・zNd23系の構成元素モル比を変えた実施試料5及び6では、常温でのεrは11.1及び12.6と高くなるが、tanδが0.0019及び0.0021と高くなってしまった。また、εrの温度依存性も大きく、実施試料5では、−40℃放置でのεrが10.9、85℃放置でのεrが13.2と大きく変化してしまうものであった。また、同様に実施試料6では、−40℃放置でのεrが12.3、85℃放置でのεrが14.5と変化するものであった。 Further, in Examples 5 and 6 in which the constituent element molar ratio of the xBaO · yTiO 2 · zNd 2 O 3 system of the dielectric ceramic powder was changed, εr at room temperature was as high as 11.1 and 12.6. The tan δ was as high as 0.0019 and 0.0021. In addition, the temperature dependence of εr was large, and in Example 5, εr after standing at −40 ° C. was significantly changed to 10.9 and εr after standing at 85 ° C. was 13.2. Similarly, in sample No. 6, εr after standing at −40 ° C. was changed to 12.3, and εr after standing at 85 ° C. was changed to 14.5.

上記結果からすると、誘電体セラミックス粉体のxBaO・yTiO2・zNd23系の構成元素モル比として、例えば実施試料1と3のx:5、y:55、z:40のもののように最適化を図り、その配合比率を40〜60容量%とすると、成形性も良好で、高εrかつ低tanδで、しかもεrの温度依存性も低減されたものにできることが判った。なお、その構成元素モル比の適する範囲としては、同様に検討等を行った結果、上記モル比が4≦x≦6、50≦y≦60、34≦z≦46であれば、上記と同様の効果が得られると推察できた。 From the above results, the molar ratio of xBaO · yTiO 2 · zNd 2 O 3 constituent elements of the dielectric ceramic powder is, for example, x: 5, y: 55, and z: 40 of Examples 1 and 3. It was found that when optimization was performed and the blending ratio was 40 to 60% by volume, the moldability was good, the εr was high, the tan δ was low, and the temperature dependency of εr was reduced. In addition, as a suitable range of the constituent element molar ratio, if the above molar ratio is 4 ≦ x ≦ 6, 50 ≦ y ≦ 60, and 34 ≦ z ≦ 46 as a result of the same investigation, the same as above It was inferred that the effect of

以上のように、上記本発明による高誘電体複合材料の仕様とすれば、Biを含有させていない誘電体セラミックス粉体を用いて高εrで低tanδ、しかも−40℃〜85℃内においてεrの変化が少ない射出成形に対応可能なものにできる。   As described above, according to the specification of the high dielectric composite material according to the present invention, a dielectric ceramic powder not containing Bi is used and a high εr, a low tan δ, and an εr within −40 ° C. to 85 ° C. It is possible to make it compatible with injection molding with little change.

そして、これを用いて自動車用等の移動体アンテナを形成すると、高εrで低tanδという材料特性に応じて、外形が小型であっても、感度よく高周波の受発信が可能で、また、使用温度環境(−40℃〜85℃)内におけるεrの変化が少ないという材料特性に応じて、その使用温度環境などに拘わらず電波の受発信状態が安定した信頼性の高いものを、射出成形を用いて容易かつ安価に構成することができる。   And when a mobile antenna for automobiles or the like is formed using this, it is possible to receive and transmit high frequency with high sensitivity even if the outer shape is small according to the material characteristics of high εr and low tan δ. According to the material characteristics that εr changes little in the temperature environment (-40 ° C to 85 ° C), injection molding is performed with a stable and reliable radio wave transmission / reception state regardless of the operating temperature environment. It can be used easily and inexpensively.

なお、本発明の実施試料に用いた誘電体セラミックス粉体は、通常は60容量%も配合すると成形性は悪くなるが、その粒度分布が広い幅をもつ場合は、誘電体セラミックス粉体が最密に充填されやすくなるため、容易に高充填しやすくなる。このとき、粒子径(メジアン径)D50が平均粒子径で3μm以下の破砕状粒子のもので、その粒度分布が、D90(累計90%粒子径)とD10(累計10%粒子径)で1≦|(D90−D10)/D50|のものであれば、大径のものから小径のものまで様々な粒子径が混在しているため、当該誘電体セラミックス粉体が樹脂中に密な状態で充填され、高充填状態に容易にできる。また、その誘電体セラミックス粉体として粉砕状粒子を用いたため、樹脂へのヌレ性が向上し、樹脂中にむらなく均一分散して誘電特性の安定したものにでき好ましい。   It should be noted that the dielectric ceramic powder used in the working sample of the present invention usually has poor formability when blended in an amount of 60% by volume. However, when the particle size distribution has a wide width, the dielectric ceramic powder is the best. Since it becomes easy to pack densely, it becomes easy to carry out high filling easily. At this time, the particle diameter (median diameter) D50 is a crushed particle having an average particle diameter of 3 μm or less, and the particle size distribution is 1 ≦ D90 (cumulative 90% particle diameter) and D10 (cumulative 10% particle diameter). In the case of | (D90-D10) / D50 |, since various particle sizes are mixed from large to small, the dielectric ceramic powder is packed in a dense state in the resin. And can be easily filled. In addition, since pulverized particles are used as the dielectric ceramic powder, the smoothness to the resin is improved, and the dielectric ceramic powder is uniformly dispersed uniformly in the resin, so that the dielectric property is stable.

また、上述したように、可塑化混練時の樹脂として、300℃での溶融粘度が300ポイズのPPS樹脂を粉砕して用いたことも、細かく砕かれた熱可塑性樹脂に対し誘電体セラミックス粉体がむらなく混練するようになることから、溶融流れ性が良好になり、誘電体セラミックス粉体が凝集塊になりにくく安定した高充填状態の均一分散されたものにできる上、混練作業などの短縮化も図れる。例えば、上記実施試料1を製作する際の混練作業としては、従来の1/3〜1/2の混練時間で製作できた。なお、PPS樹脂においては、300℃での溶融粘度が100〜500ポイズのものを粉砕して用いるようにしても同様な効果が期待できる。   In addition, as described above, the PPS resin having a melt viscosity of 300 poise at 300 ° C. is used as a resin during plasticization kneading. This is because the dielectric ceramic powder is used for a finely crushed thermoplastic resin. As a result, the melt flowability is improved, the dielectric ceramic powder is less likely to agglomerate, and can be stably dispersed in a highly filled state, and the kneading operation can be shortened. Can also be achieved. For example, as the kneading work for manufacturing the above-described sample 1, the conventional kneading time was 1/3 to 1/2. Note that the same effect can be expected when a PPS resin having a melt viscosity at 300 ° C. of 100 to 500 poise is pulverized.

そして、本発明に用いることができる有機高分子樹脂としては、上記に説明したPPS樹脂以外であってもよく、成形性がよく、tanδが低く、εrの温度依存性が小さい樹脂が好ましく、例えばポリスチレン(PS)なども好適である。   The organic polymer resin that can be used in the present invention may be other than the PPS resin described above, preferably a resin having good moldability, low tan δ, and low temperature dependence of εr. Polystyrene (PS) and the like are also suitable.

そして、誘電体セラミックス粉体としても、最も好適である上記モル比の設定としたチタン酸ネオジウムバリスタ以外のものも適用可能であり、高い誘電性を備えた複合酸化物、例えばチタン酸ネオジウムやチタン酸カルシウムストロンチウム等の複合酸化物も適用可能である。なお、その場合でも、樹脂にむらなく高充填できるように、粉砕等の手段により破砕状で粒度分布が広い幅をもつもの、または同成分系の違うメジアン径を有した同成分系粒子を混合した粒度分布が広い幅をもつものを用いることが好ましい。   As the dielectric ceramic powder, those other than the neodymium titanate varistor having the most suitable molar ratio can be applied, and complex oxides having high dielectric properties, such as neodymium titanate and titanium. Complex oxides such as calcium strontium acid are also applicable. Even in such a case, in order to be able to fill the resin evenly, a mixture of crushed particles with a wide particle size distribution or similar component particles with different median diameters by means of pulverization or the like is mixed. It is preferable to use one having a wide particle size distribution.

本発明による高誘電体複合材料は、高εrおよび低tanδで、車載用途での要望の高い使用温度環境(−40℃〜85℃)内においてもεrの変化の少ない射出成形にも適合可能なものにできるため、自動車用等の移動体通信アンテナを構成する際等に有用である。   The high dielectric composite material according to the present invention has a high εr and a low tan δ, and can be adapted to injection molding with a small change in εr even in a use temperature environment (−40 ° C. to 85 ° C.) that is highly demanded for automotive applications Therefore, it is useful when configuring a mobile communication antenna for automobiles.

Claims (3)

熱可塑性樹脂に対し、xBaO・yTiO2・zNd23系で示される元素で構成され、そのモル比が4≦x≦6、50≦y≦60、34≦z≦46である誘電体セラミックス粉体を40〜60容量%配合した高誘電体複合材料。 Dielectric ceramics composed of elements represented by xBaO · yTiO 2 · zNd 2 O 3 system and having a molar ratio of 4 ≦ x ≦ 6, 50 ≦ y ≦ 60, and 34 ≦ z ≦ 46 with respect to the thermoplastic resin A high-dielectric composite material containing 40-60% by volume of powder. 誘電体セラミックス粉体が、粒子径(メジアン径)D50が3μm以下の破砕状粒子で、その粒度において、D90(累計90%粒子径)とD10(累計10%粒子径)で1≦|(D90−D10)/D50|である広い幅の粒度分布を有する請求項1記載の高誘電体複合材料。 The dielectric ceramic powder is crushed particles having a particle diameter (median diameter) D50 of 3 μm or less. In terms of particle size, D90 (cumulative 90% particle diameter) and D10 (cumulative 10% particle diameter) are 1 ≦ | (D90 The high-dielectric composite material according to claim 1, having a wide particle size distribution of -D10) / D50 |. 熱可塑性樹脂として、300℃において溶融粘度が100〜500ポイズのポリフェニレンサルファイド(PPS)を粉砕して用いるようにした請求項1記載の高誘電体複合材料。 2. The high dielectric composite material according to claim 1, wherein polyphenylene sulfide (PPS) having a melt viscosity of 100 to 500 poise at 300 ° C. is used as the thermoplastic resin.
JP2004197558A 2004-07-05 2004-07-05 High dielectric composite material Pending JP2006019198A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004197558A JP2006019198A (en) 2004-07-05 2004-07-05 High dielectric composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004197558A JP2006019198A (en) 2004-07-05 2004-07-05 High dielectric composite material

Publications (1)

Publication Number Publication Date
JP2006019198A true JP2006019198A (en) 2006-01-19

Family

ID=35793268

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004197558A Pending JP2006019198A (en) 2004-07-05 2004-07-05 High dielectric composite material

Country Status (1)

Country Link
JP (1) JP2006019198A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11198263B2 (en) 2018-03-22 2021-12-14 Rogers Corporation Melt processable thermoplastic composite comprising a multimodal dielectric filler

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11198263B2 (en) 2018-03-22 2021-12-14 Rogers Corporation Melt processable thermoplastic composite comprising a multimodal dielectric filler

Similar Documents

Publication Publication Date Title
JP2004253853A (en) Dielectric resin lens antenna
CN102186776B (en) Dielectric composite material containing said ceramic powder, and dielectric antenna
JP2003198230A (en) Integrated dielectric resin antenna
CN103539401B (en) Electromagnetic wave absorb
CN107615412B (en) Magnetic mixture and antenna
JP2007250823A (en) Magnetic powder for use of wave absorber, its manufacturing method, and the wave absorber
JP4892160B2 (en) Dielectric ceramic composition and dielectric resonator
KR20020091779A (en) Method for manufacturing spherical ceramics powder, spherical ceramics powder, and composite materials
JP4832729B2 (en) High dielectric elastomer composition
CN101811864A (en) Microwave medium ceramic material of near-zero resonance frequency temperature coefficient and preparation method thereof
JP2006019198A (en) High dielectric composite material
CN103387704B (en) A kind of ceramic-polymer composite microwave material and methods for making and using same thereof
JP2007227099A (en) High dielectric resin composition
JP4876491B2 (en) Dielectric antenna
JP2979736B2 (en) Composite material for dielectric antenna
CN110603610B (en) BMW-based high-frequency dielectric ceramic material and method for producing same
US6143680A (en) Dielectric ceramic composition, preparation method therefor, and dielectric resonator
JP5248161B2 (en) Composite dielectric ceramic composition
Masin et al. A study of densification and enhanced microwave dielectric properties of Al2O3–polystyrene ceramic composites
CN1134758A (en) Dielectric procelain composition and its manufacture
JP2003146752A (en) Dielectric ceramic composition
JP3311928B2 (en) Alumina sintered body for high frequency
JP2005093096A (en) Dielectric inorganic filler and dielectric resin composition using the same
JP2006137653A (en) Hexagonal magnetoplumbite-type ferrite and electromagnetic wave absorber using the same
JPH11165089A (en) Ball mill and preparation of slurry using the ball mill