Nothing Special   »   [go: up one dir, main page]

JP2006002185A - Method for heat-treating hollow-power transmission shaft - Google Patents

Method for heat-treating hollow-power transmission shaft Download PDF

Info

Publication number
JP2006002185A
JP2006002185A JP2004177433A JP2004177433A JP2006002185A JP 2006002185 A JP2006002185 A JP 2006002185A JP 2004177433 A JP2004177433 A JP 2004177433A JP 2004177433 A JP2004177433 A JP 2004177433A JP 2006002185 A JP2006002185 A JP 2006002185A
Authority
JP
Japan
Prior art keywords
power transmission
peripheral surface
hollow
transmission shaft
inner peripheral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004177433A
Other languages
Japanese (ja)
Inventor
Akira Nakagawa
亮 中川
Katsuhiro Sakurai
勝弘 櫻井
Tatsuyoshi Aminaka
達良 網中
Yutaka Kiyozawa
裕 清澤
Takeshi Yoshikawa
毅 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Neturen Co Ltd
Original Assignee
NTN Corp
Neturen Co Ltd
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, Neturen Co Ltd, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2004177433A priority Critical patent/JP2006002185A/en
Publication of JP2006002185A publication Critical patent/JP2006002185A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C3/00Shafts; Axles; Cranks; Eccentrics
    • F16C3/02Shafts; Axles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2326/00Articles relating to transporting
    • F16C2326/01Parts of vehicles in general
    • F16C2326/06Drive shafts

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Ocean & Marine Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for heat-treating a hollow-power transmission shaft with which a hardening-crack inspection on the surface part in the inner periphery can be simplified. <P>SOLUTION: A high frequency induction heating coil 10 is disposed at the outer peripheral surface 19 side of a hollow shaft base stock 1' and a high frequency induction-hardening is performed from the outer peripheral surface 1g side to the axial direction zone L. In this time, piping members 11 are connected to both end parts of the hollow shaft base stock 1', and cooling water is made to flow into the inner peripheral part of the hollow shaft base stock 1' through the piping members 11. When the high frequency induction-hardening is performed, a non-hardening layer S0 is formed in a prescribed depth range from the inner peripheral surface 1i by allowing the inner peripheral surface 1i of the hollow shaft base stock 1' to contact with the stream of the cooling water. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、等速自在継手等の継手に連結される中空状動力伝達シャフトの熱処理方法に関し、この中空状動力伝達シャフトは、例えば、自動車の動力伝達系を構成するドライブシャフト(駆動軸)やプロペラシャフト(推進軸)に適用することができる。   The present invention relates to a heat treatment method for a hollow power transmission shaft connected to a joint such as a constant velocity universal joint, and the hollow power transmission shaft includes, for example, a drive shaft (drive shaft) constituting a power transmission system of an automobile, It can be applied to a propeller shaft (propulsion shaft).

例えば、自動車の動力伝達系において、減速装置(ディファレンシャル)から駆動輪に動力を伝達する動力伝達シャフトは、ドライブシャフト(駆動軸)と呼ばれることがある。特に、FF車に使用されるドライブシャフトでは、前輪操舵時に大きな作動角と等速性が要求され、また、懸架装置との関係で軸方向の変位を吸収する機能が要求されるので、その一端部をダブルオフセット型等速自在継手やトリポード型等速自在継手等の摺動型等速自在継手を介して減速装置側に連結し、その他端部をバーフィールド型等速自在継手(ゼッパジョイントと呼ばれることもある。)等の固定側等速自在継手を介して駆動輪側に連結する機構が多く採用されている。   For example, in a power transmission system of an automobile, a power transmission shaft that transmits power from a speed reducer (differential) to drive wheels may be called a drive shaft (drive shaft). In particular, a drive shaft used in an FF vehicle requires a large operating angle and constant velocity during front wheel steering, and also requires a function of absorbing axial displacement in relation to the suspension system. Is connected to the reducer side through a sliding type constant velocity universal joint such as a double offset type constant velocity universal joint or a tripod type constant velocity universal joint, and the other end is connected to a barfield type constant velocity universal joint (Zepper joint). In many cases, a mechanism that is connected to the drive wheel side via a fixed-side constant velocity universal joint is employed.

上記のようなドライブシャフトとしては、従来、また現在においても、中実シャフトが多く使用されているが、自動車の軽量化、ドライブシャフトの剛性増大による機能向上、曲げ一次固有振動数のチューニング最適化による車室内の静粛性向上等の観点から、近時では、ドライブシャフトを中空シャフト化する要求が増えてきている。   As a drive shaft as described above, a solid shaft is often used in the past and now, but the weight of the car is improved, the function is improved by increasing the rigidity of the drive shaft, and the tuning of the bending primary natural frequency is optimized. Recently, there has been an increasing demand for a drive shaft to be a hollow shaft from the viewpoint of improving the quietness of the interior of the vehicle.

ドライブシャフト等に適用される中空状動力伝達シャフトとしては、例えば、下記の特許文献1〜3に記載されたものが知られている。   As a hollow power transmission shaft applied to a drive shaft or the like, for example, those described in Patent Documents 1 to 3 below are known.

特許文献1では、中空シャフトの内周表面を軸方向のほぼ全域に亘って熱硬化処理している。この熱硬化処理は、例えば、中空シャフトの外周表面側から高周波焼入れ・焼戻しを行なうことにより、外周表面から内周表面に至る全深さ領域に対して施している(同文献の段落番号0012参照)。   In Patent Document 1, the inner peripheral surface of the hollow shaft is heat-cured over almost the entire region in the axial direction. This thermosetting treatment is performed on the entire depth region from the outer peripheral surface to the inner peripheral surface by, for example, induction hardening and tempering from the outer peripheral surface side of the hollow shaft (see paragraph number 0012 of the same document). ).

特許文献2では、例えば、高周波焼入れ・焼戻しにより、中空シャフトの軸方向のほぼ全域に亘って、外周表面から内周表面に至る全深さ領域に熱硬化処理を施している(同文献の段落番号0012参照)。   In Patent Document 2, for example, thermosetting treatment is performed on the entire depth region from the outer peripheral surface to the inner peripheral surface over almost the entire axial direction of the hollow shaft by induction hardening and tempering (paragraph of the same document). No. 0012).

特許文献3では、中空シャフトの静的強度とねじり疲労強度を中実シャフト以上にするために、中空シャフトを0.7〜0.9の焼入れ率で表面焼入れしている。ここで、焼入れ率は、硬度がHV400以上に焼入れされている外周表面からの焼入れ深さhとシャフトの肉厚tとの比h/t、と定義されている(同文献の段落番号0014参照)。
特開2002―349538号公報 特開2002―356742号公報 特開2003―90325号公報
In Patent Document 3, in order to make the static strength and torsional fatigue strength of the hollow shaft equal to or higher than that of the solid shaft, the hollow shaft is surface quenched at a quenching rate of 0.7 to 0.9. Here, the quenching rate is defined as the ratio h / t between the quenching depth h from the outer peripheral surface quenched to a hardness of HV400 or more and the shaft wall thickness t (see paragraph 0014 of the same document). ).
JP 2002-349538 A JP 2002-356742 A JP 2003-90325 A

一般に、この種の中空状動力伝達シャフトにおいて、静的ねじり強度等の静的強度を高めるためには、熱処理硬化層の外周表面からの深さを大きくすることが有効である。この点、特許文献1〜2では、中空シャフトの軸方向両側域あるいは軸方向ほぼ全域について、外周表面から内周表面に至る全深さ領域を熱処理硬化させることで(以下、このような熱硬化処理を「全硬化」という。)、中空シャフトの静的強度を最大限に確保している。   Generally, in this type of hollow power transmission shaft, in order to increase static strength such as static torsion strength, it is effective to increase the depth from the outer peripheral surface of the heat-treated cured layer. In this regard, in Patent Documents 1 and 2, the entire depth region from the outer peripheral surface to the inner peripheral surface is heat-treated and cured (referred to as such thermosetting hereinafter) on both sides in the axial direction of the hollow shaft or almost the entire region in the axial direction. The process is called “fully cured”) to ensure the maximum static strength of the hollow shaft.

ところで、この種の中空状動力伝達シャフトは、熱硬化処理時の焼き割れに対する品質管理が厳しく要求される場合が多く、通常、熱硬化処理後に焼き割れ検査を行っている。   By the way, this kind of hollow power transmission shaft often requires strict quality control against burning cracks during the thermosetting process, and usually the burning crack inspection is performed after the thermosetting process.

一般に、外周表面部の焼き割れ検査は比較的容易であるが、内径表面部の焼き割れ検査は技術的に困難であり、通常、超音波探傷等による非破壊検査が主流になる。そのため、検査に多大な費用と工数を要する。   In general, the inspection of the outer peripheral surface portion is relatively easy, but the inspection of the inner surface portion is technically difficult, and the non-destructive inspection by ultrasonic flaw detection or the like is usually the mainstream. Therefore, the inspection requires a large amount of cost and man-hours.

一方、特許文献3では、中空シャフトを上記の焼入れ率0.7〜0.9で表面焼入れしており、特許文献1〜2のような全硬化の場合に比べて、内周表面部の硬化硬度が低くなるので、内周表面部における焼き割れ発生の可能性は幾分低減する。すなわち、同文献では、焼入れ時に内周表面の近傍まで加熱しているが、この加熱された内周表面近傍は、シャフト内部の空気層が加熱時に加熱され、かつ、内周表面から空気層への熱伝達率が金属内部の熱伝達効率よりも低いことから、急冷されない、としている(同文献の段落番号0014参照)。しかしながら、焼入れ率が0.7以上であると、加熱された内周表面近傍の熱影響を、シャフト内部の空気層により完全に無くすことは困難である。   On the other hand, in Patent Document 3, the surface of the hollow shaft is quenched at the above-described quenching rate of 0.7 to 0.9, and the inner peripheral surface portion is hardened as compared with the case of full hardening as in Patent Documents 1 and 2. Since the hardness decreases, the possibility of occurrence of burning cracks on the inner peripheral surface portion is somewhat reduced. That is, in this document, heating is performed up to the vicinity of the inner peripheral surface at the time of quenching, but in the vicinity of the heated inner peripheral surface, the air layer inside the shaft is heated at the time of heating, and the inner peripheral surface is transferred to the air layer. The heat transfer coefficient is lower than the heat transfer efficiency inside the metal, so that it is not rapidly cooled (see paragraph 0014 of the same document). However, if the quenching rate is 0.7 or more, it is difficult to completely eliminate the heat influence in the vicinity of the heated inner peripheral surface by the air layer inside the shaft.

本発明の課題は、内周表面部の焼き割れ検査を簡略化できる中空状動力伝達シャフトの熱処理方法を提供することである。   The subject of this invention is providing the heat processing method of the hollow-shaped power transmission shaft which can simplify the inspection of a burning crack of an inner peripheral surface part.

上記課題を解決するため、本発明は、軸方向中間部が大径部に形成されると共に、大径部よりも軸方向両側部がそれぞれ小径部に形成された中空状動力伝達シャフトの熱処理方法であって、パイプ素材に塑性加工を施して、大径部と小径部を有する中空状シャフト素材を成形し、中空状シャフト素材の内周部に冷却材を流通させつつ、中空状シャフト素材の外周側から焼入れ処理を施す構成を提供する。   In order to solve the above-described problems, the present invention provides a heat treatment method for a hollow power transmission shaft in which an axially intermediate portion is formed in a large diameter portion, and both side portions in the axial direction are formed in smaller diameter portions than the large diameter portion. The pipe material is subjected to plastic working to form a hollow shaft material having a large diameter portion and a small diameter portion, and a coolant is circulated through the inner periphery of the hollow shaft material, while the hollow shaft material Provided is a configuration in which quenching is performed from the outer peripheral side.

上記の塑性加工としては、スウェージング加工やプレス加工等が採用される。前者のスウェージング加工には、ロータリースウェージングとリンクタイプスウェージングがあり、その何れも採用することができる。例えば、ロータリースウェージングは、機内の主軸に組込まれた一対又は複数対のダイスとバッカーとが回転運動を行なうと共に、外周ローラとバッカー上の突起により一定ストロークの上下運動を行なって、挿入されるパイプ素材に打撃を加えて絞り加工を行なう加工法である。また、プレス加工は、パイプ素材をダイスに軸方向に押し込んで絞り加工を行なう加工法である。   As the plastic processing, swaging processing, press processing, or the like is employed. The former swaging process includes rotary swaging and link type swaging, both of which can be employed. For example, in rotary swaging, a pair or a plurality of dies and a backer incorporated in a main shaft in the machine perform a rotational motion, and a vertical stroke of a fixed stroke is performed by a peripheral roller and a protrusion on the backer, and then inserted. This is a processing method in which a pipe material is blown to perform drawing. The press working is a working method in which a pipe material is pressed into a die in the axial direction to perform drawing.

パイプ素材の材質としては、例えば、STKMやSTMA等の機械構造用炭素鋼、または、それらをベースに加工性や焼入れ性等の改善のために合金元素を添加した合金鋼、あるいは、SCr、SCM、SNCM等のはだ焼鋼を用いることができる。   The material of the pipe material is, for example, carbon steel for mechanical structures such as STKM or STMA, alloy steel to which alloy elements are added for improving workability and hardenability based on them, or SCr, SCM. It is possible to use bare steel such as SNCM.

上記の焼入れ処理としては、パイプ素材の材質や動力伝達シャフトに要求される特性等に応じて、高周波焼入れ、浸炭焼入れ、浸炭窒化焼入れ等の種々の手段を採用することができるが、硬化層の範囲や深さを自由に選択でき、また、表面に残留圧縮応力が生成されることによる耐疲れ疲労性の改善等の点から、高周波焼入れを採用するのが好ましい。尚、本明細書において、「焼入れ処理」は、焼入れ後に焼戻しを行なう処理と、焼入れ後に焼戻しを行なわない処理の双方を含む。処理工程の簡素化の観点からは、焼入れのみを行ない、焼戻しは行なわないようにするのが好ましい。   As the above quenching treatment, various means such as induction quenching, carburizing quenching, carbonitriding and quenching can be adopted depending on the material of the pipe material and the characteristics required for the power transmission shaft. The range and depth can be freely selected, and induction hardening is preferably employed from the viewpoint of improving fatigue fatigue resistance due to generation of residual compressive stress on the surface. In the present specification, the “quenching process” includes both a process of tempering after quenching and a process of not tempering after quenching. From the viewpoint of simplifying the treatment process, it is preferable that only quenching is performed and tempering is not performed.

所定形状に成形した中空状シャフト素材に対して外周側から焼入れ処理を施すが、その際、中空状シャフト素材の内周部に冷却材を流通させる。冷却材としては、例えば、冷却水を用いることができる。ここでの冷却水には、高周波焼入れ等に用いる焼入冷却水(水溶液等)も含まれる。焼入れ処理時に、中空状シャフト素材の内周表面が冷却材の流れと接触することにより、中空状シャフト素材の内周表面から所定の深さ領域が、未加熱、または、オーステナイト化温度未満の温度で加熱され、あるいは、焼きなましの状態となる。そのため、中空状シャフト素材の外周表面から所定の深さ領域に焼入れ処理による硬化層が形成されると共に、内周表面から所定の深さ領域の内周表面部に焼入れ処理により硬化しない未硬化層が形成される。一般に、焼き割れは、加熱によってオーステナイト化された鋼組織がMs点を通過してマルテンサイトに変態するときに発生するが、未加熱、または、オーステナイト化温度未満の温度で加熱されることによって形成された未硬化層では、マルテンサイト変態が起こらないので、焼き割れが発生しない。この場合、未硬化層の硬度は、焼き入れ処理前の中空状シャフト素材の内周表面部における硬度が同程度に維持された状態になる。また、焼きなましの状態となって形成された未硬化層では、軟化が起こるため、焼き割れが発生しない。この場合、未硬化層の硬度は、熱処理前の中空状シャフト素材の内周表面部における硬度よりも小さくなることがある。   The hollow shaft material formed into a predetermined shape is quenched from the outer periphery side, and at this time, the coolant is circulated through the inner periphery of the hollow shaft material. As the coolant, for example, cooling water can be used. The cooling water here includes quenching cooling water (aqueous solution or the like) used for induction hardening or the like. During the quenching process, the inner surface of the hollow shaft material comes into contact with the coolant flow, so that a predetermined depth region from the inner surface of the hollow shaft material is unheated or a temperature lower than the austenitizing temperature. It is heated in or annealed. Therefore, a hardened layer is formed by quenching treatment from the outer peripheral surface of the hollow shaft material to a predetermined depth region, and an uncured layer that is not hardened by quenching treatment from the inner peripheral surface to the inner peripheral surface portion of the predetermined depth region. Is formed. In general, baked cracks occur when the steel structure austenitized by heating passes through the Ms point and transforms into martensite, but is formed by heating at a temperature lower than the austenitizing temperature. Since the martensite transformation does not occur in the uncured layer, no cracking occurs. In this case, the hardness of the uncured layer is in a state where the hardness at the inner peripheral surface portion of the hollow shaft material before quenching is maintained at the same level. Moreover, in the uncured layer formed in the annealed state, softening occurs, and thus no cracking occurs. In this case, the hardness of the uncured layer may be smaller than the hardness of the inner peripheral surface portion of the hollow shaft material before the heat treatment.

この種の中空状動力伝達シャフトは、静的ねじり強度等の静的強度とねじり疲労強度等の動的強度のバランスを確保することが重要である。静的強度を高める観点からは焼入れ深さはできるだけ大きくするのが好ましいが、全硬化にすると、内周表面部の焼き割れの原因となる可能性があり、また、内周表面部の靭性が小さくなることにより動的強度が低下する傾向がある。本発明では、上述のように、焼入れ処理時に、中空状シャフト素材の内周部に冷却材を流通させるので、焼入れ率αを、例えば、0.7以上(α≧0.7)、最大0.9程度と大きくしても、内周面部に上記の未硬化層を形成することが可能である。したがって、本発明によれば、内周面部の焼き割れを防止しつつ、焼入れ率αを可及的に大きくして、動力伝達シャフトの静的強度と動的強度の強度バランスを高めることができる。ここで、焼入れ率αは、HRC40以上の硬度を有する硬化層の外周表面からの深さ(h)と肉厚(t)との比(h/t)である。   It is important for this type of hollow power transmission shaft to ensure a balance between static strength such as static torsional strength and dynamic strength such as torsional fatigue strength. From the standpoint of increasing static strength, it is preferable to increase the quenching depth as much as possible. However, if it is fully cured, it may cause cracking of the inner peripheral surface portion, and the toughness of the inner peripheral surface portion may be reduced. There is a tendency for the dynamic strength to decrease as it decreases. In the present invention, as described above, since the coolant is circulated through the inner peripheral portion of the hollow shaft material during the quenching treatment, the quenching rate α is, for example, 0.7 or more (α ≧ 0.7), 0 at the maximum. Even if it is as large as about .9, it is possible to form the uncured layer on the inner peripheral surface portion. Therefore, according to the present invention, the quenching rate α can be increased as much as possible while preventing the cracking of the inner peripheral surface portion, and the strength balance between the static strength and the dynamic strength of the power transmission shaft can be increased. . Here, the quenching rate α is a ratio (h / t) between the depth (h) and the thickness (t) from the outer peripheral surface of the hardened layer having a hardness of HRC 40 or higher.

中空状シャフト素材の内周部に流通させる冷却材の種類、温度、流量は、焼入れ処理の条件や必要とする焼入れ率α等に応じて決めれば良いが、冷却材として冷却水を用いる場合、冷却水の流量を10L/min以上にしたときに好ましい結果が得られることが実験により確認されている。   The type, temperature, and flow rate of the coolant circulated in the inner periphery of the hollow shaft material may be determined according to the quenching treatment conditions and the required quenching rate α, etc., but when using cooling water as the coolant, Experiments have confirmed that favorable results can be obtained when the flow rate of cooling water is 10 L / min or more.

本発明によれば、内周表面部の焼き割れ検査を簡略化できる中空状動力伝達シャフトの熱処理方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the heat processing method of the hollow power transmission shaft which can simplify the inspection of a burning crack of an inner peripheral surface part can be provided.

以下、本発明の実施形態を図面に従って説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、中空状の動力伝達シャフト1と、動力伝達シャフト1の一端部に連結された摺動型等速自在継手2と、動力伝達シャフト1の他端部に連結された固定型等速自在継手3とを備えた自動車の動力伝達機構を示している。この実施形態の動力伝達機構において、摺動型等速自在継手2は減速装置(ディファレンシャル)に連結され、固定型等速自在継手3は駆動輪側に連結される。動力伝達シャフト1の一端部は摺動型等速自在継手2のトリポード部材2aにスプライン連結され、摺動型等速自在継手2の外輪2bの端部外周と動力伝達シャフト1の外周にブーツ2cがそれぞれ固定されている。また、動力伝達シャフト1の他端部は固定型等速自在継手3の内輪3aにスプライン連結され、固定型等速自在継手3の外輪3bの端部外周と動力伝達シャフト1の外周にブーツ3cがそれぞれ固定されている。尚、同図には、摺動型等速自在継手2としてトリポード型等速自在継手が例示され、固定型等速自在継手3としてバーフィールド型等速自在継手が例示されているが、他の型式の等速自在継手が用いられる場合もある。   FIG. 1 shows a hollow power transmission shaft 1, a sliding type constant velocity universal joint 2 connected to one end of the power transmission shaft 1, and a fixed type constant speed connected to the other end of the power transmission shaft 1. The power transmission mechanism of the motor vehicle provided with the universal joint 3 is shown. In the power transmission mechanism of this embodiment, the sliding type constant velocity universal joint 2 is connected to a reduction gear (differential), and the fixed type constant velocity universal joint 3 is connected to the drive wheel side. One end of the power transmission shaft 1 is splined to a tripod member 2a of the sliding type constant velocity universal joint 2, and a boot 2c is provided on the outer periphery of the outer ring 2b of the sliding type constant velocity universal joint 2 and the outer periphery of the power transmission shaft 1. Are fixed respectively. The other end of the power transmission shaft 1 is splined to the inner ring 3 a of the fixed type constant velocity universal joint 3, and a boot 3 c is provided on the outer circumference of the outer ring 3 b of the fixed type constant velocity universal joint 3 and the outer circumference of the power transmission shaft 1. Are fixed respectively. In the drawing, a tripod type constant velocity universal joint is illustrated as the sliding type constant velocity universal joint 2, and a barfield type constant velocity universal joint is illustrated as the fixed type constant velocity universal joint 3. Some types of constant velocity universal joints may be used.

図2は、動力伝達シャフト(ドライブシャフト)1を示している。この動力伝達シャフト1は、軸方向の全域に亘って中空状をなし、軸方向中間部に大径部1a、大径部1aよりも軸方向両側部にそれぞれ小径部1bを有している。大径部1aと小径部1bとは、軸端側に向かって漸次縮径したテーパ部1cを介して連続している。小径部1bは、等速自在継手(2、3)との連結に供される端部側の連結部1dと、ブーツ(2c、3c)が固定される軸方向中間部側のブーツ固定部1eと、連結部1dとブーツ固定部1eとの間の最小径部1fとを有している。連結部1dには、等速自在継手(2、3)にスプライン連結されるスプライン1d1と、等速自在継手(2、3)に対する軸方向抜け止め用の止め輪を装着するための止め輪溝1d2が形成されている。ブーツ固定部1eには、ブーツ(2c、3c)の小径端部の内周を嵌合するための嵌合溝1e1が形成されている。最小径部1fは、内径及び外径が軸方向にほぼ一定であり、軸方向にほぼ均一な形状を有している。   FIG. 2 shows a power transmission shaft (drive shaft) 1. The power transmission shaft 1 is hollow over the entire region in the axial direction, and has a large-diameter portion 1a at an axial intermediate portion and small-diameter portions 1b at both axial sides of the large-diameter portion 1a. The large-diameter portion 1a and the small-diameter portion 1b are continuous via a tapered portion 1c that is gradually reduced in diameter toward the shaft end side. The small-diameter portion 1b includes an end-side connection portion 1d used for connection with the constant velocity universal joints (2, 3), and an axial intermediate portion-side boot fixing portion 1e to which the boots (2c, 3c) are fixed. And a minimum diameter portion 1f between the connecting portion 1d and the boot fixing portion 1e. A retaining ring groove for attaching a spline 1d1 splined to the constant velocity universal joints (2, 3) and a retaining ring for axially retaining the constant velocity universal joints (2, 3) to the coupling portion 1d. 1d2 is formed. The boot fixing portion 1e is formed with a fitting groove 1e1 for fitting the inner circumference of the small diameter end portion of the boot (2c, 3c). The minimum diameter portion 1f has an inner diameter and an outer diameter that are substantially constant in the axial direction, and has a substantially uniform shape in the axial direction.

また、同図にハッチングを付して示しているように、この動力伝達シャフト1は、止め輪溝1d2の近傍から軸端に至る一部領域を除く、軸方向のほぼ全域Lに亘って、焼入れ処理による硬化層Sを有している。軸方向域Lにおいて、硬化層Sは、外周表面1gから所定深さh0の領域に形成され、硬化層Sから内周表面1iに至る領域は焼入れ処理により硬化していない未硬化層S0になっている。尚、止め輪溝1d2の近傍から軸端に至る一部領域は、焼入れ処理が施されておらず、外周表面1gから内周表面1iに至る全領域が焼入れ処理前の状態のまま残されている。   Further, as shown with hatching in the figure, the power transmission shaft 1 has a substantially entire region L in the axial direction except for a partial region from the vicinity of the retaining ring groove 1d2 to the shaft end. It has the hardened layer S by the quenching process. In the axial region L, the hardened layer S is formed in a region having a predetermined depth h0 from the outer peripheral surface 1g, and a region from the hardened layer S to the inner peripheral surface 1i becomes an uncured layer S0 that has not been hardened by the quenching process. ing. In addition, a part of the region from the vicinity of the retaining ring groove 1d2 to the shaft end is not subjected to the quenching process, and the entire region from the outer peripheral surface 1g to the inner peripheral surface 1i is left in the state before the quenching process. Yes.

上記構成の動力伝達シャフト1は、例えば、つぎのような態様で製造することができる。まず、機械構造用炭素鋼管(STKM)等のパイプ素材に軸方向全域に亘ってロータリースウェージング加工を施して、軸方向中間部に大径部1a、軸方向両側部に小径部1bを有する中空状シャフト素材を成形する。このようにして成形された中空状シャフト素材には、軸方向全域に亘って、ロータリースウェージング加工による加工硬化と縮径による増肉が認められる。そして、この中空状シャフト素材の小径部1bの端部に転造加工等によってスプライン1d1を成形して連結部1dを形成すると共に、連結部1dに転造加工や切削加工等によって止め輪溝1d2を形成する。また、ブーツ固定部1eとなる部位に転造加工や切削加工等によってブーツ固定溝1e1を形成する。   The power transmission shaft 1 having the above configuration can be manufactured, for example, in the following manner. First, a rotary swaging process is applied to a pipe material such as a carbon steel pipe for machine structure (STKM) over the entire axial direction, and a hollow having a large-diameter portion 1a at an axial middle portion and small-diameter portions 1b at both axial sides. Molded shaft material. In the hollow shaft material formed in this way, work hardening by rotary swaging and thickening due to reduced diameter are recognized over the entire axial direction. A spline 1d1 is formed on the end of the small diameter portion 1b of the hollow shaft material by rolling or the like to form a connecting portion 1d, and the retaining ring groove 1d2 is formed on the connecting portion 1d by rolling or cutting. Form. Further, a boot fixing groove 1e1 is formed by rolling or cutting at a portion to be the boot fixing portion 1e.

その後、図3に示すように、上記の中空状シャフト素材1’の外周表面1gの側に、例えば移動式の高周波誘導加熱コイル10を配置して、軸方向域Lに対して外周表面1gの側から高周波焼入れを行なう。その際、中空状シャフト素材1’の両端に配管部材11を接続し、配管部材11を介して、中空状シャフト素材1’の内周部に冷却水を流通させる。尚、高周波焼入れは、定置式焼入れの方式で行なっても良い。   Thereafter, as shown in FIG. 3, for example, a movable high-frequency induction heating coil 10 is disposed on the outer peripheral surface 1 g side of the hollow shaft material 1 ′, and the outer peripheral surface 1 g Induction hardening from the side. At that time, the piping member 11 is connected to both ends of the hollow shaft material 1 ′, and the cooling water is circulated through the piping member 11 to the inner peripheral portion of the hollow shaft material 1 ′. The induction hardening may be performed by a stationary hardening method.

上記の高周波焼入れにより、中空状シャフト素材1’の外周表面1gから所定深さh0の領域に硬化層Sが形成される。また、上記の高周波焼入れ時に、中空状シャフト素材1’の内周表面1iが冷却水の流れと接触することにより、内周表面1iから所定の深さ領域が、例えば、未加熱又はオーステナイト化温度未満の温度で加熱され、未硬化層S0が形成される。この未硬化層S0の硬度は、例えば、高周波焼入れ前における中空状シャフト素材1’の内周面部の硬度と同程度に維持されている。すなわち、この未硬化層S0は、焼き割れの原因となるマルテンサイトが生成されない組織となる。   By the induction hardening described above, the hardened layer S is formed in a region having a predetermined depth h0 from the outer peripheral surface 1g of the hollow shaft material 1 '. Further, when the inner peripheral surface 1i of the hollow shaft material 1 ′ is in contact with the flow of the cooling water during the induction hardening, a predetermined depth region from the inner peripheral surface 1i is, for example, an unheated or austenitizing temperature. The uncured layer S0 is formed by heating at a temperature below. The hardness of the uncured layer S0 is maintained at the same level as the hardness of the inner peripheral surface portion of the hollow shaft material 1 'before induction hardening, for example. That is, the uncured layer S0 has a structure in which martensite that causes burning cracks is not generated.

このようにして製造された動力伝達シャフト1は、外周表面1gから所定の深さ領域h0に高周波焼入れによる硬化層Sを有すると共に、内周表面1iを含む内周面部に高周波焼入れより硬化しない未硬化層S0を有するので、内周面部の焼き割れがなく、内周面部の焼き割れ検査を簡略化できる。また、静的強度と動的強度の強度バランスに優れたものとなる。   The power transmission shaft 1 manufactured in this manner has a hardened layer S by induction hardening in a predetermined depth region h0 from the outer peripheral surface 1g and is not hardened by induction hardening on the inner peripheral surface portion including the inner peripheral surface 1i. Since it has hardened layer S0, there is no burning crack of an inner peripheral surface part, and the inspection of the burning crack of an inner peripheral surface part can be simplified. In addition, the strength balance between static strength and dynamic strength is excellent.

機械構造用炭素鋼(STKM)からなるパイプ素材に対してロータリースウェージング加工とその後の機械加工を施して、図3に示す中空状パイプ素材1’と同一形態の中空状パイプ素材を製作し、この中空状パイプ素材に高周波焼入れ(焼入れ率α≧0.7)を施して、実施例と比較例の動力伝達シャフトをそれぞれ作製した。実施例に係る中空状パイプ素材に対しては、高周波焼入れ時に内周部に温度管理された(外周冷却水と同レベルに温度管理された)冷却水を10L/min以上の流量で流通させた。比較例に係る中空状パイプ素材に対しては、通常の高周波焼入れを行ない、内周部への冷却水の流通は行なわなかった。高周波焼入れの条件は、実施例、比較例とも同一条件とした。   The pipe material made of carbon steel for mechanical structure (STKM) is subjected to rotary swaging and subsequent machining to produce a hollow pipe material having the same form as the hollow pipe material 1 ′ shown in FIG. The hollow pipe material was subjected to induction quenching (quenching rate α ≧ 0.7) to produce power transmission shafts of Examples and Comparative Examples. For the hollow pipe material according to the example, the cooling water whose temperature was controlled in the inner periphery during the induction hardening (temperature controlled to the same level as the outer cooling water) was circulated at a flow rate of 10 L / min or more. . The hollow pipe material according to the comparative example was subjected to normal induction hardening, and cooling water was not distributed to the inner peripheral portion. The conditions for induction hardening were the same for the examples and comparative examples.

上記のようにして作製した実施例及び比較例の動力伝達シャフトの最小径部(1f)を切断し、該切断面の硬度分布を測定した。その結果を図4に示す。同図において、横軸は外周表面からの深さと肉厚tとの比率(以下、「深さ比」という。深さ比0は外周表面、深さ比1は内周表面である。)、縦軸はビッカース硬さ(Hv)を表している。焼入れ率αは、ロックウェル硬さHRC40(Hv391)以上の硬度を有する硬化層の深さhと肉厚tとの比率(h/t)で定義され、実施例の動力伝達シャフトではα=0.81(≧0.7)、比較例の動力伝達シャフトではα=0.87(≧0.7)であった。同図に示すように、比較例の動力伝達シャフトでは、所定の深さ比の領域で硬度がほぼ一定の比率で漸減する傾向がみられた。そして、内周表面の近傍の位置では硬度が焼入れ前よりも高くなっており、内周面部に高周波焼入れによる熱硬化の影響がみられた。これに対して、実施例の動力伝達シャフトでは、所定の深さ比の領域で硬度が比較的大きな傾斜で低下し、所定の深さ比の位置から内周表面にかけて硬度がほぼ一定の低い値で推移する傾向がみられた。そして、内周表面の近傍の位置では硬度が焼入れ前と同程度であり、内周面部に高周波焼入れによる硬化の影響がみられなかった。   The minimum diameter portion (1f) of the power transmission shafts of Examples and Comparative Examples produced as described above was cut, and the hardness distribution of the cut surfaces was measured. The result is shown in FIG. In the figure, the horizontal axis represents the ratio between the depth from the outer peripheral surface and the thickness t (hereinafter referred to as “depth ratio”. Depth ratio 0 is the outer peripheral surface, and depth ratio 1 is the inner peripheral surface). The vertical axis represents Vickers hardness (Hv). The quenching rate α is defined by the ratio (h / t) between the depth h and the wall thickness t of a hardened layer having a Rockwell hardness of HRC40 (Hv391) or higher, and α = 0 in the power transmission shaft of the embodiment. .81 (≧ 0.7), α = 0.87 (≧ 0.7) in the power transmission shaft of the comparative example. As shown in the figure, in the power transmission shaft of the comparative example, there was a tendency that the hardness gradually decreased at a substantially constant ratio in a predetermined depth ratio region. And in the position of the vicinity of the inner peripheral surface, the hardness was higher than that before quenching, and the influence of thermosetting by induction hardening was observed on the inner peripheral surface portion. On the other hand, in the power transmission shaft of the embodiment, the hardness decreases with a relatively large slope in the region of the predetermined depth ratio, and the hardness is a substantially constant low value from the position of the predetermined depth ratio to the inner peripheral surface. There was a tendency to change. The hardness in the vicinity of the inner peripheral surface was almost the same as that before quenching, and no influence of hardening by induction hardening was observed on the inner peripheral surface portion.

実施例1と同じ中空状パイプ素材に対して、内周部に冷却水を流通させつつ、高周波焼入れを行なった。高周波焼入れは、高周波焼入れ装置の出力を基準値、基準値−10KW、基準値+10KW、基準値+20KWに設定し、また、冷却水の流量を種々の値に設定して行なった。そして、高周波焼入れ後の動力伝達シャフトの最小径部(1f)を切断し、該切断面の硬度分布を測定して焼入れ率αを求めた。その結果を図5に示す。同図に示すように、冷却水の流量が10L/min未満の場合、出力値によっては、焼入れ率αが1.0(全硬化)になるものがみられたが、10L/min以上の場合は、上記の何れの出力値においても、焼入れ率αが0.8の付近に落ち着くことが確認された。   The same hollow pipe material as in Example 1 was subjected to induction hardening while circulating cooling water through the inner periphery. Induction hardening was performed by setting the output of the induction hardening apparatus to a reference value, a reference value of −10 kW, a reference value of +10 kW, and a reference value of +20 kW, and the cooling water flow rate to various values. And the minimum diameter part (1f) of the power transmission shaft after induction hardening was cut | disconnected, the hardness distribution of this cut surface was measured, and hardening rate (alpha) was calculated | required. The result is shown in FIG. As shown in the figure, when the flow rate of the cooling water is less than 10 L / min, depending on the output value, the quenching rate α was found to be 1.0 (total curing), but when the flow rate was 10 L / min or more It was confirmed that the quenching rate α settled in the vicinity of 0.8 at any of the above output values.

自動車の動力伝達機構を示す図である。It is a figure which shows the power transmission mechanism of a motor vehicle. 実施形態に係る動力伝達シャフトを示す一部断面図である。It is a partial sectional view showing a power transmission shaft concerning an embodiment. 他の実施形態に係る動力伝達シャフトを示す一部断面図である。It is a partial cross section figure which shows the power transmission shaft which concerns on other embodiment. 硬度分布を示す図である。It is a figure which shows hardness distribution. 高周波焼入れ時の出力、冷却水の流量と焼入れ率αとの関係を示す図である。It is a figure which shows the relationship between the output at the time of induction hardening, the flow volume of cooling water, and the hardening rate (alpha).

符号の説明Explanation of symbols

1 動力伝達シャフト
1’ 中空状パイプ素材
1a 大径部
1b 小径部
1i 内周表面
1g 外周表面
S 硬化層
S0 未硬化層
DESCRIPTION OF SYMBOLS 1 Power transmission shaft 1 'Hollow pipe raw material 1a Large diameter part 1b Small diameter part 1i Inner surface 1g Outer surface S Hardened layer S0 Uncured layer

Claims (5)

軸方向中間部が大径部に形成されると共に、該大径部よりも軸方向両側部がそれぞれ小径部に形成された中空状動力伝達シャフトの熱処理方法であって、
パイプ素材に塑性加工を施して、前記大径部と小径部を有する中空状シャフト素材を成形し、
前記中空状シャフト素材の内周部に冷却材を流通させつつ、該中空状シャフト素材の外周側から焼入れ処理を施す中空状動力伝達シャフトの熱処理方法。
A heat treatment method for a hollow power transmission shaft in which an axially intermediate portion is formed in a large diameter portion, and both side portions in the axial direction are formed in small diameter portions from the large diameter portion, respectively.
Plastic processing is performed on the pipe material to form a hollow shaft material having the large diameter portion and the small diameter portion,
A heat treatment method for a hollow power transmission shaft, wherein a quenching treatment is performed from an outer peripheral side of the hollow shaft material while a coolant is circulated through an inner peripheral portion of the hollow shaft material.
前記焼入れ処理により、外周表面から所定の深さ領域に硬化層を形成すると共に、内周表面部に前記焼入れ処理により硬化しない未硬化層を形成する請求項1に記載の中空状動力伝達シャフトの熱処理方法。   The hollow power transmission shaft according to claim 1, wherein a hardened layer is formed in a predetermined depth region from the outer peripheral surface by the quenching treatment, and an uncured layer that is not hardened by the quenching treatment is formed on the inner peripheral surface portion. Heat treatment method. 前記焼入れ処理が高周波焼入れである請求項1に記載の中空状動力伝達シャフトの熱処理方法。   The heat treatment method for a hollow power transmission shaft according to claim 1, wherein the quenching treatment is induction hardening. 前記冷却材が冷却水である請求項1に記載の中空状動力伝達シャフトの熱処理方法。   The heat treatment method for a hollow power transmission shaft according to claim 1, wherein the coolant is cooling water. 前記冷却水の流量が10L/min以上である請求項4に記載の中空状動力伝達シャフトの熱処理方法。   The heat treatment method for a hollow power transmission shaft according to claim 4, wherein a flow rate of the cooling water is 10 L / min or more.
JP2004177433A 2004-06-15 2004-06-15 Method for heat-treating hollow-power transmission shaft Withdrawn JP2006002185A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004177433A JP2006002185A (en) 2004-06-15 2004-06-15 Method for heat-treating hollow-power transmission shaft

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004177433A JP2006002185A (en) 2004-06-15 2004-06-15 Method for heat-treating hollow-power transmission shaft

Publications (1)

Publication Number Publication Date
JP2006002185A true JP2006002185A (en) 2006-01-05

Family

ID=35770830

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004177433A Withdrawn JP2006002185A (en) 2004-06-15 2004-06-15 Method for heat-treating hollow-power transmission shaft

Country Status (1)

Country Link
JP (1) JP2006002185A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009257150A (en) * 2008-04-15 2009-11-05 Sanden Corp Induction hardening method on peripheral wall of pin insertion hole of angle changing mechanism comprising pin and pin insertion hole of fluid machine
WO2010038722A1 (en) * 2008-10-02 2010-04-08 Ntn株式会社 High-frequency induction heating coil and method for the manufacture thereof and power transmission component for an automobile
WO2010082597A1 (en) * 2009-01-19 2010-07-22 Ntn株式会社 Outer member of constant speed universal joint
CN104561472A (en) * 2015-01-08 2015-04-29 吉林北方捷凯传动轴有限公司 Bi-center inductor for constant velocity universal joint hollow shaft quenching device
JP2015117427A (en) * 2013-12-20 2015-06-25 ケーエスエス株式会社 Method and apparatus for heat treating hollow shaft, and screw shaft
CN105593539A (en) * 2013-09-11 2016-05-18 怡来汽车零部件系统株式会社 Hollow drive shaft and method for manufacturing same
CN106870547A (en) * 2017-03-16 2017-06-20 黑龙江省农业机械维修研究所 The processing method of tractor motive power output shaft and axle
EP2495461A4 (en) * 2009-10-29 2018-02-28 NTN Corporation Hollow shaft and constant velocity universal joint

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009257150A (en) * 2008-04-15 2009-11-05 Sanden Corp Induction hardening method on peripheral wall of pin insertion hole of angle changing mechanism comprising pin and pin insertion hole of fluid machine
WO2010038722A1 (en) * 2008-10-02 2010-04-08 Ntn株式会社 High-frequency induction heating coil and method for the manufacture thereof and power transmission component for an automobile
JP2010086904A (en) * 2008-10-02 2010-04-15 Ntn Corp High-frequency induction heating coil and method of manufacturing the same, and power transmission component for automobile
WO2010082597A1 (en) * 2009-01-19 2010-07-22 Ntn株式会社 Outer member of constant speed universal joint
JP2010164181A (en) * 2009-01-19 2010-07-29 Ntn Corp Outer member for constant velocity universal joint
CN102282381A (en) * 2009-01-19 2011-12-14 Ntn株式会社 Outer member of constant speed universal joint
US8673092B2 (en) 2009-01-19 2014-03-18 Ntn Corporation Outer member of constant speed universal joint
CN102282381B (en) * 2009-01-19 2014-07-02 Ntn株式会社 Outer member of constant speed universal joint
EP2495461A4 (en) * 2009-10-29 2018-02-28 NTN Corporation Hollow shaft and constant velocity universal joint
JP2016538509A (en) * 2013-09-11 2016-12-08 イレ オートモーティブ システムズ カンパニー リミテッド Hollow drive shaft and manufacturing method thereof
CN105593539A (en) * 2013-09-11 2016-05-18 怡来汽车零部件系统株式会社 Hollow drive shaft and method for manufacturing same
EP3045748A1 (en) * 2013-09-11 2016-07-20 erae Automotive Systems Co., Ltd. Hollow drive shaft and method for manufacturing same
EP3045748A4 (en) * 2013-09-11 2017-06-07 erae Automotive Systems Co., Ltd. Hollow drive shaft and method for manufacturing same
CN105593539B (en) * 2013-09-11 2018-03-16 怡来汽车电子底盘系统有限公司 Hollow drive shaft and the method for manufacturing hollow drive shaft
US10018219B2 (en) 2013-09-11 2018-07-10 Erae Ams Co., Ltd. Hollow drive shaft and method for manufacturing same
JP2015117427A (en) * 2013-12-20 2015-06-25 ケーエスエス株式会社 Method and apparatus for heat treating hollow shaft, and screw shaft
CN104561472A (en) * 2015-01-08 2015-04-29 吉林北方捷凯传动轴有限公司 Bi-center inductor for constant velocity universal joint hollow shaft quenching device
CN106870547A (en) * 2017-03-16 2017-06-20 黑龙江省农业机械维修研究所 The processing method of tractor motive power output shaft and axle

Similar Documents

Publication Publication Date Title
JP5718003B2 (en) Outer joint member of constant velocity universal joint and friction welding method thereof
JP5231266B2 (en) Outer member of constant velocity universal joint
JP2006002185A (en) Method for heat-treating hollow-power transmission shaft
WO2011052342A1 (en) Hollow shaft and constant velocity universal joint
JP2009121673A (en) Constant speed universal joint
JP2006002809A (en) Hollow power transmission shaft
JP2008019983A (en) Hollow shaft and outside joint member for constant velocity universal joint
JP2007211926A (en) Inner member of constant velocity universal joint and its manufacturing method
US7399230B2 (en) Power transmission shaft
JP2006045605A (en) Method for manufacturing hollow-state power transmitting shaft
JP2009275878A (en) Spline shaft, power transmission shaft, and outer ring of constant velocity universal joint
Fett Induction case hardening of axle shafts
JP2000240669A (en) Power transmission shaft
JP2006083963A (en) Hollow power transmission shaft
JP4855369B2 (en) Outer joint member for constant velocity universal joint and fixed constant velocity universal joint
JP4554299B2 (en) Method for manufacturing hollow power transmission shaft
JP2001208037A (en) Intermediate shaft for drive shaft and method for manufacturing the same
JP2006250332A (en) Hollow power transmission shaft
KR101686814B1 (en) The outer tube strain relief annealing method of universal joints for steering systems
JP2020063784A (en) Power transmission shaft
JP2006026697A (en) Hollow-shaped power transmission shaft
WO2022202421A1 (en) Tripod-type constant-velocity universal joint
JP5467710B2 (en) Method for manufacturing fixed type constant velocity universal joint and outer ring thereof
JP2006250333A (en) Hollow power transmission shaft
JP7549955B2 (en) Tripod type constant velocity joint

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070904