Nothing Special   »   [go: up one dir, main page]

JP2006095632A - Manufacturing method of mems element and mems element - Google Patents

Manufacturing method of mems element and mems element Download PDF

Info

Publication number
JP2006095632A
JP2006095632A JP2004283632A JP2004283632A JP2006095632A JP 2006095632 A JP2006095632 A JP 2006095632A JP 2004283632 A JP2004283632 A JP 2004283632A JP 2004283632 A JP2004283632 A JP 2004283632A JP 2006095632 A JP2006095632 A JP 2006095632A
Authority
JP
Japan
Prior art keywords
semiconductor substrate
type region
forming
mems element
movable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004283632A
Other languages
Japanese (ja)
Inventor
Akira Sato
彰 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2004283632A priority Critical patent/JP2006095632A/en
Publication of JP2006095632A publication Critical patent/JP2006095632A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Micromachines (AREA)
  • Weting (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of MEMS element, easily forming a projection for preventing fixing on a movable part without complicated process management. <P>SOLUTION: This manufacturing method of an MEMS element includes: a process of forming an n-type region 3 in a semiconductor substrate 1; a process of forming a p-type region adjacent to the n-type region 3 in the semiconductor substrate 1; a process of forming a sacrifical layer 6 made of SiO<SB>2</SB>on the n-type region 3 and the p-type region 5 by thermal oxidation; a process of forming a movable part forming film 8 made of a thin film on the sacrifical layer 6; and a process of removing a part of the sacrifical layer 6 under the movable part forming film 8 to release a support part 9 and a movable part 10. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、梁構造を備えたMEMS素子の製造方法および、MEMS素子に関する。   The present invention relates to a method for manufacturing a MEMS element having a beam structure and a MEMS element.

近年、MEMS(Micro Electro Mechanical System)技術を利用し、MEMS素子を備えたセンサや共振器、通信用デバイスなどが注目されている。MEMS素子は、半導体基板等の基板上に半導体製造技術を用いて作製された、微小な構造体からなる機能素子である。この構造体は、電気的な力、または加速度などの外力で変形する片持ち梁や両持ち梁構造の可動部を備えている。
この、半導体基板上に梁構造を形成する場合、可動部が対向する半導体基板に吸着され固着するという問題がある。通常、製造工程の可動部のリリースにおいて、ウェットプロセスを用いて犠牲層を除去するが、犠牲層の除去後の乾燥工程で、液体の表面張力により可動部が半導体基板側に引張られ、吸着される。
このため、例えば特許文献1に示すように、可動部に突起を設け、半導体基板との接触面積を低減することで、可動部の半導体基板への固着を防止している。また、この突起は外力による可動部の可動範囲を制限し、大きな外力が加わった時、可動部の半導体基板への固着を防止する役目も果たしている。
2. Description of the Related Art In recent years, sensors, resonators, communication devices, and the like equipped with MEMS elements have attracted attention using MEMS (Micro Electro Mechanical System) technology. The MEMS element is a functional element made of a minute structure manufactured using a semiconductor manufacturing technique on a substrate such as a semiconductor substrate. This structure includes a cantilever beam that can be deformed by an external force such as an electric force or acceleration, or a movable portion of a double-supported beam structure.
When the beam structure is formed on the semiconductor substrate, there is a problem that the movable portion is attracted and fixed to the opposing semiconductor substrate. Normally, when the movable part is released in the manufacturing process, the sacrificial layer is removed using a wet process. The
For this reason, as shown in Patent Document 1, for example, a protrusion is provided on the movable portion to reduce the contact area with the semiconductor substrate, thereby preventing the movable portion from being fixed to the semiconductor substrate. In addition, this protrusion limits the movable range of the movable part due to an external force, and also serves to prevent the movable part from sticking to the semiconductor substrate when a large external force is applied.

このような、従来の可動部に突起を形成するには、図3(a)〜(d)に示す工程にて製作されている。
図3において、シリコンからなる半導体基板51上に、SiO2からなる犠牲層51を形成し、犠牲層51上にフォトレジスト膜52を形成する。次に、突起を形成する部分のフォトレジスト膜52を除去して、フォトレジスト膜52をマスクとして犠牲層51のエッチングが行われる。ここで、エッチング深さを管理して犠牲層51のエッチングが行われ、開孔53を形成する。その後、フォトレジスト52を剥離し、犠牲層51上にポリシリコンからなる可動部形成膜54を成膜する。そして、犠牲層51をエッチングして、支持部55と可動部56をリリースする。このようにして、半導体基板50上の支持部55に支持した可動部56を形成し、可動部56に突起57を形成している。
In order to form a protrusion on such a conventional movable part, it is manufactured by the steps shown in FIGS.
In FIG. 3, a sacrificial layer 51 made of SiO 2 is formed on a semiconductor substrate 51 made of silicon, and a photoresist film 52 is formed on the sacrificial layer 51. Next, the portion of the photoresist film 52 where the protrusion is to be formed is removed, and the sacrifice layer 51 is etched using the photoresist film 52 as a mask. Here, the sacrificial layer 51 is etched by controlling the etching depth, and the opening 53 is formed. Thereafter, the photoresist 52 is peeled off, and a movable part forming film 54 made of polysilicon is formed on the sacrificial layer 51. Then, the sacrificial layer 51 is etched to release the support portion 55 and the movable portion 56. In this way, the movable portion 56 supported by the support portion 55 on the semiconductor substrate 50 is formed, and the protrusion 57 is formed on the movable portion 56.

特開平9−18021号公報JP-A-9-18021

しかしながら、従来の可動部に突起を形成する工程において、突起を形成するための犠牲層のエッチングは、深さ方向のエッチング量の制御が難しく、工程管理が困難であった。
本発明の目的は、可動部に突起を形成するための複雑な工程管理を必要とせず、容易に突起を形成できるMEMS素子の製造方法および、当該製造方法で製造されたMEMS素子を提供することにある。
However, in the conventional process of forming the protrusions on the movable portion, the etching of the sacrificial layer for forming the protrusions is difficult to control the etching amount in the depth direction, and the process management is difficult.
An object of the present invention is to provide a method for manufacturing a MEMS element that can easily form a protrusion without requiring complicated process management for forming the protrusion on the movable part, and a MEMS element manufactured by the manufacturing method. It is in.

上記課題を解決するために、本発明のMEMS素子の製造方法は、半導体基板と、前記半導体基板上に形成した支持部と、前記支持部に支持し前記半導体基板に対向し隙間を隔てて配置した可動部と、を備え、さらに前記可動部の前記半導体基板に対向する面に突起を有するMEMS素子の製造方法であって、前記半導体基板にn型領域を形成する工程と、前記半導体基板に前記n型領域に隣接してp型領域を形成する工程と、前記n型領域およびp型領域上に熱酸化によりSiO2からなる犠牲層を形成する工程と、前記犠牲層の上に薄膜よりなる可動部形成膜を形成する工程と、前記可動部形成膜の下の前記犠牲層の一部を除去して前記支持部および前記可動部をリリースする工程と、を有することを特徴とする。 In order to solve the above problems, a method of manufacturing a MEMS device according to the present invention includes a semiconductor substrate, a support portion formed on the semiconductor substrate, and a support portion supported by the support portion and opposed to the semiconductor substrate with a gap therebetween. A MEMS element having a protrusion on a surface of the movable portion facing the semiconductor substrate, the method comprising: forming an n-type region in the semiconductor substrate; and A step of forming a p-type region adjacent to the n-type region, a step of forming a sacrificial layer made of SiO 2 by thermal oxidation on the n-type region and the p-type region, and a thin film on the sacrificial layer Forming a movable part forming film, and removing a part of the sacrificial layer under the movable part forming film to release the support part and the movable part.

このMEMS素子の製造方法によれば、半導体基板のn型領域およびp型領域上に熱酸化でSiO2からなる犠牲層を形成すると、p型領域上はn型領域上に比べて酸化膜の生成速度が遅いために、n型領域とp型領域の境界で段差が形成される。この段差を利用して、犠牲層の上に可動部形成膜を成膜し、その後、犠牲層を除去すると可動部に突起を形成することができる。このように、可動部の突起を形成するためのエッチングを必要とせず、容易に可動部の突起を形成することができる。 According to this method for manufacturing a MEMS element, when a sacrificial layer made of SiO 2 is formed on the n-type region and the p-type region of the semiconductor substrate by thermal oxidation, the oxide film is formed on the p-type region as compared with the n-type region. Since the generation speed is slow, a step is formed at the boundary between the n-type region and the p-type region. By using this step, a movable part forming film is formed on the sacrificial layer, and then the sacrificial layer is removed, whereby protrusions can be formed on the movable part. Thus, the etching for forming the protrusion of the movable part is not required, and the protrusion of the movable part can be easily formed.

また、本発明のMEMS素子は、半導体基板と、前記半導体基板上に形成した支持部と、前記支持部に支持され前記半導体基板に対向し隙間を隔てて配置した可動部と、を備え、さらに前記可動部の前記半導体基板に対向する面に突起を有するMEMS素子であって、前記可動部に形成した突起に対向する部分の前記半導体基板はp型領域であることを特徴とする。   The MEMS element of the present invention includes a semiconductor substrate, a support portion formed on the semiconductor substrate, and a movable portion that is supported by the support portion and disposed opposite to the semiconductor substrate with a gap therebetween. A MEMS element having a protrusion on a surface of the movable portion facing the semiconductor substrate, wherein the portion of the semiconductor substrate facing the protrusion formed on the movable portion is a p-type region.

このように、可動部に形成した突起に対向する部分の半導体基板をp型領域とすれば、容易に可動部の固着防止の突起を形成でき、生産性に優れたMEMS素子を提供できる。   As described above, if the semiconductor substrate in the portion facing the protrusion formed on the movable portion is a p-type region, the protrusion for preventing the movable portion from sticking can be easily formed, and a MEMS element having excellent productivity can be provided.

以下、本発明の実施形態について図面に従って説明する。
(第1の実施形態)
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
(First embodiment)

図1は、本実施形態に係るMEMS素子の製造方法の工程図であり、(a)〜(g)の順に工程が進行している。
MEMS素子の製造方法の説明に先立って、本実施形態のMEMS素子の構成について、図1(g)を参照して説明をする。
シリコンからなる半導体基板1の表面には、n型領域3とp型領域5が隣接して形成されている。そして、n型領域5上からは、SiO2からなる支持部9が立ち上がり、ポリシリコンの薄膜からなる可動部10を支持している。可動部10は半導体基板1のn型領域3とp型領域5と隙間を隔てて対向するように配置されている。そして、可動部10の半導体基板1に形成されたp型領域5に対向する部分に突起11が形成されている。このように、MEMS素子12は片持ち梁構造を備え、可動部10が半導体基板1の厚み方向に変形可能に構成されている。
FIG. 1 is a process diagram of a method for manufacturing a MEMS element according to the present embodiment, in which the process proceeds in the order of (a) to (g).
Prior to the description of the manufacturing method of the MEMS element, the configuration of the MEMS element of the present embodiment will be described with reference to FIG.
An n-type region 3 and a p-type region 5 are formed adjacent to each other on the surface of the semiconductor substrate 1 made of silicon. A support portion 9 made of SiO 2 rises from above the n-type region 5 to support the movable portion 10 made of a polysilicon thin film. The movable part 10 is arranged to face the n-type region 3 and the p-type region 5 of the semiconductor substrate 1 with a gap therebetween. A protrusion 11 is formed on a portion of the movable portion 10 facing the p-type region 5 formed on the semiconductor substrate 1. Thus, the MEMS element 12 has a cantilever structure, and the movable portion 10 is configured to be deformable in the thickness direction of the semiconductor substrate 1.

以下、MEMS素子12の製造工程について説明をする。
[図1(a)〜(d)の工程]
シリコンからなる半導体基板1を用意し、半導体基板1の表面にフォトレジスト膜2を形成し、次にn型領域3を形成する部分のフォトレジスト膜2を剥離する。残されたフォトレジスト膜2をマスクとして、それ以外の部分にリン(P)イオンを半導体基板1に注入し、n型領域3を形成する。
次いで、フォトレジスト膜2を剥離し、新たにフォトレジスト膜4を形成する。そして、p型領域を形成する部分のフォトレジスト膜4を除去する。フォトレジスト膜4をマスクとして、ホウ素(B)イオンを半導体基板1に注入し、p型領域5を形成する。その後、フォトレジスト膜4を剥離する。
Hereinafter, the manufacturing process of the MEMS element 12 will be described.
[Steps of FIGS. 1A to 1D]
A semiconductor substrate 1 made of silicon is prepared, a photoresist film 2 is formed on the surface of the semiconductor substrate 1, and then a portion of the photoresist film 2 where an n-type region 3 is to be formed is peeled off. Using the remaining photoresist film 2 as a mask, phosphorus (P) ions are implanted into the semiconductor substrate 1 in other portions to form an n-type region 3.
Next, the photoresist film 2 is peeled off, and a new photoresist film 4 is formed. Then, the portion of the photoresist film 4 where the p-type region is to be formed is removed. Boron (B) ions are implanted into the semiconductor substrate 1 using the photoresist film 4 as a mask to form a p-type region 5. Thereafter, the photoresist film 4 is peeled off.

なお、n型領域およびp型領域の不純物層形成は、CMOSプロセスのウエル不純物注入をはじめ、フィールド不純物注入、ソースドレイン不純物注入などを利用できる。
また、不純物注入は不純物濃度が1×1019N/cm3以上となるように管理されている。
The formation of impurity layers in the n-type region and the p-type region can utilize well impurity implantation in the CMOS process, field impurity implantation, source / drain impurity implantation, and the like.
The impurity implantation is controlled so that the impurity concentration is 1 × 10 19 N / cm 3 or more.

[図1(e)の工程]
半導体基板1の表面にn型領域3とp型領域5が隣接した不純物層の上に、熱酸化により、SiO2よりなる犠牲層6を形成する。ここでは、およそ1μm程度の犠牲層6を形成する。また、n型領域3上とp型領域5上では増速酸化の速度が異なり、p型領域5上では、n型領域3上に比べて増速酸化が遅い。このため、SiO2の膜厚は、p型領域5上では、n型領域3上に比べて薄い膜厚となり、犠牲層6の表面では、p型領域の直上に段差部7ができる。
[Step of FIG. 1 (e)]
A sacrificial layer 6 made of SiO 2 is formed by thermal oxidation on the impurity layer where the n-type region 3 and the p-type region 5 are adjacent to each other on the surface of the semiconductor substrate 1. Here, the sacrificial layer 6 of about 1 μm is formed. Further, the rate of accelerated oxidation is different between the n-type region 3 and the p-type region 5, and the accelerated oxidation is slower on the p-type region 5 than on the n-type region 3. For this reason, the film thickness of SiO 2 is thinner on the p-type region 5 than on the n-type region 3, and a step 7 is formed on the surface of the sacrificial layer 6 immediately above the p-type region.

[図1(f)、(g)の工程]
次に、犠牲層6上にポリシリコンの可動部形成膜8を成膜する。ここで、ポリシリコンの成膜では、犠牲層6にできた段差部7にもポリシリコンが埋め込まれるように成膜される。
そして、ウエットエッチングにより犠牲層6の一部をエッチングして、可動部10と支持部9をリリースする。このように、MEMS素子12は犠牲層6に形成された段差部7を利用して、可動部9に突起11を形成することができる。ここで、犠牲層6のエッチングはフッ酸などを用い、支持部9が残るようにエッチング時間管理を行う。
[Steps of FIGS. 1 (f) and (g)]
Next, a movable part forming film 8 of polysilicon is formed on the sacrificial layer 6. Here, in forming the polysilicon, the polysilicon is also embedded in the stepped portion 7 formed in the sacrificial layer 6.
Then, a part of the sacrificial layer 6 is etched by wet etching to release the movable portion 10 and the support portion 9. As described above, the MEMS element 12 can form the protrusion 11 on the movable portion 9 by using the step portion 7 formed on the sacrificial layer 6. Here, the sacrificial layer 6 is etched using hydrofluoric acid or the like, and the etching time is managed so that the support portion 9 remains.

以上のMEMS素子12の製造方法によれば、半導体基板1のn型領域3およびp型領域5上に熱酸化でSiO2からなる犠牲層6を形成すると、p型領域5上はn型領域3上に比べて酸化膜の生成速度が遅いために、n型領域3とp型領域5の境界で段差部7が形成される。この段差を利用して、犠牲層6の上に可動部形成膜8を成膜し、その後、犠牲層6を除去すると可動部10に突起11を形成することができる。このように、可動部10の突起11を形成するためのエッチングを必要とせず、容易に可動部10の突起11を形成することができる。
(変形例)
According to the manufacturing method of the MEMS element 12 described above, when the sacrificial layer 6 made of SiO 2 is formed on the n-type region 3 and the p-type region 5 of the semiconductor substrate 1 by thermal oxidation, the n-type region is formed on the p-type region 5. Since the generation rate of the oxide film is slower than that on 3, the stepped portion 7 is formed at the boundary between the n-type region 3 and the p-type region 5. By using this step, the movable portion forming film 8 is formed on the sacrificial layer 6, and then the sacrificial layer 6 is removed, whereby the protrusion 11 can be formed on the movable portion 10. Thus, the etching for forming the protrusion 11 of the movable part 10 is not required, and the protrusion 11 of the movable part 10 can be easily formed.
(Modification)

図2は、他の実施形態を示す構成図である。この変形例では、MEMS素子の可動部に突起を複数設けた実施形態である。
シリコンからなる半導体基板21の表面には、複数のn型領域22とp型領域23が隣接して形成されている。そして、n型領域22上からは、SiO2からなる支持部24が立ち上がり、ポリシリコンの薄膜からなる可動部25を支持している。可動部25は半導体基板21のn型領域22とp型領域23と隙間を隔てて対向するように配置されている。そして、可動部25の半導体基板21に形成されたp型領域23に対向する部分に複数の突起26,27が形成されている。このように、MEMS素子20は片持ち梁構造を備え、可動部25が半導体基板21の厚み方向に変形可能に構成されている。
FIG. 2 is a configuration diagram showing another embodiment. This modification is an embodiment in which a plurality of protrusions are provided on the movable portion of the MEMS element.
A plurality of n-type regions 22 and p-type regions 23 are formed adjacent to each other on the surface of the semiconductor substrate 21 made of silicon. A support portion 24 made of SiO 2 rises from above the n-type region 22 to support a movable portion 25 made of a polysilicon thin film. The movable portion 25 is disposed so as to face the n-type region 22 and the p-type region 23 of the semiconductor substrate 21 with a gap therebetween. A plurality of protrusions 26 and 27 are formed on a portion of the movable portion 25 facing the p-type region 23 formed on the semiconductor substrate 21. Thus, the MEMS element 20 has a cantilever structure, and the movable portion 25 is configured to be deformable in the thickness direction of the semiconductor substrate 21.

このような、MEMS素子20の製造方法は、前述の製造方法と同様であり、また同様な効果を享受できる。
可動部25の突起26,27を形成する部分に対向する半導体基板21にp型領域を形成し、その後、熱酸化によりSiO2よりなる犠牲層をその上に形成する。このとき、SiO2の膜厚は、p型領域23上では、n型領域22上に比べて薄い膜厚となり、犠牲層の表面は、p型領域の直上に段差部ができる。次に、犠牲層上にポリシリコンの可動部形成膜を成膜し、犠牲層の一部をエッチングして、可動部25と支持部24をリリースする。このようにして、可動部25に突起26,27が形成される。
Such a manufacturing method of the MEMS element 20 is the same as the above-described manufacturing method, and can enjoy the same effect.
A p-type region is formed in the semiconductor substrate 21 facing the portion where the protrusions 26 and 27 of the movable portion 25 are formed, and then a sacrificial layer made of SiO 2 is formed thereon by thermal oxidation. At this time, the film thickness of SiO 2 is thinner on the p-type region 23 than on the n-type region 22, and a stepped portion is formed on the surface of the sacrificial layer immediately above the p-type region. Next, a movable part forming film of polysilicon is formed on the sacrificial layer, and a part of the sacrificial layer is etched to release the movable part 25 and the support part 24. In this way, the protrusions 26 and 27 are formed on the movable portion 25.

なお、本実施形態では片持ち梁構造のMEMS素子12,20について説明をしたが、両持ち梁構造であっても実施可能である。また、本実施形態のMEMS素子の製造方法は加速度センサ、圧力センサ、角速度センサ、共振子、各種アクチュエータなどの梁構造を備えたMEMS素子の製造方法として具体化してもよい。   In the present embodiment, the MEMS elements 12 and 20 having a cantilever structure have been described. Further, the MEMS element manufacturing method of the present embodiment may be embodied as a MEMS element manufacturing method including a beam structure such as an acceleration sensor, a pressure sensor, an angular velocity sensor, a resonator, and various actuators.

さらに、以上の製造方法で製造されたMEMS素子12,20は、可動部10,25に形成した突起11,26,27に対向する部分の半導体基板1,21をp型領域5,23とすれば、可動部10,25の突起11,26,27を形成するためのエッチングを必要とせず、容易に可動部10,25の固着防止の突起11,26,27を形成でき、生産性に優れたMEMS素子12,20を提供できる。   Furthermore, in the MEMS elements 12 and 20 manufactured by the above manufacturing method, the semiconductor substrates 1 and 21 facing the protrusions 11, 26 and 27 formed on the movable portions 10 and 25 are replaced with the p-type regions 5 and 23. For example, etching for forming the protrusions 11, 26, 27 of the movable parts 10, 25 is not required, and the protrusions 11, 26, 27 for preventing the movable parts 10, 25 from being easily fixed can be easily formed. The MEMS elements 12 and 20 can be provided.

本実施形態のMEMS素子の製造方法を示す工程図。Process drawing which shows the manufacturing method of the MEMS element of this embodiment. 他の実施形態を示す構成図。The block diagram which shows other embodiment. 従来のMEMS素子の製造方法を示す工程図。Process drawing which shows the manufacturing method of the conventional MEMS element.

符号の説明Explanation of symbols

1…半導体基板、2…フォトレジスト膜、3…n型領域、4…フォトレジスト膜、5…p型領域、6…犠牲層、7…凹部、8…可動部形成膜、9…支持部、10…可動部、11…突起、12,20…MEMS素子、21…半導体基板、22…n型領域、23…p型領域、24…支持部、25…可動部、26,27…突起。
DESCRIPTION OF SYMBOLS 1 ... Semiconductor substrate, 2 ... Photoresist film, 3 ... N-type area | region, 4 ... Photoresist film, 5 ... P-type area | region, 6 ... Sacrificial layer, 7 ... Recessed part, 8 ... Movable part formation film, 9 ... Support part, DESCRIPTION OF SYMBOLS 10 ... Movable part, 11 ... Protrusion, 12, 20 ... MEMS element, 21 ... Semiconductor substrate, 22 ... N-type area | region, 23 ... P-type area | region, 24 ... Support part, 25 ... Movable part, 26, 27 ... Protrusion.

Claims (2)

半導体基板と、前記半導体基板上に形成した支持部と、前記支持部に支持し前記半導体基板に対向し隙間を隔てて配置した可動部と、を備え、さらに前記可動部の前記半導体基板に対向する面に突起を有するMEMS素子の製造方法であって、
前記半導体基板にn型領域を形成する工程と、
前記半導体基板に前記n型領域に隣接してp型領域を形成する工程と、
前記n型領域およびp型領域上に熱酸化によりSiO2からなる犠牲層を形成する工程と、
前記犠牲層の上に薄膜よりなる可動部形成膜を形成する工程と、
前記可動部形成膜の下の前記犠牲層の一部を除去して前記支持部および前記可動部をリリースする工程と、を有することを特徴とするMEMS素子の製造方法。
A semiconductor substrate; a support portion formed on the semiconductor substrate; and a movable portion supported by the support portion and opposed to the semiconductor substrate with a gap therebetween, and further facing the semiconductor substrate of the movable portion. A method of manufacturing a MEMS device having a protrusion on a surface to be performed,
Forming an n-type region in the semiconductor substrate;
Forming a p-type region in the semiconductor substrate adjacent to the n-type region;
Forming a sacrificial layer made of SiO 2 by thermal oxidation on the n-type region and the p-type region;
Forming a movable part forming film made of a thin film on the sacrificial layer;
Removing the part of the sacrificial layer under the movable part forming film to release the support part and the movable part, and a method for manufacturing a MEMS element.
半導体基板と、前記半導体基板上に形成した支持部と、前記支持部に支持され前記半導体基板に対向し隙間を隔てて配置した可動部と、を備え、さらに前記可動部の前記半導体基板に対向する面に突起を有するMEMS素子であって、
前記可動部に形成した突起に対向する部分の前記半導体基板はp型領域であることを特徴とするMEMS素子。
A semiconductor substrate; a support portion formed on the semiconductor substrate; and a movable portion supported by the support portion and disposed opposite to the semiconductor substrate with a gap therebetween, and further facing the semiconductor substrate of the movable portion. A MEMS element having a protrusion on the surface to be
The MEMS element, wherein the portion of the semiconductor substrate facing the protrusion formed on the movable portion is a p-type region.
JP2004283632A 2004-09-29 2004-09-29 Manufacturing method of mems element and mems element Withdrawn JP2006095632A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004283632A JP2006095632A (en) 2004-09-29 2004-09-29 Manufacturing method of mems element and mems element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004283632A JP2006095632A (en) 2004-09-29 2004-09-29 Manufacturing method of mems element and mems element

Publications (1)

Publication Number Publication Date
JP2006095632A true JP2006095632A (en) 2006-04-13

Family

ID=36235935

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004283632A Withdrawn JP2006095632A (en) 2004-09-29 2004-09-29 Manufacturing method of mems element and mems element

Country Status (1)

Country Link
JP (1) JP2006095632A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008200757A (en) * 2007-02-16 2008-09-04 Seiko Epson Corp Mems element, and manufacture method thereof
JP2009537337A (en) * 2006-05-17 2009-10-29 ミクロガン ゲーエムベーハー Micromechanical actuators containing group III nitride semiconductors
CN105629076A (en) * 2015-12-24 2016-06-01 河海大学 Manufacturing method of seven-electrode conductivity sensor based on MEMS silicon-glass technology
CN112117986A (en) * 2020-09-27 2020-12-22 苏州汉天下电子有限公司 Method for manufacturing resonator

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009537337A (en) * 2006-05-17 2009-10-29 ミクロガン ゲーエムベーハー Micromechanical actuators containing group III nitride semiconductors
JP2008200757A (en) * 2007-02-16 2008-09-04 Seiko Epson Corp Mems element, and manufacture method thereof
CN105629076A (en) * 2015-12-24 2016-06-01 河海大学 Manufacturing method of seven-electrode conductivity sensor based on MEMS silicon-glass technology
CN105629076B (en) * 2015-12-24 2018-03-06 河海大学 A kind of manufacture method of the seven-electrode conductivity sensor based on MEMS silica glass techniques
CN112117986A (en) * 2020-09-27 2020-12-22 苏州汉天下电子有限公司 Method for manufacturing resonator
CN112117986B (en) * 2020-09-27 2024-03-12 苏州汉天下电子有限公司 Resonator manufacturing method

Similar Documents

Publication Publication Date Title
US20230224657A1 (en) Semiconductor devices having a membrane layer with smooth stress-relieving corrugations and methods of fabrication thereof
KR101710826B1 (en) Semiconductor devices and methods of forming thereof
KR100421217B1 (en) Method for fabricating stiction-resistant micromachined structures
US7919346B2 (en) Micromechanical component and manufacturing method
JP4431502B2 (en) Method of forming a semiconductor device by epitaxy
US7276277B2 (en) Micromechanical component, in particular a sensor element, having a stabilized membrane and a method of producing such a component
JP6108793B2 (en) Method for forming a structure comprising an active portion having at least one plurality of thicknesses
US20060278942A1 (en) Antistiction MEMS substrate and method of manufacture
EP2019081B1 (en) Boron doped shell for MEMS device
KR101167195B1 (en) Method of forming a deep trench in Semiconductor device
JP4146850B2 (en) Manufacturing method of vertical step structure
KR20020085211A (en) Method for Fabrication of Electrostatic Vertical Actuators Using One Single-crystalline Silicon Wafer
JP2006095632A (en) Manufacturing method of mems element and mems element
JP2006224219A (en) Manufacturing method for mems element
JP4994096B2 (en) Semiconductor device manufacturing method and semiconductor device using the same
JP2007111831A (en) Method for manufacturing mems element, and mems element
JP2007111832A (en) Method for manufacturing mems element, and mems element
JP2008200757A (en) Mems element, and manufacture method thereof
JP2008221394A (en) Method for manufacturing mems structure, and method for manufacturing semiconductor device

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070403

A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20071204