Nothing Special   »   [go: up one dir, main page]

JP2006081322A - Ac motor control unit - Google Patents

Ac motor control unit Download PDF

Info

Publication number
JP2006081322A
JP2006081322A JP2004263352A JP2004263352A JP2006081322A JP 2006081322 A JP2006081322 A JP 2006081322A JP 2004263352 A JP2004263352 A JP 2004263352A JP 2004263352 A JP2004263352 A JP 2004263352A JP 2006081322 A JP2006081322 A JP 2006081322A
Authority
JP
Japan
Prior art keywords
voltage
electrical angle
value
phase
carrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004263352A
Other languages
Japanese (ja)
Inventor
Mitsuhiro Shoji
満博 正治
Takaaki Karikomi
卓明 苅込
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2004263352A priority Critical patent/JP2006081322A/en
Publication of JP2006081322A publication Critical patent/JP2006081322A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce an effect by delay in voltage switching timing arising from an detection error by a position transducer in an AC motor control unit that exercises rectangular wave voltage drive. <P>SOLUTION: In this AC motor control unit, electrical angular speed ω is calculated using an electrical angle θ detected by the position transducer 6. By dividing one cycle 2π of the electrical angle by the electrical angular speed ω, it is converted into a reference phase difference time t'. By dividing a phase difference (θsw<SP>*</SP>-θnext) between an electrical angle target value θsw<SP>*</SP>of voltage switching pattern change at the next control operation and an electrical angle expected value θnext at the time of the next control operation by the electrical angular speed ω, it is converted into a phase error time ▵t. The reference phase difference time is corrected by this phase error time. A value obtained by dividing the corrected value into six equal parts is used as each carrier cycle six times in the next one cycle. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は交流電動機の制御装置に関し、特に矩形波電圧駆動でインバータを制御する制御装置に関する。   The present invention relates to a control device for an AC motor, and more particularly to a control device that controls an inverter with a rectangular wave voltage drive.

従来における交流電動機の制御装置としては下記特許文献1に記載のものがある。
このような交流電動機の制御方法で、電動機に電流を供給するインバータを制御する方式として、PWM電圧駆動方式では出力電圧が制限を受ける動作領域等において用いられる矩形波電圧駆動方式がある。特許文献1に記載の矩形波電圧駆動方式においては、一定間隔のクロックで動作するタイマカウンタを使用し、カウント値が目標値に達する毎に電圧スイッチングパターン(以下、電圧SWパターンと略記)を切り替えて出力している。電圧SWパターンの開始から終わりまでの位相差目標値は、電圧SWパターン一区間の開始から終わりまでの理想的な基準位相差を求め、目標トルクと推定トルクの偏差に基づく位相誤差により基準位相差を補正して求めている。そしてカウンタ目標値は、位相差目標値を時間換算した値に従って決めており、電気角θを求める位置検出器を不要としている。
As a conventional control device for an AC motor, there is one described in Patent Document 1 below.
As a method for controlling the inverter that supplies current to the motor by such an AC motor control method, the PWM voltage drive method includes a rectangular wave voltage drive method that is used in an operation region where the output voltage is limited. In the rectangular wave voltage driving method described in Patent Document 1, a timer counter that operates with a clock at a fixed interval is used, and a voltage switching pattern (hereinafter abbreviated as a voltage SW pattern) is switched every time the count value reaches a target value. Is output. The phase difference target value from the start to the end of the voltage SW pattern is obtained as an ideal reference phase difference from the start to the end of one section of the voltage SW pattern, and the reference phase difference is determined by the phase error based on the deviation between the target torque and the estimated torque. It is obtained by correcting. The counter target value is determined according to a value obtained by time-converting the phase difference target value, and a position detector for obtaining the electrical angle θ is unnecessary.

特開2002−359996号公報JP 2002-359996 A

上記のように、従来例においては、位相差基準値をトルク偏差に基づく位相誤差で補正することによって位相差目標値を算出するという構成になっていたため、トルク推定を行わず、レゾルバ等の位置検出器の検出量に基づいて位相差目標値を決めるような制御を行う場合には、位置検出器の検出誤差によって電圧SWタイミングにズレが生じ、電流にオフセットが発生する場合がある、という問題があった。
本発明は上記の問題を解決するためになされたものであり、矩形波電圧駆動制御において、位置検出器の検出誤差に起因する電圧SWタイミングのズレによる影響を軽減する交流電動機の制御装置を提供することを目的とする。
As described above, in the conventional example, the phase difference target value is calculated by correcting the phase difference reference value with the phase error based on the torque deviation. When performing control such that the phase difference target value is determined based on the detection amount of the detector, the voltage SW timing may be shifted due to the detection error of the position detector, and the current may be offset. was there.
The present invention has been made to solve the above-described problem, and provides a control device for an AC motor that reduces the effect of voltage SW timing shift caused by a detection error of a position detector in rectangular wave voltage drive control. The purpose is to do.

上記の目的を達成するため、本発明においては、位置検出器で検出した電気角θを用いて電気角速度ωを算出し、電気角の一周期2πを電気角速度ωで除算することにより基準位相差時間t’に換算し、次回の制御演算時の電圧SWパターン切り替えの電気角目標値θswと次回の制御演算時における電気角予測値θnextとの位相誤差(θsw−θnext)を電気角速度ωで除算することにより位相誤差時間△tに換算し、この位相誤差時間で前記基準位相差時間を補正し、補正後の値を6等分した値を次の一周期における6回の各キャリア周期とするように構成している。 In order to achieve the above object, in the present invention, the electrical angular velocity ω is calculated using the electrical angle θ detected by the position detector, and one period 2π of the electrical angle is divided by the electrical angular velocity ω to thereby obtain a reference phase difference. Converted to time t ′, the phase error (θsw * −θnext) between the electric angle target value θsw * for switching the voltage SW pattern at the next control calculation and the predicted electric angle θnext at the next control calculation is calculated as the electric angular velocity ω. Is converted into a phase error time Δt, and the reference phase difference time is corrected by this phase error time, and the value obtained by dividing the corrected value into 6 equal parts is each of six carrier periods in the next period. It is constituted so that.

電気角一周期2πの間、キャリア周期を一定にするため、定常状態では、電気角一周期の間で電圧オンの時間とオフの時間が等しくなるので、位置検出器の検出誤差による電流のオフセットを抑制することができる。つまり、キャリア周期の演算時点で検出した電気角にレゾルバの誤差が含まれていると、その誤差を含んだ値で電気角一周期の間で電圧オンの時間とオフの時間が等しくなる。したがって誤差は含んでいるが、常に一定なので安定であり、レゾルバの誤差による影響を低減することが出来る、という効果がある。   In order to make the carrier period constant during one electrical angle period 2π, in the steady state, the voltage on time and the off time are equal during one electrical angle period, so the current offset due to the detection error of the position detector Can be suppressed. That is, if the resolver error is included in the electrical angle detected at the time of calculation of the carrier period, the voltage ON time and the OFF time are equal in one electrical angle cycle with a value including the error. Therefore, there is an error, but there is an effect that it is stable because it is always constant, and the influence of the error of the resolver can be reduced.

図1は、この発明を適用する交流電動機の制御装置の構成を示す一実施例のブロック図である。
図1において、電圧位相生成手段1では、外部から入力されるトルク指令値Tおよび現在の回転速度ωを指標としてテーブル参照により求めた電圧位相目標値αを出力する。具体的には、例えば制御の対象となる電動機の評価試験等において、トルク指令値Tと回転速度ωとに対する電圧位相目標値αの値をテーブルデータとして求めておくことにより、そのときのトルク指令値Tと回転速度ωに対応した電圧位相目標値αの値をテーブル参照によって求めることができる。
FIG. 1 is a block diagram of an embodiment showing a configuration of an AC motor control apparatus to which the present invention is applied.
In FIG. 1, the voltage phase generating means 1 outputs a voltage phase target value α * obtained by referring to a table using an externally input torque command value T * and the current rotational speed ω as indices. Specifically, for example, in the evaluation test of the electric motor to be controlled, the value of the voltage phase target value α * with respect to the torque command value T * and the rotational speed ω is obtained as table data. The value of the voltage phase target value α * corresponding to the torque command value T * and the rotation speed ω can be obtained by referring to the table.

制御手段2は、矩形波制御手段2−1とPWM制御手段2−2からなる。本発明は矩形波電圧駆動に関するものなので、以下、矩形波制御手段2−1について主として説明し、PWM制御手段2−2については必要のある個所のみを説明する。   The control unit 2 includes a rectangular wave control unit 2-1 and a PWM control unit 2-2. Since the present invention relates to rectangular wave voltage driving, the rectangular wave control means 2-1 will be mainly described below, and only necessary portions of the PWM control means 2-2 will be described.

矩形波制御手段2−1は、電圧位相生成手段1から出力された電圧位相目標値αと、位置検出器6(例えばレゾルバ)で検出された電動機5の電気角θと、電気角θを入力とする速度演算手段7で求めた電気角速度ω(回転速度)とを入力し、オン/オフ信号の駆動信号Pを演算して出力する(詳細後述)。この駆動信号Pでインバータ3を制御し、インバータ3から振幅が電源電圧Vdcか0(または+Vdc/2か−Vdc/2)の3相の矩形波電圧Vu、Vv、Vwを出力し、それによって3相の電動機5を駆動する。 The rectangular wave control means 2-1 determines the voltage phase target value α * output from the voltage phase generation means 1, the electrical angle θ of the electric motor 5 detected by the position detector 6 (for example, a resolver), and the electrical angle θ. The electric angular velocity ω (rotational speed) obtained by the velocity calculating means 7 as an input is input, and the drive signal P of the on / off signal is calculated and output (details will be described later). The inverter 3 is controlled by this drive signal P, and three-phase rectangular wave voltages Vu, Vv, Vw having an amplitude of the power supply voltage Vdc or 0 (or + Vdc / 2 or −Vdc / 2) are output from the inverter 3, thereby The three-phase motor 5 is driven.

上記の電圧位相生成手段1および制御手段2はコンピュータ等で構成され、所定周期で繰り返し演算を行って駆動信号Pを演算する。
上記の駆動信号Pはオン/オフ信号であり、インバータ3の出力は駆動信号Pに同期して出力される。つまり、駆動信号Pのオン/オフの切り替わるタイミングがそのまま矩形波電圧の切り替わるタイミングとなる(厳密にはオンとオフが逆になることもある)。そして矩形波電圧駆動では、印加する電圧振幅は電源電圧Vdcか0(+Vdc/2か−Vdc/2)であって振幅を制御できないので、電圧位相を電圧位相目標値αに追従させるように制御することにより、与えられたトルク指令値Tを実現するように電動機5のトルク制御を行う。つまりトルクと電圧位相には相関があるので、電圧位相を制御することによってトルクを制御することが出来る。この電圧位相を制御するには後述する電圧SWパターンを切り替えることによって行う。
The voltage phase generation means 1 and the control means 2 are constituted by a computer or the like, and calculate the drive signal P by repeatedly performing calculations at a predetermined cycle.
The drive signal P is an on / off signal, and the output of the inverter 3 is output in synchronization with the drive signal P. That is, the timing at which the drive signal P is switched on / off is the timing at which the rectangular wave voltage is switched as it is (strictly speaking, on and off may be reversed). In the rectangular wave voltage drive, the applied voltage amplitude is the power supply voltage Vdc or 0 (+ Vdc / 2 or −Vdc / 2) and the amplitude cannot be controlled, so that the voltage phase follows the voltage phase target value α *. By controlling, the torque control of the electric motor 5 is performed so as to realize the given torque command value T * . That is, since there is a correlation between the torque and the voltage phase, the torque can be controlled by controlling the voltage phase. This voltage phase is controlled by switching a voltage SW pattern described later.

なお、制御手段2におけるPWM制御手段2−2は、PWM電圧駆動を行う領域では、電流センサ4で検出した検出電流Iu、Ivを用いて一般的なトルク制御演算を行い、インバータ3をPWM信号で制御し、電動機5の各相に与える電圧値を変えてトルク制御を行う。上記のPWM制御における一般的なトルク制御演算とは、例えば、入力したトルク指令値と電動機5の回転角度とに基づいてd軸電流指令値とq軸電流指令値を算出し、d軸電流指令値と実際のd軸電流値との偏差に基づき比例積分演算を行ってd軸電圧指令値を演算し、同様にq軸電流指令値と実際のq軸電流値との偏差に基づいてq軸電圧指令値を演算する。なお、実際のd軸電流値とq軸電流値は、検出電流Iu、Iv(IwはIuとIvから算出可能)から3相2相変換を行って求める。そしてd軸電圧指令値とq軸電圧指令値を2相3相変換し、3相電圧指令値を演算する。この3相電圧指令値からPWM信号のデューティ指令値を演算し、このデューティ指令値と所定のキャリア信号(三角波や鋸歯状波など)とを比較することにより、駆動信号Pを求めるものである。   Note that the PWM control means 2-2 in the control means 2 performs a general torque control calculation using the detected currents Iu and Iv detected by the current sensor 4 in the region where the PWM voltage drive is performed, and the inverter 3 outputs the PWM signal. The torque is controlled by changing the voltage value applied to each phase of the electric motor 5. The general torque control calculation in the above-described PWM control is, for example, calculating a d-axis current command value and a q-axis current command value based on the input torque command value and the rotation angle of the electric motor 5, and d-axis current command The proportional-integral calculation is performed based on the deviation between the value and the actual d-axis current value to calculate the d-axis voltage command value, and the q-axis is similarly calculated based on the deviation between the q-axis current command value and the actual q-axis current value. Calculate the voltage command value. The actual d-axis current value and q-axis current value are obtained by performing three-phase to two-phase conversion from the detected currents Iu and Iv (Iw can be calculated from Iu and Iv). Then, the d-axis voltage command value and the q-axis voltage command value are two-phase / three-phase converted to calculate a three-phase voltage command value. The drive signal P is obtained by calculating the duty command value of the PWM signal from the three-phase voltage command value and comparing the duty command value with a predetermined carrier signal (such as a triangular wave or a sawtooth wave).

本発明で用いる矩形波電圧駆動を行う場合には、上記キャリア信号と比較するデューティ指令値のデューティ比を0[%]か100[%]のどちらかにセットすることにより矩形波(Vdcか0の2値)の駆動信号Pを生成することが出来る。なお、一般に、矩形波電圧駆動は、高電圧が必要な弱め界磁領域で用いられ、その他の領域ではPWM制御が用いられる。   When the rectangular wave voltage drive used in the present invention is performed, the rectangular wave (Vdc or 0) is set by setting the duty ratio of the duty command value to be compared with the carrier signal to 0 [%] or 100 [%]. Drive signal P can be generated. In general, the rectangular wave voltage drive is used in a field weakening region where a high voltage is required, and PWM control is used in other regions.

また、矩形波制御手段2−1において、電圧位相を電圧位相目標値αに追従させるように制御するには、電圧SWパターン(詳細後述)を電圧位相目標値αに応じて決まるタイミングで切り替えることによって行う。
電圧SWパターンやキャリア周期の設定はキャリア信号の三角波や鋸歯状波の谷で有効になり、同時に制御演算を開始するための割り込みが発生する。そして電圧SWパターン切り替えタイミングが適切になるように、キャリア周期を変更して矩形波のパターン(電圧SWパターン)が切り替わるタイミングを調整している。つまり、矩形波を作るためのキャリア信号(例えば三角波)の周期を、電圧SWパターンの切り替わり時点とキャリア信号の谷(割り込み演算開始時)とが一致するように制御することにより、電圧位相を電圧位相目標値αに追従させるように制御している。
In addition, in order to control the voltage phase to follow the voltage phase target value α * in the rectangular wave control means 2-1, the voltage SW pattern (detailed later) is determined at a timing determined according to the voltage phase target value α *. Do by switching.
The setting of the voltage SW pattern and the carrier cycle is effective at the trough of the triangular wave or sawtooth wave of the carrier signal, and at the same time, an interrupt for starting the control calculation is generated. The timing at which the rectangular wave pattern (voltage SW pattern) is switched is adjusted by changing the carrier cycle so that the voltage SW pattern switching timing is appropriate. In other words, the voltage phase is set to voltage by controlling the period of the carrier signal (for example, triangular wave) for creating the rectangular wave so that the switching point of the voltage SW pattern coincides with the valley of the carrier signal (at the start of the interrupt calculation). Control is performed to follow the phase target value α * .

(実施例1)
以下、実施例1におけるキャリア周期の設定方法について詳細に説明する。
図2は、キャリア周期の設定方法を示す信号波形図である。
図2においては、キャリア信号(三角波)の谷において制御演算の割り込みが行われると共に、電圧SWパターンが切り替えられている。電圧SWパターンは、U、V、Wの三相各相に与える電圧のパターン、つまり三相の何れを“1”つまりVdcにし、何れを“0”にするかのパターンであり、例えば図2のTnowの区間においては「Vu=0(−Vdc/2)、Vv=0(−Vdc/2)、Vw=1(+Vdc/2)」になっている。
Example 1
Hereinafter, the method for setting the carrier period in the first embodiment will be described in detail.
FIG. 2 is a signal waveform diagram showing a carrier period setting method.
In FIG. 2, the control calculation is interrupted at the valley of the carrier signal (triangular wave), and the voltage SW pattern is switched. The voltage SW pattern is a voltage pattern applied to each of the three phases U, V, and W, that is, a pattern of which one of the three phases is set to “1”, that is, Vdc, and which is set to “0”. In the Tonow interval, “Vu = 0 (−Vdc / 2), Vv = 0 (−Vdc / 2), Vw = 1 (+ Vdc / 2)”.

今回の演算、つまり制御演算1(黒く塗りつぶした矢印)では、次の電気角一周期2πの間のキャリア周期Tnextを、制御演算1開始時の電気角θ、電気角速度ω、現在のキャリア周期Tnowを用いて、以下のように算出する。   In this calculation, that is, control calculation 1 (black arrow), the carrier cycle Tnext during the next electrical angle cycle 2π is set to the electrical angle θ at the start of the control calculation 1, the electrical angular velocity ω, and the current carrier cycle Tnow Is calculated as follows.

まず、下記(数1)式に示すように、電気角一周期2π[rad]を電気角速度ωで除算することにより時間t’(基準位相差時間)に換算する。
t’=2π/ω …(数1)
次に、下記(数2)式に示すように、次の電圧SWパターン切り替え時の電気角予測値θnextを算出する。
θnext=θ+ωTnow …(数2)
なお、現在のキャリア周期Tnowは前回のキャリア周期設定において算出された次のキャリア周期Tnextに相当する。
First, as shown in the following (Equation 1), an electrical angle period 2π [rad] is divided by an electrical angular velocity ω to be converted into time t ′ (reference phase difference time).
t ′ = 2π / ω (Equation 1)
Next, as shown in the following (Equation 2), the predicted electrical angle θnext at the time of switching the next voltage SW pattern is calculated.
θnext = θ + ωTnow (Equation 2)
The current carrier cycle Tow corresponds to the next carrier cycle Tnext calculated in the previous carrier cycle setting.

次回の電圧SWパターン切り替えの電気角目標値θswは、電気角θと、電圧位相目標値αと、電動機に入力すべき電圧のSWパターンとの関係を示す図3に基づき、θsw0〜θsw5の内からθnextと最も近い電気角を選択し、また、現在の回転方向から次の電圧SWパターン切り替え以降に出力する電圧SWパターンを判定する。例えば、図3において、θnextが(π−α)に最も近い値であった場合は、次回の電圧SWパターン切り替えの電気角目標値θswとしてθsw3を選択し、次回の電圧SWパターンは「Vu=+Vdc/2、Vv=−Vdc/2、Vw=+Vdc/2」のパターンとなる。 The electrical angle target value of the next voltage SW pattern switching .theta.sw *, based on FIG. 3 showing the electrical angle theta, the voltage phase target value alpha *, the relationship between the SW pattern of voltage to be input to the motor, θsw0 * ~ The electrical angle closest to θnext is selected from θsw5 * , and the voltage SW pattern output after the next voltage SW pattern switching is determined from the current rotation direction. For example, in FIG. 3, when θnext is the closest value to (π−α * ), θsw3 * is selected as the electrical angle target value θsw * for the next voltage SW pattern switching, and the next voltage SW pattern is The pattern is “Vu = + Vdc / 2, Vv = −Vdc / 2, Vw = + Vdc / 2”.

なお、図3においては、各電圧SWパターンが0を中心とした+Vdc/2と−Vdc/2の2値の矩形波なっている。これは電動機の3相巻線をY接続した場合には、電源電圧Vdc端子と接地端子との間に、U、V、Wの3相のうちの何れか2相の巻線が直列に接続された回路が接続されることになるので、中性点を0とすれば、Vdc端子側に接続された相に+Vdc/2、接地端子側に接続された相に−Vdc/2が印加されたものと表示することが出来ることによる。したがって、+Vdc/2を“1”(Vdc)、−Vdc/2を“0”で表してもよい。   In FIG. 3, each voltage SW pattern is a binary rectangular wave of + Vdc / 2 and −Vdc / 2 with 0 as the center. This is because, when the three-phase winding of the motor is Y-connected, any two of the three phases U, V, and W are connected in series between the power supply voltage Vdc terminal and the ground terminal. If the neutral point is set to 0, + Vdc / 2 is applied to the phase connected to the Vdc terminal side, and -Vdc / 2 is applied to the phase connected to the ground terminal side. It is because it can be displayed. Therefore, + Vdc / 2 may be represented by “1” (Vdc) and −Vdc / 2 may be represented by “0”.

上記のように、次の電圧SWパターン切り替えの電気角目標値θswを、θsw0〜θsw5から電気角予測値θnextが最も近いものを選択して求め、θnextとθswの差分を位相誤差とし、下記(数3)式に示すように、上記位相誤差(θsw−θnext)を電気角速度ωで除算することにより時間△t(位相誤差時間)に換算する。
△t=(θsw−θnext)/ω …(数3)
次に、下記(数4)式、(数5)式に示すように、前記(数1)式で求めたt’を△tで補正して時間tとし、これを6等分して、次の電気角一周期の間、つまり6回のキャリア周期における各キャリア周期Tnextとする。なお上記の6等分とは、一周期2πを一つの電圧SWパターンの開始から終わりまでの基準位相差π/3で割った値である。つまり図2において、一周期2πは6回のキャリア周期からなることを意味する。
t=t’+△t …(数4)
Tnext=t/6 …(数5)
上記のように位相誤差(θsw−θnext)を時間に換算した△tだけ補正してやれば、次回の電圧SWパターン切り替えタイミングをキャリア信号の谷に一致させるように制御することが出来る。
As described above, the electrical angle target value of the next voltage SW pattern switching θsw *, θsw0 * ~θsw5 * calculated by selecting those electrical angle prediction value θnext is closest to the phase error a difference θnext and .theta.sw * As shown in the following (Equation 3), the phase error (θsw * −θnext) is divided by the electrical angular velocity ω to be converted into time Δt (phase error time).
Δt = (θsw * −θnext) / ω (Equation 3)
Next, as shown in the following (Expression 4) and (Expression 5), t ′ obtained by the above (Expression 1) is corrected by Δt to obtain a time t, which is divided into 6 equal parts, Each carrier period Tnext in the next electrical angle period, that is, six carrier periods. Note that the above 6 equal divisions is a value obtained by dividing one period 2π by the reference phase difference π / 3 from the start to the end of one voltage SW pattern. That is, in FIG. 2, one period 2π means six carrier periods.
t = t ′ + Δt (Equation 4)
Tnext = t / 6 (Expression 5)
If the phase error (θsw * −θnext) is corrected by Δt converted to time as described above, the next voltage SW pattern switching timing can be controlled to coincide with the valley of the carrier signal.

実施例1においては、キャリア周期の更新は電気角一周期2π毎に1回であり、電気角一周期2πの間は同じキャリア周期Tnext=t/6を用いている。つまり、制御演算1で更新したら、次にキャリア周期の更新を行うのは電気角一周期2π後の制御演算3である。したがって、その間の制御演算では、キャリア周期の演算は行わず、次の電圧SWパターンの選択のみをすればよい。   In the first embodiment, the carrier cycle is updated once every electrical angle cycle 2π, and the same carrier cycle Tnext = t / 6 is used during the electrical angle cycle 2π. In other words, after updating with the control calculation 1, the next update of the carrier cycle is the control calculation 3 after one electrical angle cycle 2π. Therefore, in the control calculation in the meantime, it is only necessary to select the next voltage SW pattern without calculating the carrier period.

上記のように、実施例1においては、電気角一周期2πの間、キャリア周期を一定にする。したがって定常状態では、電気角一周期の間で電圧オンの時間とオフの時間が等しくなるので、位置検出器の検出誤差による電流のオフセットを抑制することができる。つまり、キャリア周期の演算時点(制御演算1)で検出した電気角にレゾルバの誤差が含まれていると、その誤差を含んだ値で電気角一周期の間で電圧オンの時間とオフの時間が等しくなる。したがって誤差は含んでいるが、常に一定なので安定であり、レゾルバの誤差による影響を低減することが出来る。また、トルク制御等の値で、その誤差分を補正することも出来る。   As described above, in the first embodiment, the carrier period is constant for one electrical angle period 2π. Therefore, in the steady state, the voltage on time and the off time are equal in one electrical angle cycle, and thus it is possible to suppress the offset of current due to the detection error of the position detector. In other words, if the resolver error is included in the electrical angle detected at the time of calculation of the carrier cycle (control computation 1), the voltage on time and the off time during one electrical angle cycle with the error included. Are equal. Therefore, although an error is included, it is stable because it is always constant, and the influence of the error of the resolver can be reduced. Further, the error can be corrected by a value such as torque control.

(実施例2)
上記のように、実施例1においては、基本的には、電気角一周期2πの間、キャリア周期を一定にするように制御する。したがって電気角一周期の間に、回転速度や、電圧SWパターン切り替え電気角目標値θswが大きく変化した場合には、次のキャリア周期更新までの間の電圧SWパターン切替え電気角が目標値とずれてしまう。
上記の問題に対処するため、実施例2においては、最後にキャリア周期を変更したときからの、回転速度と電圧SWパターン切り替え電気角目標値θswの変化を監視し、例えば、制御演算1でキャリア周期を更新し、制御演算2で回転速度または電圧SWパターン切り替え電気角目標値θswの変化が閾値を超えた場合は、制御演算3を待たずに、制御演算2で、キャリア周期の更新を行うように構成する。
つまり、電気角一周期2πを待たずに、回転速度または電圧SWパターン切り替え電気角目標値θswの変化が閾値を超えたことを検出した制御演算時点で、次の電気角一周期2πにおけるキャリア周期を演算して更新する。
(Example 2)
As described above, in the first embodiment, basically, control is performed so that the carrier period is constant for one electrical angle period 2π. Therefore, when the rotation speed or the voltage SW pattern switching electrical angle target value θsw * greatly changes during one electrical angle cycle, the voltage SW pattern switching electrical angle until the next carrier cycle update becomes the target value. It will shift.
In order to cope with the above problem, in the second embodiment, the change in the rotation speed and the voltage SW pattern switching electrical angle target value θsw * since the last change of the carrier cycle is monitored. When the carrier cycle is updated, and the change of the rotation speed or the voltage SW pattern switching electrical angle target value θsw * exceeds the threshold value in the control calculation 2, the carrier cycle is updated in the control calculation 2 without waiting for the control calculation 3. Configure to do.
That is, the carrier in the next electrical angle cycle 2π is detected at the time of control calculation when it is detected that the change in the rotation speed or the voltage SW pattern switching electrical angle target value θsw * exceeds the threshold without waiting for the electrical angle cycle 2π. Calculate and update the period.

このようにすれば、回転速度急変時のような過渡状態時においても電圧SWパターン切替え電気角が目標値とずれてしまわないようにすることが出来る。ただし、上記の構成の場合には、過渡状態時には途中でキャリア周期を変更するので、その区間においては本発明による効果は発生しない。上記のように、実施例2は定常状態時におけるレゾルバの誤差による影響を軽減するものである。   By doing so, it is possible to prevent the voltage SW pattern switching electrical angle from deviating from the target value even in a transient state such as when the rotational speed is suddenly changed. However, in the case of the above configuration, the carrier period is changed during the transient state, so that the effect of the present invention does not occur in that section. As described above, the second embodiment reduces the influence of the resolver error in the steady state.

本発明を適用する交流電動機の制御装置の構成を示す一実施例のブロック図。The block diagram of one Example which shows the structure of the control apparatus of the alternating current motor to which this invention is applied. 実施例におけるキャリア周期の設定方法を説明するための信号波形図。The signal waveform diagram for demonstrating the setting method of the carrier period in an Example. 電動機に入力すべき電圧のSWパターンを示す図。The figure which shows SW pattern of the voltage which should be input into an electric motor.

符号の説明Explanation of symbols

1…電圧位相生成手段 2…制御手段
2−1…矩形波制御手段 2−2…PWM制御手段
3…インバータ 4…電流センサ
5…電動機 6…位置検出器
7…速度演算手段
DESCRIPTION OF SYMBOLS 1 ... Voltage phase generation means 2 ... Control means 2-1 ... Rectangular wave control means 2-2 ... PWM control means 3 ... Inverter 4 ... Current sensor 5 ... Electric motor 6 ... Position detector 7 ... Speed calculation means

Claims (2)

電源電圧の最高値と最低値を所定の電圧スイッチングパターンで電動機巻線の各相に印加する矩形波電圧駆動を行う交流電動機の制御装置において、
外部から与えられたトルク指令値と現在の回転速度とに応じた電圧位相目標値を出力する電圧位相生成手段と、
電動機の電気角を検出する位置検出器と、
前記電圧位相目標値と、前記電動機の電気角と、前記電動機の電気角速度から前記電動機を駆動する矩形波の駆動信号を演算する矩形波制御手段と、
前記矩形波の駆動信号に応じた矩形波電圧を前記電動機巻線の各相に印加して前記電動機を駆動するインバータと、を備え、
前記矩形波制御手段は、キャリア信号の谷の位置毎に制御演算を開始するための割り込みを繰り返し発生すると共に前記電圧スイッチングパターンの設定と前記キャリア信号のキャリア周期の設定とを行い、
かつ、前記位置検出器で検出した電気角から電気角速度を算出し、電気角の一周期2πを電気角速度で除算することにより基準位相差時間に換算し、次回の制御演算時の電圧スイッチングパターン切り替えの電気角目標値と次回の制御演算時における電気角予測値との位相誤差を電気角速度で除算することにより位相誤差時間に換算し、この位相誤差時間で前記基準位相差時間を補正し、補正後の値を6等分した値を次の一周期における6回の各キャリア周期とするように構成したことを特徴とする交流電動機の制御装置。
In a control device for an AC motor that performs rectangular wave voltage drive that applies the highest value and the lowest value of the power supply voltage to each phase of the motor winding in a predetermined voltage switching pattern,
Voltage phase generation means for outputting a voltage phase target value according to a torque command value given from the outside and the current rotation speed;
A position detector for detecting the electrical angle of the electric motor;
Rectangular wave control means for calculating a drive signal of a rectangular wave for driving the electric motor from the voltage phase target value, the electric angle of the electric motor, and the electric angular velocity of the electric motor;
An inverter that drives the electric motor by applying a rectangular wave voltage corresponding to the rectangular wave driving signal to each phase of the motor winding; and
The rectangular wave control means repeatedly generates an interrupt for starting a control calculation for each valley position of the carrier signal and performs setting of the voltage switching pattern and setting of a carrier period of the carrier signal,
In addition, the electrical angular velocity is calculated from the electrical angle detected by the position detector, converted to a reference phase difference time by dividing one cycle 2π of the electrical angle by the electrical angular velocity, and the voltage switching pattern switching at the next control calculation The phase error between the target electrical angle target value and the predicted electrical angle at the next control calculation is divided by the electrical angular velocity to convert it into a phase error time, and the reference phase difference time is corrected by this phase error time. A control apparatus for an AC motor, characterized in that a value obtained by dividing the subsequent value into six equal parts is defined as six carrier periods in the next one period.
請求項1に記載の交流電動機の制御装置において、
キャリア周期を変更したときからの、前記回転速度と前記電圧スイッチングパターン切り替えの電気角目標値の変化を監視し、前記回転速度または前記電圧スイッチングパターン切り替えの電気角目標値の変化が閾値を超えたことを検出した場合は、その検出した制御演算時点で前記キャリア周期を演算して更新するように構成したことを特徴とする交流電動機の制御装置。
In the control apparatus for an AC motor according to claim 1,
Changes in the electrical angle target value for switching the rotational speed and the voltage switching pattern since the change of the carrier cycle was monitored, and the change in the electrical angle target value for switching the rotational speed or the voltage switching pattern exceeded a threshold value. When this is detected, the carrier motor is configured to calculate and update the carrier cycle at the time of the detected control calculation.
JP2004263352A 2004-09-10 2004-09-10 Ac motor control unit Pending JP2006081322A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004263352A JP2006081322A (en) 2004-09-10 2004-09-10 Ac motor control unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004263352A JP2006081322A (en) 2004-09-10 2004-09-10 Ac motor control unit

Publications (1)

Publication Number Publication Date
JP2006081322A true JP2006081322A (en) 2006-03-23

Family

ID=36160318

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004263352A Pending JP2006081322A (en) 2004-09-10 2004-09-10 Ac motor control unit

Country Status (1)

Country Link
JP (1) JP2006081322A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007108559A1 (en) 2006-03-23 2007-09-27 Kirin Pharma Kabushiki Kaisha Agonistic antibody directed against human thrombopoietin receptor
WO2009047997A1 (en) * 2007-10-09 2009-04-16 Toyota Jidosha Kabushiki Kaisha Ac motor control device and ac motor control method
JP2010064622A (en) * 2008-09-11 2010-03-25 Honda Motor Co Ltd Electric power steering device
JP2011217584A (en) * 2010-04-02 2011-10-27 Minebea Co Ltd Motor drive unit and method of controlling the same
KR20150097548A (en) * 2012-12-18 2015-08-26 알레그로 마이크로시스템스, 엘엘씨 Systems and methods for reduction of motor jitter while driving an electric motor

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62126890A (en) * 1985-11-26 1987-06-09 Sanyo Denki Co Ltd Controller for brushless motor
JPS6387195A (en) * 1986-09-29 1988-04-18 Nissan Motor Co Ltd Controller for synchronous motor
JPH06225588A (en) * 1993-01-21 1994-08-12 Toyota Motor Corp Controller for winding switching type permanent magnet motor
JPH08172788A (en) * 1994-12-20 1996-07-02 Sanyo Electric Co Ltd Motor
JPH1075597A (en) * 1996-08-30 1998-03-17 Toshiba Corp Device for driving brushless dc fan motor
JP2000116175A (en) * 1998-09-30 2000-04-21 Sony Corp Brushless motor
JP2002044983A (en) * 2001-05-31 2002-02-08 Toshiba Corp Drive control device for motor of washing machine, and the washing machine
JP2002165477A (en) * 2000-11-21 2002-06-07 Mitsubishi Electric Corp Inverter and blower
JP2002315381A (en) * 2001-04-11 2002-10-25 Denso Corp Drive controller and control method of brushless motor
JP2004129379A (en) * 2002-10-02 2004-04-22 Toyota Motor Corp Motor control device and computer-readable recording medium stored with program for making computer execute driving control of motor

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62126890A (en) * 1985-11-26 1987-06-09 Sanyo Denki Co Ltd Controller for brushless motor
JPS6387195A (en) * 1986-09-29 1988-04-18 Nissan Motor Co Ltd Controller for synchronous motor
JPH06225588A (en) * 1993-01-21 1994-08-12 Toyota Motor Corp Controller for winding switching type permanent magnet motor
JPH08172788A (en) * 1994-12-20 1996-07-02 Sanyo Electric Co Ltd Motor
JPH1075597A (en) * 1996-08-30 1998-03-17 Toshiba Corp Device for driving brushless dc fan motor
JP2000116175A (en) * 1998-09-30 2000-04-21 Sony Corp Brushless motor
JP2002165477A (en) * 2000-11-21 2002-06-07 Mitsubishi Electric Corp Inverter and blower
JP2002315381A (en) * 2001-04-11 2002-10-25 Denso Corp Drive controller and control method of brushless motor
JP2002044983A (en) * 2001-05-31 2002-02-08 Toshiba Corp Drive control device for motor of washing machine, and the washing machine
JP2004129379A (en) * 2002-10-02 2004-04-22 Toyota Motor Corp Motor control device and computer-readable recording medium stored with program for making computer execute driving control of motor

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007108559A1 (en) 2006-03-23 2007-09-27 Kirin Pharma Kabushiki Kaisha Agonistic antibody directed against human thrombopoietin receptor
WO2009047997A1 (en) * 2007-10-09 2009-04-16 Toyota Jidosha Kabushiki Kaisha Ac motor control device and ac motor control method
US8373380B2 (en) 2007-10-09 2013-02-12 Toyota Jidosha Kabushiki Kaisha Device and method for controlling alternating-current motor
JP2010064622A (en) * 2008-09-11 2010-03-25 Honda Motor Co Ltd Electric power steering device
JP2011217584A (en) * 2010-04-02 2011-10-27 Minebea Co Ltd Motor drive unit and method of controlling the same
KR20150097548A (en) * 2012-12-18 2015-08-26 알레그로 마이크로시스템스, 엘엘씨 Systems and methods for reduction of motor jitter while driving an electric motor
JP2016501509A (en) * 2012-12-18 2016-01-18 アレグロ・マイクロシステムズ・エルエルシー System and method for reducing motor jitter while driving a motor
KR102119422B1 (en) 2012-12-18 2020-06-05 알레그로 마이크로시스템스, 엘엘씨 Systems and methods for reduction of motor jitter while driving an electric motor

Similar Documents

Publication Publication Date Title
JP5023788B2 (en) Control device and control method for power conversion device
US8816612B2 (en) Controller for multi-phase rotary device
JP5449441B2 (en) Synchronous machine controller
WO2014024460A1 (en) Motor control apparatus
CN104638964A (en) Method for driving power conversion system, power conversion system, and switch controller
JP4722002B2 (en) PWM inverter control device, PWM inverter control method, and refrigeration air conditioner
JP5109354B2 (en) Motor inverter device and control method thereof
JP2003209976A (en) Pwm inverter and its current detecting method
JP2010279110A (en) Inverter device
JP4539192B2 (en) AC motor control device
CN112567620B (en) Inverter device
JP2013141345A (en) Motor control device and air conditioner
JPWO2017056258A1 (en) Power control method and power control apparatus
JP2006081322A (en) Ac motor control unit
JP2006074951A (en) Controller for ac motor
JP5428796B2 (en) Motor drive control device
JP6458684B2 (en) Power control method and power control apparatus
JP2007135343A (en) Power converter
JP2007252139A (en) Motor controller and motor control method
JP6471670B2 (en) Power control method and power control apparatus
JP2006074865A (en) Controller for ac motor
JP2004180444A (en) Motor control arrangement
JP2006034022A (en) Ac motor controller
JP2010193566A (en) Motor control device
WO2023037589A1 (en) Inverter control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100511

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100513

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101005