Nothing Special   »   [go: up one dir, main page]

JP2006071565A - Method and apparatus for testing heat insulation performance of heat insulating material - Google Patents

Method and apparatus for testing heat insulation performance of heat insulating material Download PDF

Info

Publication number
JP2006071565A
JP2006071565A JP2004257898A JP2004257898A JP2006071565A JP 2006071565 A JP2006071565 A JP 2006071565A JP 2004257898 A JP2004257898 A JP 2004257898A JP 2004257898 A JP2004257898 A JP 2004257898A JP 2006071565 A JP2006071565 A JP 2006071565A
Authority
JP
Japan
Prior art keywords
insulating material
heat
heat insulating
temperature
temperature difference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004257898A
Other languages
Japanese (ja)
Inventor
Takahito Shibayama
卓人 柴山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2004257898A priority Critical patent/JP2006071565A/en
Publication of JP2006071565A publication Critical patent/JP2006071565A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a test method and a test apparatus which can easily determine the heat insulation performance of a heat insulating material having an overall heat transfer coefficient of not larger than 50 W/m<SP>2</SP>K. <P>SOLUTION: The heat insulation performance of the heat insulating material is determined from the temperature difference between the heat source contact surface of the heat insulating material 5, which is in contact with a heat source 4 at a prescribed temperature, and a plane facing the heat source contact surface, and from the correlation between temperature differences of two surface sides of the heat insulating material and the overall heat transfer coefficient of the heat insulating material 5, calculated by using its heat transfer coefficient and the ambient temperature of the testing conditions. Thus, such a determination can be made, by using the temperature differences that the overall heat transfer coefficient is not larger than a prescribed value, and the heat insulation performance of the heat insulating material 5 can be tested. Furthermore, since only the temperatures are measured, the test can be carried out in a short time. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、断熱材が所定の断熱性能を有しているか否かを検査する検査方法と、それを実行する検査装置に関するものである。   The present invention relates to an inspection method for inspecting whether or not a heat insulating material has a predetermined heat insulating performance, and an inspection apparatus for executing the inspection method.

従来の検査装置は、被測定物の両面を温度制御して温度差をつけ、熱流束と温度差、厚みを測定することにより熱伝導率を求めている。   A conventional inspection apparatus obtains a thermal conductivity by controlling the temperature of both surfaces of an object to be measured to create a temperature difference, and measuring a heat flux, a temperature difference, and a thickness.

また、被測定物と熱抵抗材の間で熱を発生させて、被測定物内部と熱抵抗材内部に熱を流し、熱抵抗材の少なくとも2箇所の温度差から被測定物の熱伝導率を求める装置もある(例えば、特許文献1参照)。   In addition, heat is generated between the object to be measured and the heat resistance material to flow heat inside the object to be measured and the heat resistance material, and the thermal conductivity of the object to be measured is determined from the temperature difference between at least two locations of the heat resistance material. There is also a device for obtaining (see, for example, Patent Document 1).

図4は、特許文献1に記載された従来の熱伝導率測定方法の概略断面図である。図4に示すように被測定物1と、熱抵抗材2と、熱発生装置3から構成されている。   FIG. 4 is a schematic cross-sectional view of a conventional thermal conductivity measurement method described in Patent Document 1. As shown in FIG. 4, the device includes a device under test 1, a heat resistance material 2, and a heat generator 3.

以上のように構成された検査装置について、以下その動作を説明する。   The operation of the inspection apparatus configured as described above will be described below.

まず、被測定物1と熱抵抗材2の内部に熱発生装置3より熱を流し、熱抵抗材2の少なくとも2箇所の温度差から被測定物1の熱伝導率を求める。
特開2002−131257号公報
First, heat is supplied from the heat generating device 3 to the device under test 1 and the heat resistance material 2, and the thermal conductivity of the device under test 1 is obtained from the temperature difference between at least two locations of the heat resistance material 2.
JP 2002-131257 A

しかしながら、上記従来の構成では、熱流束センサーの精度の面から低熱伝導率の被測定物は、熱流束センサーが小さいと測定できない問題があり、熱流束センサーの精度から測定できる熱伝導率と被測定物の大きさに制限があった。   However, in the conventional configuration described above, there is a problem that an object to be measured with low thermal conductivity cannot be measured if the heat flux sensor is small in terms of accuracy of the heat flux sensor. There was a limit to the size of the object to be measured.

また、特許文献1の構成では、被測定物の片面上の少なくとも2箇所温度測定しなければならず、測定精度を上げるためには一定の距離間以上で数箇所の温度測定が必要であった。そのため、被測定物が小さいと測定精度が落ちてしまう問題があった。また、2箇所の温度差から熱伝導率を出すため、被測定物での2箇所間の温度差と熱伝導率の関係を実測してだす必要がある。そのため、測定の工数が増えてしまう問題があった。   Further, in the configuration of Patent Document 1, it is necessary to measure the temperature of at least two places on one side of the object to be measured. In order to increase the measurement accuracy, it is necessary to measure several temperatures over a certain distance. . For this reason, there is a problem that the measurement accuracy is lowered when the object to be measured is small. Further, in order to obtain the thermal conductivity from the temperature difference between the two locations, it is necessary to actually measure the relationship between the temperature difference between the two locations on the object to be measured and the thermal conductivity. For this reason, there is a problem that the number of measurement steps increases.

本発明は、上記従来の課題を解決するもので、特に50W/m2K以下の熱貫流率の断熱材の断熱性能を簡単に判定することができる検査方法と検査装置を提供するものである。 This invention solves the said conventional subject, and provides the test | inspection method and test | inspection apparatus which can determine easily the heat insulation performance of the heat insulating material of the heat transmissivity of 50 W / m < 2 > K or less especially. .

上記従来の課題を解決するために、本発明の検査装置は、断熱材の裏表面に温度差を付けて温度差を測定するようにしたものである。   In order to solve the above-described conventional problems, the inspection apparatus of the present invention measures the temperature difference by attaching a temperature difference to the back surface of the heat insulating material.

これによって、前もって温度差と熱貫流率の関係を実測することなく、(数1)より温度差と熱貫流導率の相関関係が導けるので、熱還流率が所定値以下であることを温度差より判定することができ、様々な熱伝導率、形状、大きさの断熱材の断熱性能を簡単に判定することができる。   As a result, the correlation between the temperature difference and the heat flow conductivity can be derived from (Equation 1) without actually measuring the relationship between the temperature difference and the heat flow rate beforehand. It is possible to more easily determine, and it is possible to easily determine the heat insulation performance of the heat insulating materials having various thermal conductivities, shapes, and sizes.

Figure 2006071565
Figure 2006071565

本発明の検査装置は、様々な熱伝導率、形状、大きさの断熱材の断熱性能を簡単に判定することができる。   The inspection apparatus of the present invention can easily determine the heat insulating performance of heat insulating materials having various thermal conductivities, shapes, and sizes.

請求項1に記載の発明は、所定温度の熱源と接した断熱材の熱源接触面とその面に対向する面との温度差と、予め算出した断熱材の熱貫流率と断熱材表面と裏面との温度差との相関関係から断熱材の断熱性能を判定する検査方法であるので、熱貫流率と両面の温度差の相関関係より、断熱材表面と裏面とに温度差を付け両面の温度差を測定することで、熱還流率が所定値以下であることを温度差より判定することができ、断熱材の断熱性能を検査することができる。また、温度を測定するだけなので短時間で検査を行うことができる。   According to the first aspect of the present invention, the temperature difference between the heat source contact surface of the heat insulating material in contact with the heat source at a predetermined temperature and the surface facing the surface, the thermal conductivity of the heat insulating material calculated in advance, the heat insulating material surface and the back surface Therefore, the temperature difference between the front and back surfaces of the heat insulating material is determined by the correlation between the thermal conductivity and the temperature difference between the two surfaces. By measuring the difference, it can be determined from the temperature difference that the heat reflux rate is a predetermined value or less, and the heat insulating performance of the heat insulating material can be inspected. Moreover, since only temperature is measured, it can test | inspect in a short time.

請求項2に記載の発明は、所定温度の熱源と接した断熱材の熱源接触面とその面に対向する面との温度差と、検査条件の周囲温度と熱伝達率とより算出される断熱材の熱貫流率と断熱材表面と裏面との温度差の相関関係から断熱材の断熱性能を判定する検査方法であるので、熱貫流率と断熱材表面と裏面との温度差の相関関係より、断熱材の両面に温度差を付け両面の温度差を測定することで、熱還流率が所定値以下であることを温度差より判定することができ、断熱材の断熱性能を検査することができる。   The invention according to claim 2 is a heat insulation calculated from a temperature difference between a heat source contact surface of a heat insulating material in contact with a heat source having a predetermined temperature and a surface facing the surface, an ambient temperature of an inspection condition, and a heat transfer coefficient. Because it is an inspection method to determine the heat insulation performance of the heat insulating material from the correlation between the heat transmissivity of the material and the temperature difference between the heat insulating material surface and the back surface, from the correlation between the heat flow rate and the temperature difference between the heat insulating material surface and the back surface By measuring the temperature difference between the two surfaces of the heat insulating material and measuring the temperature difference between the two surfaces, it can be determined from the temperature difference that the heat reflux rate is a predetermined value or less, and the heat insulating performance of the heat insulating material can be inspected. it can.

また、温度を測定するだけなので短時間で検査を行うことができる。また、熱貫流率と断熱材表面と裏面との温度差の相関関係が検査条件の周囲温度と熱伝達率が同じならば一意的に決まるので、前もって相関関係データを取る必要がないので時間が短縮できる。   Moreover, since only temperature is measured, it can test | inspect in a short time. In addition, since the correlation between the heat transmissibility and the temperature difference between the front and back surfaces of the heat insulating material is uniquely determined if the ambient temperature and the heat transfer coefficient in the inspection conditions are the same, there is no need to obtain correlation data in advance. Can be shortened.

請求項3に記載の発明は、断熱材の熱貫流率が50W/m2K以下である請求項1または請求項2に記載の検査方法であり、熱貫流率に対する断熱材表面と裏面との温度差の傾きが大きいので、検査精度が向上する。 Invention of Claim 3 is the inspection method of Claim 1 or Claim 2 whose heat transmissivity of a heat insulating material is 50 W / m < 2 > K or less, and is the insulation method surface and back surface with respect to heat transmissivity. Since the gradient of the temperature difference is large, the inspection accuracy is improved.

請求項4に記載の発明は、断熱材の厚みが5mm以下である請求項1から請求項3のいずれか一項に記載の検査方法であり、熱貫流率に対する断熱材表面と裏面との温度差の傾きが大きいので、検査精度が向上する。また、薄いことにより検査時間が短縮できる。   Invention of Claim 4 is a test | inspection method as described in any one of Claims 1-3 whose thickness of a heat insulating material is 5 mm or less, and is the temperature of the heat insulating material surface and back surface with respect to a heat transmissivity. Since the gradient of the difference is large, the inspection accuracy is improved. Moreover, the inspection time can be shortened by being thin.

請求項5に記載の発明は、請求項1から請求項4のいずれか一項の検査方法を実行する手段を備えた検査装置であり、断熱性能の検査を行うことができる。   Invention of Claim 5 is an inspection apparatus provided with the means to perform the inspection method of any one of Claims 1-4, and can test | inspect heat insulation performance.

請求項6に記載の発明は、周囲の温度を測定する温度センサーを備え、測定したデータから熱貫流率と断熱材表面と裏面との温度差の相関関係データを補正する請求項5に記載の検査装置であり、周囲の温度を測定して測定時の温度がわかり熱伝導率と両面の温度差の相関関係データを補正することにより、(数1)より算出できる熱貫流率と断熱材表面と裏面との温度差の相関関係と、実測温度差との差が少なくできるので、検査精度を向上できる。   The invention described in claim 6 is provided with a temperature sensor that measures the ambient temperature, and corrects correlation data of the thermal transmissivity and the temperature difference between the heat insulating material surface and the back surface from the measured data. This is an inspection device that measures the ambient temperature, knows the temperature at the time of measurement, and corrects the correlation data between the thermal conductivity and the temperature difference between the two surfaces. Since the difference between the temperature difference and the actual temperature difference can be reduced, the inspection accuracy can be improved.

請求項7に記載の発明は、検査装置をケースで覆った請求項5または請求項6に記載の検査装置であり、熱伝達率を一定にできるので、(数1)より算出できる熱貫流率と断熱材表面と裏面との温度差の相関関係と実測温度差との差が少なくできるので、検査精度を向上できる。   The invention according to claim 7 is the inspection apparatus according to claim 5 or claim 6 in which the inspection apparatus is covered with a case, and since the heat transfer coefficient can be made constant, the thermal conductivity that can be calculated from (Equation 1). Since the correlation between the temperature difference between the front surface and the back surface of the heat insulating material and the difference between the actually measured temperature can be reduced, the inspection accuracy can be improved.

請求項8に記載の発明は、温度センサーを断熱材の少なくとも片面に2つ以上設けた請求項5から請求項7のいずれか一項に記載の検査装置であり、2点以上で温度を測定することにより、断熱材の表面の段差や、密度差などのバラツキによる測定温度バラツキを低減できるので、検査精度を向上することができる。   The invention according to claim 8 is the inspection apparatus according to any one of claims 5 to 7, wherein two or more temperature sensors are provided on at least one side of the heat insulating material, and the temperature is measured at two or more points. By doing so, it is possible to reduce measurement temperature variations due to steps on the surface of the heat insulating material and variations such as density differences, so that inspection accuracy can be improved.

請求項9に記載の発明は、断熱材の厚みを測定するセンサーを備えた請求項5から請求項8のいずれか一項に記載の検査装置であり、製品規格外の厚みの断熱材を抽出することができるので、検査効率が向上する。   Invention of Claim 9 is an inspection apparatus as described in any one of Claim 5-8 provided with the sensor which measures the thickness of a heat insulating material, and extracts the heat insulating material of the thickness outside a product specification. Inspection efficiency is improved.

以下、本発明の実施の形態について、図面を参照しながら説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

(実施の形態1)
図1は、本発明の実施の形態1における検査装置の測定部概略図である。図2は、本発明の実施の形態1における熱貫流率と断熱材両面の温度差との相関関係図である。図3は、本発明の実施の形態1における熱伝導率と断熱材両面の温度差との相関関係図である。
(Embodiment 1)
FIG. 1 is a schematic diagram of a measurement unit of the inspection apparatus according to Embodiment 1 of the present invention. FIG. 2 is a correlation diagram between the heat transmissivity and the temperature difference between both surfaces of the heat insulating material in Embodiment 1 of the present invention. FIG. 3 is a correlation diagram between the thermal conductivity and the temperature difference between both surfaces of the heat insulating material in Embodiment 1 of the present invention.

図1、図2、図3において、検査装置の測定部8は、風による影響を防ぐケース7と、断熱材6の片面に接触し温度制御する熱源4と、断熱材6の他面から挟みこむ放熱器9を備え、断熱材6の熱源接触面とその面に対向する面との温度を測定する温度センサー6から構成される。また、周囲温度、熱伝達率を予め入力しておくことにより(数1)より算出される温度差と熱貫流率の相関関係データ、もしくは温度差と熱貫流率の相関関係のデータを備える。   1, 2, and 3, the measurement unit 8 of the inspection apparatus is sandwiched from the case 7 that prevents the influence of wind, the heat source 4 that is in contact with one surface of the heat insulating material 6 to control the temperature, and the other surface of the heat insulating material 6. It comprises a temperature sensor 6 that includes a heat sink 9 and measures the temperature of the heat source contact surface of the heat insulating material 6 and the surface facing the surface. In addition, correlation data between the temperature difference and the heat transmissivity calculated from (Equation 1) by inputting the ambient temperature and the heat transfer coefficient in advance, or data on the correlation between the temperature difference and the heat transmissivity is provided.

また、好ましくは断熱材5の厚みを温度測定と同時に測定するセンサーを備え、その厚みより熱貫流率を熱伝導率に変換する機能を有する。また、周囲温度を測定するセンサーを備える。また、温度センサー6は、好ましくはひとつの断熱材5の片面に少なくとも2点以上備える。また、好ましくは断熱材の熱貫流率が50W/m2K以下である。また、好ましくは断熱材の厚みが5mm以下である
以上のように構成された検査装置について、以下その作用を説明する。
In addition, a sensor for measuring the thickness of the heat insulating material 5 at the same time as the temperature measurement is preferably provided, and the function of converting the heat transmissivity into the thermal conductivity is obtained based on the thickness. In addition, a sensor for measuring the ambient temperature is provided. Further, the temperature sensor 6 is preferably provided with at least two points on one side of one heat insulating material 5. Further, the thermal conductivity of the heat insulating material is preferably 50 W / m 2 K or less. Moreover, the thickness of the heat insulating material is preferably 5 mm or less. The operation of the inspection apparatus configured as described above will be described below.

断熱材5の片面を熱源4により温度制御し、温度センサー6により断熱材5の表面と裏面の温度を測定し、温度差を出す。その測定温度差と図2の相関関係より、熱還流率が所定値以下であることを温度差より判定することができる。   The temperature of one surface of the heat insulating material 5 is controlled by the heat source 4, the temperature of the front surface and the back surface of the heat insulating material 5 is measured by the temperature sensor 6, and a temperature difference is obtained. Based on the correlation between the measured temperature difference and FIG. 2, it can be determined from the temperature difference that the heat reflux rate is equal to or less than a predetermined value.

以上のように、本実施の形態においては、所定温度の熱源4と接した断熱材5の熱源接触面とその面に対向する面との温度差と、検査条件の周囲温度と熱伝達率とより算出される断熱材5の熱貫流率と断熱材表面と裏面との温度差の相関関係から断熱材の断熱性能を判定するので、熱還流率が所定値以下であることを温度差より判定することができ、断熱材5の断熱性能を検査することができる。   As described above, in the present embodiment, the temperature difference between the heat source contact surface of the heat insulating material 5 in contact with the heat source 4 at a predetermined temperature and the surface facing the surface, the ambient temperature and the heat transfer coefficient of the inspection conditions Since the heat insulation performance of the heat insulating material is determined from the correlation between the heat transmissivity of the heat insulating material 5 calculated and the temperature difference between the heat insulating material surface and the back surface, it is determined from the temperature difference that the heat reflux rate is a predetermined value or less. The heat insulating performance of the heat insulating material 5 can be inspected.

また、温度を測定するだけなので短時間で検査を行うことができる。また、熱貫流率と断熱材表面と裏面との温度差の相関関係が検査条件の周囲温度と熱伝達率が同じならば一意的に決まるので、前もって相関関係データを取る必要がないので時間が短縮できる。   Moreover, since only temperature is measured, it can test | inspect in a short time. In addition, since the correlation between the heat transmissibility and the temperature difference between the front and back surfaces of the heat insulating material is uniquely determined if the ambient temperature and the heat transfer coefficient in the inspection conditions are the same, there is no need to obtain correlation data in advance. Can be shortened.

また、断熱材の熱貫流率が50W/m2K以下なら、図2よりわかるように熱貫流率に対する断熱材表面と裏面との温度差の傾きが大きいので、検査精度が向上する。また、断熱材5の厚みが5mm以下なら、図2に厚みのファクターを入れた図3や(表1)からみると、熱伝導率に対する断熱材表面と裏面との温度差の傾きが大きいので、検査精度が向上し、また薄いことにより検査時間が短縮できる。 Also, if the thermal conductivity of the heat insulating material is 50 W / m 2 K or less, as can be seen from FIG. 2, the inclination of the temperature difference between the heat insulating material surface and the back surface with respect to the thermal flow rate is large, so the inspection accuracy is improved. Also, if the thickness of the heat insulating material 5 is 5 mm or less, the temperature difference between the heat insulating material surface and the back surface with respect to the thermal conductivity is large as seen from FIG. 3 (Table 1) with the thickness factor added to FIG. Inspection accuracy is improved, and inspection time can be shortened by being thin.

Figure 2006071565
また、風による影響を減らすケース7を備えており、熱伝達率が一定になることで(数1)より算出できる熱貫流率と断熱材表面と裏面との温度差の相関関係と実測温度差との差を少なくできるので、検査精度を向上できる。
Figure 2006071565
Moreover, the case 7 for reducing the influence of wind is provided, and the correlation between the heat transmissibility that can be calculated from (Equation 1) and the temperature difference between the front and back surfaces of the heat insulating material and the actually measured temperature difference when the heat transfer coefficient becomes constant. Inspection accuracy can be improved.

また、厚みの測定ができることにより、断熱材5個々の正確な厚みがわかり、製品規格外の厚みの断熱材を抽出することができ、検査効率が向上する。また、周囲温度を測定できることにより、(数1)より算出できる熱貫流率と断熱材表面と裏面との温度差の相関関係と実測温度差との差を少なくでき、検査精度を向上できる。   Further, since the thickness can be measured, the accurate thickness of each heat insulating material 5 can be known, and a heat insulating material having a thickness outside the product standard can be extracted, thereby improving inspection efficiency. Further, since the ambient temperature can be measured, the difference between the measured thermal difference and the correlation between the heat transmissibility calculated from (Equation 1) and the temperature difference between the front and back surfaces of the heat insulating material can be reduced, and the inspection accuracy can be improved.

また、測定点一箇所につき複数の温度センサー11をもちいることにより、断熱材5の表面の段差や、断熱材5の密度差などのバラツキによる測定温度バラツキを低減でき、検査精度を向上することができる。なお、本実施の形態では断熱材5の片面に放熱器9を接触させているが、それを空気に換えることも可能である。空気に換えることにより、測定温度の安定するまでの時間が短くなり、検査効率が向上する。また、相関関係において熱貫流率を用いているが、これは熱を示すひとつの指標であり、これが熱伝導率、熱流速等であっても同様のことが行える。   In addition, by using a plurality of temperature sensors 11 for each measurement point, it is possible to reduce the measurement temperature variation due to variations in the surface step of the heat insulating material 5 and the density difference of the heat insulating material 5, and to improve inspection accuracy. Can do. In addition, in this Embodiment, although the heat radiator 9 is made to contact the single side | surface of the heat insulating material 5, it can also be changed to air. By changing to air, the time until the measurement temperature is stabilized is shortened, and the inspection efficiency is improved. Moreover, although the heat transmissivity is used in the correlation, this is one index indicating heat, and the same can be done even if this is heat conductivity, heat flow rate, or the like.

以上のように、本発明にかかる検査装置は、断熱材の両面に温度差を付け、両面の温度を測定することで熱伝導率が所定範囲にあることがわかり、断熱材の断熱性能を短時間で簡単に検査することが可能となるので、真空断熱材の生産ラインでの検査に適用できる。   As described above, the inspection apparatus according to the present invention shows that the thermal conductivity is within a predetermined range by making a temperature difference on both surfaces of the heat insulating material and measuring the temperature on both surfaces, thereby reducing the heat insulating performance of the heat insulating material. Since it is possible to easily inspect in time, it can be applied to inspection on the production line of vacuum heat insulating material.

本発明の実施の形態1における検査装置の測定部概略図Schematic diagram of measuring unit of inspection apparatus according to Embodiment 1 of the present invention 本発明の実施の形態1における熱貫流率と断熱材両面の温度差との相関関係を示す特性図The characteristic view which shows the correlation with the heat flow rate in Embodiment 1 of this invention, and the temperature difference of both surfaces of a heat insulating material. 本発明の実施の形態1における熱伝導率と断熱材両面の温度差との相関関係を示す特性図The characteristic view which shows the correlation with the heat conductivity in Embodiment 1 of this invention, and the temperature difference of both surfaces of a heat insulating material 従来の検査装置の概略図Schematic diagram of conventional inspection equipment

符号の説明Explanation of symbols

4 熱源
5 断熱材
6 熱源
7 ケース
4 Heat source 5 Heat insulation 6 Heat source 7 Case

Claims (9)

所定温度の熱源と接した断熱材の熱源接触面とその面に対向する面との温度差と、予め算出した断熱材の熱貫流率と断熱材表面と裏面との温度差との相関関係から断熱材の断熱性能を判定する検査方法。   From the correlation between the temperature difference between the heat source contact surface of the heat insulating material in contact with the heat source at a predetermined temperature and the surface facing the surface, and the temperature difference between the thermal conductivity of the heat insulating material calculated in advance and the surface of the heat insulating material and the back surface An inspection method for determining the heat insulation performance of a heat insulating material. 所定温度の熱源と接した断熱材の熱源接触面とその面に対向する面との温度差と、検査条件の周囲温度と熱伝達率とより算出される断熱材の熱貫流率と断熱材表面と裏面との温度差の相関関係から断熱材の断熱性能を判定する検査方法。   The heat transmissivity of the heat insulating material and the surface of the heat insulating material calculated from the temperature difference between the heat source contact surface of the heat insulating material in contact with the heat source of the predetermined temperature and the surface facing the surface, the ambient temperature and the heat transfer coefficient of the inspection conditions Inspection method to determine the heat insulation performance of the heat insulating material from the correlation of the temperature difference between the back surface and the back surface. 断熱材の熱貫流率が50W/m2K以下である請求項1または請求項2に記載の検査方法。 The inspection method according to claim 1 or 2, wherein the thermal conductivity of the heat insulating material is 50 W / m 2 K or less. 断熱材の厚みが5mm以下である請求項1から請求項3のいずれか一項に記載の検査方法。   The inspection method according to any one of claims 1 to 3, wherein a thickness of the heat insulating material is 5 mm or less. 請求項1から請求項4のいずれか一項の検査方法を実行する手段を備えた検査装置。   An inspection apparatus comprising means for executing the inspection method according to any one of claims 1 to 4. 周囲の温度を測定する温度センサーを備え、測定した周囲温度から熱貫流率と断熱材表面と裏面との温度差の相関関係データを補正する請求項5に記載の検査装置。   The inspection apparatus according to claim 5, further comprising a temperature sensor that measures an ambient temperature, and correcting correlation data of a thermal transmissivity and a temperature difference between a heat insulating material surface and a back surface from the measured ambient temperature. 検査装置をケースで覆った請求項5または請求項6に記載の検査装置。   The inspection apparatus according to claim 5 or 6, wherein the inspection apparatus is covered with a case. データ処理部に温度センサーを断熱材の少なくとも片面に2つ以上設けた請求項5から請求項7のいずれか一項に記載の検査装置。   The inspection apparatus according to any one of claims 5 to 7, wherein two or more temperature sensors are provided in at least one side of the heat insulating material in the data processing unit. 断熱材の厚みを測定するセンサーを備えた請求項5から請求項8のいずれか一項に記載の検査装置。   The inspection apparatus according to any one of claims 5 to 8, further comprising a sensor for measuring a thickness of the heat insulating material.
JP2004257898A 2004-09-06 2004-09-06 Method and apparatus for testing heat insulation performance of heat insulating material Pending JP2006071565A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004257898A JP2006071565A (en) 2004-09-06 2004-09-06 Method and apparatus for testing heat insulation performance of heat insulating material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004257898A JP2006071565A (en) 2004-09-06 2004-09-06 Method and apparatus for testing heat insulation performance of heat insulating material

Publications (1)

Publication Number Publication Date
JP2006071565A true JP2006071565A (en) 2006-03-16

Family

ID=36152343

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004257898A Pending JP2006071565A (en) 2004-09-06 2004-09-06 Method and apparatus for testing heat insulation performance of heat insulating material

Country Status (1)

Country Link
JP (1) JP2006071565A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101041842B1 (en) 2010-12-23 2011-06-20 한국기계연구원 System for inspecting performance of wet thermal insulation
CN102901684A (en) * 2012-09-13 2013-01-30 黄乐军 Heat-resistance and wear-resistance detection apparatus for high temperature-resistant gloves
CN104154750A (en) * 2014-07-29 2014-11-19 河北联合大学 System for measuring thermal insulation effects of metallurgy thermal insulation material
CN104198525A (en) * 2014-08-21 2014-12-10 河北联合大学 Comparison method for measuring heat retaining effects of metallurgical heat retaining materials
CN107860228A (en) * 2017-10-25 2018-03-30 通达耐火技术股份有限公司 A kind of refractory material heat conduction detection trial furnace and its detection method
CN110308176A (en) * 2019-05-29 2019-10-08 浙江理工大学 Architectural exterior-protecting construction heat transfer resistance/heat transfer coefficient on-site measurement method
CN110514694A (en) * 2019-09-26 2019-11-29 王公华 Textile material thermal insulation property test method and tester based on ambient temperature compensation

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101041842B1 (en) 2010-12-23 2011-06-20 한국기계연구원 System for inspecting performance of wet thermal insulation
CN102901684A (en) * 2012-09-13 2013-01-30 黄乐军 Heat-resistance and wear-resistance detection apparatus for high temperature-resistant gloves
CN104154750A (en) * 2014-07-29 2014-11-19 河北联合大学 System for measuring thermal insulation effects of metallurgy thermal insulation material
CN104154750B (en) * 2014-07-29 2016-08-24 河北联合大学 A kind of system measuring metallurgical insulation material heat insulation effect
CN104198525A (en) * 2014-08-21 2014-12-10 河北联合大学 Comparison method for measuring heat retaining effects of metallurgical heat retaining materials
CN107860228A (en) * 2017-10-25 2018-03-30 通达耐火技术股份有限公司 A kind of refractory material heat conduction detection trial furnace and its detection method
CN107860228B (en) * 2017-10-25 2023-10-20 北京金隅通达耐火技术有限公司 Refractory material heat conduction detection test furnace and detection method thereof
CN110308176A (en) * 2019-05-29 2019-10-08 浙江理工大学 Architectural exterior-protecting construction heat transfer resistance/heat transfer coefficient on-site measurement method
CN110514694A (en) * 2019-09-26 2019-11-29 王公华 Textile material thermal insulation property test method and tester based on ambient temperature compensation

Similar Documents

Publication Publication Date Title
EP3567367B1 (en) Steady-state test method for heat-conducting property in the direction along plane of sheet material
US11193901B2 (en) Thermal conductivity measuring device, thermal conductivity measuring method and vacuum evaluation device
JP2008309729A (en) Device and method for measuring thermal conductivity
US4840495A (en) Method and apparatus for measuring the thermal resistance of an element such as large scale integrated circuit assemblies
JP2016523356A5 (en)
JP5574261B2 (en) Flaw detection method and flaw detection apparatus
JP2010236549A (en) Method for quantifying hole flow rate in film cooled part
CN101140270A (en) Inverse thermal acoustic imaging part inspection
CN108760546A (en) A kind of fatigue crack growth rate measurement method based on Infrared Thermography Technology
JP2011122859A (en) Method and system for diagnosis of defect
JP2006071565A (en) Method and apparatus for testing heat insulation performance of heat insulating material
RU2577389C1 (en) Method of calibrating thermoelectric heat flux sensors
JP2006078185A (en) Method and apparatus for inspecting heat insulating capacity
CN106679818B (en) Device and method for measuring temperature distribution of smooth surface
JP6634546B2 (en) Thermal conductivity measuring device, thermal conductivity measuring method, and vacuum degree evaluation device
JP4258667B2 (en) Thermophysical property measuring method and apparatus
KR20240090222A (en) Method for detecting convective heat transfer coefficient and thickness of interface
CN206339310U (en) The measurement apparatus of smooth surface Temperature Distribution
KR102257190B1 (en) Thermal conductivity measurement system and thermal conductivity measurement method thereof
CN115389551A (en) System and method for testing heat dissipation characteristic of thin film material
TW201925768A (en) Apparatus of heat pipe quality detection by using infrared thermal imager and method thereof
US20040042528A1 (en) Method and device for testing numerous different material samples
JP2009257846A (en) Evaluation method of heat permeability
Velyka et al. A custom setup for thermal conductivity measurements
RU2276781C1 (en) Method for determining heat conductivity of materials