Nothing Special   »   [go: up one dir, main page]

JP2006067375A - Antenna module - Google Patents

Antenna module Download PDF

Info

Publication number
JP2006067375A
JP2006067375A JP2004249079A JP2004249079A JP2006067375A JP 2006067375 A JP2006067375 A JP 2006067375A JP 2004249079 A JP2004249079 A JP 2004249079A JP 2004249079 A JP2004249079 A JP 2004249079A JP 2006067375 A JP2006067375 A JP 2006067375A
Authority
JP
Japan
Prior art keywords
antenna
substrate
module
frequency
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004249079A
Other languages
Japanese (ja)
Inventor
Naoyuki Shino
直行 志野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2004249079A priority Critical patent/JP2006067375A/en
Publication of JP2006067375A publication Critical patent/JP2006067375A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2223/00Details relating to semiconductor or other solid state devices covered by the group H01L23/00
    • H01L2223/58Structural electrical arrangements for semiconductor devices not otherwise provided for
    • H01L2223/64Impedance arrangements
    • H01L2223/66High-frequency adaptations
    • H01L2223/6605High-frequency electrical connections
    • H01L2223/6616Vertical connections, e.g. vias
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2223/00Details relating to semiconductor or other solid state devices covered by the group H01L23/00
    • H01L2223/58Structural electrical arrangements for semiconductor devices not otherwise provided for
    • H01L2223/64Impedance arrangements
    • H01L2223/66High-frequency adaptations
    • H01L2223/6605High-frequency electrical connections
    • H01L2223/6627Waveguides, e.g. microstrip line, strip line, coplanar line
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2223/00Details relating to semiconductor or other solid state devices covered by the group H01L23/00
    • H01L2223/58Structural electrical arrangements for semiconductor devices not otherwise provided for
    • H01L2223/64Impedance arrangements
    • H01L2223/66High-frequency adaptations
    • H01L2223/6661High-frequency adaptations for passive devices
    • H01L2223/6677High-frequency adaptations for passive devices for antenna, e.g. antenna included within housing of semiconductor device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/16227Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the bump connector connecting to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/16235Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the bump connector connecting to a via metallisation of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/1515Shape
    • H01L2924/15153Shape the die mounting substrate comprising a recess for hosting the device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/1517Multilayer substrate
    • H01L2924/15192Resurf arrangement of the internal vias
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1532Connection portion the connection portion being formed on the die mounting surface of the substrate
    • H01L2924/15321Connection portion the connection portion being formed on the die mounting surface of the substrate being a ball array, e.g. BGA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/161Cap
    • H01L2924/1615Shape
    • H01L2924/16195Flat cap [not enclosing an internal cavity]

Landscapes

  • Aerials With Secondary Devices (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an antenna module with an excellent antenna characteristic wherein crosstalks between wires and malfunction of circuits are reduced, by reducing the effect of the generation of spurious radiation on the antenna module. <P>SOLUTION: The antenna module is provided with an antenna board 3 wherein one side or inside of an insulation board is provided with a single or a plurality of antenna elements 6, and the other side of the insulation board is mounted with a semiconductor element connected to the antenna elements 6; and a module board 4 mounted with the antenna board 3, and a frequency f<SB>0</SB>differs from the frequency f<SB>1</SB>, in particular, the relation 0.5×f<SB>0</SB>≥f<SB>1</SB>holds between the f<SB>0</SB>and f<SB>1</SB>, wherein f<SB>0</SB>is the frequency of the signal emitted from or received by the antenna elements 6, and f<SB>1</SB>is the highest frequency of the signal communicated between the antenna board 3 and the module board 4. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、マイクロ波帯やミリ波帯等の高周波信号を送受信しその信号を加工処理する高周波回路を含むアンテナモジュールに関するものである。   The present invention relates to an antenna module including a high-frequency circuit that transmits and receives a high-frequency signal such as a microwave band and a millimeter-wave band and processes the signal.

昨今、マイクロ波は携帯電話に代表されるような無線機器用の搬送波として多大に利用されてきているが、現在は、携帯電話に限らず、無線LANやWireless USBなど高容量データ通信の手段としても用いられ研究開発が進められている。またマイクロ波よりも高い周波数帯である準ミリ波帯では衛星通信やpoint to point、30GHz以上のミリ波領域では超高速無線LANや車間レーダー等の研究開発が盛んに進められ実用化されつつある。   In recent years, microwaves have been used extensively as a carrier wave for wireless devices such as mobile phones. Currently, however, they are not limited to mobile phones, but as a means for high-capacity data communication such as wireless LAN and wireless USB. R & D is underway. Also, research and development such as ultra-high-speed wireless LAN and inter-vehicle radar are being actively promoted and put into practical use in satellite communications and point-to-point in the quasi-millimeter wave band, which is a higher frequency band than microwaves, and in the millimeter-wave region above 30 GHz. .

これら高周波信号を送受信するためには、モジュール基板上の伝送線路と空間のインピーダンス整合をするためにアンテナが必要である。一般に、アンテナは、遠距離と通信したい場合や通信電力を低減させたい場合、あるいはレーダーの角度分解能を向上させたい場合など、高利得あるいは狭ビームが要求されることが多い。このような高利得、狭ビームを得るための方法としては、モジュール基板の表面にアンテナ素子を具備するアンテナ基板を実装し、さらにそのアンテナ素子の放射側に誘電体レンズを設けることによって、アンテナ素子の小型化を図ると同時に基板の面積を小さくすることが特許文献1、特許文献2にて提案されている。
特開平10−341108号 WO00/48269号
In order to transmit and receive these high-frequency signals, an antenna is required for impedance matching between the transmission line on the module substrate and space. In general, the antenna is often required to have a high gain or a narrow beam when communicating with a long distance, when it is desired to reduce communication power, or when it is desired to improve the angular resolution of the radar. As a method for obtaining such a high gain and narrow beam, an antenna element having an antenna element is mounted on the surface of the module substrate, and a dielectric lens is provided on the radiation side of the antenna element, thereby providing an antenna element. Patent Document 1 and Patent Document 2 propose to reduce the area of the substrate while reducing the size of the substrate.
JP 10-341108 A WO00 / 48269

しかし、従来のアンテナ基板を具備するアンテナモジュールにおいては、モジュール基板からアンテナ基板とモジュール基板の接続の不整合性、回路の誤動作や混信などによる不要放射、あるいはアンテナ基板に実装された半導体素子から不要放射が発生しやすく、その結果、それら不要放射が、アンテナ素子による利得やサイドロ−ブなどに影響を及ぼすことがあった。特に、アンテナ素子の放射側に誘電体レンズを設けた場合には、一次放射器としてのアンテナ基板における放射パターンがレンズを介した最終の放射パターンに与える影響が大きいために、アンテナ基板周辺からの不要放射に対する対策が必要であった。   However, in an antenna module equipped with a conventional antenna board, it is unnecessary from the module board to the antenna board and the module board due to inconsistency in connection, unnecessary radiation due to circuit malfunction or interference, or from the semiconductor elements mounted on the antenna board. Radiation is likely to occur, and as a result, the unnecessary radiation may affect the gain and side lobe of the antenna element. In particular, when a dielectric lens is provided on the radiation side of the antenna element, the radiation pattern on the antenna substrate as the primary radiator has a great influence on the final radiation pattern via the lens, Measures against unnecessary radiation were necessary.

従って、本発明は、このようなアンテナモジュールにおける不要放射の発生に対する影響を低減し、優れたアンテナ特性を有し、配線間の混信や回路の誤動作を低減したアンテナモジュールを提供することを目的とするものである。   Accordingly, an object of the present invention is to provide an antenna module that reduces the influence on the occurrence of unnecessary radiation in such an antenna module, has excellent antenna characteristics, and reduces interference between wires and circuit malfunction. To do.

本発明のアンテナモジュールは、絶縁基板の一方の表面あるいは内部に単一または複数のアンテナ素子が設けられ、前記絶縁基板の他方の表面に前記アンテナ素子と接続された半導体素子を搭載してなるアンテナ基板と、該アンテナ基板を実装してなるモジュール基板とを具備するアンテナモジュールであって、前記アンテナ基板内部の、前記アンテナ素子と前記半導体素子とを隔てる位置に導体層を形成してなり、該導体層の面積が、アンテナ基板の面積の60%以上を占めることを特徴とする。   The antenna module of the present invention is an antenna in which a single or a plurality of antenna elements are provided on one surface or inside of an insulating substrate, and a semiconductor element connected to the antenna element is mounted on the other surface of the insulating substrate. An antenna module comprising a substrate and a module substrate on which the antenna substrate is mounted, wherein a conductor layer is formed in the antenna substrate at a position separating the antenna element and the semiconductor element, The area of the conductor layer occupies 60% or more of the area of the antenna substrate.

特に、記アンテナ素子が放射あるいは受信する信号の周波数をf、前記アンテナ基板と前記モジュール基板の間でやり取りされる信号の最大周波数をfとしたとき、fとfが異なることが望ましい。特に、前記fとfが、0.5×f≧fの関係にあることが望ましい。 In particular, when the frequency of a signal radiated or received by the antenna element is f 0 and the maximum frequency of a signal exchanged between the antenna substrate and the module substrate is f 1 , f 0 and f 1 may be different. desirable. In particular, it is desirable that f 0 and f 1 have a relationship of 0.5 × f 0 ≧ f 1 .

また、本発明によれば、アンテナ素子の放射側に誘電体レンズを設ける場合に特に有利である。   The present invention is particularly advantageous when a dielectric lens is provided on the radiation side of the antenna element.

本発明のアンテナモジュールによれば、上記構成によって2次実装基板すなわちモジュール基板における回路の誤動作や混信などによる不要放射による影響を抑制し、アンテナ入力抵抗を安定させ、アンテナ基板内に設けた半導体素子などの高周波回路を正常に動作させることができる。   According to the antenna module of the present invention, the above-described configuration suppresses the influence of unnecessary radiation caused by circuit malfunction or interference on the secondary mounting board, that is, the module board, stabilizes the antenna input resistance, and provides the semiconductor element provided in the antenna board. The high frequency circuit such as can be operated normally.

即ち、絶縁基板の一方の表面あるいは内部に単一または複数のアンテナ素子を設け、他方の表面に前記アンテナ素子と接続される半導体素子を搭載することにより、アンテナ基板の小型化が図られ、さらにアンテナと半導体素子が同一平面に無いために、半導体素子からの不要放射がアンテナ放射パターンに影響を及ぼすことが無くなり、放射パターン形状の悪化や混信を防ぐことが可能となり、また逆に、アンテナ素子からの放射が半導体素子の誤動作を引き起こすことも無くなる。   That is, by providing a single or a plurality of antenna elements on one surface or inside of the insulating substrate and mounting a semiconductor element connected to the antenna element on the other surface, the antenna substrate can be reduced in size, Since the antenna and the semiconductor element are not on the same plane, unnecessary radiation from the semiconductor element does not affect the antenna radiation pattern, and it is possible to prevent deterioration of the radiation pattern shape and interference, and conversely, the antenna element. The radiation from the semiconductor device does not cause malfunction of the semiconductor element.

また、前記アンテナ素子と前記半導体素子を隔てるように、前記アンテナ基板内部に設けた導体層面積が、アンテナ基板の面積の60%以上とすることにより、半導体素子から生じた不要放射のアンテナ素子への影響、また逆にアンテナ素子からの放射の半導体素子への影響を抑制でき、混信や誤動作を減少させエラーレイトを下げることができる。   Further, by setting the area of the conductor layer provided inside the antenna substrate so as to separate the antenna element and the semiconductor element to 60% or more of the area of the antenna substrate, the antenna element for unnecessary radiation generated from the semiconductor element can be obtained. Inversely, the influence of radiation from the antenna element on the semiconductor element can be suppressed, interference and malfunction can be reduced, and the error rate can be lowered.

さらに、アンテナ基板とモジュール基板との間でやり取りされる信号の周波数fがアンテナが放射する信号の周波数fと異ならしめることによって、モジュール基板とアンテナ基板の信号接続部や、モジュール基板内からの不要放射と、アンテナ素子から放射される信号間の干渉が無くなり、混信や回路の誤動作などが抑制できエラーレイトを下げることができる。なお、ここで言うfは、アンテナ基板とモジュール基板の間でやり取りされる信号のうち最も高い信号の周波数である。特に、0.5×f≧fとすることにより、より混信や誤動作を防ぐことができエラーレイトが下がる。 Further, by making the frequency f 1 of the signal exchanged between the antenna substrate and the module substrate different from the frequency f 0 of the signal radiated by the antenna, the signal connection portion between the module substrate and the antenna substrate, or from within the module substrate The interference between the unnecessary radiation and the signal radiated from the antenna element is eliminated, and interference and circuit malfunction can be suppressed and the error rate can be lowered. Incidentally, f 1 here is the frequency of the highest signal of the signals exchanged between the antenna substrate and the module substrate. In particular, by setting 0.5 × f 0 ≧ f 1 , interference and malfunction can be further prevented and the error rate is lowered.

かかる本発明は、アンテナ基板とモジュール基板の間でやり取りする信号周波数を低下させることにつながり、一般的にロスの大きい高周波を低周波に変換することでロスが低減しシステムとしても効率が上がり、また信号レベルの低下が防げるためにエラーレイトも低下させることが可能となる。   The present invention leads to lowering the signal frequency exchanged between the antenna substrate and the module substrate, generally reducing the loss by converting a high frequency loss to a low frequency, increasing the efficiency of the system, In addition, since the signal level can be prevented from being lowered, the error rate can also be lowered.

以下、本発明のアンテナモジュールの構成について図面を参照しながら説明する。図1に本発明の実施形態の一例であるアンテナモジュール1の側面図を示す。本発明のアンテナモジュールは、誘電体レンズ2、アンテナ基板3、モジュール基板4から構成されており、誘電体レンズ2は支持体5をもってモジュール基板4に固定されている
アンテナ基板3の一方の面には、マイクロストリップアンテナからなるアンテナ素子6が形成されており、他方の面に、アンテナ素子から放射あるいは受信される信号の処理を行う半導体素子7が実装されており、基板内部にはグランド層9が形成されており、半導体素子7は、ビア導体10を介して前記アンテナ素子6と接続されている。半導体素子7は、アンテナ基板3の他方の面に設けられたキャビティ内に収納され、キャップ8で封止され、湿気やゴミの侵入を防止している。なお、半導体素子の封止の形態は、キャビティ内への収納のみならず、封止樹脂中に埋設してもよい。
Hereinafter, the configuration of the antenna module of the present invention will be described with reference to the drawings. FIG. 1 shows a side view of an antenna module 1 which is an example of an embodiment of the present invention. The antenna module of the present invention includes a dielectric lens 2, an antenna substrate 3, and a module substrate 4, and the dielectric lens 2 is fixed to the module substrate 4 with a support 5 .
An antenna element 6 made of a microstrip antenna is formed on one surface of the antenna substrate 3, and a semiconductor element 7 for processing a signal radiated or received from the antenna element is mounted on the other surface. A ground layer 9 is formed inside the substrate, and the semiconductor element 7 is connected to the antenna element 6 through a via conductor 10. The semiconductor element 7 is housed in a cavity provided on the other surface of the antenna substrate 3 and sealed with a cap 8 to prevent moisture and dust from entering. The semiconductor element may be sealed not only in the cavity but also embedded in the sealing resin.

アンテナ素子6と、これを制御する半導体素子7を1つのアンテナ基板に設ける場合、アンテナ素子6から放射された信号が半導体素子に影響を与え半導体素子の誤動作をおこす。また逆に半導体素子からの不要放射がアンテナ素子の放射パターンに影響を与え放射パターンの崩れやサイドローブの上昇、利得の低下などが発生してしまう。また、さらにアンテナ素子と半導体素子が同一表面にある場合、基板の面積が大きくなるという欠点もある。そこで、本発明によれば、半導体素子7をアンテナ素子3が形成された面とは反対側の面に形成することによって、半導体素子の誤動作やサイドローブの上昇や利得低下などのアンテナ放射パターンの劣化を防止することができ、またアンテナ基板を小型化できる。   When the antenna element 6 and the semiconductor element 7 for controlling the antenna element 6 are provided on one antenna substrate, a signal radiated from the antenna element 6 affects the semiconductor element and causes a malfunction of the semiconductor element. On the contrary, unnecessary radiation from the semiconductor element affects the radiation pattern of the antenna element, resulting in a collapse of the radiation pattern, an increase in side lobe, and a decrease in gain. Further, when the antenna element and the semiconductor element are on the same surface, there is a disadvantage that the area of the substrate becomes large. Therefore, according to the present invention, by forming the semiconductor element 7 on the surface opposite to the surface on which the antenna element 3 is formed, the antenna radiation pattern such as malfunction of the semiconductor element, an increase in side lobe, and a decrease in gain is obtained. Deterioration can be prevented and the antenna substrate can be miniaturized.

また、図1では、半導体素子7が1つしか搭載されていないが、この半導体素子としては、増幅器やフィルター、変復調器、信号処理素子、逓倍器などの複数の半導体素子を搭載しても問題は無い。なおその場合においては、これら素子のうち、アンテナ素子への影響の大きい半導体素子を、アンテナ素子6を形成した面とは反対側の面に形成すればよいが、すべての半導体素子を反対側の面に形成することが最も望ましい。   In FIG. 1, only one semiconductor element 7 is mounted. However, there is a problem even if a plurality of semiconductor elements such as an amplifier, a filter, a modem, a signal processing element, and a multiplier are mounted as this semiconductor element. There is no. In this case, among these elements, a semiconductor element having a large influence on the antenna element may be formed on the surface opposite to the surface on which the antenna element 6 is formed. It is most desirable to form on the surface.

また、本発明によれば、アンテナ素子3が放射あるいは受信する信号の周波数をf、アンテナ基板3とモジュール基板4の間でやり取りされる信号の最大周波数をfとしたとき、fとfを異ならしめることによって、モジュール基板4における回路の誤動作や混信を抑制し、アンテナ入力抵抗を安定させ、また、アンテナ基板3に実装された半導体素子7の高周波回路を正常に動作させることができる。 Further, according to the present invention, when the frequency of a signal radiated or received by the antenna element 3 is f 0 , and the maximum frequency of a signal exchanged between the antenna substrate 3 and the module substrate 4 is f 1 , f 0 By making f 1 different, the malfunction and interference of the circuit in the module substrate 4 can be suppressed, the antenna input resistance can be stabilized, and the high-frequency circuit of the semiconductor element 7 mounted on the antenna substrate 3 can be operated normally. it can.

このように、アンテナ素子6が送受信する信号の周波数fと、アンテナ基板3とモジュール基板4がやり取りする周波数fを異ならしめるための1つの方法としては、図2に示す回路構成を用いる方法がある。すなわち図2のように、アンテナ基板に実装した周波数変換器11と局部発振器12をアンテナ素子10に接続し回路構成することで、アンテナ素子で送受信する信号をアップコンバートあるいはダウンコンバート可能となる。なお、局部発振器12に直接信号を入れて変調する場合には周波数変換器11は不要となる。発振器としては、低周波の信号を局部発振器で発振し、その信号を逓倍器により高周波に変化させ所望の周波数の局部信号を作る方法などがあり、ディスクリートで形成した局部発振器、逓倍器を接続して形成できる。あるいは逓倍器を用いず直接、所望の周波数の局部信号を発生させる発振器を用いても良く、それについてはMMICで電圧制御型発振器を構成する方法や、ガンダイオードを用いる方法などがある。 As described above, as one method for making the frequency f 0 of the signal transmitted and received by the antenna element 6 different from the frequency f 1 of the antenna substrate 3 and the module substrate 4 exchanged, a method using the circuit configuration shown in FIG. There is. That is, as shown in FIG. 2, by connecting the frequency converter 11 and the local oscillator 12 mounted on the antenna substrate to the antenna element 10 to form a circuit, signals transmitted and received by the antenna element can be up-converted or down-converted. Note that the frequency converter 11 is not required when a signal is directly input to the local oscillator 12 for modulation. As an oscillator, there is a method of oscillating a low frequency signal with a local oscillator and changing the signal to a high frequency with a multiplier to create a local signal with a desired frequency. Can be formed. Alternatively, an oscillator that directly generates a local signal of a desired frequency may be used without using a multiplier, and there are a method of configuring a voltage-controlled oscillator with MMIC, a method of using a Gunn diode, and the like.

その中でも、構成が最も簡単で容易にシステムの構成が可能である点で、MMICで電圧制御型発振器を構成する方法が好ましい。MMICに多くの機能を持たせた素子を用いることが好ましい。ディスクリートで、周波数変換器、逓倍器を形成し接続する場合に比べて、半導体素子数が少なくなり実装工程が簡略化し製造コストを低減できる。   Among them, the method of configuring the voltage controlled oscillator with MMIC is preferable in that the configuration is the simplest and the system can be configured easily. It is preferable to use an element provided with many functions in the MMIC. Compared to the case where discrete frequency converters and multipliers are formed and connected, the number of semiconductor elements is reduced, the mounting process is simplified, and the manufacturing cost can be reduced.

特に、本発明によれば、前記fとfが、0.5×f≧fであることが望ましい。これは、fとfが近い場合、混信を起こしやすいことを意味している。例えばアンテナが送受信する信号は、信号情報を搬送波に載せるため一般的に周波数変調をかけ、そのため信号周波数にある程度の幅が発生する。それによりfとfが近い場合、周波数が同じ領域での重なり成分が生じ混信が発生しやすい。また0.5×f≧fとすることで、fの2次高調波成分による影響が抑制できる。そのため、0.5×f≧fとすることによって、その混信を減少させることが可能となる。望ましくは、0.2×f≧fであることが望ましく、これによりfの5次高調波成分の影響も抑制できる。 In particular, according to the present invention, it is desirable that the f 0 and f 1 satisfy 0.5 × f 0 ≧ f 1 . This means that interference is likely to occur when f 0 and f 1 are close. For example, a signal transmitted and received by an antenna is generally subjected to frequency modulation in order to put signal information on a carrier wave, so that a certain width is generated in the signal frequency. As a result, when f 0 and f 1 are close to each other, an overlapping component occurs in the same frequency region, and interference is likely to occur. Further, by setting 0.5 × f 0 ≧ f 1 , the influence of the second harmonic component of f 1 can be suppressed. Therefore, the interference can be reduced by setting 0.5 × f 0 ≧ f 1 . Desirably, 0.2 × f 0 ≧ f 1 is desirable, whereby the influence of the fifth harmonic component of f 1 can also be suppressed.

図1ではアンテナ素子として、1素子のマイクロストリップアンテナを図示しているが、この素子数は、2素子以上でもよく、複数のアンテナ素子をアレイ状に配置したアレイアンテナであってもよい。   In FIG. 1, a single-element microstrip antenna is shown as an antenna element, but the number of elements may be two or more, or an array antenna in which a plurality of antenna elements are arranged in an array.

また、アンテナ素子として、図1のマイクロストリップアンテナ以外に、ボウタイアンテナ、スロットアンテナなどの平面アンテナ、ヘリカルアンテナ、ダイポールアンテナ、逆Lアンテナ、逆Fアンテナでも特に問題はない。また、アンテナ素子6は、必ずしも基板表面に形成されている必要はなく、基板の内部に形成されていてもよい。特に、アンテナ素子の保護の点からは、アンテナ素子6の表面に樹脂製またはセラミック製の絶縁性保護層を形成することが望ましい。その他、アンテナ素子としては、誘電体共振器アンテナや、特開平11−46114号に記載されるような、積層型導波管を利用したアンテナなども利用できる。   In addition to the microstrip antenna shown in FIG. 1, there is no particular problem with a planar antenna such as a bow tie antenna or a slot antenna, a helical antenna, a dipole antenna, an inverted L antenna, or an inverted F antenna. Further, the antenna element 6 is not necessarily formed on the substrate surface, and may be formed inside the substrate. In particular, from the viewpoint of protection of the antenna element, it is desirable to form an insulating protective layer made of resin or ceramic on the surface of the antenna element 6. In addition, as the antenna element, a dielectric resonator antenna, an antenna using a laminated waveguide as described in JP-A-11-46114, and the like can be used.

また、図1では、アンテナ素子の上部に所定距離をとって、誘電体レンズ2を配置しているが、この誘電体レンズ2は、必ずしも必要ではないが、誘電体レンズ2を具備する場合、アンテナ素子の放射パターンの微小な変化が、レンズを介した最終の放射パターンに与える影響が顕著であり、本発明による作用は特に有効的である。なお、誘電体レンズ2は、図1によれば、モジュール基板4に固定されているが、この誘電体レンズ2の固定先としては、これに限られず、他の筐体などに固定し、その筐体にモジュール基板4を固定してもなんら問題は無い。   In FIG. 1, the dielectric lens 2 is disposed at a predetermined distance above the antenna element. However, the dielectric lens 2 is not always necessary, but when the dielectric lens 2 is provided, The effect of the minute change in the radiation pattern of the antenna element on the final radiation pattern via the lens is significant, and the action according to the present invention is particularly effective. The dielectric lens 2 is fixed to the module substrate 4 according to FIG. 1, but the fixing destination of the dielectric lens 2 is not limited to this, and is fixed to another housing or the like. There is no problem even if the module substrate 4 is fixed to the housing.

なお、アンテナ基板3において、アンテナ素子6と半導体素子7を接続するためには一般的に、マイクロストリップライン、ストリップライン、ビア、コプレーナライン、スロットライン、積層型導波管などの周知の高周波線路を用いることができるが、特に線路を特定する必要は無い。線路の引き回し容易性から考えれば、マイクロストリップライン、ストリップラインが好ましく、また低伝送損失の観点からは積層型導波管が好ましい。またVIAの代わりに信号の損失低減のためにスロットをもちいて電磁的に接続し信号伝送してもなんら問題はない。   In the antenna substrate 3, in order to connect the antenna element 6 and the semiconductor element 7, generally known high-frequency lines such as a microstrip line, a strip line, a via, a coplanar line, a slot line, and a laminated waveguide are used. However, it is not particularly necessary to specify the line. Considering the ease of routing the line, a microstrip line and a strip line are preferable, and a laminated waveguide is preferable from the viewpoint of low transmission loss. Further, there is no problem even if signals are transmitted by electromagnetic connection using slots for reducing signal loss instead of VIA.

なお、図1のアンテナモジュールでは、モジュール基板4とアンテナ基板3を電気的に接続するのに、アンテナ基板3をモジュール基板4に対して、BGAタイプで、アンテナ基板3の裏面の接続パッド11に取り付けられた複数の半田ボール12を介してモジュール基板1の回路パターン13に実装されているが、アンテナ基板3の実装形態はこれに限られることがなく、たとえば半田ボールを用いず、アンテナ基板3の底面に形成された接続パッド11とモジュール基板1の回路パターン13に対して、直接半田で接続するLGAタイプや、金属ピンを用いるPGAタイプ、あるいはアンテナ基板に形成された接続パッドとモジュール基板側の回路パターンとをワイヤを用いて接続するものであってもよい。この中でも、BGA、LGAは、高密度に端子を形成することができる点で有利である。   In the antenna module of FIG. 1, in order to electrically connect the module substrate 4 and the antenna substrate 3, the antenna substrate 3 is BGA type with respect to the module substrate 4 and is connected to the connection pads 11 on the back surface of the antenna substrate 3. Although mounted on the circuit pattern 13 of the module substrate 1 via a plurality of attached solder balls 12, the mounting form of the antenna substrate 3 is not limited to this. For example, the antenna substrate 3 is not used without using solder balls. The connection pad 11 formed on the bottom surface of the module and the circuit pattern 13 of the module substrate 1 are directly connected to the LGA type by solder, the PGA type using metal pins, or the connection pad formed on the antenna substrate and the module substrate side. The circuit pattern may be connected using a wire. Among these, BGA and LGA are advantageous in that terminals can be formed at high density.

また、アンテナ基板3は、表面実装タイプではなく、モジュール基板4表面に接着剤で固定し、アンテナ基板3の表面に形成された電極と、モジュール基板の電極とを金リボンや金のワイヤーボンディングで接続した構造であってもよい。ただワイヤーボンディングは寄生インダクタンスや量産性の課題などを有することから、前述の表面実装型がローコストで特性安定性も優れており好ましい。   The antenna substrate 3 is not a surface mount type, but is fixed to the surface of the module substrate 4 with an adhesive, and the electrode formed on the surface of the antenna substrate 3 and the electrode of the module substrate are bonded by a gold ribbon or gold wire bonding. A connected structure may be used. However, since wire bonding has problems such as parasitic inductance and mass productivity, the above-described surface mounting type is preferable because it is low-cost and has excellent characteristic stability.

アンテナ基板3を構成する材料としては、半導体素子7の実装信頼性を考えればセラミックスが好ましく、またコストの点から考えれば少なくとも樹脂を含有する有機材料からななる基板が好ましい。セラミックスを用いる場合、材料は一般的にアルミナ、窒化アルミニウム、マグネシアなどを主成分としたセラミックスや、ガラスセラミックスなどの1000℃以下で焼成可能な低温焼成セラミックスが好適に挙げられる。この中でも、高周波では伝送線路における損失が大きく、その損失を抑えるために導体層の抵抗を低くすることが求められ、かかる点から銅や銀導体を用いることができる低温焼成セラミックスまたは有機多層基板が好ましく、最適には誘電損失が低い低温焼成セラミックスがよい。なお、有機基板の中では、フッ素系樹脂が好ましい。   As a material constituting the antenna substrate 3, ceramics are preferable in view of mounting reliability of the semiconductor element 7, and a substrate made of an organic material containing at least a resin is preferable from the viewpoint of cost. In the case of using ceramics, examples of suitable materials generally include ceramics mainly composed of alumina, aluminum nitride, magnesia, etc., and low-temperature fired ceramics that can be fired at 1000 ° C. or less, such as glass ceramics. Among these, the loss in the transmission line is large at high frequencies, and it is required to reduce the resistance of the conductor layer in order to suppress the loss. From this point, low-temperature fired ceramics or organic multilayer substrates that can use copper or silver conductors are required. Preferably, low-temperature fired ceramics with low dielectric loss are optimal. In the organic substrate, a fluorine resin is preferable.

モジュール基板4を構成する材料としても、アンテナ基板3と同様に、アルミナや窒化アルミニウム、マグネシアなどを主成分としたセラミックスや低温焼成セラミックス、有機多層基板など用いることができ特に材料を限定するものでは無い。しかし製造コストの点から考えれば、FR−4やFR−5などのガラスーエポキシ樹脂の安価な有機基板が好ましい。   As the material constituting the module substrate 4, similarly to the antenna substrate 3, ceramics mainly composed of alumina, aluminum nitride, magnesia, low-temperature fired ceramics, organic multilayer substrates, and the like can be used. No. However, from the viewpoint of manufacturing cost, an inexpensive organic substrate of glass-epoxy resin such as FR-4 or FR-5 is preferable.

本発明のアンテナモジュールについてアンテナモジュールとしての通信特性を評価するために、実際にシステムを組んでエラーレイトの調査を行った。   In order to evaluate the communication characteristics of the antenna module of the present invention as an antenna module, an error rate was investigated by actually assembling the system.

アンテナ基板は、40mm×40mm×厚み3.0mm、誘電率4.9のホウ珪酸ガラスを主体とする低温焼成セラミックスからなる絶縁基板に対して、その表面に、マイクロストリップアンテナを1素子形成しそれを1次放射器とした。マイクロストリップアンテナおよびアンテナ基板における高周波線路などはすべて、銅メタライズを用いて、絶縁基板と900℃で同時焼成して形成した。   The antenna substrate is formed by forming one microstrip antenna on the surface of an insulating substrate made of a low-temperature fired ceramic mainly composed of borosilicate glass having a size of 40 mm × 40 mm × thickness 3.0 mm and a dielectric constant of 4.9. Was a primary radiator. The microstrip antenna and the high-frequency line in the antenna substrate were all formed by co-firing with an insulating substrate at 900 ° C. using copper metallization.

また、アンテナ基板のアンテナ素子形成面とは反対の面に、図1に示したようなキャビティを設け、このキャビティ内に半導体素子をフリップチップ実装した。また一部の半導体についてはアンテナ素子形成面と同一平面に形成した。   Further, a cavity as shown in FIG. 1 was provided on the surface opposite to the antenna element formation surface of the antenna substrate, and the semiconductor element was flip-chip mounted in this cavity. Some semiconductors were formed on the same plane as the antenna element formation surface.

一方、モジュール基板としては、ガラス−エポキシ樹脂からなる複合絶縁体からなる絶縁基板の表面に銅による導体パターンを形成したものを準備し、アンテナ基板をボールグリッドアレイによって表面実装した。また、アンテナ素子の放射面の上に、誘電率5.0のホウ珪酸ガラスを主体とするセラミックスで形成した誘電体レンズを配置した。   On the other hand, the module substrate was prepared by forming a copper conductive pattern on the surface of an insulating substrate made of a composite insulator made of glass-epoxy resin, and the antenna substrate was surface-mounted by a ball grid array. In addition, a dielectric lens formed of ceramics mainly composed of borosilicate glass having a dielectric constant of 5.0 was disposed on the radiation surface of the antenna element.

また、比較例として、アンテナ素子と半導体素子とを同じ面に形成したアンテナ基板を作製し、上記と同様にしてモジュール基板表面に実装し、比較用のアンテナモジュールAを作製した。この比較用のアンテナモジュールAにおけるエラーレイトを「1」として、本発明品を含む種々のモジュールのエラーレイトを測定した。   In addition, as a comparative example, an antenna substrate in which an antenna element and a semiconductor element were formed on the same surface was manufactured and mounted on the surface of the module substrate in the same manner as described above to manufacture a comparative antenna module A. The error rate of the antenna module A for comparison was set to “1”, and the error rates of various modules including the product of the present invention were measured.

なお、エラーレイトの測定にあたっては、アンテナ素子からの放射信号(搬送波)の周波数(f)は63GHzとした。また、アンテナ基板の表面には、アンテナ素子以外に、増幅器、局部発振器、逓倍器、フィルターを基板表面に実装した。アンテナモジュールに対向する形で、信号を放射するホーンアンテナを設置し、ホーンアンテナから放射した信号をアンテナモジュールで受信し復調して、オリジナルな信号と比較してエラーレイトを評価した。 In measuring the error rate, the frequency (f 0 ) of the radiation signal (carrier wave) from the antenna element was 63 GHz. In addition to the antenna element, an amplifier, a local oscillator, a multiplier, and a filter were mounted on the surface of the antenna substrate. A horn antenna that radiates a signal is installed opposite to the antenna module, the signal radiated from the horn antenna is received and demodulated by the antenna module, and the error rate is evaluated by comparing with the original signal.

また、アンテナ素子は変更せず、半導体素子の回路構成を変更し局部信号周波数を変化させることにより、表1に示すようにアンテナ基板とモジュール基板との間の信号周波数を種々変更し、エラーレイトを測定した。その結果を表1に示す。

Figure 2006067375
In addition, by changing the circuit configuration of the semiconductor element and changing the local signal frequency without changing the antenna element, various signal frequencies between the antenna board and the module board are changed as shown in Table 1, and the error rate is changed. Was measured. The results are shown in Table 1.
Figure 2006067375

表1に示すとおり、アンテナ素子での受信または送信信号の周波数から、アンテナ基板とモジュール基板との間の信号周波数fをfと異ならしめることによって、エラーレイトを改善できる。48GHzのNo.4では、半導体素子のうちローノイズアンプをアンテナ素子と同一面に形成したが、No.1との比較からわかるようにエラーレイトに改善が見られていることが分かる。しかしながらNo.5に比べればエラーレイトが高く、半導体素子はアンテナ素子の形成面の反対面に設けることが好ましい。アンテナ基板とモジュール基板間の信号は低下すればするほどエラーレイトが低下し、とくにアンテナ素子で受信する搬送波の信号周波数63GHzの半分以下である30GHzでエラーレイト0.5以下を達成し、より好ましい。また63GHzの1/5以下である10GHzでは0.4以下となり、さらに好ましい。 As shown in Table 1, the error rate can be improved by making the signal frequency f 1 between the antenna substrate and the module substrate different from f 0 based on the frequency of the reception or transmission signal at the antenna element. 48 GHz No. In No. 4, the low noise amplifier of the semiconductor elements is formed on the same surface as the antenna element. It can be seen from the comparison with 1 that the error rate is improved. However, no. Compared to 5, the error rate is high, and the semiconductor element is preferably provided on the opposite side of the antenna element formation surface. As the signal between the antenna substrate and the module substrate decreases, the error rate decreases, and in particular, an error rate of 0.5 or less is achieved at 30 GHz, which is less than half of the signal frequency of 63 GHz of the carrier wave received by the antenna element. . Further, at 10 GHz, which is 1/5 or less of 63 GHz, 0.4 or less is further preferable.

本発明のアンテナモジュールの発明の一例を説明するための概略斜視図である。It is a schematic perspective view for demonstrating an example of invention of the antenna module of this invention. アンテナ素子が放射あるいは受信する信号の周波数fとアンテナ基板と前記モジュール基板の間でやり取りされる信号の最大周波数fとを異ならしめるための回路図である。Antenna element is a circuit diagram for occupying different from the maximum frequency f 1 of the signals exchanged between the module substrate and the frequency f o and the antenna substrate of the signal to be radiated or received.

符号の説明Explanation of symbols

1・・・・・・・アンテナモジュール
2・・・・・・・誘電体レンズ
3・・・・・・・アンテナ基板
4・・・・・・・モジュール基板
5・・・・・・・支持体
6・・・・・・・アンテナ素子
7・・・・・・・半導体素子
8・・・・・・・キャップ
9・・・・・・・グランド層
1 .... Antenna module 2 ... Dielectric lens 3 ... Antenna substrate 4 ... Module substrate 5 ... Support Body 6 ... Antenna element 7 ... Semiconductor element 8 ... Cap 9 ... Ground layer

Claims (3)

絶縁基板の一方の表面あるいは内部に単一または複数のアンテナ素子が設けられ、前記絶縁基板の他方の表面に前記アンテナ素子と接続された半導体素子を搭載してなるアンテナ基板と、該アンテナ基板を実装してなるモジュール基板とを具備するアンテナモジュールであって、前記アンテナ素子が放射あるいは受信する信号の周波数をf、前記アンテナ基板と前記モジュール基板の間でやり取りされる信号の最大周波数をfとしたとき、fとfが異なることを特徴とするアンテナモジュール。 A single or a plurality of antenna elements are provided on one surface or inside of the insulating substrate, and an antenna substrate on which a semiconductor element connected to the antenna element is mounted on the other surface of the insulating substrate, and the antenna substrate An antenna module having a module substrate mounted thereon, wherein the frequency of a signal radiated or received by the antenna element is f 0 , and the maximum frequency of a signal exchanged between the antenna substrate and the module substrate is f when set to 1, an antenna module, characterized in that f 0 and f 1 are different. 前記fとfが、0.5×f≧fの関係にあることを特徴とする請求項1記載のアンテナモジュール。 The antenna module according to claim 1, wherein f 0 and f 1 are in a relationship of 0.5 × f 0 ≧ f 1 . 前記アンテナ素子の放射側に、誘電体レンズを設けてなることを特徴とする請求項1または請求項2記載のアンテナモジュール。 The antenna module according to claim 1, wherein a dielectric lens is provided on a radiation side of the antenna element.
JP2004249079A 2004-08-27 2004-08-27 Antenna module Pending JP2006067375A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004249079A JP2006067375A (en) 2004-08-27 2004-08-27 Antenna module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004249079A JP2006067375A (en) 2004-08-27 2004-08-27 Antenna module

Publications (1)

Publication Number Publication Date
JP2006067375A true JP2006067375A (en) 2006-03-09

Family

ID=36113427

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004249079A Pending JP2006067375A (en) 2004-08-27 2004-08-27 Antenna module

Country Status (1)

Country Link
JP (1) JP2006067375A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102916258A (en) * 2012-09-20 2013-02-06 日月光半导体制造股份有限公司 Antenna module and manufacturing method thereof
WO2016063759A1 (en) * 2014-10-20 2016-04-28 株式会社村田製作所 Wireless communication module
WO2016067969A1 (en) * 2014-10-31 2016-05-06 株式会社村田製作所 Antenna module and circuit module
EP2178119B1 (en) * 2008-10-20 2018-06-20 QUALCOMM Incorporated Surface mountable integrated circuit package
DE102019215718A1 (en) * 2019-10-14 2021-04-15 Airbus Defence and Space GmbH Antenna device for a vehicle and a vehicle with an antenna device

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2178119B1 (en) * 2008-10-20 2018-06-20 QUALCOMM Incorporated Surface mountable integrated circuit package
CN102916258A (en) * 2012-09-20 2013-02-06 日月光半导体制造股份有限公司 Antenna module and manufacturing method thereof
WO2016063759A1 (en) * 2014-10-20 2016-04-28 株式会社村田製作所 Wireless communication module
JPWO2016063759A1 (en) * 2014-10-20 2017-06-08 株式会社村田製作所 Wireless communication module
US10193222B2 (en) 2014-10-20 2019-01-29 Murata Manufacturing Co., Ltd. Wireless communication module
US10498025B2 (en) 2014-10-20 2019-12-03 Murata Manufacturing Co., Ltd. Wireless communication module
WO2016067969A1 (en) * 2014-10-31 2016-05-06 株式会社村田製作所 Antenna module and circuit module
JPWO2016067969A1 (en) * 2014-10-31 2017-07-27 株式会社村田製作所 Antenna module and circuit module
US20170229769A1 (en) 2014-10-31 2017-08-10 Murata Manufacturing Co., Ltd. Antenna module and circuit module
US10468763B2 (en) 2014-10-31 2019-11-05 Murata Manufacturing Co., Ltd. Antenna module and circuit module
DE102019215718A1 (en) * 2019-10-14 2021-04-15 Airbus Defence and Space GmbH Antenna device for a vehicle and a vehicle with an antenna device

Similar Documents

Publication Publication Date Title
US7239222B2 (en) High frequency circuit module
KR101309469B1 (en) Rf module
US7444734B2 (en) Apparatus and methods for constructing antennas using vias as radiating elements formed in a substrate
US6236366B1 (en) Hermetically sealed semiconductor module composed of semiconductor integrated circuit and antenna element
US7342299B2 (en) Apparatus and methods for packaging antennas with integrated circuit chips for millimeter wave applications
US7911292B2 (en) Mode transition between a planar line and a waveguide with a low loss RF substrate and a high loss low frequency substrate
US8212341B2 (en) Apparatus and methods for packaging integrated circuit chips with antennas formed from package lead wires
JP3734807B2 (en) Electronic component module
EP1515389B1 (en) Multilayer high frequency device with planar antenna thereon and manufacturing method thereof
US20070013599A1 (en) Apparatus and methods for constructing and packaging printed antenna devices
JP5669043B2 (en) Post-wall waveguide antenna and antenna module
US20220328953A1 (en) Antenna structure and antenna array
JP2006067375A (en) Antenna module
JP2006067376A (en) Antenna module
JP2006086808A (en) Antenna module
JP2008131166A (en) Antenna module
CN218525735U (en) Electronic device
JP2003242474A (en) Non-contact ic card
CN108269791B (en) Hybrid printed circuit board
JP3540939B2 (en) High frequency wiring board
JP2002050733A (en) Package for high frequency, wiring board, and high- frequency module
JP2001244409A (en) High-frequency module
JP2006042009A (en) Antenna module
JP2000049509A (en) Wiring board and its connection structure
JP2011142542A (en) Pattern antenna, and antenna device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070718

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081111

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090309