Nothing Special   »   [go: up one dir, main page]

JP2006052971A - Critical dimension measuring instrument - Google Patents

Critical dimension measuring instrument Download PDF

Info

Publication number
JP2006052971A
JP2006052971A JP2004233284A JP2004233284A JP2006052971A JP 2006052971 A JP2006052971 A JP 2006052971A JP 2004233284 A JP2004233284 A JP 2004233284A JP 2004233284 A JP2004233284 A JP 2004233284A JP 2006052971 A JP2006052971 A JP 2006052971A
Authority
JP
Japan
Prior art keywords
axis
detection units
along
units
patterns
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004233284A
Other languages
Japanese (ja)
Other versions
JP4478530B2 (en
Inventor
Chikun Hamasuna
智訓 濱砂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sokkia Co Ltd
Original Assignee
Sokkia Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sokkia Co Ltd filed Critical Sokkia Co Ltd
Priority to JP2004233284A priority Critical patent/JP4478530B2/en
Priority to KR1020040094530A priority patent/KR101119873B1/en
Priority to TW094100609A priority patent/TW200606390A/en
Priority to CNB2005100527650A priority patent/CN100455988C/en
Publication of JP2006052971A publication Critical patent/JP2006052971A/en
Application granted granted Critical
Publication of JP4478530B2 publication Critical patent/JP4478530B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/956Inspecting patterns on the surface of objects
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0004Industrial image inspection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/80Analysis of captured images to determine intrinsic or extrinsic camera parameters, i.e. camera calibration

Landscapes

  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Theoretical Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Health & Medical Sciences (AREA)
  • Quality & Reliability (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Liquid Crystal (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To accurately and simultaneously measure a plurality of patterns even when an object to be measured is arranged at an angle or patterns on the object to be measured is very slightly displaced from a specified position. <P>SOLUTION: A plurality of detecting parts 26 and 28 are arranged in such a way as to asynchronously move along an X-axis frame 18. The detecting parts 26 and 28 as a whole are arranged in such a way as to move along a Y-axis frame 20. Each of the detecting parts 26 and 28 is arranged in such a way as to asynchronously move along a Y-axis direction within a prescribed range. When a flat panel 46 is arranged in such a way as not to be in parallel with X-Y coordinate axes and arranged at an angle to the Y-axis or when patterns of a liquid crystal monitor 48 are displaced from registered patterns, the detecting parts 26 and 28 are independently moved along the Y-axis direction to correct positional displacements according to the inclination and pattern displacements of the flat panel 46 to accurately and simultaneously measure a plurality of patterns on the liquid crystal monitor 48 and shorten tact time. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、被測定物を被写体として撮像し、この撮像により得られた画像を処理して被測定物の微小寸法を測定するように構成した微小寸法測定機に関する。   The present invention relates to a micro dimension measuring machine configured to take an image of an object to be measured as a subject and process an image obtained by the imaging to measure the minute dimension of the object to be measured.

被測定物の微小寸法を測定するものとして、例えば、液晶モニタが形成されたフラットパネル上の各液晶モニタを臨む空間を移動空間として、検出器を三次元方向に移動させ、各液晶モニタ上に形成されたパターンの線幅などを検出器で測定するようにしたものがある。この種の微小寸法測定機は、検出器に撮像カメラ等を搭載し、撮像カメラで各液晶モニタを撮像し、この撮像によって得られた画像を処理することで、各液晶モニタ上に形成されたパターンの線幅などを測定することができる。   For measuring the minute dimensions of the object to be measured, for example, the space facing each liquid crystal monitor on the flat panel on which the liquid crystal monitor is formed is used as a moving space, and the detector is moved in a three-dimensional direction to There is one in which the line width of the formed pattern is measured by a detector. This type of micro-dimension measuring machine is formed on each liquid crystal monitor by mounting an imaging camera or the like on the detector, imaging each liquid crystal monitor with the imaging camera, and processing the image obtained by this imaging. The line width of the pattern can be measured.

しかし、1台の検出器で複数の液晶モニタを測定する構成では、検出器を各液晶モニタの部位まで移動させるのに時間を要し、フラットパネルに対する測定時間を短縮することができない。複数の液晶モニタが形成されたフラットパネルの測定時間(タクトタイム)を短縮するには、検出器を複数台用意し、各検出器を各液晶モニタまで同時に移動させる構成を採用することが考えられる。   However, in a configuration in which a plurality of liquid crystal monitors are measured with a single detector, it takes time to move the detector to the position of each liquid crystal monitor, and the measurement time for the flat panel cannot be shortened. In order to shorten the measurement time (tact time) of a flat panel on which a plurality of liquid crystal monitors are formed, it is conceivable to employ a configuration in which a plurality of detectors are prepared and each detector is moved to each liquid crystal monitor simultaneously. .

例えば、フラットパネルを測定機のX−Y座標(機械座標)に対して平行に配置し、X軸を構成するX軸フレームに複数の検出器を摺動自在に配置し、複数の検出器が配置されたX軸フレームをY軸駆動部によってY軸方向に沿って移動させることで、各検出器を各液晶モニタの部位まで移動させることができる。   For example, a flat panel is arranged in parallel to the XY coordinates (machine coordinates) of the measuring machine, and a plurality of detectors are slidably arranged on an X-axis frame constituting the X axis. Each detector can be moved to the position of each liquid crystal monitor by moving the arranged X-axis frame along the Y-axis direction by the Y-axis drive unit.

しかし、X軸フレームに複数の検出器を摺動自在に配置し、複数の検出器が配置されたX軸フレームをY軸方向に沿って移動させる構成では、各検出器をX軸方向に沿って個別に動かすことはできるが、Y方向には個別に動かすことはできない。このため、フラットパネルが測定機のX−Y座標に平行に配置されず、例えば、Y軸に対して傾斜した状態で配置されたときには、各検出器を同時にY軸方向に沿って移動させた後、各検出器をX軸方向に沿って個別に移動させても、一方の検出器を指定の測定位置に位置決めすることはできるが、他方の検出器を指定の測定位置に位置決めすることはできず、各検出器によって複数のパターンを同時に測定できなくなる。   However, in a configuration in which a plurality of detectors are slidably arranged on the X-axis frame and the X-axis frame on which the plurality of detectors are arranged is moved along the Y-axis direction, each detector is moved along the X-axis direction. Can be moved individually, but not individually in the Y direction. For this reason, when the flat panel is not arranged parallel to the XY coordinates of the measuring machine, for example, when arranged in a state inclined with respect to the Y axis, the detectors are simultaneously moved along the Y axis direction. Later, even if each detector is moved individually along the X-axis direction, one detector can be positioned at a specified measurement position, but the other detector can be positioned at a specified measurement position. It is impossible to measure a plurality of patterns simultaneously by each detector.

また、フラットパネルをX−Y座標に対して平行に配置できたとしても、いずれかの測定部位におけるパターンが登録パターンに対して微小にずれているときには、各検出器を測定部位まで移動させてパターンを測定しても、パターンの正確な寸法を測定することはできない。すなわち、パターンが登録パターンに対して微小にずれているときには、ずれに応じて各検出器の位置を修正しなければ、複数のパターンを正確に測定することはできない。   Even if the flat panel can be arranged parallel to the XY coordinates, if the pattern at any measurement site is slightly shifted from the registered pattern, each detector is moved to the measurement site. Measuring the pattern cannot measure the exact dimensions of the pattern. That is, when the pattern is slightly deviated from the registered pattern, a plurality of patterns cannot be measured accurately unless the position of each detector is corrected according to the deviation.

本発明は、前記従来の課題に鑑みて為されたものであり、その目的は、被測定物が測定機の機械座標に対して平行に配置されず、被測定物が傾斜して配置されたり、あるいは被測定物上のパターンが指定の位置から微小にずれていたりしても、複数のパターンを正確に、且つ同時に測定することになる。   The present invention has been made in view of the above-described conventional problems. The object of the present invention is that the object to be measured is not arranged parallel to the machine coordinates of the measuring machine, and the object to be measured is arranged at an inclination. Or, even if the pattern on the object to be measured is slightly deviated from the specified position, a plurality of patterns can be measured accurately and simultaneously.

前記目的を達成するために、請求項1に係る微小寸法測定機においては、被測定物上の複数のパターンをそれぞれ撮像する複数の検出部と、前記複数の検出部の撮像による画像を処理して前記複数のパターンに関する微小寸法を算出する画像処理部と、前記被測定物の被測定領域を臨む空間を少なくとも移動空間として、前記複数の検出部を前記移動空間において三次元の方向に沿って移動させる駆動部とを備え、前記駆動部は、前記三次元のうち一次元の方向に沿って前記複数の検出部全体を移動させる主駆動部と、前記三次元のうち少なくとも二次元の方向に沿って前記複数の検出部をそれぞれ非同期で移動させる補助駆動部とを備えて構成した。   In order to achieve the above object, in the micro-dimension measuring machine according to claim 1, a plurality of detection units that respectively capture a plurality of patterns on the object to be measured, and an image captured by the plurality of detection units are processed. An image processing unit that calculates minute dimensions related to the plurality of patterns, and a space that faces the measurement region of the object to be measured is at least a movement space, and the detection units are arranged in a three-dimensional direction in the movement space. A drive unit that moves the main drive unit that moves the whole of the plurality of detection units along a one-dimensional direction of the three dimensions, and at least a two-dimensional direction of the three dimensions. And an auxiliary driving unit that moves each of the plurality of detection units asynchronously.

(作用)被測定物上の複数のパターンを各検出部によって撮像し、この撮像による画像を処理して各パターンに関する微小寸法を測定するに際して、複数の検出部全体を一次元の方向、例えば、Y軸方向に沿って移動させるとともに、複数の検出部をそれぞれ少なくとも二次元の方向、例えば、X軸方向、Y軸方向に沿って非同期で移動させるようにしたため、被測定物が測定機の機械座標、例えば、X−Y座標に対して平行に配置されず、被測定物がY軸に対して傾いて配置されたり、あるいは被測定物上のパターンの位置が指定の位置から微小にずれていたりしても、各検出部を少なくとも二次元方向に沿ってそれぞれ非同期で移動させることで、各検出部の位置を微調整することができ、複数のパターンを正確にかつ同時に測定することができ、タクトタイムの短縮を図ることが可能になる。また、複数の測定ポイントを同時に測ることができ、タクトタイムの短縮を図ることが可能になる。   (Operation) When a plurality of patterns on the object to be measured are imaged by each detection unit, and an image obtained by this imaging is processed to measure a minute dimension related to each pattern, the entire plurality of detection units are arranged in a one-dimensional direction, for example, Since the plurality of detectors are moved along the Y-axis direction and are moved asynchronously along at least two-dimensional directions, for example, the X-axis direction and the Y-axis direction, the object to be measured is the machine of the measuring machine. The object to be measured is not arranged in parallel to the coordinates, for example, the XY coordinates, and the object to be measured is disposed to be inclined with respect to the Y axis, or the position of the pattern on the object to be measured is slightly deviated from the specified position. However, by moving each detection unit asynchronously along at least the two-dimensional direction, the position of each detection unit can be finely adjusted, and multiple patterns can be measured accurately and simultaneously. It can be, it is possible to shorten the tact time. In addition, a plurality of measurement points can be measured at the same time, and the tact time can be shortened.

請求項2においては、請求項1に記載の微小寸法測定機において、前記補助駆動部は、X・Y・Z方向を三次元方向として、前記複数の検出部をそれぞれX方向に沿って非同期で移動させる複数のX方向用補助駆動部と、前記複数の検出部をそれぞれY方向に沿って非同期で移動させる複数のY方向用補助駆動部と、前記複数の検出部をそれぞれZ方向に沿って非同期で移動させる複数のZ方向用補助駆動部とを備えて構成した。   According to a second aspect of the present invention, in the micro-dimension measuring machine according to the first aspect, the auxiliary driving unit sets the X, Y, and Z directions as a three-dimensional direction and the plurality of detection units asynchronously along the X direction. A plurality of X-direction auxiliary drive units to be moved, a plurality of Y-direction auxiliary drive units to move the plurality of detection units asynchronously along the Y direction, and a plurality of detection units to the Z direction, respectively. A plurality of Z-direction auxiliary driving units that are moved asynchronously are provided.

(作用)複数の検出部全体を各パターン近傍まで移動させた後で、各検出部をX方向とY方向あるいはZ方向に沿っ非同期で移動させることで、各検出部の位置を個別に微調整することができる。   (Operation) After moving the entire plurality of detection units to the vicinity of each pattern, each detection unit is moved asynchronously along the X direction, the Y direction, or the Z direction, thereby finely adjusting the position of each detection unit individually. can do.

請求項3においては、請求項2に記載の微小寸法測定機において、前記複数のX方向用補助駆動部、前記複数のY方向用補助駆動部または前記複数のZ方向用補助駆動部のうち少なくともいずれか一つは、X、YまたはZ方向のうち指定の方向に沿って配置されたマグネットと、前記各検出部に配置されたコイルとを備えたリニアモータで構成した。   According to a third aspect of the present invention, in the micro-dimension measuring machine according to the second aspect, at least one of the plurality of X-direction auxiliary drive units, the plurality of Y-direction auxiliary drive units, or the plurality of Z-direction auxiliary drive units. Any one of them is composed of a linear motor including a magnet arranged along a designated direction among the X, Y, and Z directions and a coil arranged in each of the detection units.

(作用)補助駆動部をマグネットとコイルとを備えたリニアモータで構成することで、同一の軸に複数の検出部が配置されても、各検出部を非同期で移動させることができ、構成の簡素化を図ることができる。   (Operation) By configuring the auxiliary drive unit with a linear motor having a magnet and a coil, each detection unit can be moved asynchronously even if multiple detection units are arranged on the same axis. Simplification can be achieved.

以上の説明から明らかなように、請求項1に係る微小寸法測定機によれば、タクトタイムの短縮を図ることが可能になる。   As is clear from the above description, the micro dimension measuring machine according to claim 1 can reduce the tact time.

請求項2によれば、各検出部の位置を個別に微調整することができる。   According to the second aspect, the position of each detection unit can be finely adjusted individually.

請求項3によれば、構成の簡素化を図ることができる。   According to the third aspect, the configuration can be simplified.

次に、本発明の実施形態を、実施例に基づいて説明する。図1は、本発明の一実施例を示す微小寸法測定機の斜視図、図2は、本発明の一実施例を示す微小寸法測定機の斜視図であって、検出部を省略したときの状態を示す斜視図、図3は、フラットパネルの平面図、図4は、測定パターンの拡大平面図、図5は、フルクローズドループ制御系の構成図、図6は、フラットパネルが傾斜したときの状態を示す平面図である。   Next, embodiments of the present invention will be described based on examples. FIG. 1 is a perspective view of a micro-dimension measuring machine showing an embodiment of the present invention, and FIG. 2 is a perspective view of the micro-dimension measuring machine showing an embodiment of the present invention when the detection unit is omitted. FIG. 3 is a plan view of a flat panel, FIG. 4 is an enlarged plan view of a measurement pattern, FIG. 5 is a configuration diagram of a fully closed loop control system, and FIG. 6 is a view when the flat panel is tilted. It is a top view which shows the state of.

これらの図において、微小寸法測定機16は、三次元測定機として、X−Y座標(機械座標)のX軸を構成するX軸用フレーム18と、Y軸を構成する一対のY軸用フレーム20と、基台22と、基台22上に固定された測定テーブル24と、X軸用フレーム18に非同期で移動可能に配置された複数の検出部26、28、各検出部26、28をX軸方向に沿って移動させるためのX軸駆動部30と、各検出部26、28をY軸方向に沿って移動させるためのY軸駆動部32、各検出部26、28をZ軸方向に沿って移動させるためのZ軸駆動部34と、各駆動部の駆動を制御するための演算などを行なうパーソナルコンピュータ(以下、PCと称する。)36と、PC36の処理結果などを表示する表示装置38、PC36に各種の情報を入力するためのキーボード40、各駆動部の駆動方向などを示すためのコントロールボックス42などを備えて構成されている。   In these drawings, a micro-dimension measuring machine 16 is a three-dimensional measuring machine, which is an X-axis frame 18 constituting the X axis of XY coordinates (machine coordinates) and a pair of Y-axis frames constituting the Y axis. 20, a base 22, a measurement table 24 fixed on the base 22, a plurality of detection units 26, 28 arranged so as to be asynchronously movable on the X-axis frame 18, and each detection unit 26, 28. An X-axis drive unit 30 for moving along the X-axis direction, a Y-axis drive unit 32 for moving the detection units 26 and 28 along the Y-axis direction, and the detection units 26 and 28 in the Z-axis direction A Z-axis drive unit 34 for movement along the PC, a personal computer (hereinafter referred to as a PC) 36 for performing calculations for controlling the drive of each drive unit, and a display for displaying the processing results of the PC 36, etc. Various information on the device 38 and the PC 36 Keyboard 40 for force, is configured to include a like control box 42 to indicate a driving direction of the drive units.

X軸フレーム18の軸方向両端部には摺動部(図示せず)が形成されており、各摺動部は、各Y軸フレーム20に沿って摺動可能に構成されている。X軸用フレーム18は、Y軸駆動部32の駆動によってY軸方向に沿って移動できるようになっており、Y軸駆動部32は、複数のY軸リニアモータ用マグネット32aとY軸用リニアモータ用コイル32bを備えたリニアモータで構成されている。リニアモータのコイル32bが通電され、コイル32bに対する通電量および通電方向がPC36によって制御されると、X軸フレーム18がY軸方向(Y軸用フレーム20)に沿って移動するようになっている。すなわち、Y軸駆動部32の駆動により、検出部26、28全体がX軸フレーム18の移動に伴ってY軸方向に沿って移動できるようになっている。この場合、Y軸駆動部32は、検出部26、28をY軸方向に沿って移動させる主駆動部を構成することになる。   Sliding portions (not shown) are formed at both axial ends of the X-axis frame 18, and each sliding portion is configured to be slidable along each Y-axis frame 20. The X-axis frame 18 can be moved along the Y-axis direction by driving the Y-axis drive unit 32. The Y-axis drive unit 32 includes a plurality of Y-axis linear motor magnets 32a and a Y-axis linear. It is comprised with the linear motor provided with the coil 32b for motors. When the coil 32b of the linear motor is energized and the energization amount and energization direction to the coil 32b are controlled by the PC 36, the X-axis frame 18 moves along the Y-axis direction (Y-axis frame 20). . That is, by driving the Y-axis drive unit 32, the entire detection units 26 and 28 can move along the Y-axis direction as the X-axis frame 18 moves. In this case, the Y-axis drive unit 32 constitutes a main drive unit that moves the detection units 26 and 28 along the Y-axis direction.

また、X軸用フレーム18には、各検出部26、28をX軸方向(X軸用フレーム18)に沿って非同期で移動させるためのX軸駆動部30が配置されている。X軸駆動部30は、X軸用フレーム18に沿って配置された複数個のX軸リニアモータ用マグネット30aと、各検出部26、28に搭載されたX軸リニアモータ用コイル30bとを備えて構成されている。各コイル30bに対する通電量および通電方向をPC36によって制御することで、各検出部26、28をX軸方向に沿って非同期(独立)で移動させることができる。この場合、リニアモータで構成されたX軸駆動部30は、各検出部26、28をX軸方向に沿って非同期で移動させるX方向用補助駆動部を構成することになる。   The X-axis frame 18 is provided with an X-axis drive unit 30 for moving the detection units 26 and 28 asynchronously along the X-axis direction (X-axis frame 18). The X-axis drive unit 30 includes a plurality of X-axis linear motor magnets 30 a disposed along the X-axis frame 18 and X-axis linear motor coils 30 b mounted on the detection units 26 and 28. Configured. By controlling the energization amount and energization direction for each coil 30b by the PC 36, the detection units 26 and 28 can be moved asynchronously (independently) along the X-axis direction. In this case, the X-axis drive unit 30 configured by a linear motor constitutes an X-direction auxiliary drive unit that moves the detection units 26 and 28 asynchronously along the X-axis direction.

X軸用フレーム18とY軸用フレーム20が固定された基台22は、ベース上に固定された複数の枠体44によって支持されており、基台22上には、微小寸法測定機16の機械座標となるX−Y座標を構成する測定テーブル24が配置されている。測定テーブル24は両端側がテーブル枠24aで支持されており、測定テーブル24上には、図3に示すように、被測定物としてのフラットパネル46が搭載されるようになっている。略長方形形状に形成されたフラットパネル46には、測定対象としての液晶モニタ48が複数個形成されている。フラットパネル46の左端側の上部と下部には、アライメントマークM1、M2が形成されている。各液晶モニタ48には測定ポイント(管理ポイント)P1〜P4が設定されているとともに、図4に示すように、駆動回路などを構成するパターンPT1、PT2、…が形成されている。   The base 22 on which the X-axis frame 18 and the Y-axis frame 20 are fixed is supported by a plurality of frame bodies 44 fixed on the base. A measurement table 24 constituting XY coordinates serving as machine coordinates is arranged. Both ends of the measurement table 24 are supported by table frames 24a, and a flat panel 46 as an object to be measured is mounted on the measurement table 24 as shown in FIG. A plurality of liquid crystal monitors 48 as measurement objects are formed on the flat panel 46 formed in a substantially rectangular shape. Alignment marks M1 and M2 are formed on the upper and lower portions of the flat panel 46 on the left end side. Measurement points (management points) P1 to P4 are set on each liquid crystal monitor 48, and patterns PT1, PT2,... Constituting a driving circuit and the like are formed as shown in FIG.

検出部26、28は、フラットパネル46の被測定領域に配置された液晶モニタ48を臨む空間を少なくとも移動領域として、この移動領域において三次元方向に沿って移動可能に配置されており、各検出部26、28は検出部本体50を備えている。各検出部本体50の鏡筒52内には、フラットパネル46上の液晶モニタ48を被写体として、液晶モニタ48上のパターンを撮像するための撮像手段として、対物レンズ54、CCDカメラ56が収納されている。対物レンズ54、CCDカメラ56は、電子顕微鏡としての機能を備え、液晶モニタ48上のパターンを拡大して撮像し、撮像した画像に関する信号をケーブル(図示せず)を介してPC36に転送するようになっている。また、各鏡筒52は、撮像手段のフォーカシングのために、撮像手段をPC36からの制御信号に従ってZ軸方向に沿って移動させるためのZ方向用補助駆動部としてのZ軸サーボモータ58にそれぞれ連結されている。この場合、一方のZ軸サーボモータ58がZ1軸サーボモータとして機能し、他方のZ軸サーボモータ58がZ2軸サーボモータとして機能し、一方の鏡筒52内の対物レンズ54とCCDカメラ56がZ1軸に沿って往復動でき、他方の鏡筒52内の対物レンズ54とCCDカメラ56がZ2軸に沿って往復動できるようになっている。   The detection units 26 and 28 are arranged so as to be movable along the three-dimensional direction in at least a movement area, which is a space facing the liquid crystal monitor 48 arranged in the measurement area of the flat panel 46. The units 26 and 28 include a detection unit main body 50. An objective lens 54 and a CCD camera 56 are housed in the lens barrel 52 of each detection unit main body 50 as an imaging means for imaging a pattern on the liquid crystal monitor 48 using the liquid crystal monitor 48 on the flat panel 46 as a subject. ing. The objective lens 54 and the CCD camera 56 have a function as an electron microscope, enlarge the pattern on the liquid crystal monitor 48 and take an image, and transfer a signal related to the taken image to the PC 36 via a cable (not shown). It has become. In addition, each lens barrel 52 is respectively connected to a Z-axis servo motor 58 as an auxiliary drive unit for Z direction for moving the image pickup means along the Z-axis direction according to a control signal from the PC 36 for focusing of the image pickup means. It is connected. In this case, one Z-axis servo motor 58 functions as a Z1-axis servo motor, the other Z-axis servo motor 58 functions as a Z2-axis servo motor, and the objective lens 54 and the CCD camera 56 in one lens barrel 52 are connected. It can reciprocate along the Z1 axis, and the objective lens 54 and the CCD camera 56 in the other lens barrel 52 can reciprocate along the Z2 axis.

さらに、各検出部本体50には、PC36からの制御信号に応答して、各検出部26、28をY軸方向に沿って非同期で移動させるY方向用補助駆動部としてのY軸サーボモータ60が設けられている。一方のY軸サーボモータ60は、Y1Sサーボモータとして、一方の検出部26をY軸用フレーム20と平行な補助用Y軸(Y1S軸)に沿って往復動させることができ、他方のY軸サーボモータ60は、Y2Sサーボモータとして、他方の検出部28をY軸用フレーム20と平行な補助用Y軸(Y2S軸)に沿って往復動させることができるようになっている。   Further, in each detection unit main body 50, in response to a control signal from the PC 36, a Y-axis servomotor 60 as an auxiliary drive unit for Y direction that moves each detection unit 26, 28 asynchronously along the Y-axis direction. Is provided. One Y-axis servomotor 60 is a Y1S servomotor, and can reciprocate one detection unit 26 along an auxiliary Y-axis (Y1S-axis) parallel to the Y-axis frame 20, while the other Y-axis As the Y2S servomotor, the servomotor 60 can reciprocate the other detection unit 28 along the auxiliary Y axis (Y2S axis) parallel to the Y axis frame 20.

ここで、各検出部26、28のX軸方向における位置決を高精度に行なうために、X軸駆動部30には、図5に示すように、フルクローズドループ(Full Closed Loop)制御系が構成されている。   Here, in order to determine the positions of the detection units 26 and 28 in the X-axis direction with high accuracy, the X-axis drive unit 30 has a full closed loop control system as shown in FIG. It is configured.

具体的には、X軸(X軸フレーム18)と平行にマグネット30aが複数個配置されているとともに、X軸と平行に、各検出部本体50の移動を案内するためのリニアガイド62とガラススケール64が配置されている。そして、各検出部本体50には位置センサ(リニアセンサ)66が搭載されおり、各位置センサ66はグラススケール64の目盛りを検出し、検出信号をスケールカウンタ68に出力するようになっている。スケールカウンタ68は位置センサ66の検出信号に応答してグラススケール(リニアスケール)64上の目盛りの数をカウントし、カウント値をモニタドライバ70に出力するようになっている。モニタドライバ70は、リニアモータとPC36に各検出部本体50の位置情報を出力し、PC36は、位置情報を基に各検出部本体50上のコイル30bに対する通電量および通電方向を制御することができるとともに、各検出部本体部50のX軸方向における位置決めを高精度に制御することができるようになっている。   Specifically, a plurality of magnets 30a are arranged in parallel with the X axis (X axis frame 18), and a linear guide 62 and glass for guiding the movement of each detection unit main body 50 in parallel with the X axis. A scale 64 is arranged. Each detection unit main body 50 is equipped with a position sensor (linear sensor) 66, and each position sensor 66 detects the scale of the glass scale 64 and outputs a detection signal to the scale counter 68. The scale counter 68 counts the number of scales on the glass scale (linear scale) 64 in response to the detection signal of the position sensor 66 and outputs the count value to the monitor driver 70. The monitor driver 70 outputs position information of each detection unit main body 50 to the linear motor and the PC 36, and the PC 36 can control an energization amount and an energization direction to the coil 30b on each detection unit main body 50 based on the position information. In addition, the positioning of each detection unit main body 50 in the X-axis direction can be controlled with high accuracy.

また、Y軸駆動部32においても、X軸駆動部30と同様に、位置センサ66a等を用いてフルクローズドループ制御系を構成することで、各検出部26、28のY軸方向における位置決めを高精度に行うことができる。   Also, in the Y-axis drive unit 32, similarly to the X-axis drive unit 30, the position sensor 66a and the like are used to form a full-closed loop control system, thereby positioning the detection units 26 and 28 in the Y-axis direction. It can be performed with high accuracy.

上記構成による微小寸法測定機16を用いて、フラットパネル46上に形成された液晶モニタ48のパターンを測定するに際しては、図3に示すように、測定テーブル24上に配置されたフラットパネル46のアライメントマークM1、M2の位置を検出するために、例えば、検出部26をアライメントマークM1、M2に対応する位置に配置して、X軸フレーム18をY軸方向に沿って移動させ、検出部26によってアライメントマークM1、M2を順次撮像し、この撮像による画像をPC36で処理して、フラットパネル46がX−Y座標に対して平行に配置されているか否かの判定を行なう。フラットパネル46がX−Y座標に対して平行に配置されていると判定されたときには、検出部26、28をそれぞれX軸フレーム18の指定の位置に配置した状態でX軸フレーム18をY軸方に沿って移動させ、まず、フラットパネル46の左側上部に配置された液晶モニタ48上に位置決めする。このとき検出部26、28をX軸フレーム18に沿ってそれぞれ移動させ、各検出部26、28を測定ポイントP1、P2に対応した位置に位置決めする。さらに、各検出部26、28をZ軸サーボモータ58の駆動によってそれぞれZ軸方向に移動させてフォーカシングを行う。このフォーカシングが行われたときには、各測定ポイントP1、P2をCCDカメラ56で撮像し、この撮像による画像をPC36で処理する。この場合、測定によって得られたパターンと予め登録された登録パターンとのパターンマッチングを行い、両者の間にずれがあるか否かの判定を行なう。両者の間にずれがないときには、各検出部26、28によって撮像された画像を処理し、図4に示すように、測定ポイントP1、P2におけるパターンPT1、PT2の線幅などを測定する。この場合、PC36は、CCDカメラ56の撮像による画像を処理して複数のパターンに関する微小寸法を算出する画像処理部として機能する。これらの処理をPC36が各液晶モニタ48の上の測定ポイントP1、P2、P3、P4について行ない、各測定ポイントP1〜P4を測定するときには、測定ポイントP1、P2と測定ポイントP3、P4におけるパターンPT1、PT2の微小寸法をそれぞれ検出部26、28で同時に測定することで、タクトタイムを短縮することができる。   When the pattern of the liquid crystal monitor 48 formed on the flat panel 46 is measured using the micro-dimension measuring device 16 having the above-described configuration, the flat panel 46 disposed on the measurement table 24 is measured as shown in FIG. In order to detect the positions of the alignment marks M1 and M2, for example, the detection unit 26 is arranged at a position corresponding to the alignment marks M1 and M2, and the X-axis frame 18 is moved along the Y-axis direction. Then, the alignment marks M1 and M2 are sequentially imaged, and the image obtained by the imaging is processed by the PC 36 to determine whether or not the flat panel 46 is arranged in parallel to the XY coordinates. When it is determined that the flat panel 46 is arranged in parallel to the XY coordinates, the X-axis frame 18 is placed in the Y-axis with the detection units 26 and 28 being placed at specified positions on the X-axis frame 18, respectively. First, it is positioned on a liquid crystal monitor 48 disposed on the upper left side of the flat panel 46. At this time, the detectors 26 and 28 are moved along the X-axis frame 18 to position the detectors 26 and 28 at positions corresponding to the measurement points P1 and P2. Further, focusing is performed by moving the detection units 26 and 28 in the Z-axis direction by driving the Z-axis servomotor 58, respectively. When this focusing is performed, each measurement point P1, P2 is imaged by the CCD camera 56, and an image obtained by this imaging is processed by the PC. In this case, pattern matching between a pattern obtained by measurement and a registered pattern registered in advance is performed, and it is determined whether or not there is a deviation between the two. When there is no deviation between the two, the images picked up by the detectors 26 and 28 are processed, and the line widths of the patterns PT1 and PT2 at the measurement points P1 and P2 are measured as shown in FIG. In this case, the PC 36 functions as an image processing unit that processes an image captured by the CCD camera 56 and calculates minute dimensions related to a plurality of patterns. When the PC 36 performs these processes for the measurement points P1, P2, P3, and P4 on each liquid crystal monitor 48 and measures the measurement points P1 to P4, the pattern PT1 at the measurement points P1, P2 and the measurement points P3, P4. The tact time can be shortened by simultaneously measuring the minute dimensions of PT2 by the detection units 26 and 28, respectively.

パターンマッチングにおいて両者の間に微小のずれがあるときには、検出部26、28のうちずれを検出した検出部24または検出部26をY軸サーボモータ60の駆動によって微小範囲だけY軸(補助Y軸)方向に移動させることによって、ずれを修正することができる。   When there is a slight deviation between the two in the pattern matching, the detection unit 24 or the detection unit 26 that has detected the deviation among the detection units 26 and 28 is driven by the Y-axis servomotor 60 and the Y-axis (auxiliary Y-axis) ) Can be corrected by moving in the direction.

一方、図6に示すように、フラットパネル46上のアライメントマークM1、M2の計測によって、フラットパネル46が微小寸法測定機16のX−Y座標に対して平行に配置されず、Y軸(Y軸用フレーム20)に対して傾いた状態で配置されたと判定されたときには、Y軸に対する傾きを補正するために、フラットパネル46のY軸方向に対する傾きを基に各Y軸サーボモータ60を駆動して、各検出部26、28のY軸方向におけるオフセット量を修正する。この場合、検出部28は、X−Y座標の原点に対して検出部26よりも離れた位置にあるので、検出部26よりもY軸方向にわずかに移動した位置に位置決めされる。X−Y座標の原点は、図1の左下側に便宜上設けてあるが、XYの移動中心であってもよい。   On the other hand, as shown in FIG. 6, due to the measurement of the alignment marks M1 and M2 on the flat panel 46, the flat panel 46 is not arranged in parallel to the XY coordinates of the micro dimension measuring device 16, and the Y axis (Y When it is determined that the Y-axis servo motor 60 is disposed in an inclined state with respect to the axis frame 20), each Y-axis servo motor 60 is driven based on the inclination of the flat panel 46 with respect to the Y-axis direction in order to correct the inclination with respect to the Y-axis. Then, the offset amount in the Y-axis direction of each of the detection units 26 and 28 is corrected. In this case, the detection unit 28 is positioned away from the detection unit 26 with respect to the origin of the XY coordinates, and thus is positioned at a position slightly moved in the Y-axis direction relative to the detection unit 26. The origin of the XY coordinates is provided on the lower left side of FIG. 1 for convenience, but may be the XY movement center.

各検出部26、28対するオフセット量が修正された後、各検出部26、28は、リニアモータの駆動によりX軸フレーム18とともにY軸方向に沿って移動し、液晶モニター48の測定ポイントP1、P2の上方に位置決めされる。このときZ軸サーボモータ58の駆動により、検出部28がZ軸方向に移動してフォーカシングが行なわれる。検出部26、28のY軸方向の原点は、検出部26、28をそれぞれX軸に沿って平行移動したとき、検出部の前後移動の中心である。また、検出部26、28がX軸に平行であれば、移動のどこの位置を原点としてもよい。この後、検出部26、28のCCD56によって各測定ポイントP1、P2に対する撮像が実行されると、この撮像に伴う画像がPC36によって処理されるとともに、検出されたパターンと登録パターンとのパターンマッチングが行なわれる。このパターンマッチングにより両者の間に微小のずれがあると判定されたときには、ずれを検出した検出部26または検出部28に対して、ずれを修正するための処理が実行される。すなわち、ずれを修正するための制御信号に従ってY軸サーボモータ60が駆動され、検出部26または検出部28のY軸(補助Y軸)方向への移動によって、ずれが修正される。この場合、アライメントマークM1、M2を基準として、機械座標系から座標変換を行う。   After the offset amounts for the detection units 26 and 28 are corrected, the detection units 26 and 28 are moved along the Y-axis direction together with the X-axis frame 18 by driving the linear motor, and the measurement points P1 and Positioned above P2. At this time, the driving of the Z-axis servomotor 58 causes the detection unit 28 to move in the Z-axis direction to perform focusing. The origins of the detection units 26 and 28 in the Y-axis direction are the centers of forward and backward movement of the detection units when the detection units 26 and 28 are translated along the X-axis, respectively. Further, as long as the detection units 26 and 28 are parallel to the X axis, any position of the movement may be used as the origin. Thereafter, when the CCD 56 of the detectors 26 and 28 performs imaging for each of the measurement points P1 and P2, images associated with the imaging are processed by the PC 36, and pattern matching between the detected pattern and the registered pattern is performed. Done. When it is determined by this pattern matching that there is a slight deviation between the two, a process for correcting the deviation is performed on the detection unit 26 or the detection unit 28 that has detected the deviation. That is, the Y-axis servomotor 60 is driven according to the control signal for correcting the deviation, and the deviation is corrected by the movement of the detection unit 26 or the detection unit 28 in the Y-axis (auxiliary Y-axis) direction. In this case, coordinate conversion is performed from the machine coordinate system using the alignment marks M1 and M2 as a reference.

この後、再度各検出部26、28よって測定ポイントP1、P2に対する撮像が行なわれ、この撮像によって得られた画像がPC36によって処理され、測定ポイントP1、P2上のパターンPT1、PT2の微小線幅(CD)や重ね合わせ(OL)に関する測定が行なわれる。すなわち、微小寸法として、パターンの幅、大きさをミクロンオーダで測定する処理が実行される。   Thereafter, the measurement points P1 and P2 are imaged again by the detection units 26 and 28, and the image obtained by the imaging is processed by the PC 36, and the fine line widths of the patterns PT1 and PT2 on the measurement points P1 and P2 are processed. Measurements on (CD) and overlay (OL) are made. That is, processing for measuring the width and size of the pattern in micron order as minute dimensions is executed.

測定が終了した後は、パターンマッチングによって算出されたオフセット修正量を元に戻す処理を行い、次の測定ポイントP3、P4で測定するための処理に移行する。次の測定ポイントP3、P4においても、フラットパネル46の傾きを基に各検出部26、28のY軸方向におけるオフセット量を修正するための処理を行い、同様な処理を繰り返す。   After the measurement is completed, a process for returning the offset correction amount calculated by the pattern matching is performed, and the process proceeds to a process for measuring at the next measurement points P3 and P4. At the next measurement points P3 and P4, a process for correcting the offset amount in the Y-axis direction of each of the detection units 26 and 28 is performed based on the inclination of the flat panel 46, and the same process is repeated.

このように本実施例によれば、フラットパネル46がY軸に対して傾いていたり、液晶モニタ48のパターンが登録パターンに対して微小にずれていたりしても、検出部26、28を各サーボモータ60の駆動によって非同期でY軸(補助用Y軸)方向に沿って移動させることができるので、複数のパターンを正確にかつ同時に測定することができ、タクトタイムを短縮することが可能になる。   As described above, according to the present embodiment, even if the flat panel 46 is inclined with respect to the Y-axis or the pattern of the liquid crystal monitor 48 is slightly shifted from the registered pattern, the detection units 26 and 28 can be connected to each other. Since the servo motor 60 can be asynchronously moved along the Y-axis (auxiliary Y-axis) direction by driving the servo motor 60, a plurality of patterns can be measured accurately and simultaneously, and the tact time can be shortened. Become.

本実施例においては、各検出部26、28をZ軸サーボモータの駆動によってZ軸に沿って非同期(独立)で移動させることができるため、フォーカシングを正確に行なうことができ、複数のパターンをより正確に測定することができ、タクトタイムの短縮に寄与することができる。   In the present embodiment, the detection units 26 and 28 can be moved asynchronously (independently) along the Z-axis by driving the Z-axis servo motor, so that focusing can be performed accurately, and a plurality of patterns can be obtained. More accurate measurement can be performed, and the tact time can be shortened.

また、X軸駆動部30としてリニアモータを採用したため、検出部26、28をX軸方向に沿って、非同期で広範囲に亘って移動させることができるとともに、構成の簡素化を図ることができる。   Further, since a linear motor is employed as the X-axis drive unit 30, the detection units 26 and 28 can be moved asynchronously over a wide range along the X-axis direction, and the configuration can be simplified.

本発明の一実施例を示す微小寸法測定機の斜視図である。It is a perspective view of the micro dimension measuring machine which shows one Example of this invention. 本発明の一実施例を示す微小寸法測定機の斜視図であって、検出部を省略したときの状態を示す斜視図である。It is a perspective view of the micro dimension measuring machine which shows one Example of this invention, Comprising: It is a perspective view which shows a state when a detection part is abbreviate | omitted. フラットパネルの平面図である。It is a top view of a flat panel. 測定パターンの拡大平面図である。It is an enlarged plan view of a measurement pattern. フルクローズドループ制御系の構成図である。It is a block diagram of a fully closed loop control system. フラットパネルが傾斜したときの状態を示す平面図である。It is a top view which shows a state when a flat panel inclines.

符号の説明Explanation of symbols

16 微小寸法測定機
18 X軸用フレーム
20 Y軸用フレーム
22 基台
24 測定テーブル
26、28 検出部
30 X軸駆動部
32 Y軸駆動部
34 Z軸駆動部
36 PC
38 表示装置
46 フラットパネル
48 液晶モニタ
50 検出部本体
56 CCDカメラ
58 Z軸サーボモータ
60 Y軸サーボモータ
16 Micro dimension measuring machine 18 X-axis frame 20 Y-axis frame 22 Base 24 Measurement table 26, 28 Detection unit 30 X-axis drive unit 32 Y-axis drive unit 34 Z-axis drive unit 36 PC
38 Display device 46 Flat panel 48 Liquid crystal monitor 50 Detection unit main body 56 CCD camera 58 Z-axis servo motor 60 Y-axis servo motor

Claims (3)

被測定物上の複数のパターンをそれぞれ撮像する複数の検出部と、前記複数の検出部の撮像による画像を処理して前記複数のパターンに関する微小寸法を算出する画像処理部と、前記被測定物の被測定領域を臨む空間を少なくとも移動空間として、前記複数の検出部を前記移動空間において三次元の方向に沿って移動させる駆動部とを備え、前記駆動部は、前記三次元のうち一次元の方向に沿って前記複数の検出部全体を移動させる主駆動部と、前記三次元のうち少なくとも二次元の方向に沿って前記複数の検出部をそれぞれ非同期で移動させる補助駆動部とから構成されてなる微小寸法測定機。   A plurality of detection units that respectively capture a plurality of patterns on the object to be measured; an image processing unit that processes images captured by the plurality of detection units to calculate minute dimensions related to the plurality of patterns; and the object to be measured And a drive unit that moves the plurality of detection units along a three-dimensional direction in the movement space, wherein the drive unit is a one-dimensional one of the three dimensions. A main drive unit that moves the whole of the plurality of detection units along the direction, and an auxiliary drive unit that moves the plurality of detection units asynchronously along at least a two-dimensional direction of the three dimensions. A micro dimension measuring machine. 請求項1に記載の微小寸法測定機において、前記補助駆動部は、X・Y・Z方向を三次元方向として、前記複数の検出部をそれぞれX方向に沿って非同期で移動させる複数のX方向用補助駆動部と、前記複数の検出部をそれぞれY方向に沿って非同期で移動させる複数のY方向用補助駆動部と、前記複数の検出部をそれぞれZ方向に沿って非同期で移動させる複数のZ方向用補助駆動部とを備えてなることを特徴とする微小寸法測定機。   2. The micro dimension measuring machine according to claim 1, wherein the auxiliary driving unit is configured to move the plurality of detection units asynchronously along the X direction with the X, Y, and Z directions as a three-dimensional direction. Auxiliary drive units, a plurality of Y-direction auxiliary drive units that move the plurality of detection units asynchronously along the Y direction, and a plurality of movement units that move the plurality of detection units asynchronously along the Z direction, respectively. A micro-dimension measuring machine comprising an auxiliary driving unit for Z direction. 請求項2に記載の微小寸法測定機において、前記複数のX方向用補助駆動部、前記複数のY方向用補助駆動部または前記複数のZ方向用補助駆動部のうち少なくともいずれか一つは、X、YまたはZ方向のうち指定の方向に沿って配置されたマグネットと、前記各検出部に配置されたコイルとを備えたリニアモータで構成されてなることを特徴とする微小寸法測定機。   The minute dimension measuring machine according to claim 2, wherein at least one of the plurality of X-direction auxiliary drive units, the plurality of Y-direction auxiliary drive units, or the plurality of Z-direction auxiliary drive units is A micro dimension measuring machine comprising a linear motor provided with a magnet arranged along a designated direction in the X, Y, or Z directions and a coil arranged in each of the detection units.
JP2004233284A 2004-08-10 2004-08-10 Micro dimension measuring machine Expired - Lifetime JP4478530B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2004233284A JP4478530B2 (en) 2004-08-10 2004-08-10 Micro dimension measuring machine
KR1020040094530A KR101119873B1 (en) 2004-08-10 2004-11-18 Measurer for minute dimension
TW094100609A TW200606390A (en) 2004-08-10 2005-01-10 Micro-size admeasuring apparatus
CNB2005100527650A CN100455988C (en) 2004-08-10 2005-03-14 Microsize admeasuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004233284A JP4478530B2 (en) 2004-08-10 2004-08-10 Micro dimension measuring machine

Publications (2)

Publication Number Publication Date
JP2006052971A true JP2006052971A (en) 2006-02-23
JP4478530B2 JP4478530B2 (en) 2010-06-09

Family

ID=36030557

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004233284A Expired - Lifetime JP4478530B2 (en) 2004-08-10 2004-08-10 Micro dimension measuring machine

Country Status (4)

Country Link
JP (1) JP4478530B2 (en)
KR (1) KR101119873B1 (en)
CN (1) CN100455988C (en)
TW (1) TW200606390A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014085236A (en) * 2012-10-24 2014-05-12 Makino Milling Mach Co Ltd Workpiece shape measurement method and workpiece shape measurement device
CN104359399A (en) * 2014-10-28 2015-02-18 米亚精密金属科技(东莞)有限公司 Epoxy key measuring machine

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101788270B (en) * 2010-02-10 2011-11-09 中国科学院自动化研究所 Ranging technology-based system for on-line measurement of luggage sizes and method thereof
JP6104667B2 (en) * 2013-03-28 2017-03-29 株式会社日立ハイテクサイエンス Actuator position calculation device, position calculation method, and position calculation program

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4866629A (en) * 1987-11-13 1989-09-12 Industrial Technology Research Institute Machine vision process and apparatus for reading a plurality of separated figures
DE3806686A1 (en) * 1988-03-02 1989-09-14 Wegu Messtechnik MULTICOORDINATE MEASURING AND TESTING DEVICE
JPH0421806A (en) * 1990-05-17 1992-01-24 Seiko Iconics Kk Reflection type image forming optical system
JPH09101115A (en) * 1995-10-04 1997-04-15 Nikon Corp Image measuring device
DE19615246A1 (en) * 1996-04-18 1997-10-23 Krupp Foerdertechnik Gmbh Photogrammetry method for three-dimensional tracking of moving objects
CN2306483Y (en) * 1997-08-23 1999-02-03 李德功 Mini-measurer for vertical and horizontal sections of single interface light
JP2000259829A (en) 1999-03-04 2000-09-22 Sokkia Co Ltd Image recognition method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014085236A (en) * 2012-10-24 2014-05-12 Makino Milling Mach Co Ltd Workpiece shape measurement method and workpiece shape measurement device
CN104359399A (en) * 2014-10-28 2015-02-18 米亚精密金属科技(东莞)有限公司 Epoxy key measuring machine

Also Published As

Publication number Publication date
TW200606390A (en) 2006-02-16
TWI335415B (en) 2011-01-01
KR101119873B1 (en) 2012-02-22
JP4478530B2 (en) 2010-06-09
CN1734229A (en) 2006-02-15
KR20060014346A (en) 2006-02-15
CN100455988C (en) 2009-01-28

Similar Documents

Publication Publication Date Title
US10751883B2 (en) Robot system with supplementary metrology position coordinates determination system
EP3338946B1 (en) Measurement, calibration and compensation system and method for machine tool
KR101629545B1 (en) Shape measuring device, shape measuring method, structure manufacturing method, and program
US10913156B2 (en) Robot system with end tool metrology position coordinates determination system
CN113758421A (en) Coordinate measuring machine
TWI667090B (en) Laser processing device
JP3678915B2 (en) Non-contact 3D measuring device
EP2068113A1 (en) Calibrating method of image measuring instrument
US10401145B2 (en) Method for calibrating an optical arrangement
JP2017150993A (en) Inner wall measurement device and offset amount calculation method
JP5278808B2 (en) 3D shape measuring device
WO2000037884A1 (en) Method and apparatus for measuring positioning error using index mark, and machining apparatus that corrects error based on measured result
JP4478530B2 (en) Micro dimension measuring machine
CN110504191A (en) Check jig and inspection method
JP4791568B2 (en) 3D measuring device
KR101186420B1 (en) Control method of measurement device
JP2012133122A (en) Proximity exposing device and gap measuring method therefor
JP2005172610A (en) Three-dimensional measurement apparatus
JP2007085912A (en) Position measurement method, position measuring device and position measuring system
JP2011085402A (en) Surface property measuring instrument
CN217930168U (en) Combined type imager
KR20180050857A (en) Apparatus for alignment of pivot point using vision
JPH05172524A (en) Optical measuring apparatus
CN117790270A (en) Control method and device for displacement table
JP2011145303A (en) Shape measuring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070517

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091008

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091014

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100309

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100315

R150 Certificate of patent or registration of utility model

Ref document number: 4478530

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140319

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250