JP2006049596A - Euv露光装置 - Google Patents
Euv露光装置 Download PDFInfo
- Publication number
- JP2006049596A JP2006049596A JP2004228857A JP2004228857A JP2006049596A JP 2006049596 A JP2006049596 A JP 2006049596A JP 2004228857 A JP2004228857 A JP 2004228857A JP 2004228857 A JP2004228857 A JP 2004228857A JP 2006049596 A JP2006049596 A JP 2006049596A
- Authority
- JP
- Japan
- Prior art keywords
- light receiving
- optical system
- receiving sensor
- mask
- light
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Landscapes
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
- Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
Abstract
【課題】 EUV光に適した空間像検出機構を具備するEUV露光装置を提供する。
【解決手段】 空間像検出機構7は、少なくとも、投影光学系5によって生成した縮小転写像を検出する受光センサ8を具備しており、受光センサ8は光電子を検出して電流又は電圧を発生する機能を有している。受光センサ8に、EUV光が入射すると光電子が生成し、例えばその電流量を測定することによって、EUV光の強度を測定することができる。ウエハステージ6に搭載された空間像検出機構7を、ウエハステージ6を駆動することによって、空間像の幅方向に走査した場合に、受光センサ8から得られる電流の変化を検出することにより、転写原盤パターン9に形成された標準パターンの像を検出し、それにより、投影光学系5の特性を評価する。
【選択図】 図1
【解決手段】 空間像検出機構7は、少なくとも、投影光学系5によって生成した縮小転写像を検出する受光センサ8を具備しており、受光センサ8は光電子を検出して電流又は電圧を発生する機能を有している。受光センサ8に、EUV光が入射すると光電子が生成し、例えばその電流量を測定することによって、EUV光の強度を測定することができる。ウエハステージ6に搭載された空間像検出機構7を、ウエハステージ6を駆動することによって、空間像の幅方向に走査した場合に、受光センサ8から得られる電流の変化を検出することにより、転写原盤パターン9に形成された標準パターンの像を検出し、それにより、投影光学系5の特性を評価する。
【選択図】 図1
Description
本発明は、EUV光((Extreme Ultraviolet:極端紫外光)、本明細書及び特許請求の範囲では、波長が100nm以下の光を言う)を使用したEUV露光装置に関するものである。
半導体集積回路の集積度が増すに従い、回路パターンが微細化し、従来使用されていた可視光や紫外光を使用した露光装置では、その解像度が足らなくなってきている。周知のように、露光装置の解像度は、転写光学系の開口数(NA)に比例し、露光に使用する光の波長に逆比例する。そのため、解像度を上げる一つの試みとして、可視光や紫外光に代わり、波長の短いEUV(軟X線と称されることもある)光源を露光転写に使用する試みがなされている。
このような露光転写装置に使用されるEUV光発生装置として、特に有力視されているのがレーザプラズマEUV光源(以下では「LPP(Laser Produced Plasma)」と記載することがある)と放電プラズマEUV光源である。
LPPは、パルスレーザ光を真空容器内の標的材料上に集光し、標的材料をプラズマ化して、このプラズマから輻射されるEUV光を利用するものであり、小型でありながら、アンジュレータに匹敵するほどの輝度を持つ。
又、Dense Plasma Focus(DPF)などの放電プラズマを用いたEUV光源は小型であり、EUV光量が多く、低コストである。これらは波長13.5nmのEUVを用いたEUV露光装置の光源として近年注目を集めている。
このようなEUV露光装置の概要を図4に示す。図中、IR1〜IR4は照明光学系の反射鏡であり、PR1〜PR4は投影光学系の反射鏡である。Wはウエハ、Mはマスクである。
レーザ光源Lから照射されたレーザ光は、ターゲットSに集光され、プラズマ現象により、ターゲットSからX線を発生させる。このX線は、反射鏡C、Dにより反射され、平行なX線として照明光学系に入射する。そして、照明光学系の反射鏡IR1〜IR4により順次反射され、マスクMの照明領域を照明する。マスクMに形成されたパターンによって反射されたX線は、投影光学系の反射鏡PR1〜PR4によって順次反射され、パターンの像をウエハW面に結像する。
実際には、マスクMはマスクステージに搭載され、ウエハWはウエハステージに搭載されている。照明光学系は、マスクMの全面を一度に照明することもできず、投影光学系もマスクMの全面を一度に投影することができないので、マスクステージとウエハステージを同期して移動させ、露光転写領域を走査させることによって、マスクMのパターンをウエハWに露光転写している。
所望のパターンをウエハW上に形成するためには、投影光学系の収差を十分小さくすることが好ましく、特に投影光学系の波面収差(rms値)を波長の1/30以下に、かつパターン歪を露光線幅の1/10以下に保つと、コントラストの高い微細なパターンを形成することができる。例えば、露光波長が13.5nm、投影光学系のNAが0.25である場合、波面収差を0.5nmrms以下に、パターン歪を5nm以下にすると、45nm程度のサイズのレジストパターンを形成することができる。
このような微小な波面収差およびパターン歪を長い期間維持するためには、投影光学系の光学性能を、逐次測定してやることが好ましい。さらに必要に応じて、劣化した投影光学系の性能を回復させる機能を露光装置に備えるとよい。
投影光学系の光学性能を評価する方法として、マスクM上に形成された基準となるパターンをウエハMに露光転写し、レジストの露光とエッチングによりウエハ上に形成されたパターンの形状をSEM等で評価する方法が挙げられる。しかし、このような方法は、評価に時間がかかる上、レジストプロセスの不安定性に起因する誤差が大きいという欠点があった。
投影光学系の光学性能を評価する他の方法として、マスクM上に形成された基準となるパターンの投影像を、ウエハWのあるべき位置で検出する方法が、従来の紫外線露光装置において用いられてきた。このような、従来の紫外線露光装置における空間像検出機構の例を図5に示す。
マスクステージ31に搭載されたマスク32には、所定形状の標準パターンが形成されており、この標準パターンの像が、照明光学系33からの照明光により照明され、投影光学系34により、ウエハ35が存在すべき面に形成される。ウエハ35を搭載するウエハステージ36には、スリット状の開口を有する透過スリット37が搭載されており、このスリットを透過した光が、空間像検出機構38で検出されるようになっている。
空間像検出機構は、レンズ39、40、ミラー41、及び光センサ43を有し、スリット状の透過パターン(透明なガラス等)を透過してきた光の像を、レンズ39、40により光センサ43の光電素子面に結像させ、スリットを透過した光量を測定するようになっている。
この状態でウエハステージ36を図の矢印の方向(図面の左右方向)に走査することにより、図の左右方向の空間像の光量分布が計測できる。この光量分布を計測することにより、マスク32に形成された標準パターンの像の形状を知ることができ、検出された像の形状から、投影光学系34の性能を評価することができる。
しかし、EUV露光装置に、上述の従来の空間像検出機構を適応する場合、EUV光の強度ロスが大きいという問題点があった。例えば、透過パターンの基板のガラス板は、EUV光を全く透過しない。ガラス板の代わりに非常に薄いメンブレン膜を基板に採用したり、スリット状の穴の明いたステンシルパターンを採用することも考えられるが、パターンがゆがみやすいという問題点があった。また、従来のレンズ光学系はEUV光には適応できない。レンズ光学系の代わりに反射光学系を採用しても、反射率が低いために、従来の空間像センサのような十分な光量を確保することは困難であった。
本発明はこのような事情に鑑みてなされたもので、EUV光に適した空間像検出機構を具備するEUV露光装置を提供することを課題とする。
前記課題を解決するための第1の手段は、所望の回路パターンを形成したマスクに極短紫外線を照射する照明光学系と、前記マスクを保持するマスクステージと、前記回路パターンの像をウエハ上に縮小転写する投影光学系と、前記ウエハを保持するウエハステージと、前記投影光学系で形成される像の光強度分布を検出する空間像検出機構を具備したEUV露光装置であって、前記空間像検出機構は、前記マスク位置に形成された基準マークの、前記投影光学系によって生成した縮小転写像を検出する受光センサを具備し、当該受光センサは、受光部表面に光電変換効率の異なる少なくとも2種類の部材を所定の形状を有するように形成した構造を有するものであることを特徴とするEUV露光装置(請求項1)である。
本手段においては、受光センサによって、直接投影光学系で形成される像の光強度分布を検出する。このような受光センサは、受光部表面に光電変換効率の異なる少なくとも2種類の部材を所定の形状を有するように形成することによって実現できる。すなわち、例えば受光部表面の中央部分に光電変換率の高い部材をスリット状に形成し、受光部のその他の部分には光電変換率の低い部材を形成するようにすれば、受光センサを移動させることによって、従来の空間像検出機構と同様の機能を得ることができる。本手段の空間像検出機構は、レンズやミラーを使用していないので、これらの光学部材により、受光センサにとって十分検出可能な光量を得ることができる。なお、基準マークはマスク位置に形成されていればよく、マスクに形成しても良いし、マスクステージに直接形成しても良い。また、所定の形状とは基準マーク像の強度分布を測定可能な形状であればスリット状や十字状等どのようなパターンに配置されても良い。この基準マークの形成位置及び所定形状については後述する第2の手段を含め、本明細書中及び特許請求の範囲において同様に解釈される。
前記課題を解決するための第2の手段は、所望の回路パターンを形成したマスクに極短紫外線を照射する照明光学系と、前記マスクを保持するマスクステージと、前記回路パターンの像をウエハ上に縮小転写する投影光学系と、前記ウエハを保持するウエハステージと、前記投影光学系で形成される像の光強度分布を検出する空間像検出機構を具備したEUV露光装置であって、前記空間像検出機構は、前記マスク位置に形成された基準マークの、前記投影光学系によって生成した縮小転写像を検出する受光センサを具備し、当該受光センサは、受光部表面の一部に、EUV光を吸収又は反射する部材を、所定の形状を有するように形成した構造を有することを特徴とするEUV露光装置(請求項2)である。
本手段においては、受光部表面の一部に、EUV光を吸収又は反射する部材を、所定の形状を有するように形成している。よって、受光センサの光電変換面に入射する光量が、この部材の形状に従って変化するので、例えば、この部材の形状を、中央部にスリット状の穴が明いたようにすれば、前記第1の手段と同様の機能と作用効果を奏することができる。
前記課題を解決するための第3の手段は、前記第1の手段又は第2の手段であって、前記受光センサの最表面に、チタン層又はニッケル層のうち少なくとも一つが形成されていることを特徴とするもの(請求項3)である。
本手段においては、受光センサの最表面に、チタン層又はニッケル層のうち少なくとも一つが形成されているので、受光センサ表面への不純物の堆積を抑制することができる。
前記課題を解決するための第4の手段は、前記第1の手段から第3の手段のいずれかであって、少なくとも酸素を含んだガスを前記受光センサの表面に吹き付けるクリーニング機構を具備したことを特徴とするもの(請求項4)である。
本手段においては、受光センサの表面に堆積する不純物をパージすると共に、酸化して除去することが可能になる。
前記課題を解決するための第5の手段は、前記第1の手段から第4の手段のいずれかであって、前記受光センサが、前記ウエハステージに固定されていることを特徴とするもの(請求項5)である。
受光センサをウエハステージに固定することにより、ウエハステージを駆動することにより受光センサを走査させることが可能になり、かつ、受光センサを標準パターンの結像面に位置させることが容易になる。
本発明によれば、EUV光に適した空間像検出機構を具備するEUV露光装置を提供することができる。
以下、本発明の実施の形態の例を、図を用いて説明する。図1は、本発明の実施の形態の1例であるEUV露光装置の概要を示す図である。
EUV露光装置は、回路パターンを形成したマスク1にEUV光を照射する照明光学系2と、マスク1を保持するマスクステージ3と、回路パターンの像をウエハ4上に縮小転写する投影光学系5と、ウエハ4を保持するウエハステージ6と、投影光学系5で形成される像の光強度分布を検出する空間像検出機構7とを有している。空間像検出機構7は、少なくとも、投影光学系5によって生成した縮小転写像を検出する受光センサ8を具備しており、受光センサ8は光電子を検出して電流又は電圧を発生する機能を有している。受光センサ8に、EUV光が入射すると光電子が生成し、例えばその電流量を測定することによって、EUV光の強度を測定することができる。
この実施の形態で使用されるEUV光の波長は13.5nmであり、投影光学系5の開口数は0.25、投影倍率は1/4である。
標準となる空間像を生成させるために必要な転写原版パターンは、マスク1上に設けられたパターンでよいが、図1に示すようにマスクステージ3上に専用の転写原盤パターン9を設けて、その縮小投影像を空間像検出機構7で検出してもよい。
この実施の形態においては、転写原盤パターン9は、多層膜表面にタンタルの膜をパターン状に形成したものとしている。パターンとして、線幅180nmの5本のラインを用いると、像面上に線幅45nmのライン上のパターンが5本形成される。
本実施の形態における空間像検出機構7で使用される受光センサ8の例を図2に示す。図2(a)は、受光センサの表面に、光電変換効率の異なる少なくとも2種類の部材A、Bを設けて、これらがEUV光を受けて発生する電流を検出するようにしている。すなわち、基板8aの上に光電変換効率の小さな物質Aを形成し、さらのその上に光電変換効率の大きい物質Bを所定形状に形成している。物質Bのパターンは、空間像サイズの1/2の幅を有し、空間像サイズと同じ長さを有するライン状の形状としている。すなわち、線幅45nmのパターンを検出するために、物質Bのパターン幅は約22.5nmとしている。
図1におけるウエハステージ6に搭載された空間像検出機構7を、ウエハステージ6を駆動することによって、空間像の幅方向に走査した場合に、受光センサ8から得られる電流の変化を図3に示す。図3(a)は、受光センサ8と空間像の強度分布との位置関係を、図3(b)は受光センサの出力を示す。図3(b)において、横軸は受光センサ8の位置、縦軸は受光センサ8の出力(電流)である。図3に示すような受光センサ8の出力のパターンから、空間像のパターンを検出することができる。なお、図3においては、空間像を1個しか示していないが、実際には、転写原版パターンは5本のラインからなっているので、5個の空間像ができる。測定は、これら5個の空間像について行い、その平均値を採用している。
なお、以上の説明においては、図3の紙面の左右方向における空間像のパターンの検出について説明したが、転写原版パターンを、以上の説明におけるパターンと直角な方向に向いたラインパターンとし、受光センサにおける物質Bのパターンも以上の説明におけるパターンと直角な方向に向いたものとし、ウエハステージ6を、以上の説明における移動方向と直角に移動させることにより、以上説明した方向と直角な方向における空間像のパターンの検出を行うことができる。
物質A、Bの選択は、EUV光の波長により異なるが、例えば波長が13−14nmにおいては、物質Aとして、Mo、Ru、Rh、SiC、B4Cなどが好ましい。また、物質BとしてはAu、Taなどが好ましい。物質Bはパターンが形成しやすい材料を選ぶことが好ましい。また、物質Aを光電変換効率の高い材料とし、物質Bを低い材料としてもよい。
図2(b)に、受光センサ8の他の実施の形態の例を示す。この例においては、図2(a)における物質Aからなる層の上に、多層膜コート8bを設け、その上にパターン化した物質Bを設けている。多層膜コート8bによって物質Aに入射するEUV光の大部分が反射して物質Aに到達しない。その結果、物質Aで生成される光電子が低減し、物質Bで生成される光電子は低減しないため、電流変化のS/Nが向上でき、空間像をより精密に測定することができる。
前記多層膜コート8bは、EUVの反射率が高いものが好ましい。例えば、波長13−14nmのEUV光に対してはモリブデンとシリコンを交互に積層した多層膜が好ましい。モリブデンの代わりにルテニウムやロジウムを用いてもよい。これらの多層膜は導電性があるので、物質Bで発生した光電子を多層膜コート8b、物質Aを介して外部に取り出して測定することができる。
図2(c)は、物質Aからなる層の上に、多層膜コート8bを設け、その中央部にスリット状の開口部を設けたものである。このようなものでも、図2(b)と同様の作用効果が得られることは、説明を要しないであろう。
これらの空間像検出機構7は、シンプルな受光センサ8を使用して構成することができるという特徴がある。その結果、ウエハステージ6に搭載することが可能である。ウエハステージ6に搭載することによって、受光センサ8の位置を精密に制御することができ、空間像の検出精度が高くなる。
EUV光は一般に物質による吸収が大きい。よって、受光センサ8の表面に不純物が堆積することによって、光電子の量が変化してしまうという問題が生じる場合がある。この影響を低減するために、EUV露光装置においては、受光センサ8の表面をクリーニングする機能を具備することが好ましい。
この目的のため、図1に示す実施の形態においては、受光センサ8の近傍に、受光センサ8にガスを吹き付けるクリーニング機構10を設けている。ガスは少なくとも酸素を含んだものとしている。このような機構を設けることによって、受光センサ8の表面への不純物の堆積を低減し、付着した不純物を酸化して除去することができる。なお、図1に示す実施の形態においては、転写原盤パターン9の近傍に、転写原盤パターン9にガスを吹き付け、転写原盤パターン9の表面をクリーニングするクリーニング機構11を設けている。
図2(d)は、図2(a)に示すような受光センサ8の最表面に不純物の堆積を抑制する物質Cの層を設けたものである。例えば、物質Cとしてチタン又はニッケルを用いることによって、不純物の堆積を低減することができる。
1…マスク、2…照明光学系、3…マスクステージ、4…ウエハ、5…投影光学系、6…ウエハステージ、7…空間像検出機構、8…受光センサ、8a…基板、8b…多層膜コート、9…転写原盤パターン、10…クリーニング機構、11…クリーニング機構
Claims (5)
- 所望の回路パターンを形成したマスクに極短紫外線を照射する照明光学系と、前記マスクを保持するマスクステージと、前記回路パターンの像をウエハ上に縮小転写する投影光学系と、前記ウエハを保持するウエハステージと、前記投影光学系で形成される像の光強度分布を検出する空間像検出機構を具備したEUV露光装置であって、前記空間像検出機構は、前記マスク位置に形成された基準マークの、前記投影光学系によって生成した縮小転写像を検出する受光センサを具備し、当該受光センサは、受光部表面に光電変換効率の異なる少なくとも2種類の部材を所定の形状を有するように形成した構造を有するものであることを特徴とするEUV露光装置。
- 所望の回路パターンを形成したマスクに極短紫外線を照射する照明光学系と、前記マスクを保持するマスクステージと、前記回路パターンの像をウエハ上に縮小転写する投影光学系と、前記ウエハを保持するウエハステージと、前記投影光学系で形成される像の光強度分布を検出する空間像検出機構を具備したEUV露光装置であって、前記空間像検出機構は、前記マスク位置に形成された基準マークの、前記投影光学系によって生成した縮小転写像を検出する受光センサを具備し、当該受光センサは、受光部表面の一部に、EUV光を吸収又は反射する部材を、所定の形状を有するように形成した構造を有することを特徴とするEUV露光装置。
- 前記受光センサの最表面に、チタン層又はニッケル層のうち少なくとも一つが形成されていることを特徴とする請求項1又は請求項2に記載のEUV露光装置。
- 少なくとも酸素を含んだガスを前記受光センサの表面に吹き付けるクリーニング機構を具備したことを特徴とする請求項1から請求項3のうちいずれか1項に記載のEUV露光装置。
- 前記受光センサが、前記ウエハステージに固定されていることを特徴とする請求項1から請求項4のうちいずれか1項に記載のEUV露光装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004228857A JP2006049596A (ja) | 2004-08-05 | 2004-08-05 | Euv露光装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004228857A JP2006049596A (ja) | 2004-08-05 | 2004-08-05 | Euv露光装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2006049596A true JP2006049596A (ja) | 2006-02-16 |
Family
ID=36027808
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004228857A Withdrawn JP2006049596A (ja) | 2004-08-05 | 2004-08-05 | Euv露光装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2006049596A (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009164284A (ja) * | 2007-12-28 | 2009-07-23 | Nikon Corp | パターン形成基板、露光方法およびデバイスの製造方法 |
JP2010282192A (ja) * | 2009-06-03 | 2010-12-16 | Samsung Electronics Co Ltd | Euvマスク用空間映像測定装置及び方法 |
JP2013535104A (ja) * | 2010-06-18 | 2013-09-09 | カール・ツァイス・エスエムティー・ゲーエムベーハー | リソグラフィマスクを使用して生成された放射分布の局所解像測定用装置および方法 |
KR20140080544A (ko) * | 2011-10-20 | 2014-06-30 | 에이에스엠엘 네델란즈 비.브이. | 리소그래피 장치 및 방법 |
-
2004
- 2004-08-05 JP JP2004228857A patent/JP2006049596A/ja not_active Withdrawn
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009164284A (ja) * | 2007-12-28 | 2009-07-23 | Nikon Corp | パターン形成基板、露光方法およびデバイスの製造方法 |
JP2010282192A (ja) * | 2009-06-03 | 2010-12-16 | Samsung Electronics Co Ltd | Euvマスク用空間映像測定装置及び方法 |
JP2013535104A (ja) * | 2010-06-18 | 2013-09-09 | カール・ツァイス・エスエムティー・ゲーエムベーハー | リソグラフィマスクを使用して生成された放射分布の局所解像測定用装置および方法 |
KR20140080544A (ko) * | 2011-10-20 | 2014-06-30 | 에이에스엠엘 네델란즈 비.브이. | 리소그래피 장치 및 방법 |
JP2014531131A (ja) * | 2011-10-20 | 2014-11-20 | エーエスエムエル ネザーランズ ビー.ブイ. | リソグラフィ装置及び方法 |
US9519224B2 (en) | 2011-10-20 | 2016-12-13 | Asml Netherlands B.V. | Lithographic apparatus and method |
KR102013259B1 (ko) * | 2011-10-20 | 2019-08-22 | 에이에스엠엘 네델란즈 비.브이. | 리소그래피 장치 및 방법 |
KR20190100419A (ko) * | 2011-10-20 | 2019-08-28 | 에이에스엠엘 네델란즈 비.브이. | 리소그래피 장치 및 방법 |
KR102125876B1 (ko) | 2011-10-20 | 2020-06-24 | 에이에스엠엘 네델란즈 비.브이. | 리소그래피 장치 및 방법 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102100001B1 (ko) | Euv 마스크 검사 시스템의 광학계의 파면 수차 계측 | |
JP3564104B2 (ja) | 露光装置及びその制御方法、これを用いたデバイスの製造方法 | |
US7459707B2 (en) | Exposure apparatus, light source apparatus and device fabrication | |
JP4611886B2 (ja) | 複数の位置調整装置を備えるリソグラフィ装置及び位置調整測定方法 | |
KR20070095363A (ko) | 측정장치, 노광장치 및 방법, 그리고 디바이스의 제조방법 | |
EP1589792B1 (en) | Light source apparatus and exposure apparatus having the same | |
JP4359224B2 (ja) | 放射検出器 | |
KR20110084950A (ko) | 컬렉터 조립체, 방사선 소스, 리소그래피 장치 및 디바이스 제조 방법 | |
JP4995250B2 (ja) | 超音波距離センサ | |
JP2005354062A (ja) | 放射システム、リソグラフィ装置、デバイス製造方法及びそれによって製造されたデバイス | |
JP2009147332A (ja) | リソグラフィ投影装置で使用する透過像検出デバイス及びこのようなリソグラフィ装置のパターニングデバイス及び/又は投影システムの3次歪みを割り出す方法 | |
JP2004246343A (ja) | 反射光学系及び露光装置 | |
JP4509974B2 (ja) | レチクル予備位置合わせセンサ用一体照明システムがあるエンドエフェクタ | |
JP2006049596A (ja) | Euv露光装置 | |
JP4099122B2 (ja) | リソグラフ装置およびデバイスの製造方法 | |
JP2011071116A (ja) | 放射検出器 | |
US6552846B1 (en) | Catoptric optical element, illumination optical system equipped therewith, projection exposure apparatus and method for manufacturing semiconductor device | |
TW200923587A (en) | Exposure apparatus and device manufacturing method | |
JP4303224B2 (ja) | 較正装置及びリソグラフィ装置の放射センサを較正する方法 | |
KR20010041139A (ko) | 마스크 패턴 이미징 방법, 리쏘그래피 투사 장치 및 리쏘그래피 마스크 | |
US7016030B2 (en) | Extended surface parallel coating inspection method | |
WO2002047132A1 (fr) | Dispositif et procede d'exposition par projection de rayons x et dispositif a semi-conducteurs | |
JP2006261644A (ja) | 露光装置およびレチクルと感応基板ステージとの位置合わせ方法 | |
JP4384082B2 (ja) | かすめ入射ミラー、かすめ入射ミラーを含むリソグラフィ装置、かすめ入射ミラーを提供する方法、かすめ入射ミラーのeuv反射を強化する方法、デバイス製造方法およびそれによって製造したデバイス | |
JP3870118B2 (ja) | 結像光学系、該光学系を有する露光装置、収差低減方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070319 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20080729 |
|
A761 | Written withdrawal of application |
Free format text: JAPANESE INTERMEDIATE CODE: A761 Effective date: 20090602 |