Nothing Special   »   [go: up one dir, main page]

JP2006043637A - Catalyst for cleaning exhaust gas - Google Patents

Catalyst for cleaning exhaust gas Download PDF

Info

Publication number
JP2006043637A
JP2006043637A JP2004231150A JP2004231150A JP2006043637A JP 2006043637 A JP2006043637 A JP 2006043637A JP 2004231150 A JP2004231150 A JP 2004231150A JP 2004231150 A JP2004231150 A JP 2004231150A JP 2006043637 A JP2006043637 A JP 2006043637A
Authority
JP
Japan
Prior art keywords
catalyst
exhaust gas
carrier
zirconia
titania
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004231150A
Other languages
Japanese (ja)
Inventor
Yuichi Sofue
優一 祖父江
Toshiyuki Tanaka
寿幸 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Toyota Central R&D Labs Inc
Original Assignee
Toyota Motor Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Toyota Central R&D Labs Inc filed Critical Toyota Motor Corp
Priority to JP2004231150A priority Critical patent/JP2006043637A/en
Publication of JP2006043637A publication Critical patent/JP2006043637A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Catalysts (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a catalyst for cleaning an exhaust gas which suppresses poisoning by sulfur and suppresses sintering of a catalytic noble metal. <P>SOLUTION: In the catalyst for cleaning the exhaust gas prepared by carrying a NOx occlusion agent selected from a group comprising a alkaline earth metal and a rare earth element, and an noble metal for a catalyst on a carrier comprising titania-zirconia-alumina powders, the carrier comprising the titania-zirconia-alumina powders is porous and the volume of pores with a diameter of 20 nm or less is 104 cc/g or more. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、自動車等の内燃機関から排出される排ガスを浄化する排ガス浄化用触媒に関し、詳細には高温リーン雰囲気における触媒成分のシンタリングが顕著に抑制される、耐久性の高い排ガス浄化用触媒に関する。   The present invention relates to an exhaust gas purifying catalyst for purifying exhaust gas discharged from an internal combustion engine such as an automobile, and more particularly, a highly durable exhaust gas purifying catalyst in which sintering of catalyst components in a high temperature lean atmosphere is remarkably suppressed. About.

従来より自動車の排ガス浄化用触媒として、理論空燃比(ストイキ)において排ガス中のCO及びHCの酸化とNOxの還元とを同時に行って浄化する三元触媒が用いられている。このような三元触媒としては、例えばコーディエライトなどからなる耐熱性基材にγ−アルミナからなる多孔質担体層を形成し、その多孔質担体層に白金(Pt)、ロジウム(Rh)などの触媒貴金属を担持させたものが広く知られている。   Conventionally, as a catalyst for exhaust gas purification of automobiles, a three-way catalyst that purifies by performing CO and HC oxidation and NOx reduction simultaneously in exhaust gas at a stoichiometric air-fuel ratio (stoichiometric) has been used. As such a three-way catalyst, for example, a porous carrier layer made of γ-alumina is formed on a heat-resistant substrate made of cordierite or the like, and platinum (Pt), rhodium (Rh) or the like is formed on the porous carrier layer. A catalyst on which a catalyst noble metal is supported is widely known.

一方、近年、地球環境保護の観点から、自動車などの内燃機関から排出される排ガス中の二酸化炭素(CO2)が問題とされ、その解決策として酸素過剰雰囲気において希薄燃焼させるいわゆるリーンバーンが有望視されている。このリーンバーンにおいては、燃費が向上するために燃料の使用が低減され、その燃焼排ガスであるCO2の発生を抑制することができる。 On the other hand, in recent years, from the viewpoint of protecting the global environment, carbon dioxide (CO 2 ) in exhaust gas discharged from internal combustion engines such as automobiles has been a problem, and so-called lean burn that makes lean combustion in an oxygen-excess atmosphere is promising as a solution. Is being viewed. In this lean burn, since the fuel consumption is improved, the use of fuel is reduced, and the generation of CO 2 as the combustion exhaust gas can be suppressed.

これに対し、従来の三元触媒は、空燃比が理論空燃比(ストイキ)において排ガス中のCO、HC、NOxを同時に酸化・還元し、浄化するものであって、前記三元触媒はリーンバーン時の排ガスの酸素過剰雰囲気下においては、NOxの還元除去に対しては充分な浄化性能を示さない。このため、酸素過剰雰囲気下においてもNOxを浄化しうる触媒及び浄化システムの開発が望まれている。   On the other hand, the conventional three-way catalyst is one that simultaneously oxidizes, reduces, and purifies CO, HC, NOx in the exhaust gas when the air-fuel ratio is the stoichiometric air-fuel ratio (stoichiometric). In an oxygen-excess atmosphere of the exhaust gas at that time, sufficient purification performance is not shown for NOx reduction and removal. Therefore, development of a catalyst and a purification system that can purify NOx even in an oxygen-excess atmosphere is desired.

そこで本願出願人は、先にアルカリ土類金属とPtをアルミナなどの多孔質担体に担持した排ガス浄化用触媒や、ランタンとPtを多孔質担体に担持した排ガス浄化用触媒を提案している。これらの排ガス浄化用触媒によれば、リーン側ではNOxがアルカリ土類金属の酸化物やランタンの酸化物(NOx吸蔵材)に吸蔵され、それが過渡域において発生するストイキ又はリッチ側でHCやCOなどの還元性成分と反応して浄化されるため、リーン側においてもNOxの浄化性能に優れている。   Therefore, the applicant of the present application has previously proposed an exhaust gas purification catalyst in which an alkaline earth metal and Pt are supported on a porous carrier such as alumina, and an exhaust gas purification catalyst in which lanthanum and Pt are supported on a porous carrier. According to these exhaust gas-purifying catalysts, NOx is occluded in the alkaline earth metal oxide or lanthanum oxide (NOx occlusion material) on the lean side, which is generated in the transient region, or HC or NO on the rich side. Since it is purified by reacting with a reducing component such as CO, the NOx purification performance is excellent even on the lean side.

ところで排ガス中には、燃料中に含まれる硫黄(S)が燃焼して生成したSOxが含まれている。このSOxは、リーン側で触媒金属により酸化され、また水蒸気との反応も加わって、亜硫酸イオンや硫酸イオンが生成する。そしてこれらがNOx吸蔵材と反応して亜硫酸塩や硫酸塩が生成すると、NOx吸蔵材によるNOx吸蔵作用が損なわれ浄化性能が低下するという硫黄被毒が生じることが明らかとなった。   By the way, the exhaust gas contains SOx produced by burning sulfur (S) contained in the fuel. This SOx is oxidized by the catalytic metal on the lean side, and also reacts with water vapor to generate sulfite ions and sulfate ions. And it became clear that when these react with the NOx occlusion material to produce sulfites and sulfates, the NOx occlusion action of the NOx occlusion material is impaired and the purification performance deteriorates.

そして従来の排ガス浄化用触媒では、吸着作用に優れた活性アルミナを担体として使用しているが、活性アルミナ担体はSOxをも吸着し易いという性質があることから、上記硫黄被毒が促進されるという現象もあった。またSOxがアルミナに吸着されると、アルミナは酸性側となってNOxと反発し合い、NOx吸蔵材へのNOxの吸蔵が阻害される。さらにSOxとNOx吸蔵材とが硫酸塩あるいは亜硫酸塩を生成する場合もあり、この硫酸塩あるいは亜硫酸塩は分解し難いのでNOx吸蔵材のNOx吸蔵作用が回復できず耐久性が損なわれるという不具合もあった。   In the conventional exhaust gas purifying catalyst, activated alumina having excellent adsorption action is used as a carrier. However, since the activated alumina carrier has a property of easily adsorbing SOx, the sulfur poisoning is promoted. There was also a phenomenon. Further, when SOx is adsorbed by alumina, the alumina becomes acidic and repels NOx, and the NOx occlusion in the NOx occlusion material is inhibited. Furthermore, SOx and NOx occlusion material may produce sulfate or sulfite, and since this sulfate or sulfite is difficult to decompose, the NOx occlusion action of the NOx occlusion material cannot be recovered and the durability is impaired. there were.

そこで本願出願人は、TiとZrの複合酸化物よりなる担体にNOx吸蔵材と触媒貴金属とを担持した排ガス浄化用触媒を提案している。この排ガス浄化用触媒によれば、TiとZrの複合酸化物はアルミナに比べて硫酸イオンや亜硫酸イオンが吸着しにくく、かつ吸着して硫酸塩となったとしてもその硫酸塩が分解しやすい性質をもつことや、TiとZrの複合安定化により耐熱性や酸性度が向上するという効果をもち、触媒性能の向上と硫黄被毒の防止の両立に効果的である。   Accordingly, the applicant of the present application has proposed an exhaust gas purification catalyst in which a NOx storage material and a catalyst noble metal are supported on a support made of a composite oxide of Ti and Zr. According to this exhaust gas-purifying catalyst, the composite oxide of Ti and Zr is less likely to adsorb sulfate ions and sulfite ions than alumina, and even if it is adsorbed and becomes sulfate, the sulfate is easily decomposed. And the combined stabilization of Ti and Zr has the effect of improving heat resistance and acidity, and is effective in improving catalyst performance and preventing sulfur poisoning.

ところがさらなる研究の結果、TiとZrの複合酸化物よりなる担体を用いた排ガス浄化用触媒では、900℃以上の高温下で用いられた場合に熱劣化が大きく、高温耐久後のNOx浄化率の低下度合いが大きいことが明らかとなった。そこで、NOxの浄化性能を高く維持しつつ硫黄被毒を防止するとともに、耐熱性を向上させ高温耐久後のNOx浄化率の低下度合いを小さくすることを目的とし、チタニア(TiO2)−ジルコニア(ZrO2)粉末をアルミナ(Al23)粉末と組み合わせて担体として用いることを提案した(特許文献1参照)。 However, as a result of further research, the exhaust gas purification catalyst using a support made of a composite oxide of Ti and Zr has a large thermal deterioration when used at a high temperature of 900 ° C. or higher, and the NOx purification rate after high temperature durability is high. It became clear that the degree of decline was large. Therefore, with the aim of preventing sulfur poisoning while maintaining high NOx purification performance and improving the heat resistance and reducing the degree of decrease in NOx purification rate after high temperature durability, titania (TiO 2 ) -zirconia ( It has been proposed to use ZrO 2 ) powder as a support in combination with alumina (Al 2 O 3 ) powder (see Patent Document 1).

特開2000−327329号公報JP 2000-327329 A

ところで、例えば、自動車用エンジンの排ガス浄化用触媒の場合、常温と約1000℃の間で温度が繰り返して変動し、かつ比較的HCとCOの濃度が高くてO2濃度が低い還元性雰囲気と、比較的HCとCOの濃度が低くてO2濃度が高い酸化性雰囲気が繰り返される条件下で、触媒貴金属の高分散の担持状態が維持される必要がある。 By the way, for example, in the case of an exhaust gas purification catalyst for an automobile engine, a reducing atmosphere in which the temperature repeatedly fluctuates between room temperature and about 1000 ° C., and the HC and CO concentrations are relatively high and the O 2 concentration is low. It is necessary to maintain a highly dispersed support state of the catalyst noble metal under conditions where an oxidizing atmosphere having relatively low HC and CO concentrations and high O 2 concentration is repeated.

しかしながら、上記の触媒貴金属には、こうした雰囲気に長期間曝されると、触媒貴金属が担体上を移動して肥大化した粒子を形成する、いわゆるシンタリングを生じる性質がある。このため、触媒貴金属は、排ガスとの高い接触面積を維持することができず、排ガスの浄化性能が経時的に低下するという問題がある。   However, the above-mentioned catalytic noble metal has a property of causing so-called sintering, when the catalytic noble metal is exposed to such an atmosphere for a long period of time, and moves on the support to form enlarged particles. For this reason, a catalyst noble metal cannot maintain a high contact area with exhaust gas, and there exists a problem that the purification performance of exhaust gas falls with time.

本発明は、かかるチタニア−ジルコニア−アルミナ粉末からなる担体を用いた排ガス浄化用触媒において、触媒貴金属のシンタリングを抑制し、高温雰囲気においても触媒性能が低下することのない耐久性に優れた排ガス浄化用触媒を提供することを目的とする。   The present invention provides an exhaust gas purifying catalyst using a carrier comprising such titania-zirconia-alumina powder, which suppresses sintering of the catalyst noble metal and has excellent durability without deterioration of the catalyst performance even in a high temperature atmosphere. An object is to provide a purification catalyst.

上記問題点を解決するため本発明によれば、チタニア−ジルコニア−アルミナ粉末からなる担体上に、アルカリ金属、アルカリ土類金属及び希土類元素からなる群より選ばれるNOx吸蔵材と触媒貴金属が担持されてなる排ガス浄化用触媒において、前記チタニア−ジルコニア−アルミナ粉末からなる担体は多孔質であり、径20nm以下である細孔の容量が0.4cc/g以上であることを特徴とする排ガス浄化用触媒が提供される。   In order to solve the above problems, according to the present invention, a NOx occlusion material selected from the group consisting of an alkali metal, an alkaline earth metal and a rare earth element and a catalyst noble metal are supported on a support made of titania-zirconia-alumina powder. In the exhaust gas purifying catalyst, the support made of the titania-zirconia-alumina powder is porous and the capacity of pores having a diameter of 20 nm or less is 0.4 cc / g or more. A catalyst is provided.

本発明の排ガス浄化用触媒は、触媒貴金属を担持させる担体をチタニア−ジルコニア−アルミナ粉末から構成することにより、硫黄被毒を抑制しかつ耐熱性を高めることができる。さらに、この担体において、径20nm以下である細孔の容量を0.4cc/g以上とすることにより触媒貴金属のシンタリングを防ぐことができる。   The exhaust gas purifying catalyst of the present invention can suppress sulfur poisoning and improve heat resistance by constituting the carrier for supporting the catalyst noble metal from titania-zirconia-alumina powder. Furthermore, in this carrier, sintering of the catalyst noble metal can be prevented by setting the capacity of the pores having a diameter of 20 nm or less to 0.4 cc / g or more.

本発明の排ガス浄化用触媒は、チタニア−ジルコニア−アルミナ粉末からなる担体上に、アルカリ金属、アルカリ土類金属及び希土類元素からなる群より選ばれるNOx吸蔵材と触媒貴金属が担持されてなる。本発明において、チタニア−ジルコニア−アルミナ粉末とは、チタニア粉末とジルコニア粉末とアルミナ粉末の混合物、チタニア−ジルコニア固溶体粉末とアルミナ粉末の混合物、及びチタニア−ジルコニア−アルミナ固溶体粉末を意味する。   The exhaust gas purifying catalyst of the present invention comprises a support made of titania-zirconia-alumina powder and a NOx occlusion material selected from the group consisting of alkali metals, alkaline earth metals and rare earth elements and a catalyst noble metal supported thereon. In the present invention, the titania-zirconia-alumina powder means a mixture of titania powder, zirconia powder and alumina powder, a mixture of titania-zirconia solid solution powder and alumina powder, and titania-zirconia-alumina solid solution powder.

このチタニア−ジルコニア−アルミナ粉末において、TiとZr及びAlの比率は特に制限されないが、TiとZrとはZr/(Ti+Zr)で示されるZrのモル分率が0.2〜0.5の範囲とすることが好ましい。モル分率がこの範囲を外れると、担体の比表面積が減少したり、酸性度(酸点の数)の向上が期待できないからである。   In this titania-zirconia-alumina powder, the ratio of Ti, Zr and Al is not particularly limited, but Ti and Zr are in the range of the molar fraction of Zr represented by Zr / (Ti + Zr) in the range of 0.2 to 0.5. It is preferable that This is because if the molar fraction is out of this range, the specific surface area of the carrier cannot be reduced, and improvement in acidity (number of acid sites) cannot be expected.

またAlは、TiとZrの合計に対してモル比で1〜9の範囲とすることが好ましい。Alがこの範囲より少ないと耐熱性が十分でなく、この範囲より多くなると硫黄被毒が生じやすくなる。担体は、モノリス担体基材、メタル担体基材あるいはペレット基材表面に担持層として被覆形成することができる。また担体自体からモノリス担体基材やペレット担体基材を形成してもよい。   Further, Al is preferably in the range of 1 to 9 in molar ratio with respect to the total of Ti and Zr. When Al is less than this range, the heat resistance is not sufficient, and when it exceeds this range, sulfur poisoning tends to occur. The carrier can be coated on the surface of the monolith carrier substrate, metal carrier substrate or pellet substrate as a carrier layer. Moreover, you may form a monolith support base material and a pellet support base material from support | carrier itself.

本発明においては、担体を構成するチタニア−ジルコニア−アルミナ粉末において、径20nm以下である細孔の容量が0.4cc/g以上であることが必要である。なお、本明細書において、この細孔の径及び容量は水銀圧入法ポロシメーターによって測定した値である。   In the present invention, in the titania-zirconia-alumina powder constituting the carrier, the pore volume having a diameter of 20 nm or less needs to be 0.4 cc / g or more. In the present specification, the diameter and volume of the pores are values measured by a mercury porosimetry porosimeter.

図1に示すように、触媒貴金属(例えばPt)は担体の表面のみならず細孔内にも担持される。この触媒が高温にさらされると、Ptは担体表面上を移動して肥大化した粒子を形成する。一方、径が2〜20nmである、いわゆるメソ細孔内に担持されたPtは、この細孔の大きさに制限され、20nmより大きくなることが抑制される。我々の実験結果から、径が20nm以下である細孔の容量が0.4cc/g以上とすることにより、十分なNOx吸蔵能を示すことが見出された。   As shown in FIG. 1, the catalyst noble metal (for example, Pt) is supported not only on the surface of the support but also in the pores. When this catalyst is exposed to high temperatures, Pt migrates on the support surface to form enlarged particles. On the other hand, Pt supported in so-called mesopores having a diameter of 2 to 20 nm is limited by the size of the pores and is prevented from becoming larger than 20 nm. From our experimental results, it has been found that a sufficient capacity of NOx occlusion can be obtained by setting the capacity of pores having a diameter of 20 nm or less to 0.4 cc / g or more.

このチタニア−ジルコニア−アルミナ粉末は、例えば、所定の量比でチタニウム塩、ジルコニウム塩、及びアルミニウム塩を含む原料溶液を調製し、この原料溶液を攪拌しながらpH調整剤を添加して沈殿を生成させ、得られた沈殿を乾燥、焼成することにより製造される。ここで、原料溶液中に過酸化水素及び界面活性剤を添加することが好ましい。過酸化水素の添加により、チタニウムイオン、ジルコニウムイオン及びアルミニウムイオンが錯イオンとなり、これらの沈殿の生成するpHが近くなるなめ、共沈物の混合が原子レベルで行われやすくなるからである。また界面活性剤の添加により、沈殿操作の際に不均一な部分が生じても、界面活性剤のミセル中でジルコニアを主成分とする粒子と、チタニアを主成分とする粒子と、アルミナを主成分とする粒子とが互いに組成が均一になる方向で粒成長し、均一な組成の固溶体粒子を形成しやすいからである。   For this titania-zirconia-alumina powder, for example, a raw material solution containing a titanium salt, a zirconium salt, and an aluminum salt is prepared at a predetermined quantitative ratio, and a pH adjuster is added while stirring the raw material solution to form a precipitate. The precipitate obtained is dried and fired. Here, it is preferable to add hydrogen peroxide and a surfactant to the raw material solution. This is because, by adding hydrogen peroxide, titanium ions, zirconium ions, and aluminum ions become complex ions, and the pH at which these precipitates are formed becomes close, so that the coprecipitate is easily mixed at the atomic level. In addition, even if a non-uniform portion is generated during the precipitation operation due to the addition of the surfactant, particles mainly composed of zirconia, particles mainly composed of titania, and alumina are mainly contained in the micelles of the surfactant. This is because the particles as the components grow in the direction in which the composition becomes uniform, and solid solution particles having a uniform composition are easily formed.

界面活性剤としては、陰イオン系、陽イオン系、及び非イオン系のいずれも使用することができる。なかでも、形成するミセルが内面に狭い空間を形成することができる形状、例えば球状ミセルを形成しやすい界面活性剤を用いることが好ましい。また、臨界ミセル濃度が0.1モル/リットル以下である界面活性剤を用いることが好ましい。なお、臨界ミセル濃度とは、ある界面活性剤がミセルを形成する最低濃度のことを意味する。   As the surfactant, any of an anionic system, a cationic system, and a nonionic system can be used. In particular, it is preferable to use a surfactant that can form a narrow space on the inner surface of the micelle to be formed, for example, a spherical micelle. Further, it is preferable to use a surfactant having a critical micelle concentration of 0.1 mol / liter or less. The critical micelle concentration means the lowest concentration at which a certain surfactant forms micelles.

この担体を多孔質にするには、従来より用いられている各種の方法を用いることができる。例えば、上記の界面活性剤を含む原料溶液を攪拌し、この原料溶液に気泡を混入させた状態で焼成する。焼成前には担体中に気泡が存在し、焼成によってこの気泡部分が細孔となる。この気泡の量と大きさを調整することによって、担体中に径が20nm以下である細孔の容量を0.4cc/g以上とすることができる。また、粒径を制御したカーボン粉末、木粉、樹脂粉等を原料溶液に混合しておき、焼成によってこのカーボン粉末等を焼失させることによって細孔を形成することも可能である。このカーボン粉末等の粒径及び添加量を調整することによって、担体中に径が20nm以下である細孔の容量を0.4cc/g以上とすることができる。   Various conventional methods can be used to make the carrier porous. For example, the raw material solution containing the surfactant is stirred and fired in a state where bubbles are mixed in the raw material solution. Before firing, bubbles exist in the carrier, and the bubble portions become pores by firing. By adjusting the amount and size of the bubbles, the capacity of pores having a diameter of 20 nm or less in the carrier can be set to 0.4 cc / g or more. It is also possible to form pores by mixing carbon powder, wood powder, resin powder or the like with a controlled particle size into the raw material solution and burning off the carbon powder or the like by firing. By adjusting the particle size and addition amount of the carbon powder or the like, the capacity of pores having a diameter of 20 nm or less in the carrier can be set to 0.4 cc / g or more.

担体に担持されるNOx吸蔵材としては、アルカリ金属、アルカリ土類金属及び希土類元素から選ばれる少なくとも1種が用いられる。アルカリ金属としてはリチウム、ナトリウム、カリウム、セシウムが挙げられる。また、アルカリ土類金属とは周期表2A族元素をいい、マグネシウム、カルシウム、ストロンチウム、バリウムが挙げられる。また希土類元素としては、スカンジウム、イットリウム、ランタン、セリウム、プラセオジム、ネオジムなどが例示される。NOx吸蔵材の含有量は、担体100gに対して0.05〜1.0モルの範囲とすることが好ましい。含有量が0.05モルより少ないとNOx 吸蔵能力が小さくNOx浄化性能が低下し、1.0モルを超えて含有しても、NOx 吸蔵能力が飽和すると同時にHCのエミッションが増加するなどの不具合が生じる。 As the NOx occlusion material supported on the carrier, at least one selected from alkali metals, alkaline earth metals and rare earth elements is used. Examples of the alkali metal include lithium, sodium, potassium, and cesium. Moreover, alkaline earth metal means a periodic table 2A group element, and magnesium, calcium, strontium, and barium are mentioned. Examples of rare earth elements include scandium, yttrium, lanthanum, cerium, praseodymium, neodymium, and the like. The content of the NOx storage material is preferably in the range of 0.05 to 1.0 mol with respect to 100 g of the carrier. Content is less than 0.05 mol and the NO x storage capacity NOx purification performance is decreased smaller, also she contains more than 1.0 mole, NOx storage capacity of such emissions and simultaneously saturated HC increases A malfunction occurs.

触媒貴金属としては、Pt、Rh及びPdの1種又は複数種を用いることができ、Ptが特に望ましい。その担持量は、いずれの貴金属でも、担体100g(触媒全体の体積1リットル相当)に0.1〜20gとすることが好ましく、0.5〜10gが特に好ましい。触媒貴金属の担持量をこれ以上増加させても活性は向上せず、その有効利用が図れない。また触媒貴金属の担持量がこれより少ないと、実用上十分な活性が得られない。   As the catalyst noble metal, one or more of Pt, Rh and Pd can be used, and Pt is particularly desirable. The supported amount of any precious metal is preferably 0.1 to 20 g, particularly preferably 0.5 to 10 g, per 100 g of support (corresponding to a volume of 1 liter of the entire catalyst). Even if the amount of the catalyst noble metal supported is increased further, the activity is not improved, and the effective utilization cannot be achieved. On the other hand, if the amount of the catalyst noble metal supported is less than this, practically sufficient activity cannot be obtained.

なお、NOx吸蔵材及び触媒貴金属を担体に担持させるには、その塩化物や硝酸塩等を用いて、含浸法、噴霧法、スラリー混合法などを利用して従来と同様に担持させることができる。   In order to support the NOx occlusion material and the catalyst noble metal on the carrier, it can be supported in the same manner as before using the impregnation method, spraying method, slurry mixing method, etc., using the chloride or nitrate thereof.

実施例1〜6及び比較例1〜6
硝酸アルミニウム、オキシ硝酸ジルコニウム、及び四塩化チタンを以下の表1に示す比で水1000mLに添加し、攪拌混合し、この混合溶液に界面活性剤(レオコン1020H、ライオン社製)を0.01モル添加して原料水溶液を調製した。この原料水溶液を攪拌しながら、25%アンモニアを加え、pHを8.8に調整した。この水溶液を120℃、2気圧において2時間放置して熟成させ、得られた沈殿を遠心分離によって分離し、500℃で2時間焼成して担体粉末を得た。なお、比較例1では熟成工程を行わなかった。
Examples 1-6 and Comparative Examples 1-6
Aluminum nitrate, zirconium oxynitrate, and titanium tetrachloride are added to 1000 mL of water in the ratio shown in Table 1 below, and mixed by stirring. 0.01 mol of a surfactant (Leocon 1020H, manufactured by Lion Corporation) is added to this mixed solution. A raw material aqueous solution was prepared. While stirring this raw material aqueous solution, 25% ammonia was added to adjust the pH to 8.8. This aqueous solution was left to mature at 120 ° C. and 2 atm for 2 hours, and the resulting precipitate was separated by centrifugation and calcined at 500 ° C. for 2 hours to obtain a carrier powder. In Comparative Example 1, no aging step was performed.

得られた担体粉末について、水銀圧入法ポロシメーターにより細孔径及び細孔容量を測定し、径20nm以下の細孔の容量を表1に示す。   With respect to the obtained carrier powder, the pore diameter and pore volume were measured with a mercury porosimetry porosimeter, and the volume of pores having a diameter of 20 nm or less is shown in Table 1.

Figure 2006043637
Figure 2006043637

この担体粉末の所定量を所定濃度のジニトロジアンミン白金水溶液中に浸漬し、5時間攪拌した後に蒸発乾固させ、大気中にて500℃で2時間焼成してPtを担持させた。Ptの担持量は、担体100g(1L相当)に対してPtが2gである。次に、Ptが担持された担体粉末を、所定濃度の酢酸バリウム水溶液中に浸漬し、5時間攪拌した後に蒸発乾固させ、大気中にて500℃で2時間焼成してNOx吸蔵材としてのBaを担持させた。Baの担持量は、担体100g(1L相当)に対してBaが0.2molである。   A predetermined amount of the carrier powder was immersed in a dinitrodiammine platinum aqueous solution having a predetermined concentration, stirred for 5 hours, evaporated to dryness, and baked in the atmosphere at 500 ° C. for 2 hours to carry Pt. The amount of Pt supported is 2 g of Pt with respect to 100 g of carrier (corresponding to 1 L). Next, the carrier powder carrying Pt is immersed in an aqueous barium acetate solution having a predetermined concentration, stirred for 5 hours, evaporated to dryness, and calcined in the atmosphere at 500 ° C. for 2 hours to obtain a NOx occlusion material. Ba was supported. The amount of Ba supported is 0.2 mol of Ba with respect to 100 g of carrier (corresponding to 1 L).

最後に、PtとBaが担持された担体粉末を水素気流中にて500℃で3時間処理し、ペレット化して排ガス浄化用触媒を得た。   Finally, the carrier powder carrying Pt and Ba was treated in a hydrogen stream at 500 ° C. for 3 hours and pelletized to obtain an exhaust gas purification catalyst.

(試験・評価)
上記の排ガス浄化用触媒について、硫黄被毒耐久試験を行った後のNOx吸蔵量を測定した。硫黄被毒耐久試験は、各触媒1gを耐久試験装置に配置し、表2に示すリッチとリーンのモデルガスを30秒ごとに交互に繰り返しながら、室温から600℃まで30分で昇温させ、600℃で4時間保持することによって行った。
(Examination / Evaluation)
With respect to the exhaust gas purifying catalyst, the NOx occlusion amount after the sulfur poisoning durability test was measured. In the sulfur poisoning endurance test, 1 g of each catalyst was placed in an endurance test device, and the temperature was raised from room temperature to 600 ° C. in 30 minutes while alternately repeating the rich and lean model gases shown in Table 2 every 30 seconds. This was done by holding at 600 ° C. for 4 hours.

Figure 2006043637
Figure 2006043637

NOx吸蔵量の測定は、上記の硫黄被毒耐久試験を行った後、各触媒を固定床流通式の反応管に詰め、温度300℃において表3に示すガス組成で、まずリッチ条件にし、2分後にリーンにして、出ガスNOx濃度が入りガスNOx濃度に達するまでのNOx吸蔵量で評価した。   The NOx occlusion amount was measured after the above sulfur poisoning endurance test was performed, and each catalyst was packed in a fixed bed flow type reaction tube, and the gas composition shown in Table 3 at a temperature of 300 ° C. was first set to a rich condition. After leaning, the NOx occlusion amount until the outlet gas NOx concentration reached the inlet gas NOx concentration was evaluated.

Figure 2006043637
Figure 2006043637

この結果を以下の表4及び図2に示す。また、この結果をアルミナ含有量とジルコニア含有量との関係で図3及び図4に示す。   The results are shown in Table 4 below and FIG. Moreover, this result is shown in FIG.3 and FIG.4 by the relationship between alumina content and zirconia content.

Figure 2006043637
Figure 2006043637

図2に示すように、径20nm以下の細孔容量が0.4cc/g以上あると、良好なNOx吸蔵量が達成されることがわかる。   As shown in FIG. 2, it can be seen that when the pore volume with a diameter of 20 nm or less is 0.4 cc / g or more, a good NOx occlusion amount is achieved.

本発明の排ガス浄化用触媒の作用を説明する概念図である。It is a conceptual diagram explaining the effect | action of the catalyst for exhaust gas purification of this invention. 径20nm以下の細孔容量とNOx吸蔵量の関係を示すグラフである。It is a graph which shows the relationship between the pore capacity | capacitance of diameter 20nm or less, and NOx occlusion amount. 担体中のアルミナ含有量とNOx吸蔵量の関係を示すグラフである。It is a graph which shows the relationship between the alumina content in a support | carrier, and NOx occlusion amount. 担体中のジルコニア含有量とNOx吸蔵量の関係を示すグラフである。It is a graph which shows the relationship between zirconia content in a support | carrier, and NOx occlusion amount.

Claims (1)

チタニア−ジルコニア−アルミナ粉末からなる担体上に、アルカリ金属、アルカリ土類金属及び希土類元素からなる群より選ばれるNOx吸蔵材と触媒貴金属が担持されてなる排ガス浄化用触媒において、前記チタニア−ジルコニア−アルミナ粉末からなる担体は多孔質であり、径20nm以下である細孔の容量が0.4cc/g以上であることを特徴とする排ガス浄化用触媒。   In the exhaust gas purifying catalyst in which a NOx storage material selected from the group consisting of an alkali metal, an alkaline earth metal and a rare earth element and a catalyst noble metal are supported on a support made of titania-zirconia-alumina powder, the titania-zirconia- A catalyst for purification of exhaust gas, wherein the support made of alumina powder is porous and the capacity of pores having a diameter of 20 nm or less is 0.4 cc / g or more.
JP2004231150A 2004-08-06 2004-08-06 Catalyst for cleaning exhaust gas Pending JP2006043637A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004231150A JP2006043637A (en) 2004-08-06 2004-08-06 Catalyst for cleaning exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004231150A JP2006043637A (en) 2004-08-06 2004-08-06 Catalyst for cleaning exhaust gas

Publications (1)

Publication Number Publication Date
JP2006043637A true JP2006043637A (en) 2006-02-16

Family

ID=36022800

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004231150A Pending JP2006043637A (en) 2004-08-06 2004-08-06 Catalyst for cleaning exhaust gas

Country Status (1)

Country Link
JP (1) JP2006043637A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007123205A1 (en) * 2006-04-21 2007-11-01 Cataler Corporation Exhaust gas purifying catalyst, method for recovering exhaust gas purifying catalyst, and catalyst system for exhaust gas purification
WO2012121085A1 (en) * 2011-03-04 2012-09-13 株式会社アイシーティー Catalyst for exhaust gas purification, method for producing same, and exhaust gas purification method using same
WO2012137930A1 (en) 2011-04-08 2012-10-11 トヨタ自動車株式会社 Exhaust gas purification oxidation catalyst
EP3072588A1 (en) * 2015-03-23 2016-09-28 Kabushiki Kaisha Toyota Chuo Kenkyusho Catalyst for purification of exhaust gas, nox storage-reduction catalyst, and method for purifying exhaust gas
US9925524B2 (en) 2015-07-17 2018-03-27 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification catalyst

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007123205A1 (en) * 2006-04-21 2007-11-01 Cataler Corporation Exhaust gas purifying catalyst, method for recovering exhaust gas purifying catalyst, and catalyst system for exhaust gas purification
JP2007289812A (en) * 2006-04-21 2007-11-08 Cataler Corp Exhaust gas cleaning catalyst, regenerating method of the same, and exhaust gas cleaning catalyst system
KR100995458B1 (en) * 2006-04-21 2010-11-18 가부시키가이샤 캬타라 Exhaust gas purifying catalyst, method for recovering exhaust gas purifying catalyst, and catalyst system for exhaust gas purification
US8071498B2 (en) 2006-04-21 2011-12-06 Cataler Corporation Exhaust gas purifying catalyst, method for recovering exhaust gas purifying catalyst, and catalyst system for exhaust gas purification
WO2012121085A1 (en) * 2011-03-04 2012-09-13 株式会社アイシーティー Catalyst for exhaust gas purification, method for producing same, and exhaust gas purification method using same
US9561494B2 (en) 2011-03-04 2017-02-07 Umicore Shokubai Japan Co., Ltd. Catalyst for exhaust gas purification, method for producing the same, and exhaust gas purification method using the same
JP5746318B2 (en) * 2011-03-04 2015-07-08 ユミコア日本触媒株式会社 Exhaust gas purification catalyst, method for producing the same, and exhaust gas purification method using the same
JP2015120159A (en) * 2011-03-04 2015-07-02 ユミコア日本触媒株式会社 Catalyst for purifying exhaust gas, manufacturing method of the catalyst, and exhaust gas purification method using the catalyst
EP2695674A4 (en) * 2011-04-08 2014-10-29 Toyota Motor Co Ltd Exhaust gas purification oxidation catalyst
JPWO2012137930A1 (en) * 2011-04-08 2014-07-28 トヨタ自動車株式会社 Oxidation catalyst for exhaust gas purification
AU2012240909B2 (en) * 2011-04-08 2015-07-02 Toyota Jidosha Kabushiki Kaisha Oxidation Catalyst for Exhaust Gas Purification
EP2695674A1 (en) * 2011-04-08 2014-02-12 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification oxidation catalyst
WO2012137930A1 (en) 2011-04-08 2012-10-11 トヨタ自動車株式会社 Exhaust gas purification oxidation catalyst
EP3072588A1 (en) * 2015-03-23 2016-09-28 Kabushiki Kaisha Toyota Chuo Kenkyusho Catalyst for purification of exhaust gas, nox storage-reduction catalyst, and method for purifying exhaust gas
US9616386B2 (en) 2015-03-23 2017-04-11 Kabushiki Kaisha Toyota Chuo Kenkyusho Catalyst for purification of exhaust gas, NOx storage-reduction catalyst, and method for purifying exhaust gas
US9925524B2 (en) 2015-07-17 2018-03-27 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification catalyst

Similar Documents

Publication Publication Date Title
EP1371415B1 (en) Catalyst for hydrogen generation and catalyst for purification of exhaust gas
JP3494147B2 (en) Exhaust gas purification catalyst, method for producing the same, and exhaust gas purification method
JP5157068B2 (en) Hydrogen sulfide production inhibitor and exhaust gas purification catalyst
JP2009285604A (en) Catalyst for cleaning exhaust gas
JP2009273986A (en) Exhaust gas cleaning catalyst
JP3789231B2 (en) Exhaust gas purification catalyst
JP3446915B2 (en) Exhaust gas purification catalyst
JP3378096B2 (en) Exhaust gas purification catalyst
JP3766568B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
JP2006043637A (en) Catalyst for cleaning exhaust gas
JP3860929B2 (en) Exhaust gas purification catalyst, method for producing the same, and exhaust gas purification method
JP2010017694A (en) NOx ABSORBING CATALYST FOR REDUCTION
JPH08281116A (en) Catalyst for purifying exhaust gas
JP2007330879A (en) Catalyst for cleaning exhaust gas
JP2013072334A (en) Exhaust gas purifying device and exhaust gas purifying catalyst unit
JPH0924247A (en) Catalyst for purifying exhaust gas
JP4807620B2 (en) Exhaust gas purification catalyst and exhaust gas purification method using the same
JP3897483B2 (en) Exhaust gas purification catalyst, method for producing the same, and exhaust gas purification method
JP4079622B2 (en) Exhaust gas purification catalyst
JP2000325787A (en) Manufacture of exhaust gas cleaning catalyst
JP5051009B2 (en) NOx storage reduction catalyst
JP2005169280A (en) Catalyst for cleaning exhaust gas
WO1999033560A1 (en) Catalyst for purifying exhaust gas, process for producing the same, and method for purifying exhaust gas
JP2003200061A (en) Exhaust gas purifying catalyst and exhaust gas purifying device
JP2007283207A (en) Catalyst for cleaning exhaust gas and its manufacturing method