Nothing Special   »   [go: up one dir, main page]

JP2005337415A - マイクロバルブ、マイクロポンプ及びこれらを内蔵するマイクロチップ - Google Patents

マイクロバルブ、マイクロポンプ及びこれらを内蔵するマイクロチップ Download PDF

Info

Publication number
JP2005337415A
JP2005337415A JP2004158576A JP2004158576A JP2005337415A JP 2005337415 A JP2005337415 A JP 2005337415A JP 2004158576 A JP2004158576 A JP 2004158576A JP 2004158576 A JP2004158576 A JP 2004158576A JP 2005337415 A JP2005337415 A JP 2005337415A
Authority
JP
Japan
Prior art keywords
valve
microvalve
chamber
layer
valve chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004158576A
Other languages
English (en)
Other versions
JP4372616B2 (ja
Inventor
Masao Inoue
政夫 井上
Michie Harachi
美智恵 原地
Atsushi Someya
篤 染谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aida Engineering Ltd
Original Assignee
Aida Engineering Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aida Engineering Ltd filed Critical Aida Engineering Ltd
Priority to JP2004158576A priority Critical patent/JP4372616B2/ja
Publication of JP2005337415A publication Critical patent/JP2005337415A/ja
Application granted granted Critical
Publication of JP4372616B2 publication Critical patent/JP4372616B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Micromachines (AREA)
  • Check Valves (AREA)
  • Reciprocating Pumps (AREA)

Abstract

【課題】 マイクロチップの製作と同時に、安価で容易に作製できるマイクロバルブ及びマイクロポンプを提供する。
【解決手段】 マイクロバルブであって、該マイクロバルブは基板と、該基板上面に貼り合わされた第1層と、該第1層上面に貼り合わされた第2層とからなり、前記第1層の前記基板との貼り合わせ面側に、第1の流路と該第1の流路に連通する第1のバルブ室と、第2の流路と、該第2の流路に連通する第2のバルブ室と、前記第1のバルブ室と第2のバルブ室とを仕切る弁を有し、前記弁の弁座が前記基板表面に対して非接着に維持されており、前記第2層の前記第1層との貼り合わせ面側であって、前記弁の直上に対応する位置に圧力室を有することを特徴とするマイクロバルブ。このマイクロバルブを2個以上適宜組み合わせることによりマイクロポンプを構成することができる。
【選択図】 図1

Description

本発明は、少なくとも一方の基板内に微細な流路や反応容器などの微細構造(マイクロストラクチャー)を持ついわゆるマイクロチップに関する。更に詳細には、本発明はマイクロチップに内蔵して流路や反応容器などの間における流体の流れを制御するマイクロバルブとマイクロポンプに関する。
最近、マイクロスケール・トータル・アナリシス・システムズ(μTAS)又はラブ・オン・チップ(Lab-on-Chip)などの名称で知られるように、基板内にマイクロチャネルや反応容器及びポートなどの微細構造を設け、該微細構造内で物質の化学反応、合成、精製、抽出、生成及び/又は分析など各種の操作を行うように構成されたマイクロデバイスが提案され、一部実用化されている。このような目的のために製作された、基板内にマイクロチャネル、ポート及び反応容器などの微細構造を有する構造物は総称して「マイクロチップ」又は「マイクロ流体デバイス」と呼ばれる。
マイクロチップは遺伝子解析、臨床診断、薬物スクリーニングなどの化学、生化学、薬学、医学、獣医学分野のみならず、化学工業、環境計測などの幅広い用途に使用できる。常用サイズの同種の装置に比べて、マイクロチップは(1)サンプル及び試薬の使用量が著しく少ない、(2)分析時間が短い、(3)感度が高い、(4)現場に携帯し、その場で分析できる、及び(5)使い捨てできるなどの利点を有する。
一般的に、これらのマイクロチップは、一方の平面上に微細構造を有する基板と、これらの微細構造を封止する目的の平面を有する対面基板とを貼り合わせた構造を有する。基板の材質は製造方法やマイクロチップの使用目的等により、各種のものが利用されているが、中でも、基板材料にシリコンゴムの一種であるポリジメチルシロキサン(PDMS)を用い、対面基板にガラス基板を用いた一連のマイクロチップが非特許文献1に詳述されている。
マイクロチップ内の流路や反応容器では流体、主に薬液やサンプル等の液体を扱うが、その為には流体の流れや移送を制御する機能が必要になる。特にマイクロチップに内蔵した小さな機能部品は流体制御素子とかマイクロ流体デバイス等と呼ばれる。流体制御素子として極めて一般的な物に、マイクロバルブやマイクロポンプがある。
流体制御素子のマイクロバルブやマイクロポンプ等の微細な機構部品は、マイクロマシンやMEMS(Micro Electro Mechanical System)といった分野においても開発が進められてきた。例えば特許文献1には典型的なマイクロバルブの例が示されている。このマイクロバルブは、バルブ領域において圧力室と作動流体通路とがPDMS製メンブレンを挟んで隣接しており、圧力室に駆動流体の圧力を給排することによって前記メンブレンを変位させ、PDMS製メンブレンがPDMS製弁座に離着して作動流体通路を開閉する弁機構を有する。また、特許文献2にも、マイクロチップ用のマイクロバルブが記載されている。このマイクロバルブは、流路を潰して閉じる構造を有し、流路を完全に閉じるためには流路断面を半円形にするなどの特殊な対策を必要とし、一般的に作りやすい矩形の流路では充分なシール性が達成されない。また、特許文献2にはマイクロポンプも記載されており、1本の流路にマイクロバルブを3個以上連続に並べ、それらを順次動作させることで流路内の液体を送る方式であり、いわゆるペリスタリックポンプと呼ばれる。マイクロバルブの開閉順序を変えることで正逆両方向に流体を流すことができる。しかし、このマイクロポンプにおいても、流路断面は半円形とする必要があり、しかも、ポンプとしての吐出量が小さい。特許文献1及び2の共通とする特徴は、シリコンラバーのゴム弾性や吸着性(密着性、シール性)を利用している点である。バルブの弁の働きをする部分(弁部)にPDMS製の膜等を用い、それが可動することでバルブの開閉を行っている。バルブを閉じてシールする部分(弁座)は当然のこと、接着はされていない。これらのバルブに共通する問題点は、製造上において弁座を非接着とする為に、PDMS基板とそれを貼り合せる基材との全面を非接着とし、PDMSの持つ吸着性のみで両基板を貼り合せていることである。よってマイクロチップの取り扱い上や高い圧力の流体を扱う点に問題があった。
更に、特許文献3には微少量の液体を正逆両方向に搬送できるマイクロポンプが記載されている。特許文献3に記載されたマイクロポンプは、流路抵抗が差圧に応じて変化する第1流路と、差圧の変化に対する流路抵抗の変化の割合が第1流路よりも小さい第2流路と、第1流路及び第2流路に接続される加圧室と、加圧室内部の圧力を変化させるための圧電素子とを備える。加圧室の内部の圧力を圧電素子で変化させることより、第1流路の流路抵抗と第2流路の流路抵抗との比を異ならせることが出来る。しかし、特許文献3に記載されたマイクロポンプは、次の問題点があった。(a)液体の流れ易さの違いを利用している為、気体は扱えない;(b)開閉弁や逆止弁を用いていない為、完全に流れを止めることができない;(c)開閉弁や逆止弁を用いていない為、外部からの大きな圧力に対し、ポンプ動作できない;(d)高速な動作を必要とするため、圧電素子等をバルブ近傍に配置しなければならず、マイクロチップを小型化できない;(e)圧電素子等が高価なためマイクロチップを使い捨てにできない;及び(f)圧電素子の制御方法が難しい。
特許第341872号明細書 米国特許第6408878号明細書 特開2001−322099号公報 David C. Duffy et al., Rapid Prototyping of Microfluidic Systems in Poly(dimethylsiloxane), Analytical Chemistry, Vol.70, No.23, December 1, 1988, pp.4974-4984
従って、本発明の目的は、基板の貼り合わせが強固で一般的な取り扱い上に問題がなく、また、高い圧力の流体も扱えるマイクロバルブ又はマイクロポンプを提供することである。
本発明の別の目的は、一般的な矩形断面形状の構造のみで、気体に対しても充分なシール性を発揮する、マイクロバルブ又はマイクロポンプを提供することである。
本発明の他の目的は、マイクロチップの製作と同時に、安価で容易に作製できる逆止弁の作用をするマイクロバルブを提供することである。
前記課題を解決するための手段として、本願の請求項1における発明は、マイクロバルブであって、該マイクロバルブは基板と、該基板上面に貼り合わされた第1層と、該第1層上面に貼り合わされた第2層とからなり、
前記第1層の前記基板との貼り合わせ面側に、第1の流路と該第1の流路に連通する第1のバルブ室と、第2の流路と、該第2の流路に連通する第2のバルブ室と、前記第1のバルブ室と第2のバルブ室とを仕切る弁を有し、前記弁の弁座が前記基板表面に対して非接着に維持されており、
前記第2層の前記第1層との貼り合わせ面側であって、前記弁の直上に対応する位置に圧力室を有することを特徴とするマイクロバルブである。
前記課題を解決するための手段として、本願の請求項2における発明は、前記弁が直線状であり、第1のバルブ室の容積と第2のバルブ室の容積が概ね同一であることを特徴とする請求項1に記載のマイクロバルブである。
前記課題を解決するための手段として、本願の請求項3における発明は、前記弁が略コ字状であり、第1のバルブ室の容積が第2のバルブ室の容積よりも大きいことを特徴とする請求項1に記載のマイクロバルブである。
前記課題を解決するための手段として、本願の請求項4における発明は、逆止弁として機能することを特徴とする請求項3に記載のマイクロバルブである。
前記課題を解決するための手段として、本願の請求項5における発明は、前記圧力室には負圧又は正圧を印加することができるように構成されていることを特徴とする請求項1に記載のマイクロバルブである。
前記課題を解決するための手段として、本願の請求項6における発明は、前記基板はガラス、シリコン及び硬質プラスチックからなる群から選択される材料から形成されており、前記第1層はポリジメチルシロキサン(PDMS)から形成されており、前記第2層はPDMS、ガラス、シリコン及び硬質プラスチックからなる群から選択される材料から形成されていることを特徴とする請求項1〜5の何れかに記載のマイクロバルブである。
前記課題を解決するための手段として、本願の請求項7における発明は、マイクロポンプであって、該マイクロポンプは、基板と、該基板上面に貼り合わされた第1層と、該第1層上面に貼り合わされた第2層とからなり、
前記第1層の前記基板との貼り合わせ面側に、ポンプ室を間に挟んで第1のマイクロバルブと第2のマイクロバルブとを有し、
前記第1のマイクロバルブは第1の流路と該第1の流路に連通する第1のバルブ室と、第2の流路と、該第2の流路に連通する第2のバルブ室と、前記第1のバルブ室と第2のバルブ室とを仕切る弁を有し、前記弁の弁座が前記基板表面に対して非接着に維持されており、
前記第2のマイクロバルブは第3の流路と該第3の流路に連通する第3のバルブ室と、第4の流路と、該第4の流路に連通する第4のバルブ室と、前記第3のバルブ室と第4のバルブ室とを仕切る弁を有し、前記弁の弁座が前記基板表面に対して非接着に維持されており、
前記ポンプ室は前記第2の流路により前記第1のマイクロバルブの第2のバルブ室と連通しており、かつ、前記第3の流路により前記第2のマイクロバルブの第3のバルブ室と連通しており、
前記第2層の前記第1層との貼り合わせ面側であって、前記第1のマイクロバルブの弁の直上と前記第2のマイクロバルブの弁の直上と、前記ポンプ室の直上に対応する位置にそれぞれ圧力室を有することを特徴とするマイクロポンプである。
前記課題を解決するための手段として、本願の請求項8における発明は、前記第1のマイクロバルブの弁が直線状であり、第1のバルブ室の容積と第2のバルブ室の容積が概ね同一であり、前記第2のマイクロバルブの弁が略コ字状であり、第3のバルブ室の容積が第4のバルブ室の容積よりも大きいことを特徴とする請求項7に記載のマイクロポンプである。
前記課題を解決するための手段として、本願の請求項9における発明は、前記第2のマイクロバルブが逆止弁として機能することを特徴とする請求項7又は8に記載のマイクロポンプである。
前記課題を解決するための手段として、本願の請求項10における発明は、前記各圧力室には負圧又は正圧を印加することができるように構成されていることを特徴とする請求項7に記載のマイクロポンプである。
前記課題を解決するための手段として、本願の請求項11における発明は、マイクロポンプであって、該マイクロポンプは、基板と、該基板上面に貼り合わされた第1層と、該第1層上面に貼り合わされた第2層とからなり、
前記第1層の前記基板との貼り合わせ面側に、第1のマイクロバルブと第2のマイクロバルブとを有し、
前記第1のマイクロバルブは第1の流路と該第1の流路に連通する第1のバルブ室と、第2の流路と、該第2の流路に連通する第2のバルブ室と、前記第1のバルブ室と第2のバルブ室とを仕切る弁を有し、前記弁の弁座が前記基板表面に対して非接着に維持されており、
前記第2のマイクロバルブは、前記第1のマイクロバルブの第1のバルブ室の第1の流路と連通する第3のバルブ室と、第4の流路と、該第4の流路に連通する第4のバルブ室と、前記第3のバルブ室と第4のバルブ室とを仕切る弁を有し、前記弁の弁座が前記基板表面に対して非接着に維持されており、
前記第2層の前記第1層との貼り合わせ面側であって、前記第1のマイクロバルブの弁の直上と前記第2のマイクロバルブの弁の直上に対応する位置にそれぞれ圧力室を有することを特徴とするマイクロポンプである。
前記課題を解決するための手段として、本願の請求項12における発明は、前記各弁は略コ字状であり、第1のバルブ室の容積が第2のバルブ室の容積よりも大きく、かつ、第3のバルブ室の容積が第4のバルブ室の容積よりも大きいことを特徴とする請求項11に記載のマイクロポンプである。
前記課題を解決するための手段として、本願の請求項13における発明は、前記第1のマイクロバルブ及び第2のマイクロバルブがそれぞれ逆止弁として機能することを特徴とする請求項11又は12に記載のマイクロポンプである。
前記課題を解決するための手段として、本願の請求項14における発明は、前記基板はガラス、シリコン及び硬質プラスチックからなる群から選択される材料から形成されており、前記第1層はポリジメチルシロキサン(PDMS)から形成されており、前記第2層はPDMS、ガラス、シリコン及び硬質プラスチックからなる群から選択される材料から形成されていることを特徴とする請求項7〜13の何れかに記載のマイクロポンプである。
前記課題を解決するための手段として、本願の請求項15における発明は、請求項1〜6の何れかに記載のマイクロバルブ及び/又は請求項7〜14の何れかに記載のマイクロポンプを有することを特徴とするマイクロチップである。
本発明によるマイクロバルブ又はマイクロポンプは次のような効果を有する。
(a)本発明のマイクロバルブ又はマイクロポンプの場合、従来の同様な目的及び用途に使用されるマイクロバルブ又はマイクロポンプに比べて、容易に製造できる。
(b)本発明のマイクロバルブ又はマイクロポンプの場合、マイクロチップの主な材料であるシリコンラバー(PDMS)以外には、シリコン等の微細加工が不要である。
(c)本発明のマイクロポンプの場合、素材としてシリコンラバー(PDMS)を使用すること以外には、圧電素子等をマイクロチップに組み込む必要がない。
(d)本発明のマイクロバルブ又はマイクロポンプの場合、マイクロチップの一般的な流路や反応容器等の製造方法と同じ方法で製造できる。
(e)本発明のマイクロバルブ又はマイクロポンプの場合、マイクロチップ内への組み込みが容易である。
(f)本発明のマイクロバルブ又はマイクロポンプの場合、マイクロチップ内の流路や反応容器等と一体構造に製造できる。
(g)本発明のマイクロバルブ又はマイクロポンプを有するマイクロチップは製造コストが安価なため使い捨てができる。
(h)本発明のマイクロバルブ又はマイクロポンプを有するマイクロチップは全体として扱い易い。
(i)本発明のマイクロバルブ又はマイクロポンプの場合、バルブの開閉やポンプ動作の操作が容易である。
(j)本発明のマイクロバルブ又はマイクロポンプの場合、液体だけでなく気体も扱うことができる。
(k)本発明のマイクロバルブ又はマイクロポンプの場合、シール性が高い。
(l)本発明のマイクロバルブ又はマイクロポンプの場合、高い圧力に対しても使用可能である。
(m)本発明のマイクロバルブは、逆止弁として機能することができるバルブである。
(n)本発明のマイクロバルブは、同一形状で、開閉弁としてばかりでなく逆止弁としても機能することができるバルブである。
(o)本発明のマイクロポンプは、吐出量が大きいポンプである。
(p)本発明のマイクロポンプは、逆流が発生し難いポンプである。
(q)本発明のマイクロポンプは、双方向としても機能するポンプである。
以下、図面を参照しながら本発明のマイクロバルブ及びマイクロポンプの好ましい実施態様について具体的に説明する。
本発明のマイクロバルブは、マイクロチップ内において、対象とする流体(液体又は気体)を流す流路の途中に設け、マイクロバルブを開閉することで、流体を流したり止めたりする流体制御素子としての機能を果たす。
1.1 マイクロバルブの構造
図1は本発明のマイクロバルブの一例の部分上面図であり、図2は図1におけるII-II線に沿った断面図である。本発明のマイクロバルブ3は例えば、マイクロチップ1内に配設される。図2に示されるように、本発明のマイクロバルブ3は基本的に2層構造をしている。第1層5は対象とする流体を流す流路等の役目を果たす。第2層7はマイクロバルブを制御する圧力室等の役目を果たす。しかし、必要に応じて3層以上の構造を採用することもできる。第1層5の形成材料としては、ゴム弾性を有するシリコンラバー(例えば、ポリジメチルシロキサン(PDMS)等)を用いることが好ましい。第2層7の形成材料は特に限定されず、PDMS、ガラス、シリコン又は硬質プラスチックなどから適宜選択して使用することができるが、第1層の形成材料と同じPDMSを使用することが好ましい。第1層5の上面に第2層7を貼り合わせて一体化させることもできるが、後記で説明するように元々から一体構造で製作することもできる。第1層5と第2層7との合体層は基板9に貼り合わされる。基板9は例えば、ガラス、シリコン、プラスチックなどである。なお、図1では第2層7の圧力室等は太い破線で図示され、第1層5の流路等は細い破線で図示されているが、後記の他の平面図においても、上層側の構造物は太い破線で図示し、下層側の構造物は細い破線で図示するものとする。
図2に示されるように、流路11(第1の流路)の端部にはバルブ室13(第1のバルブ室)が形成されており、また、流路15(第2の流路)の端部にはバルブ室17(第2のバルブ室)が形成されており、バルブ室13とバルブ室17とは弁19により仕切られている。弁19の下部(すなわち、弁座21)は基板9の表面と非接着の状態に維持されている。第1層5のバルブ室13とバルブ室17を覆うように第2層7に圧力室23が形成されている。圧力室23は圧力管路25を介して圧力ポート27に接続されている。圧力ポート27から気体(主に空気)を送入したり、吸引することで、圧力室23の圧力を正圧にしたり、負圧にすることができる。
図1では、バルブ室と圧力室は円形形状に図示されているが、円形形状だけに限定されることはなく、矩形あるいはその他の形状でもよい。また、バルブ室と圧力室の直径は同一であることもできるし又は異なっていてもよい。弁19の開閉動作を確実に行うために、圧力室の直径がバルブ室の直径よりも大きいことが好ましい。
図1及び図2のマイクロチップは一例として、基板9は厚さ1mmのガラス製であり、第1層5は厚さ200μmのPDMS製であり、第2層は厚さ2mmのPDMS製である。バルブ室13,17の直径は1mmであり、圧力室23の直径は1.1mmである。また、流路11,15の幅は100μmであり、バルブ室及び流路の高さ(又は深さ)は30μmである。更に、圧力ポート27の直径は2mmであり、圧力管路25の幅は100μmであり、圧力管路及び圧力室の高さ(又は深さ)は150μmである。弁19の幅は30μmである。
1.2 マイクロバルブの開閉動作
次に、図1及び図2に示されたマイクロバルブ3の開閉動作について説明する。
(1)閉状態の維持
マイクロバルブ3の閉状態は図2に示されるような状態である。
圧力室23を大気圧に維持することで、PDMSの持つゴム弾性により弁座21は基板9に押し付けられ、更にPDMSの持つ吸着性により弁座21は基板9に自己吸着し、これによりバルブ室13と17の間の流体の流れは阻止される。
大気圧ではなく、圧力室23をバルブ室13,17より適度な正圧に維持することで、弁座21は更に強い力で基板9に押し付けられ、よってバルブ3を確実に閉じることができる。
加圧送液等によりバルブ室13,17の流体が正圧状態となっている場合は、圧力室23をその圧力と同程度の圧力に維持する。特に流体の圧力の発生が、バルブ室13か17のどちらか片方に限定される場合は、同程度以下の圧力でも閉状態を維持することができる。
吸引送液等によりバルブ室の流体が負圧状態となっている場合は、その負圧の作用により弁座21は基板9に押し付けられ、圧力室に高い正圧を生じさせることなく、バルブは良好な閉状態を保つ。すなわち本発明のマイクロバルブ3は負圧の流体に対して自己シール性を示す。
対象とする流体が気体の場合は、弁座21を強く基板9に押し付けても、PDMSの気体透過性により弁19自身を透過して僅かに気体が流れる時がある。但し、バルブ室13と17の間に大きな差圧が発生している場合に限り、実用的にはほとんど問題ない場合が多い。気体透過性を低減するには、弁19の幅を広くすると効果的である。
(2)閉状態から開状態への移行
バルブ3を閉状態から開状態に移行する場合、弁座21は基板9に対しPDMS層5の吸着性により吸着している場合がある。その時にはやや高い負圧を用いる。
バルブ室13,17の流体が吸引送液等で負圧状態となっている場合は、それと同程度の負圧により、バルブ3を開くことができる。特に流体の圧力の発生が、バルブ室13か17のどちらか片方に限定される場合は、同程度以下の圧力でも閉状態から開状態に移行できる。
(3)開状態の維持
マイクロバルブ3の開状態は図3に示されるような状態である。図4は図3におけるIV-IV線に沿った断面図である。
圧力室23をバルブ室13,17より適度な負圧に維持することで、弁座21は基板9から引き剥がされ、その下側に流体が通過する経路(開口部29)が生じ、流体がバルブ3を通して流れるようになる。この時、圧力室23がバルブ室13,17より大きくても、弁座21以外は基板9と十分な強度で接着しているので、余計な部分が引き剥がされることがない。
吸引送液等によりバルブ室13,17の流体が負圧状態となっている場合は、圧力室23をその圧力と同程度の負力に維持する。
加圧送液等によりバルブ室の流体が正圧状態となっている場合は、その正圧の作用により弁19は基板9から更に上方に押し上げられ、圧力室23に高い負圧を生じさせることなく、バルブは良好な開状態を保つ。すなわち本発明のマイクロバルブ3は正圧の流体に対して自己的に開状態となる性質を持つ。
図3及び図4に示されるように、バルブ3が開状態では弁19がブリッジ状に変形している。開口部29は流路11又は15の断面より大きく、その部分での流れの抵抗は流路によるものより小さく、無視できる大きさである。
開口部29を大きくするには、弁19の長さや高さを大きくすると同時に、圧力室23の高さを大きくし、弁19の変形量を大きくするとよい。
(4)開状態から閉状態への移行
バルブ室13,17に流体が流れている時にバルブ3を閉じる場合は、その流体の圧力より僅かに高い圧力を圧力室23に生じさせればよい。この時、圧力室23の大きさがバルブ室13,17と同等かそれより大きいことが有効に作用する。すなわち圧力室23がバルブ室13,17より小さいと、流体の圧力より十分高い圧力を圧力室23に生じさせる必要がある。
1.3 マイクロバルブのその他の形状
図5〜図9にその他の形状を有する本発明のマイクロバルブの部分概要平面図を示す。
(1)バルブ室の面積を変える(逆止弁構成)
バルブ室13及び17を対称形とはせずに、一方のバルブ室の面積と他方のバルブ室の面積との間に大きな差を持たせることもできる。例えば、図示されているように、弁19が略コ字状に形成され、バルブ室13は面積を大きくし、バルブ室17は面積を小さくしている。これにより、流路15側の流体に大きな圧力が加わっても、小さな圧力でバルブ3を閉状態に維持することができる。
また、圧力室を大気圧のままに維持した状態では、流路11側から加圧送液すると、弁19は持ち上げられ、バルブ3を通して液体は容易に流れる。逆に流路11側から吸引送液しても、バルブ3は閉じで液体は流れない。すなわち逆止弁としての働きが顕著な形状である。よって、図5に示されたマイクロバルブ3は、逆止弁として使用することもできるし、必要に応じて圧力室の圧力を制御することで開閉弁としても使用できるマイクロバルブである。
(2)流路11と15を互いに近傍に配置する
図6及び図7に示されたマイクロバルブ3は、流路11と流路15を互いに近傍に配置したものである。バルブ室に対し同一方向から流路を接続している。マイクロチップ上での配置の点で便利な場合がある。
(3)バルブ室内の流れを改善する
バルブ室13,17は一般的な流路11,15に比べて比較的大きな面積を持たせることが好ましい。その理由は、弁19の基板9に対する鉛直方向の動きをよくし、開口部29を十分大きくする為である。しかし、バルブ室が広いと、液体を流すとバルブ室の隅に空気が残る場合がある。そこでバルブ室13,17を円形ではなく、図8に示すように流線型(楕円形)にし、空気が残り難くすることは有効である。流線型以外にもひし形(図9参照)等、各種の形状が利用できる。
バルブ室13,17を円形以外にした場合、その直上に配設される圧力室23を、バルブ室の形状に合わせることは必ずしも必要ではない。図8及び図9の例では流線型及びひし形のバルブ室13,17に対し、圧力室23は円形のまま用いている。重要なことは、圧力室23が弁9の直上に対応する位置に配設されていることである。
次に、本発明のマイクロポンプについて具体的に説明する。本発明のマイクロポンプは前記の本発明のマイクロバルブを応用したものである。
2.1 基本構造
図10は本発明のマイクロポンプの一例の部分上面図であり、図11は図10におけるXI-XI線に沿った断面図である。図示されているように、このマイクロポンプは基本的に、2個のマイクロバルブに挟まれた1個のポンプ室とからなる。第1のマイクロバルブ3−1は図1に示されたマイクロバルブと構造的に同一である。また、第2のマイクロバルブ3−2は図5に示されたマイクロバルブと構造的に同一である。従って、第1のマイクロバルブ3−1は第1の流路11と該第1の流路に連通する第1のバルブ室13−1と、第2の流路15と、該第2の流路に連通する第2のバルブ室17−1と、前記第1のバルブ室と第2のバルブ室とを仕切る弁19−1を有し、前記弁の弁座が前記基板表面に対して非接着に維持されており、第2のマイクロバルブ3−2は第3の流路32と該第3の流路に連通する第3のバルブ室13−2と、第4の流路40と、該第4の流路に連通する第4のバルブ室17−2と、前記第3のバルブ室と第4のバルブ室とを仕切る弁19−2を有し、前記弁の弁座が前記基板表面に対して非接着に維持されており、ポンプ室30は第2の流路15により第1のマイクロバルブ3−1の第2のバルブ室17−1と連通しており、かつ、第3の流路32により第2のマイクロバルブ3−2の第3のバルブ室13−2と連通しており、第2層7の第1層5との貼り合わせ面側であって、前記第1のマイクロバルブ3−1の弁19−1の直上と第2のマイクロバルブ3−2の弁19−2の直上と、ポンプ室30の直上に対応する位置にそれぞれ圧力室23−1,23−2,34を有する。ポンプ室30のための圧力室34は圧力管路36を介して圧力ポート38に接続されている。
言うまでもなく、第1のマイクロバルブ3−1及び第2のマイクロバルブ3−2は図1〜図9に示された実施態様の各マイクロバルブを適宜組み合わせて使用することができ、各バルブは同一でもよく、異なっていてもよい。
ポンプ室30はポンプ用圧力室34の圧力を変化させることにより、その容積を変化させることができる。例えば圧力室34を負圧にすれば、ポンプ室30の容積は通常状態(外部より力が加わっていない状態)より増加する。また、圧力室34を正圧にすれば、ポンプ室30の容積は通常状態より減少する。容積が増加することを吸引動作、容積が減少することを吐出動作と呼ぶことにする。ポンプ用圧力室34は図示されたようなオープンエアタイプだけでなく、クローズタイプのものも使用できる。この場合、ポンプ用圧力室34には圧力管路36及び圧力ポート38の代わりに、圧力室34の直上に圧電素子のような駆動源を配設することにより圧力室内の圧力を変化させることができる。
例えば、入力側開閉弁となる第1のマイクロバルブ3−1は前述の様にバルブ用圧力室23−1の圧力変化により開閉することができる。出力側開閉弁となる第2のマイクロバルブ3−2も同様であるが、第2のマイクロバルブ3−2として、図5に示されるような逆止弁を用いた場合、第2のマイクロバルブ用圧力室23−2の圧力を制御する必要がなくなる利点がある。ポンプ室30の容積に比べ、各マイクロバルブのバルブ室の容積を小さくすることにより、相対的にバルブ室におけるデッドボリュームを軽減することができる。
2.2 動作
図10及び図11に示された本発明のマイクロポンプを用いてポンプ動作を行う場合の操作を下記の表1に示す。初期状態は入力側開閉弁(第1のマイクロバルブ3−1)と出力側開閉弁(第2のマイクロバルブ3−2)のどちらも閉状態とする。
Figure 2005337415
前記の表1に示されたステップ1からステップ6を1サイクルとし、そのサイクルを繰り返すことによりポンプ動作が行われる。1サイクルで出力側の流路40に吐出される流体の量は、ポンプ室30の吸引時と吐出時の容積の差にほぼ等しい。第2のマイクロバルブ3−2(出力側開閉弁)として逆止弁(図5参照)を設けた場合、出力側開閉弁の開閉動作は必要なくなる。しかし、開閉をスムーズに行う為やポンプの容積効率を上げる為に、積極的に逆止弁を操作しても良い。
2.3 別のポンプ構造
図10及び図11に示された本発明のマイクロポンプでは、2個のマイクロバルブでポンプ室を挟むような構造を有するため、全体的な構造が大きくなるという欠点がある。これはマイクロチップのような限られた面積内にマイクロポンプを配設する場合には致命的である。そこで、本発明のマイクロバルブを2個連結することにより、ポンプ室を不要にした画期的なマイクロポンプを開発することに成功した。
(1)構造
図12は本発明のマイクロポンプの別の実施態様の一例を示す部分上面図であり、図13は図12におけるXIII-XIII線に沿った部分概要断面図である。このマイクロポンプは、入力側開閉弁(第1のマイクロバルブ3−1)とポンプ室とを一体型にし、これに出力側開閉弁(第2のマイクロバルブ3−2)を流路11で接続した構造を有する。すなわち、図10におけるポンプ室30は、第1のマイクロバルブ3−1のバルブ室13−1が代替すると共に、バルブ室13−1は第1のマイクロバルブ3−1の弁19−1の開閉動作にも、その機能を果たす。図示された実施態様では、入力側開閉弁(第1のマイクロバルブ3−1)及び出力側開閉弁(第2のマイクロバルブ3−2)とも図5に示された逆止弁構造を有するが、必ずしもこの逆止弁構造だけに限定されず、図1〜図4及び図6〜図9に示された構造のバルブも使用することができる。第1のマイクロバルブ3−1のバルブ室13−1と第2のマイクロバルブ3−2のバルブ室13−2はほぼ同じ容積を有することが好ましい。
(2)ポンプ動作(操作)
各バルブのバルブ室は正圧、大気圧、負圧の3種類の状態をとれるものとする。
正圧時は弁は閉じ、更に、バルブ室の容積は通常状態(外力が加わっていない状態)より減少する。
大気圧時は、バルブ室に圧力が生じていない場合は、ほぼ弁が閉じた状態となる。バルブ室に正圧が生じた場合は弁は開き、負圧が生じた場合は閉じる。
負圧時は弁は開き、更に、バルブ室の容積は通常状態(外力が加わっていない状態)より増加する。
下記の表2にポンプ動作を行う場合の各所定操作を示す。初期状態は各バルブ室とも正圧の状態とする。
Figure 2005337415
前記表2に示されたステップ1からステップ3を1サイクルとして、そのサイクルを繰り返すことによりポンプ動作を継続することができる。
前記の表2では第2のマイクロバルブ3−2に関しても圧力室13−2の圧力を操作しているが、大気圧のままでも逆止弁として作用する為、ポンプ動作は行われる。但し、ポンプの容積効率を上げる為には、前記表2に示された操作を行うのが好ましい。
また、第2のマイクロバルブ3−2に印加される正圧は、主に弁19−2を確実に閉じる為のものであり、第1のマイクロバルブ3−1に印加される正圧ほど高い必要はない。
図12及び図13に示された構造からも理解されるように、この実施態様におけるマイクロポンプは第1のマイクロバルブ3−1と第2のマイクロバルブ3−2に関して対象構造であり、前記の表2の操作を第1のマイクロバルブ3−1と第2のマイクロバルブ3−2で入れ替えることにより、送液方向を逆にすることができる。すなわち双方向性のポンプとして使用することができる。この双方向性のポンプを別の観点からみれば、流体をバルブ室13−1とバルブ室13−2との間で往復運動させることにより、ポンプをミキサーとしても使用することもできる。
双方向性の必要性がない場合は、第1のマイクロバルブ3−1のバルブ室13−1に比べ、相対的に第2のマイクロバルブ3−2のバルブ室13−2を小さくすることで、ポンプ内のデッドボリュームを軽減することができる。
ポンプ動作を行うのは前記の表2に示された3ステップ動作以外にも様々な方法が考えられるが、ここに示した3ステップの操作は極めて単純で効果も高い方法の一つである。
(3)特徴
図12及び図13に示された2個のマイクロバルブが一体化された形態のマイクロポンプは次のような特徴を有する。
(a)入力側開閉弁とポンプ室が一体になったことにより、構造が極めて単純化される。
(b)同時に、操作も単純化され、圧力源や電磁弁などの圧力操作機器も減らせる。
(c)ポンプ動作のステップ数を減らすことができ、1サイクルの時間が短縮されることにより、高い流量性能が発揮できる。
(d)送液方向が任意に変えられる双方向性のあるポンプである。
図12及び図13に示された2個のマイクロバルブが一体化された形態のマイクロポンプは原理上、1サイクルに1度一定量の流体を吐出する。その為、連続動作させた場合には、流れは断続的になり易い。こうした脈流を軽減する目的で、ポンプの出力側の流路15−2の一部にダンパーを設けることができる。ダンパーはポンプ動作1回の吐出量以上の容積を持ち、圧力により内容積が変化する構造とすることが好ましい。また、ダンパー後に絞りを設けるとダンパー効果が一層向上するので好ましい。
別法として、脈流を軽減させる他の有効な方法は、図14に示されるように、同形状のポンプを並列に配管し、動作を半周期ずらしてポンプ動作させるものである(2連ポンプ)。図14では、第1のマイクロバルブ3−1と第2のマイクロバルブ3−2の組Aと、第3のマイクロバルブ3−3と第4のマイクロバルブ3−4の組Bとを並列に並べ、入力側は流路42を流路15−1と流路15−3に分岐し、出力側は流路15−2と流路15−4を流路44に合流させる。このような2連ポンプ構成によれば、組Aのポンプの吐出に続いて組Bのポンプの吐出を連続的に行わせることができ、脈流が軽減される。
以下、本発明のマイクロバルブ及びマイクロポンプの製造方法について説明する。本発明によるマイクロバルブ及びマイクロポンプは、前記特許文献1に記載されているような一般的なPDMS製マイクロチップの製造方法がそのまま利用可能である。
本発明のマイクロバルブ及びマイクロポンプは基本的に多層構造であり、製造にあたっては、次のような要件を満たすことが好ましい。
(a)基板9はマイクロチップとして或る程度の機械的強度を持たせることができる材質であること。この観点から、基板9はガラス、シリコン、硬質プラスチックなどから形成することが好ましい。
(b)第1層5の流路11などを形成するPDMS層は、厚さが数十μmから数百μm程度の膜(メンブレン)であること。第1層がメンブレンであることと、PDMSのゴム弾性により、弁19の開閉動作やポンプ室30のポンピング動作が可能となる。
(c)第2層7の圧力室34などを設ける層の形成材料は特にこだわらないが、第1層5のPDMS層と接着が可能でなければならない。
図15は最も容易な構造を示す部分概要断面図である。第1層5と第2層7がそれぞれ同じPDMSから形成されており、これらを別々に型成形で製造し、両者を恒久接着(いわゆるパーマネントボンディング)により接着させ、次いで、ポート46,48を穴開け加工し、その後、基板9に貼り合わせることにより図15に示されるような構造体を製造することができる。
別法として、図16に示されるように、第1層5をPDMS製とし、この第1層5の下面側に流路11,15、バルブ室13,17及び弁19を形成し、同時に第1層5の上面側に圧力室23,圧力管路25を形成することができる。このようなPDMS層の両面に微細構造を形成する方法は、本発明者らの先願である特願2003−117862号(発明の名称:マイクロチップ及びその製造方法)明細書に詳述されている。この場合、第2層7Aには圧力ポート27を穴開け加工するだけでよく、微細構造の形成は不要である。第2層7AはPDMS製の第1層5と恒久接着が可能なガラス、シリコン、ポリスチレンなどの硬質プラスチックが適している。
更に別法として、図17に示されるように、第2層7Aがガラス、シリコン、ポリスチレンなどの硬質プラスチックなどからなる場合、第2層7Aの圧力室23を上部基板に直接形成している。上部基板に圧力管路25などの微細構造の形成は困難であるが、単なる穴開け加工程度は可能であり、図17では、その穴がそのまま圧力室23を兼ねている。従って、この穴にチューブなどを接続し、圧力室23の圧力を制御する。
本発明のマイクロバルブ及びマイクロポンプにおいて、弁19の弁座21は基板9と接着してはならない。すなわち選択的接着を行う必要性がある。しかも、弁座21は非常に微小な部分であり、場合によっては数10μmオーダーの精度で接着部分と非接着部分を作り分ける必要がでてくる。
PDMSはガラスやシリコン等の基材に対しては、接着剤を使用しない恒久接着、いわゆるパーマネントボンディングができることが知られている。恒久接着するには接着の前処理としてPDMSや基材に対して適切な表面改質を行う必要がある。表面改質に関しては酸素プラズマやエキシマUV光を用いる等、各種の方法が知られている。この表面改質が行われた部分は接着し、表面改質が行われなかった部分は接着しない。
一方、本発明者らは、本発明者らの先願である特願2003−393443号(発明の名称:選択的な表面改質・洗浄方法)に選択的に表面改質を行う方法を提案している。すなわち、この先願発明の選択的表面改質と恒久接着の原理を併用することにより、本願発明で必要な選択的恒久接着を実施することができる。
基板9の弁座21に対応する部分だけを非接着とする処理を実際に実施することは必ずしも容易ではない。前記のように、本発明によるマイクロバルブやマイクロポンプのキーポイントは、弁19の弁座21を基板9の表面に対して非接着とすることで弁19が基板9から離着し、基板9に対し垂直方向に移動可能とした点である。言い換えれば、第1層5の弁座21以外の部分が基板9から剥がれなければよい。PDMSはガラス鏡面等に対して高い吸着性を示すので、恒久接着は全く行わず、PDMSの吸着力だけで第1層5を基板9と貼り合せても、本発明のマイクロバルブやマイクロポンプをある程度動作させることができる。しかし、PDMSの自己吸着力だけで第1層5を基板9と貼り合せた場合、あまり高い圧力は使用できず、マイクロチップの取り扱いにも細心の注意をはらう必要がある。
そこで、PDMSの自己吸着力を補佐する目的で、貼り合せ強度が必要な部分の近傍に管路を設け、その管路内を負圧吸引することで、吸盤の原理によりPDMSを基板に強く吸着させることができる。このような負圧吸引を用いてPDMSと基板との吸着強度を高める方法は、本願出願人による先願の特願2004−059112号(発明の名称:マイクロチップ及びPDMS基板と対面基板との貼り合わせ方法)明細書に詳述されている。図18は、特願2004−059112号の発明に従って、本発明のマイクロバルブの近傍に負圧吸引管路50を配設した部分概要上面図であり、図19は図18におけるXIX-XIX線に沿った部分概要断面図である。負圧吸引管路50は吸引ポート52に連通している。圧力がかかり、かつ、大きな面積を占めるポンプ室やバルブ室13,17の近傍周辺に負圧管路を配設し、負圧管路内部を負圧吸引するとこでポンプ室やバルブ室13,17の周辺部を基板9に対し強く押し付ける。これによりポンプ室やバルブ室13,17の耐圧力性が増加する。一方、弁19はポンプ室やバルブ室13,17の内部に位置する為、負圧吸引の影響は全く及ばず、自由に可動できる。
図18において、例えば、一点鎖線で示した区域内を非接着とし、その他の区域を恒久接着とする処理は、弁座21だけを非接着とする処理に比べて比較的容易である。本発明のマイクロバルブ又はマイクロポンプにおいて高い圧力を使用しない場合は、所望により第1層5の下面全体を非恒久接着とすることもできる。この場合であっても、負圧管路50の存在により第1層5と基板9との吸着強度は充分得られ、本発明のマイクロバルブ及びマイクロポンプの駆動には支障がなく、しかも、ポンプ室やバルブ室13,17の周辺から流体が漏洩することも無い。
図1及び図2に示される構造を有し、かつ、前記に示す寸法のマイクロバルブを製作した。
(1)閉状態の特性
圧力室を10kPaに維持し、流路内の水を10kPaの圧力で加圧したが、水の流れは観察されなかった。すなわち閉状態は維持された。
(2)閉状態から開状態への移行
流路内の水を10kPaの圧力で加圧した状態で、圧力室を10kPaから−30kPaに変化させたところ、水の流れが観察された。
流路内の水を−10kPaの圧力で吸引した状態で、圧力室を10kPaから−30kPaに変化させたところ、水の流れが観察された。すなわち負圧の流体に対してもバルブを開くことができることが確認された。
(3)開状態の特性
圧力室を−30kPaに維持した状態で、流路に水を1.6kPaで吸引送液を行ったところ、0.3μl/minの流量が観測された。これは途中にバルブ構造を持たない同程度の流路と同じであった。すなわち、バルブにおける流路抵抗は、その他の流路における抵抗より十分小さく、無視しうる大きさであることが確認された。
圧力室を−30kPaに維持した状態で、流路内の水を−10kPaの圧力で吸引したところ、水の流れが観察された。すなわち負圧の流体についてもバルブは開状態を維持できることが確認された。
(4)開状態から閉状態への移行
流路内の水を10kPaの圧力した状態で、圧力室を−30kPaから10kPaに変化させたところ、水の流れが直ちに停止した。すなわち、正圧の流体に対してもバルブを閉じることができることが確認された。
図12及び図13に示される構造を有するマイクロポンプを製造し、実際にポンプ動作を行った。動作条件は次に通りであった。第1のマイクロバルブ3−1のバルブ室13−1及び第2のマイクロバルブ3−2のバルブ室13−2の直径は何れも1mmであり、高さは37μmとした。同様に、圧力室23−1及び23−2の直径は何れも1.3mmであり、高さは150μmとした。第1のマイクロバルブ3−1の正圧は30KPa、負圧は−50KPa、第2のマイクロバルブ3−2の正圧は5KPa、負圧は−30KPaとした。1ステップの時間は0.08秒、1サイクルの時間(周期)は0.24秒(周波数4.17Hz)とした。使用流体は水とした。マイクロポンプの出力ポート(図示されていない)に内径0.25mmのテフロン(登録商標)チューブを接続し、テフロン(登録商標)チューブ内の水の移動量を測定することにより流量を求めた。以上の条件において、流量5.75μl/mmの送液を確認した。
以上の測定結果から次のことが考察される。ポンプの流量は1サイクルの周期にほぼ反比例する。換言すれば、周波数に比例する。但し、あまり短い周期ではポンプの応答が遅れ、1サイクルに吐出する量が減る。換言すれば、ポンプの容積効率が落ちるか、更には全く動作しなくなる。また、使用する空圧機器の応答性の問題となる。前記の実施例では約0.05秒の応答遅れのある電磁弁を用いたので、周期0.08秒未満ではポンプ動作しなくなった。前記の実施例では、1サイクル当たり0.023μlの吐出が行われていたことになる。バルブ室1個当たりの内容積は0.049μlであり、1サイクル当たりポンプ室の約半分が有効にポンプ動作に寄与していることになる。更に、容積効率を上げるには、第1のマイクロバルブ3−1側の正圧や負圧に大きな圧力を用いることが好ましい。
以上、本発明のマイクロバルブ及びマイクロポンプの好ましい実施態様について具体的に説明してきたが、本発明は開示された実施態様にのみ限定されず、様々な改変を行うことができる。本発明のマイクロバルブ及びマイクロポンプはμTASやLab-on-Chipの観点からマイクロチップ内に実装することができる。本発明のマイクロチップは本願明細書に開示され、かつ添付図面に示されたマイクロバルブ及び/又はマイクロポンプを1個以上適宜組み合わせて内蔵することができる。このような本発明の画期的なマイクロバルブ及びマイクロポンプを内部に有するマイクロチップは、その実用性及び経済性が飛躍的に向上される。その結果、本発明のマイクロチップは、医学、獣医学、歯科学、薬学、生命科学、食品、農業、水産など様々な分野で好適に有効利用することができる。特に、本発明のマイクロチップは、蛍光抗体法、in situ Hibridization等に最適なマイクロチップとして、免疫疾患検査、細胞培養、ウィルス固定、病理検査、細胞診、生検組織診、血液検査、細菌検査、タンパク質分析、DNA分析、RNA分析などの広範な領域で安価に使用できる。
本発明のマイクロバルブの一例の部分上面図である。 図1におけるII-II線に沿った断面図である。 図1におけるマイクロバルブ3の開状態を示す部分概要断面図である。 図3におけるIV-IV線に沿った部分概要断面図である。 本発明のマイクロバルブの別の例の部分上面図である。 本発明のマイクロバルブの更に別の例の部分上面図である。 本発明のマイクロバルブの他の例の部分上面図である。 本発明のマイクロバルブの更に他の例の部分上面図である。 本発明のマイクロバルブの異なった例の部分上面図である。 本発明のマイクロポンプの一例の部分上面図である。 図10におけるXI-XI線に沿った断面図である。 本発明のマイクロポンプの別の例の部分上面図である。 図12におけるXIII-XIII線に沿った断面図である。 図12に示されたマイクロポンプを2組並列させた2連ポンプの一例の部分概要上面図である。 本発明のマイクロバルブの製造方法の一例を示す概要断面図である。 本発明のマイクロバルブの製造方法の別の例を示す概要断面図である。 本発明のマイクロバルブの製造方法の他の例を示す概要断面図である。 本発明のマイクロバルブの近傍に特願2004−059112号の発明に係る負圧吸引管路を配設した部分概要上面図である。 図18におけるXIX-XIX線に沿った断面図である。
符号の説明
1 マイクロチップ
3 マイクロバルブ
5 第1層
7 第2層
9 基板
11 流路
13 バルブ室
15 流路
17 バルブ室
19 弁
21 弁座
23 圧力室
25 圧力管路
27 圧力ポート
29 開口部
30 ポンプ室
32 流路
34 圧力室
36 圧力管路
38 圧力ポート
40 流路
42 流路
44 流路
46 入出力ポート
48 入出力ポート
50 負圧吸引管路
52 吸引ポート

Claims (15)

  1. マイクロバルブであって、該マイクロバルブは基板と、該基板上面に貼り合わされた第1層と、該第1層上面に貼り合わされた第2層とからなり、
    前記第1層の前記基板との貼り合わせ面側に、第1の流路と該第1の流路に連通する第1のバルブ室と、第2の流路と、該第2の流路に連通する第2のバルブ室と、前記第1のバルブ室と第2のバルブ室とを仕切る弁を有し、前記弁の弁座が前記基板表面に対して非接着に維持されており、
    前記第2層の前記第1層との貼り合わせ面側であって、前記弁の直上に対応する位置に圧力室を有することを特徴とするマイクロバルブ。
  2. 前記弁が直線状であり、第1のバルブ室の容積と第2のバルブ室の容積が概ね同一であることを特徴とする請求項1に記載のマイクロバルブ。
  3. 前記弁が略コ字状であり、第1のバルブ室の容積が第2のバルブ室の容積よりも大きいことを特徴とする請求項1に記載のマイクロバルブ。
  4. 逆止弁として機能することを特徴とする請求項3に記載のマイクロバルブ。
  5. 前記圧力室には負圧又は正圧を印加することができるように構成されていることを特徴とする請求項1に記載のマイクロバルブ。
  6. 前記基板はガラス、シリコン及び硬質プラスチックからなる群から選択される材料から形成されており、前記第1層はポリジメチルシロキサン(PDMS)から形成されており、前記第2層はPDMS、ガラス、シリコン及び硬質プラスチックからなる群から選択される材料から形成されていることを特徴とする請求項1〜5の何れかに記載のマイクロバルブ。
  7. マイクロポンプであって、該マイクロポンプは、基板と、該基板上面に貼り合わされた第1層と、該第1層上面に貼り合わされた第2層とからなり、
    前記第1層の前記基板との貼り合わせ面側に、ポンプ室を間に挟んで第1のマイクロバルブと第2のマイクロバルブとを有し、
    前記第1のマイクロバルブは第1の流路と該第1の流路に連通する第1のバルブ室と、第2の流路と、該第2の流路に連通する第2のバルブ室と、前記第1のバルブ室と第2のバルブ室とを仕切る弁を有し、前記弁の弁座が前記基板表面に対して非接着に維持されており、
    前記第2のマイクロバルブは第3の流路と該第3の流路に連通する第3のバルブ室と、第4の流路と、該第4の流路に連通する第4のバルブ室と、前記第3のバルブ室と第4のバルブ室とを仕切る弁を有し、前記弁の弁座が前記基板表面に対して非接着に維持されており、
    前記ポンプ室は前記第2の流路により前記第1のマイクロバルブの第2のバルブ室と連通しており、かつ、前記第3の流路により前記第2のマイクロバルブの第3のバルブ室と連通しており、
    前記第2層の前記第1層との貼り合わせ面側であって、前記第1のマイクロバルブの弁の直上と前記第2のマイクロバルブの弁の直上と、前記ポンプ室の直上に対応する位置にそれぞれ圧力室を有することを特徴とするマイクロポンプ。
  8. 前記第1のマイクロバルブの弁が直線状であり、第1のバルブ室の容積と第2のバルブ室の容積が概ね同一であり、前記第2のマイクロバルブの弁が略コ字状であり、第3のバルブ室の容積が第4のバルブ室の容積よりも大きいことを特徴とする請求項7に記載のマイクロポンプ。
  9. 前記第2のマイクロバルブが逆止弁として機能することを特徴とする請求項7又は8に記載のマイクロポンプ。
  10. 前記各圧力室には負圧又は正圧を印加することができるように構成されていることを特徴とする請求項7に記載のマイクロポンプ。
  11. マイクロポンプであって、該マイクロポンプは、基板と、該基板上面に貼り合わされた第1層と、該第1層上面に貼り合わされた第2層とからなり、
    前記第1層の前記基板との貼り合わせ面側に、第1のマイクロバルブと第2のマイクロバルブとを有し、
    前記第1のマイクロバルブは第1の流路と該第1の流路に連通する第1のバルブ室と、第2の流路と、該第2の流路に連通する第2のバルブ室と、前記第1のバルブ室と第2のバルブ室とを仕切る弁を有し、前記弁の弁座が前記基板表面に対して非接着に維持されており、
    前記第2のマイクロバルブは、前記第1のマイクロバルブの第1のバルブ室の第1の流路と連通する第3のバルブ室と、第4の流路と、該第4の流路に連通する第4のバルブ室と、前記第3のバルブ室と第4のバルブ室とを仕切る弁を有し、前記弁の弁座が前記基板表面に対して非接着に維持されており、
    前記第2層の前記第1層との貼り合わせ面側であって、前記第1のマイクロバルブの弁の直上と前記第2のマイクロバルブの弁の直上に対応する位置にそれぞれ圧力室を有することを特徴とするマイクロポンプ。
  12. 前記各弁は略コ字状であり、第1のバルブ室の容積が第2のバルブ室の容積よりも大きく、かつ、第3のバルブ室の容積が第4のバルブ室の容積よりも大きいことを特徴とする請求項11に記載のマイクロポンプ。
  13. 前記第1のマイクロバルブ及び第2のマイクロバルブがそれぞれ逆止弁として機能することを特徴とする請求項11又は12に記載のマイクロポンプ。
  14. 前記基板はガラス、シリコン及び硬質プラスチックからなる群から選択される材料から形成されており、前記第1層はポリジメチルシロキサン(PDMS)から形成されており、前記第2層はPDMS、ガラス、シリコン及び硬質プラスチックからなる群から選択される材料から形成されていることを特徴とする請求項7〜13の何れかに記載のマイクロポンプ。
  15. 請求項1〜6の何れかに記載のマイクロバルブ及び/又は請求項7〜14の何れかに記載のマイクロポンプを有することを特徴とするマイクロチップ。
JP2004158576A 2004-05-28 2004-05-28 マイクロバルブ、マイクロポンプ及びこれらを内蔵するマイクロチップ Expired - Fee Related JP4372616B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004158576A JP4372616B2 (ja) 2004-05-28 2004-05-28 マイクロバルブ、マイクロポンプ及びこれらを内蔵するマイクロチップ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004158576A JP4372616B2 (ja) 2004-05-28 2004-05-28 マイクロバルブ、マイクロポンプ及びこれらを内蔵するマイクロチップ

Publications (2)

Publication Number Publication Date
JP2005337415A true JP2005337415A (ja) 2005-12-08
JP4372616B2 JP4372616B2 (ja) 2009-11-25

Family

ID=35491206

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004158576A Expired - Fee Related JP4372616B2 (ja) 2004-05-28 2004-05-28 マイクロバルブ、マイクロポンプ及びこれらを内蔵するマイクロチップ

Country Status (1)

Country Link
JP (1) JP4372616B2 (ja)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007303410A (ja) * 2006-05-12 2007-11-22 Kyoto Univ マイクロポンプの構造
JP2009525728A (ja) * 2006-02-03 2009-07-16 マイクロチップ バイオテクノロジーズ, インコーポレイテッド マイクロ流体デバイス
JP2009220477A (ja) * 2008-03-18 2009-10-01 Aida Eng Ltd 非接着部を有するマイクロチップの製造方法
JP2010501810A (ja) * 2006-08-29 2010-01-21 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング 流体流を制御するためのモジュールの製造方法および該方法により製造されたモジュール
JP2010522851A (ja) * 2007-03-21 2010-07-08 オングストローム パワー インク. 流体制御システムと製造方法
US8388908B2 (en) 2009-06-02 2013-03-05 Integenx Inc. Fluidic devices with diaphragm valves
KR101244285B1 (ko) * 2011-12-21 2013-03-18 충남대학교산학협력단 액적 발생용 마이크로 유체칩, 액적 반응용 마이크로 유체칩 및 다중 액적반응 분석장치
US8431390B2 (en) 2004-09-15 2013-04-30 Integenx Inc. Systems of sample processing having a macro-micro interface
US8512538B2 (en) 2010-05-28 2013-08-20 Integenx Inc. Capillary electrophoresis device
US8557518B2 (en) 2007-02-05 2013-10-15 Integenx Inc. Microfluidic and nanofluidic devices, systems, and applications
US8562918B2 (en) 2009-06-05 2013-10-22 Integenx Inc. Universal sample preparation system and use in an integrated analysis system
US8584703B2 (en) 2009-12-01 2013-11-19 Integenx Inc. Device with diaphragm valve
US8748165B2 (en) 2008-01-22 2014-06-10 Integenx Inc. Methods for generating short tandem repeat (STR) profiles
US9073054B2 (en) 2012-07-05 2015-07-07 Riken Fluid-controlling device for microchip and use thereof
WO2015119290A1 (ja) 2014-02-10 2015-08-13 株式会社エンプラス 液体取扱装置
US9121058B2 (en) 2010-08-20 2015-09-01 Integenx Inc. Linear valve arrays
US10100949B2 (en) 2015-05-01 2018-10-16 Asahi Fr R&D Co., Ltd. Check-valve and microchemical chip using the same
US10191071B2 (en) 2013-11-18 2019-01-29 IntegenX, Inc. Cartridges and instruments for sample analysis
US10208332B2 (en) 2014-05-21 2019-02-19 Integenx Inc. Fluidic cartridge with valve mechanism
US10525467B2 (en) 2011-10-21 2020-01-07 Integenx Inc. Sample preparation, processing and analysis systems
US10690627B2 (en) 2014-10-22 2020-06-23 IntegenX, Inc. Systems and methods for sample preparation, processing and analysis
US10865440B2 (en) 2011-10-21 2020-12-15 IntegenX, Inc. Sample preparation, processing and analysis systems
WO2022113372A1 (ja) * 2020-11-30 2022-06-02 エレファンテック株式会社 樹脂組立品及び製造方法

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9752185B2 (en) 2004-09-15 2017-09-05 Integenx Inc. Microfluidic devices
US8431390B2 (en) 2004-09-15 2013-04-30 Integenx Inc. Systems of sample processing having a macro-micro interface
US8551714B2 (en) 2004-09-15 2013-10-08 Integenx Inc. Microfluidic devices
JP2009525728A (ja) * 2006-02-03 2009-07-16 マイクロチップ バイオテクノロジーズ, インコーポレイテッド マイクロ流体デバイス
JP2007303410A (ja) * 2006-05-12 2007-11-22 Kyoto Univ マイクロポンプの構造
JP2010501810A (ja) * 2006-08-29 2010-01-21 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング 流体流を制御するためのモジュールの製造方法および該方法により製造されたモジュール
US8557518B2 (en) 2007-02-05 2013-10-15 Integenx Inc. Microfluidic and nanofluidic devices, systems, and applications
JP5503095B1 (ja) * 2007-03-21 2014-05-28 ソシエテ ビック 流体制御システム
JP2010522851A (ja) * 2007-03-21 2010-07-08 オングストローム パワー インク. 流体制御システムと製造方法
US8748165B2 (en) 2008-01-22 2014-06-10 Integenx Inc. Methods for generating short tandem repeat (STR) profiles
JP2009220477A (ja) * 2008-03-18 2009-10-01 Aida Eng Ltd 非接着部を有するマイクロチップの製造方法
US8388908B2 (en) 2009-06-02 2013-03-05 Integenx Inc. Fluidic devices with diaphragm valves
US8562918B2 (en) 2009-06-05 2013-10-22 Integenx Inc. Universal sample preparation system and use in an integrated analysis system
US9012236B2 (en) 2009-06-05 2015-04-21 Integenx Inc. Universal sample preparation system and use in an integrated analysis system
US8584703B2 (en) 2009-12-01 2013-11-19 Integenx Inc. Device with diaphragm valve
US8512538B2 (en) 2010-05-28 2013-08-20 Integenx Inc. Capillary electrophoresis device
US9121058B2 (en) 2010-08-20 2015-09-01 Integenx Inc. Linear valve arrays
US9731266B2 (en) 2010-08-20 2017-08-15 Integenx Inc. Linear valve arrays
US11684918B2 (en) 2011-10-21 2023-06-27 IntegenX, Inc. Sample preparation, processing and analysis systems
US10525467B2 (en) 2011-10-21 2020-01-07 Integenx Inc. Sample preparation, processing and analysis systems
US10865440B2 (en) 2011-10-21 2020-12-15 IntegenX, Inc. Sample preparation, processing and analysis systems
KR101244285B1 (ko) * 2011-12-21 2013-03-18 충남대학교산학협력단 액적 발생용 마이크로 유체칩, 액적 반응용 마이크로 유체칩 및 다중 액적반응 분석장치
US9073054B2 (en) 2012-07-05 2015-07-07 Riken Fluid-controlling device for microchip and use thereof
US10191071B2 (en) 2013-11-18 2019-01-29 IntegenX, Inc. Cartridges and instruments for sample analysis
US10989723B2 (en) 2013-11-18 2021-04-27 IntegenX, Inc. Cartridges and instruments for sample analysis
US10029255B2 (en) 2014-02-10 2018-07-24 Enplas Corporation Liquid handling device
WO2015119290A1 (ja) 2014-02-10 2015-08-13 株式会社エンプラス 液体取扱装置
US10208332B2 (en) 2014-05-21 2019-02-19 Integenx Inc. Fluidic cartridge with valve mechanism
US10961561B2 (en) 2014-05-21 2021-03-30 IntegenX, Inc. Fluidic cartridge with valve mechanism
US11891650B2 (en) 2014-05-21 2024-02-06 IntegenX, Inc. Fluid cartridge with valve mechanism
US10690627B2 (en) 2014-10-22 2020-06-23 IntegenX, Inc. Systems and methods for sample preparation, processing and analysis
US12099032B2 (en) 2014-10-22 2024-09-24 IntegenX, Inc. Systems and methods for sample preparation, processing and analysis
US10100949B2 (en) 2015-05-01 2018-10-16 Asahi Fr R&D Co., Ltd. Check-valve and microchemical chip using the same
WO2022113372A1 (ja) * 2020-11-30 2022-06-02 エレファンテック株式会社 樹脂組立品及び製造方法

Also Published As

Publication number Publication date
JP4372616B2 (ja) 2009-11-25

Similar Documents

Publication Publication Date Title
JP4372616B2 (ja) マイクロバルブ、マイクロポンプ及びこれらを内蔵するマイクロチップ
Grover et al. Monolithic membrane valves and diaphragm pumps for practical large-scale integration into glass microfluidic devices
US10900886B2 (en) Microfluidic particle analysis method, device and system
Pourmand et al. Fabrication of whole-thermoplastic normally closed microvalve, micro check valve, and micropump
Zhang et al. Micropumps, microvalves, and micromixers within PCR microfluidic chips: Advances and trends
JP5967552B2 (ja) マイクロポンプまたはノーマルオフ型(normally−off)マイクロバルブ
JP4403000B2 (ja) マイクロチップ及びマイクロポンプ
US7870964B2 (en) Implementation of microfluidic components in a microfluidic system
JP3725109B2 (ja) マイクロ流体デバイス
US6921253B2 (en) Dual chamber micropump having checkvalves
US20020148992A1 (en) Pneumatic valve interface for use in microfluidic structures
CN102298069B (zh) 用于微型化流体输送及分析系统的一致性阀操作的阀结构
TWI666398B (zh) 流體控制裝置
JP2005537923A (ja) ミクロ流動システムにおけるミクロ流動部品の実装
JP2011030522A (ja) マイクロ流体デバイス
JP4824743B2 (ja) マイクロ流路チップ
JP5104316B2 (ja) 受動型一方弁及びマイクロ流体デバイス
US10758903B2 (en) Microfluidic devices for multi-index biochemical detection
JP2006053064A (ja) マイクロ流体チップ及びその製造方法
JP2010065584A (ja) 送液ポンプ及び該ポンプによる送液方法
JP2005249540A (ja) マイクロチップ及びpdms基板と対面基板との貼り合わせ方法
JP2006029485A (ja) マイクロバルブ及び該バルブを有するマイクロ流体デバイス
US10391425B2 (en) Fluidic device and degassing method
JP2006026791A (ja) マイクロ流体チップ
KR101635459B1 (ko) 프로그래밍 가능한 마이크로 펌프

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060810

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090319

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090319

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090901

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090902

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120911

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120911

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130911

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees