JP2005334594A - Medication patch with carbon nanotube protrusion - Google Patents
Medication patch with carbon nanotube protrusion Download PDFInfo
- Publication number
- JP2005334594A JP2005334594A JP2004184297A JP2004184297A JP2005334594A JP 2005334594 A JP2005334594 A JP 2005334594A JP 2004184297 A JP2004184297 A JP 2004184297A JP 2004184297 A JP2004184297 A JP 2004184297A JP 2005334594 A JP2005334594 A JP 2005334594A
- Authority
- JP
- Japan
- Prior art keywords
- skin
- needle
- drug
- carbon nanotube
- drug administration
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Media Introduction/Drainage Providing Device (AREA)
- Medicinal Preparation (AREA)
- Surgical Instruments (AREA)
Abstract
Description
本発明は、ワクチン等の薬剤を経皮輸送することで、患者に痛みを与えない感染症、癌、アレルギー等の治療を行う免疫療法に関する。The present invention relates to immunotherapy for treating infections, cancers, allergies and the like that do not cause pain to patients by transdermal transport of drugs such as vaccines.
従来、ワクチン等を経皮輸送することで、患者に痛みを与えない感染症、癌、アレルギー等の治療を行う免疫療法として、感染症予防のためのワクチンや癌治療用癌ペプチド等を、10μm〜100μm程度の均一な長さの突起状の針を平面状に多数配列した上で、薬剤を投与パッチ上に塗りこみ、皮膚に押し当てて行うワクチン等経皮輸送方法が実施されている。Conventionally, as an immunotherapy for treating infections, cancer, allergies, etc. that does not cause pain to the patient by transdermal transport of vaccines, etc., vaccines for preventing infections, cancer peptides for cancer treatment, etc. are 10 μm. A transdermal transport method such as a vaccine is performed in which a large number of protrusion-like needles having a uniform length of about 100 μm are arranged in a plane, a drug is applied onto an administration patch, and pressed against the skin.
この方法であれば、針の高さが微小であるため、血管や神経まで針が届かず、患者に痛みを与えることがなく、また出血することもなく、実際に治療を行う医師等の立場とすれば、誤った針さしトラブルを防ぐといった効果も期待されている。With this method, the needle is so small that the needle does not reach the blood vessels and nerves, does not hurt the patient, does not bleed, and is the position of a doctor who actually performs treatment. If this is the case, it is also expected to have the effect of preventing erroneous needle-pointing troubles.
このように、ワクチン等を経皮輸送する免疫療法には、さまざまな優れた側面があるが、現在開発されている、感染症予防や癌治療用蛋白ペプチド、DNA、プラスミドDNA、ウィルスDNA、RNA、あるいはこれらを含んだリポソーム等(以下ワクチン材料という)を塗りこむための薬剤投与パッチでは、使用されている微小な突起状の針が、注射針のような中空構造となっていないため、あくまでもワクチン材料は、微小な突起状の針の表面に塗布した状態で、皮膚に押しあてることになり、針が皮膚に挿入される過程で、針表面に塗布された薬剤が、皮膚と針との摩擦接触の影響で、皮膚に剥ぎ取られてしまい、体内にうまく浸透されないという問題がある。Thus, there are various excellent aspects of immunotherapy for transdermal delivery of vaccines, etc., but currently developed protein peptides, DNA, plasmid DNA, viral DNA, RNA for infectious disease prevention and cancer treatment In a drug administration patch for coating liposomes containing these or the like (hereinafter referred to as vaccine material), the minute protruding needle used is not a hollow structure like an injection needle. The vaccine material is pressed against the skin in the state of being applied to the surface of a fine protruding needle, and in the process of inserting the needle into the skin, the drug applied to the needle surface is contacted between the skin and the needle. There is a problem that it is peeled off by the skin under the influence of frictional contact and does not penetrate well into the body.
また、皮膚の表面には、皮膚バリヤーとしての角層があり、角層の状態は、人によって厚み・堅さ等がさまざまであり、また、同じ皮膚上でも厚みの差があったり、表面の凹凸にも角層の厚みの差が影響を与えており、このことが、経皮輸送のために薬剤投与パッチを皮膚に押し付けても針が均一に挿入されず、ワクチン材料が常に均等に浸透されないという問題がある。In addition, there is a stratum corneum as a skin barrier on the surface of the skin, and the state of the stratum corneum varies in thickness and firmness depending on the person. The difference in the thickness of the stratum corneum also affects the unevenness, which means that even when the drug administration patch is pressed against the skin for transdermal transport, the needle is not inserted uniformly, and the vaccine material always penetrates evenly. There is a problem that it is not.
本発明では、このような問題を解決するために、感染症やアレルギー予防、あるいは癌治療用のワクチン材料を経皮輸送するための針状突起を有する薬剤投与パッチにおいて、その針としてカーボンナノチューブを使用し配列したことを特徴とする。In the present invention, in order to solve such problems, a carbon nanotube is used as a needle in a drug administration patch having needle-like protrusions for transdermally transporting a vaccine material for infection or allergy prevention or cancer treatment. It is used and arranged.
また、本薬剤投与パッチを皮膚に押し付ける前に、粘着材等を使用して皮膚の角層を剥離することで、皮膚表面の状態を、均一で安定した状態とすることが可能となり、そのような状態にしてから、皮膚に薬剤投与パッチを押し当てることにより、針の挿入をより容易とし、ワクチン材料のより均等な浸透が可能になることを特徴とする。In addition, it is possible to make the skin surface uniform and stable by peeling the stratum corneum of the skin using an adhesive or the like before pressing the drug administration patch against the skin. By pressing the drug administration patch against the skin after being in a clean state, the needle can be more easily inserted, and the vaccine material can be more evenly penetrated.
本薬剤投与パッチにおいて、平面状に配列されたの針の材料としてカーボンナノチューブを使用することにより、ワクチン材料を表面に塗布した場合、カーボンナノチューブ内の空洞にワクチン材料を保持することが可能となり、薬剤投与パッチを皮膚に押し付け、針が挿入された時に、皮膚にワクチン材料が剥ぎ取られることなく、ワクチン材料を充分に浸透させることが可能となる。In this drug administration patch, by using carbon nanotubes as the needle material arranged in a plane, when vaccine material is applied on the surface, it becomes possible to hold the vaccine material in the cavity inside the carbon nanotube, When the drug administration patch is pressed against the skin and the needle is inserted, the vaccine material can be sufficiently penetrated without being peeled off from the skin.
あるいは、本発明のカーボンナノチューブ突起を有する薬剤投与パッチの裏面側に、ワクチン材料を塗布して、皮膚に押し付けた場合には、ワクチン材料が、カーボンナノチューブの空洞内を、微量づつ流れて、皮膚内に浸透することが可能となる。Alternatively, when the vaccine material is applied to the back side of the drug administration patch having the carbon nanotube protrusions of the present invention and pressed against the skin, the vaccine material flows in a minute amount in the cavity of the carbon nanotube, and the skin It is possible to penetrate inside.
また、本薬剤投与パッチを皮膚に押し付ける前に、粘着材等を使用して皮膚の角層を剥離することで、皮膚表面の状態を、均一で安定した状態とすることが可能となり、そのような状態にしてから、皮膚に薬剤投与パッチを押し当てることにより、針の挿入がより容易となり、ワクチン材料のより均等な浸透が常に可能となる。In addition, it is possible to make the skin surface uniform and stable by peeling the stratum corneum of the skin using an adhesive or the like before pressing the drug administration patch against the skin. By pressing the drug administration patch against the skin after it is in a clean state, needle insertion becomes easier and a more even penetration of the vaccine material is always possible.
以下、本発明の実施例を図面に基づき説明する。従来の微小な突起状の針を平面上に配列した薬剤投与パッチの形状を図1に示す。図からわかるように、微小な突起状の針1が空洞を持っていないことが特徴である。針の高さは、10μm〜100μm程度であり、薬剤投与パッチを皮膚に押し付ける場合を考えると、治療を行う部位は、腕や背中などに限られており、その部位において、表皮の死がいである図3の角層3を突き通すだけの高さを持ち、かつ、表皮4までしか針は届かず、血管や神経が存在する真皮5を傷つけることがないため、出血や痛みを与えることなく治療を行うことができる。しかし、針に空洞がないために、針が皮膚に挿入される過程で、針表面に塗布された薬剤が、皮膚と針との摩擦接触の影響で、皮膚に剥ぎ取られてしまい、体内にうまく浸透されないという問題がある。Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows the shape of a conventional drug administration patch in which fine projection needles are arranged on a plane. As can be seen from the figure, the minute protruding needle 1 is characterized by not having a cavity. The height of the needle is about 10 μm to 100 μm, and considering the case where the drug administration patch is pressed against the skin, the site to be treated is limited to the arm or back, and the epidermis is dead at that site Since it has enough height to penetrate the stratum corneum 3 in FIG. 3 and the needle reaches only the
それに対して、本発明のカーボンナノチューブで構成された微小な突起状の針を配列した薬剤投与パッチの形状を図2に示す。図からわかるように、微小な突起状の針2が、注射針のごとく中空構造になっていることが特徴である。針の高さは、10μm〜100μm程度である。また、チューブの内径は、使用するワクチン材料にあわせて、10nm〜数百nm程度のものを使用する。このように、中空構造になっていることにより、ワクチン材料を表面に塗布した場合、カーボンナノチューブ内の空洞にワクチン材料を保持することが可能となり、薬剤投与パッチを皮膚に押し付け、針が挿入された時に、皮膚にワクチン材料が剥ぎ取られることなく、ワクチン材料を充分に浸透させることが可能となる。On the other hand, FIG. 2 shows the shape of a drug administration patch in which minute protruding needles composed of the carbon nanotubes of the present invention are arranged. As can be seen from the figure, the minute protruding needle 2 has a hollow structure like an injection needle. The height of the needle is about 10 μm to 100 μm. The tube has an inner diameter of about 10 nm to several hundred nm in accordance with the vaccine material to be used. In this way, when the vaccine material is applied to the surface due to the hollow structure, it becomes possible to hold the vaccine material in the cavity inside the carbon nanotube, pressing the drug administration patch against the skin, and inserting the needle The vaccine material can be sufficiently permeated without peeling off the vaccine material on the skin.
あるいは、薬剤投与パッチの裏面側に、ワクチン材料を塗布して、皮膚に押し付けた場合には、ワクチン材料が、カーボンナノチューブの空洞内を、微量づつ流れて、皮膚内に浸透することが可能となる。Alternatively, when the vaccine material is applied to the back side of the drug administration patch and pressed against the skin, the vaccine material can flow through the carbon nanotube cavities in small amounts and penetrate into the skin. Become.
図3に、通常での皮膚の表面状態を示す。通常、皮膚には、皮膚バリヤーとしての角層3があり、角層3の状態は、人によって厚み・堅さ等がさまざまであり、また、同じ皮膚上でも厚みの差があったり、表面の凹凸にも角層の厚みの差が影響を与えており、このことが、経皮輸送のために薬剤投与パッチを皮膚に押し付けても針が均一に挿入されず、ワクチン材料が常に均等に浸透されない問題へとつながることになる。FIG. 3 shows a normal skin surface state. Usually, the skin has a stratum corneum 3 as a skin barrier, and the state of the stratum corneum 3 varies in thickness and hardness depending on the person. Also, there is a difference in thickness even on the same skin, The difference in the thickness of the stratum corneum also affects the unevenness, which means that even when the drug administration patch is pressed against the skin for transdermal transport, the needle is not inserted uniformly, and the vaccine material always penetrates evenly. Will lead to problems that are not.
しかし、図4に示すように、薬剤を塗った薬剤投与パッチを皮膚に押し付ける前に、角層3を粘着材等で剥離しておけば,皮膚表面の状態は、均一で安定した状態となり、皮膚表面をそのような状態にしてから、薬剤投与パッチを皮膚に押し付けることにより、常により均等に薬剤を浸透させることが可能になる。図5に、このように、角層を剥離した状態で、ワクチン材料6を塗布した薬剤投与パッチ7を押し付けた状態を示す。However, as shown in FIG. 4, if the stratum corneum 3 is peeled off with an adhesive material or the like before the drug administration patch coated with the drug is pressed against the skin, the skin surface becomes a uniform and stable state. By making the skin surface in such a state and then pressing the drug administration patch against the skin, it becomes possible to always allow the drug to penetrate more evenly. FIG. 5 shows a state in which the drug administration patch 7 to which the vaccine material 6 is applied is pressed in a state where the stratum corneum has been peeled.
1・・・空洞を持たない微小な突起状の針
2・・・カーボンナノチューブで構成された微小な突起状の針
3・・・角層
4・・・表皮
5・・・真皮
6・・・ワクチン材料
7・・・薬剤投与パッチDESCRIPTION OF SYMBOLS 1 ... Micro projection needle 2 without a cavity 2 ... Micro projection needle 3 comprised of carbon nanotubes ...
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004184297A JP2005334594A (en) | 2004-05-27 | 2004-05-27 | Medication patch with carbon nanotube protrusion |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004184297A JP2005334594A (en) | 2004-05-27 | 2004-05-27 | Medication patch with carbon nanotube protrusion |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2005334594A true JP2005334594A (en) | 2005-12-08 |
Family
ID=35488767
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004184297A Pending JP2005334594A (en) | 2004-05-27 | 2004-05-27 | Medication patch with carbon nanotube protrusion |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2005334594A (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007080435A1 (en) * | 2006-01-09 | 2007-07-19 | Michael Solomakakis | Mosquito needle comprising carbon nanotubes |
US20100022864A1 (en) * | 2008-05-02 | 2010-01-28 | Aspect Medical Systems, Inc. | Skin preparation device and biopotential sensor |
WO2010013350A1 (en) | 2008-08-01 | 2010-02-04 | Aspion株式会社 | S/o type transdermal immunizing agent |
JP2010514479A (en) * | 2006-12-22 | 2010-05-06 | バイ シュー, | Microdevices and methods for transdermal delivery and sampling of active agents |
KR100991731B1 (en) | 2008-04-11 | 2010-11-03 | 한국과학기술원 | Carbon nano tube patch, the fabrication method of the same, the using method of the same |
CN102292114A (en) * | 2009-01-27 | 2011-12-21 | 加州理工学院 | Drug delivery and substance transfer facilitated by nano-enhanced device having aligned carbon nanotubes protruding from device surface |
WO2015103214A1 (en) * | 2013-12-30 | 2015-07-09 | Molecular Rebar Design, Llc | Transdermal patches with discrete carbon nanotubes |
US9493626B1 (en) | 2010-12-14 | 2016-11-15 | Molecular Rebar Design, Llc | Dispersions comprising discrete carbon nanotube fibers |
KR101794377B1 (en) | 2010-04-28 | 2017-11-06 | 킴벌리-클라크 월드와이드, 인크. | Composite microneedle array including nanostructures thereon |
KR20230034084A (en) * | 2021-09-02 | 2023-03-09 | 서울대학교산학협력단 | Neural multifunctional device and method of manufacturing the same |
-
2004
- 2004-05-27 JP JP2004184297A patent/JP2005334594A/en active Pending
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007080435A1 (en) * | 2006-01-09 | 2007-07-19 | Michael Solomakakis | Mosquito needle comprising carbon nanotubes |
JP2010514479A (en) * | 2006-12-22 | 2010-05-06 | バイ シュー, | Microdevices and methods for transdermal delivery and sampling of active agents |
KR100991731B1 (en) | 2008-04-11 | 2010-11-03 | 한국과학기술원 | Carbon nano tube patch, the fabrication method of the same, the using method of the same |
EP2280645A4 (en) * | 2008-05-02 | 2013-09-18 | Aspect Medical Systems Inc | Skin preparation device and biopotential sensor |
EP2280645A2 (en) * | 2008-05-02 | 2011-02-09 | Aspect Medical Systems, Inc. | Skin preparation device and biopotential sensor |
US20100022864A1 (en) * | 2008-05-02 | 2010-01-28 | Aspect Medical Systems, Inc. | Skin preparation device and biopotential sensor |
US8700122B2 (en) * | 2008-05-02 | 2014-04-15 | Covidien Lp | Skin preparation device and biopotential sensor |
WO2010013350A1 (en) | 2008-08-01 | 2010-02-04 | Aspion株式会社 | S/o type transdermal immunizing agent |
CN102292114A (en) * | 2009-01-27 | 2011-12-21 | 加州理工学院 | Drug delivery and substance transfer facilitated by nano-enhanced device having aligned carbon nanotubes protruding from device surface |
JP2012516202A (en) * | 2009-01-27 | 2012-07-19 | カリフォルニア インスティチュート オブ テクノロジー | Drug delivery and mass transfer facilitated by nano-reinforced devices with oriented carbon nanotubes protruding from the device surface |
KR101794377B1 (en) | 2010-04-28 | 2017-11-06 | 킴벌리-클라크 월드와이드, 인크. | Composite microneedle array including nanostructures thereon |
US9493626B1 (en) | 2010-12-14 | 2016-11-15 | Molecular Rebar Design, Llc | Dispersions comprising discrete carbon nanotube fibers |
US9636649B2 (en) | 2010-12-14 | 2017-05-02 | Molecular Rebar Design, Llc | Dispersions comprising discrete carbon nanotube fibers |
WO2015103214A1 (en) * | 2013-12-30 | 2015-07-09 | Molecular Rebar Design, Llc | Transdermal patches with discrete carbon nanotubes |
KR20230034084A (en) * | 2021-09-02 | 2023-03-09 | 서울대학교산학협력단 | Neural multifunctional device and method of manufacturing the same |
WO2023033277A1 (en) * | 2021-09-02 | 2023-03-09 | 서울대학교 산학협력단 | Neural multi-functional device and manufacturing method therefor |
KR102566813B1 (en) | 2021-09-02 | 2023-08-11 | 서울대학교산학협력단 | Neural multifunctional device and method of manufacturing the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10391290B2 (en) | Microneedle injection apparatus comprising a dual cover | |
US8043250B2 (en) | High-aspect-ratio microdevices and methods for transdermal delivery and sampling of active substances | |
US11052231B2 (en) | Microarray for delivery of therapeutic agent and methods of use | |
US20190151638A1 (en) | Microneedle using bioabsorbable metal | |
KR101747099B1 (en) | Method of Preparing Micro-Needle Using Biocompatible Polymer | |
EP2056921B1 (en) | High-aspect-ratio microdevices for transdermal delivery and sampling of active substances | |
EP1590034B1 (en) | Microneedle array patch | |
US8506530B2 (en) | Microneedles to be placed in the skin for the transdermal application of pharmaceuticals | |
Sachdeva et al. | Microneedles and their applications | |
BR112020007566A2 (en) | applicator to apply a microneedle matrix to the skin | |
JP2016511014A5 (en) | ||
US20040138610A1 (en) | Active agent delivery device having composite members | |
JP2007535337A (en) | Delivery of therapeutic peptide and protein polymer conjugates by coated microprojections | |
KR102186163B1 (en) | Microstructures patch for multi-function | |
ES2800507T3 (en) | Manufacturing method of a microstructure | |
Jana et al. | Microneedle–Future prospect for efficient drug delivery in diabetes management | |
JP7398606B2 (en) | Hybrid methods of forming microstructure array molds, methods of making microstructure arrays, and methods of use | |
KR20190080325A (en) | Micro-needle | |
JP2005334594A (en) | Medication patch with carbon nanotube protrusion | |
Agrawal et al. | Microneedles: An advancement to transdermal drug delivery system approach | |
Tabassum et al. | Microneedle technology: a new drug delivery system | |
JP2003116962A (en) | Acupuncture and moxibustion needle | |
Mi et al. | Microneedles: a potent modern tool in enhancing transdermal drug delivery | |
KR102244030B1 (en) | Assistannt kits for injecting liquid medicine of painless injection device without needle | |
Bakshi et al. | Painless microneedles for intradermal delivery of vaccines |