JP2005329122A - Pulse wave propagation speed measuring device - Google Patents
Pulse wave propagation speed measuring device Download PDFInfo
- Publication number
- JP2005329122A JP2005329122A JP2004151745A JP2004151745A JP2005329122A JP 2005329122 A JP2005329122 A JP 2005329122A JP 2004151745 A JP2004151745 A JP 2004151745A JP 2004151745 A JP2004151745 A JP 2004151745A JP 2005329122 A JP2005329122 A JP 2005329122A
- Authority
- JP
- Japan
- Prior art keywords
- pulse wave
- heart
- knee
- wave propagation
- cuff
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 210000003127 knee Anatomy 0.000 claims abstract description 49
- 238000005259 measurement Methods 0.000 abstract description 17
- 230000000717 retained effect Effects 0.000 abstract 1
- 210000003423 ankle Anatomy 0.000 description 33
- 210000001765 aortic valve Anatomy 0.000 description 13
- 230000000638 stimulation Effects 0.000 description 11
- 238000006243 chemical reaction Methods 0.000 description 9
- 210000001367 artery Anatomy 0.000 description 8
- 238000010586 diagram Methods 0.000 description 8
- 238000012545 processing Methods 0.000 description 7
- 210000002302 brachial artery Anatomy 0.000 description 6
- 206010003210 Arteriosclerosis Diseases 0.000 description 5
- 208000011775 arteriosclerosis disease Diseases 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 210000000707 wrist Anatomy 0.000 description 5
- 210000001699 lower leg Anatomy 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 210000004204 blood vessel Anatomy 0.000 description 3
- 210000000709 aorta Anatomy 0.000 description 2
- 230000036772 blood pressure Effects 0.000 description 2
- 230000000630 rising effect Effects 0.000 description 2
- 206010005746 Blood pressure fluctuation Diseases 0.000 description 1
- 210000000467 autonomic pathway Anatomy 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 210000002414 leg Anatomy 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 230000003387 muscular Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000011514 reflex Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 230000002792 vascular Effects 0.000 description 1
Images
Landscapes
- Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
Abstract
Description
本発明は、生体中の脈波伝搬速度を測定する脈波伝搬速度測定装置に関する。 The present invention relates to a pulse wave velocity measuring apparatus that measures a pulse wave velocity in a living body.
従来より、動脈硬化の指標の1つとして脈波伝搬速度(Pluse Wave Velocity(PWV))が用いられている。このPWVは、心臓が動脈に血液を送り出す際の血管壁圧の伝搬速度をいい、硬化した血管ほど高速に伝搬することを利用してこのPWVを動脈硬化の指標とするものである(特許文献1,2参照)。 Conventionally, a pulse wave velocity (PWV) is used as one index of arteriosclerosis. This PWV refers to the propagation speed of the blood vessel wall pressure when the heart pumps blood into the artery, and this PWV is used as an index of arteriosclerosis utilizing the fact that the hardened blood vessel propagates faster (Patent Literature). 1 and 2).
この脈波伝搬速度(PWV)を計測するには、動脈に沿った2点間の脈波伝搬時間が測定され、その脈波伝搬時間をその2点間の動脈の長さで割り算するという手法が用いられる。したがってPWVを計測するには、脈波伝搬時間を正確に測定することが必要となる。 In order to measure the pulse wave propagation velocity (PWV), a pulse wave propagation time between two points along the artery is measured, and the pulse wave propagation time is divided by the length of the artery between the two points. Is used. Therefore, in order to measure PWV, it is necessary to accurately measure the pulse wave propagation time.
図1は、脈波伝搬速度PWVの従来の測定法を示す模式図、図2はPWV測定時の各種波形を示した図である。 FIG. 1 is a schematic diagram showing a conventional method of measuring the pulse wave propagation velocity PWV, and FIG. 2 is a diagram showing various waveforms during PWV measurement.
ここでは、図1に示すように、上腕と足首にそれぞれ上腕カフ21と足首カフ22を巻く。また心臓と足首との間の距離Lを巻尺で測定する。さらに、上腕カフ21と足首カフ22とにより、それぞれ上腕部、足首の脈波をピックアップし、それとともに心音マイクにより心音をピックアップする。また、ここでは心電図も測定している。
Here, as shown in FIG. 1, the
これらの心音および脈波をピックアップして得られた心音波形および脈波波形から、心臓と足首との間の脈波伝搬時間Tを求める。距離Lを脈波伝搬時間Tで割り算することにより脈波伝搬速度PWVが求められる。動脈硬化の指標として脈波伝搬速度PWV自体を採用する場合と、その脈波伝搬速度PWVを更なる演算の変数として用いて動脈硬化の指標を算出する場合とがある。 The pulse wave propagation time T between the heart and the ankle is obtained from the heart sound waveform and pulse waveform obtained by picking up these heart sounds and pulse waves. By dividing the distance L by the pulse wave propagation time T, the pulse wave propagation velocity PWV is obtained. There are a case where the pulse wave velocity PWV itself is adopted as an index of arteriosclerosis and a case where an index of arteriosclerosis is calculated using the pulse wave velocity PWV as a variable for further calculation.
心臓から足首までの脈波伝搬時間Tは、図1に示すように、心臓の大動脈弁の開放時点から脈波が上腕に達した時点までの時間t’bと、脈波が上腕に達した時点から脈波が足首に達した時点までの時間tbaとを足し算した時間である。 As shown in FIG. 1, the pulse wave propagation time T from the heart to the ankle is a time t′b from the time when the heart aortic valve is opened to the time when the pulse wave reaches the upper arm, and the pulse wave reaches the upper arm. This is the time obtained by adding the time tba from the time point to the time point when the pulse wave reaches the ankle.
図2(A)は大動脈弁の開閉動作のタイミングを示しており、図2(B)〜図2(E)は、大動脈弁の開閉動作を含む心臓の動きに基づく各種波形を示している。図2(B)〜図2(E)は、それぞれ、心電図、心音図、上腕動脈波および下腿動脈波の波形である。 FIG. 2A shows the timing of the opening / closing operation of the aortic valve, and FIGS. 2B to 2E show various waveforms based on the heart motion including the opening / closing operation of the aortic valve. 2B to 2E are waveforms of an electrocardiogram, a phonocardiogram, a brachial artery wave, and a crus artery wave, respectively.
図2(D)の上腕動脈波および図2(E)の下腿動脈波は、それぞれ、図1に示す上腕用カフ21、および足首用カフ22の圧力変化をピックアップすることにより得られた、それぞれ上腕および足首の各脈波である。
The brachial artery wave of FIG. 2 (D) and the crus artery wave of FIG. 2 (E) were respectively obtained by picking up pressure changes in the
心臓から足首までの脈波伝搬時間Tは、図2(E)に示すように、大動脈弁開のタイミングから下腿動脈波の立ち上がりまでの時間であるが、この脈波伝搬時間Tは、理論上は、大動脈弁開のタイミングから図2(D)の上腕動脈波の立ち上がりのタイミングまでの時間t’bと、図2(D)の上腕動脈波の立ち上がりのタイミングから図2(D)の下腿動脈波の立ち下がりのタイミングまでの時間tbaとを加算することにより求められる。大動脈弁開のタイミングを含むその前後で発せられる心音はI音と呼ばれるが、このI音には大動脈弁の開放音だけでなく他の音も混在しており、そのI音から大動脈弁開のタイミングを知ることは単純にはできない。そこで、ここでは、大動脈弁の閉鎖音発生のタイミングから、その大動脈弁閉鎖に起因して上腕動脈波にあらわれる切痕(dicrotic notch)までの時間tbを測定する(特許文献2参照)。この時間tbは、大動脈弁開から上腕動脈波の立ち上がりまでの時間t’bと同一であることから、
T=tb+tba
により、心臓から足首までの脈波伝搬時間Tが求められる。
As shown in FIG. 2 (E), the pulse wave propagation time T from the heart to the ankle is the time from the timing of opening the aortic valve to the rise of the leg artery wave. This pulse wave propagation time T is theoretically 2 is a time t′b from the timing of opening the aortic valve to the rising timing of the brachial artery wave in FIG. 2D, and the lower leg of FIG. 2D from the rising timing of the brachial artery wave in FIG. It is obtained by adding the time tba until the fall timing of the arterial wave. The heart sound that is emitted before and after the opening of the aortic valve is called the I sound. This I sound contains not only the opening sound of the aortic valve but also other sounds. Knowing the timing is not simply possible. Therefore, here, the time tb from the timing of occurrence of the closing sound of the aortic valve to the notch that appears in the brachial artery wave due to the closing of the aortic valve is measured (see Patent Document 2). Since this time tb is the same as the time t′b from the opening of the aortic valve to the rise of the brachial artery wave,
T = tb + tba
Thus, the pulse wave propagation time T from the heart to the ankle is obtained.
上記の測定法により心臓から足首までの脈波伝搬時間Tを求め、心臓と足首との間の距離Lを巻尺で測り、下記式(1)に示すようにして脈波伝搬時間Tで距離Lを割り算することにより、心臓から足首までの脈波伝搬速度PWVが求められる。 The pulse wave propagation time T from the heart to the ankle is obtained by the above measuring method, the distance L between the heart and the ankle is measured with a tape measure, and the distance L is determined by the pulse wave propagation time T as shown in the following formula (1). Is divided to obtain the pulse wave velocity PWV from the heart to the ankle.
PWV=L/T ……(1)
ところが心臓から足首までの脈波伝搬速度PWVに基づく動脈硬化の指標を採用すると、心臓から足首までの間に末梢動脈を含むので、自律神経等の影響による血管反射反応が起こり、その反応の程度により脈波伝搬時間が非常に大きく変化し、正確に測定できないことがある。 However, if an index of arteriosclerosis based on the pulse wave velocity PWV from the heart to the ankle is adopted, a peripheral artery is included between the heart and the ankle, so that a vascular reflex reaction occurs due to the influence of autonomic nerves, etc. As a result, the pulse wave propagation time varies greatly, and accurate measurement may not be possible.
本発明は、上記事情に鑑み、測定の簡便さを保ったまま脈波伝搬速度を高精度に測定することができる脈波伝搬速度測定装置を提供することを目的とする。 In view of the above circumstances, an object of the present invention is to provide a pulse wave velocity measuring apparatus capable of measuring a pulse wave velocity with high accuracy while maintaining the simplicity of measurement.
上記目的を達成する本発明の脈波伝搬速度測定装置は、
膝部位の脈波を検出する第1の脈波センサと、
膝部位を除く他の所定の第2部位の脈波を検出する第2の脈波センサと、
心音を検出する心音センサと、
心音センサにより検出された心音、並びに、上記第1および第2の脈波センサで検出された脈波に基づいて、心臓と膝部位との間の脈波伝搬速度を求める演算部とを備えたことを特徴とする。
The pulse wave velocity measuring device of the present invention that achieves the above-mentioned object,
A first pulse wave sensor for detecting a pulse wave of the knee region;
A second pulse wave sensor for detecting a pulse wave of a predetermined second part other than the knee part;
A heart sound sensor for detecting heart sounds;
A calculation unit for obtaining a pulse wave propagation velocity between the heart and the knee based on the heart sound detected by the heart sound sensor and the pulse waves detected by the first and second pulse wave sensors; It is characterized by that.
ここで、本発明の脈波伝搬速度測定装置において、膝用カフを備え、上記第1の脈波センサがその膝用カフの圧変化を検出するセンサであってもよく、また、本発明の脈波伝搬速度測定装置において、上腕部用カフを備え、上記第2の脈波センサがその上腕部用カフの圧変化を検出するセンサであってもよい。 Here, in the pulse wave velocity measuring device of the present invention, the knee pulse cuff may be provided, and the first pulse wave sensor may be a sensor for detecting a pressure change of the knee cuff. In the pulse wave velocity measuring device, an upper arm cuff may be provided, and the second pulse wave sensor may be a sensor that detects a pressure change of the upper arm cuff.
従来、膝と足首との間の脈波伝搬速度は速いと思われていたが、本発明者らの計測によると、大動脈弁口と股下との間の脈波伝搬速度に比し、股下と膝との間の脈波伝搬速度は極めて速く、一方、膝と足首との間の脈波伝搬速度は大動脈での脈波伝搬速度に近く遅い時と、刺激による反応で速くなる時があることが判明した。 Conventionally, the pulse wave propagation speed between the knee and the ankle was thought to be fast, but according to the measurement by the present inventors, compared to the pulse wave propagation speed between the aortic valve opening and the crotch, The pulse wave velocity between the knee and the ankle is very fast, while the pulse wave velocity between the knee and the ankle may be slow, close to the pulse wave velocity in the aorta, and sometimes faster due to a response by stimulation. There was found.
また、股下の脈波測定に関しては脈波プローブの装着に難があり、簡便な測定はできず、また羞恥心も作用し臨床上の普及が防げられている。 In addition, it is difficult to mount a pulse wave probe for measuring a pulse wave at the crotch, and a simple measurement cannot be performed, and shame also acts to prevent clinical spread.
これに対し、膝は、動脈が体表近くに出ている部位であり、羞恥心なく簡便にカフを装着でき簡便な計測を行なうことができ、かつ、心臓と膝との間は心臓と足首との間と比べ全長に対する大動脈の部分の割合が高く、その分、筋性血管の影響を受けにくいという長所を有する。 In contrast, the knee is a part where the artery is close to the surface of the body, the cuff can be easily attached without shame, and simple measurement can be performed. The ratio of the aorta portion to the total length is higher than that between the two, and it has the advantage that it is less susceptible to the influence of muscular blood vessels.
したがって、心臓と膝との間の脈波伝搬速度を測定することにより脈波伝搬速度が高精度かつ簡便に求められる。 Therefore, by measuring the pulse wave propagation speed between the heart and the knee, the pulse wave propagation speed can be obtained with high accuracy and simplicity.
以上説明したように、本発明によれば、測定の簡便さを保ったまま脈波伝搬速度を高精度に測定することができる。 As described above, according to the present invention, it is possible to measure the pulse wave propagation velocity with high accuracy while maintaining the simplicity of measurement.
以下、本発明の実施形態について説明する。 Hereinafter, embodiments of the present invention will be described.
図3は、本発明の脈波伝搬速度測定装置の一実施形態を含む生体計測装置を示すブロック構成図である。 FIG. 3 is a block diagram showing a living body measuring apparatus including an embodiment of the pulse wave velocity measuring apparatus of the present invention.
この生体計測装置10は、心音マイク111と、上腕用カフ113と、膝用カフ114と、2つの心電センサ115,116とを備えている。
The
心音マイク111は、被検者20の心臓21の音(心音)をピックアップすべく、その心臓の近傍に貼着されている。また、上腕用カフ113は左上腕に巻回され、膝用カフ114は左膝に巻回されている。これら上腕用カフ113および膝用カフ114では、それぞれ左上腕、左膝の脈波がピックアップされる。さらに、2つの心電センサ115,116ではそれぞれ右手首、左手首の心電波形がピックアップされる。
The
また、この生体計測装置10は、さらにアナログ処理部12、A/D変換部13、およびデジタル処理部14を備えている。
The
2つの心電センサ115,116でピックアップされた心電波形は、心電増幅器121に入力されて増幅されA/D変換部13でデジタル信号に変換されてデジタル処理部14に伝えられる。
The electrocardiogram waveforms picked up by the two
また、心音マイク111でピックアップされた心音は、心音増幅器122に入力されて増幅され、さらにA/D変換部13によりデジタル信号に変換されてデジタル処理部14に伝えられる。
The heart sound picked up by the heart
また、上腕用カフ113および膝用カフ114には、空気ポンプ131,132のそれぞれにより、各所定のカフ圧となるように空気が送り込まれ、それぞれの圧センサ133,134でカフ圧の微小変化が捉えることにより左上腕および左膝の脈波がピックアップされる。圧センサ133,134でピックアップされた脈波は増幅器135,136でそれぞれ増幅されてA/D変換部13に入力され、デジタル信号に変換される。
Air is sent to the
デジタル処理部14には、CPU141,メモリ142、表示装置143、記録装置144、操作装置145、およびポンプ制御装置146が備えられており、それら相互間とさらにA/D変換部13との間はバス147で相互に接続されている。
The
CPU141では各種のプログラムが実行され、これにより、CPU141は、生体計測装置10の各部の制御を担う。またメモリ142は、CPU141で実行される各種プログラムやA/D変換部13から伝送されてきた各種データを格納する役割りを担っている。また、表示装置143は、表示画面上に心電図や脈波等の各種波形やデータを表示し、記録装置144は、それらの各種波形やデータをプリント出力する。さらに操作装置145は、オペレータの操作によりこの生体計測装置10に各種指示を入力するためのものである。さらにポンプ制御装置146は、2つのポンプ131,132の動作を制御するためのものである。
Various programs are executed in the
ここで、CPU141では、上記のようにしてA/D変換部13でディジタル信号に変換されて伝達されてきた各種信号に基づいて、心臓21(大動脈弁口)から膝までの間の脈波伝搬速度PWVが求められる。心臓21(大動脈弁口)から膝までの間の脈波伝搬速度PWVの求め方は、図2を参照して説明した心臓から足首までの脈波伝搬速度の求め方の説明における「足首」および図2(E)の「下腿動脈波」をそれぞれ「膝」および「膝で測定した脈波」と読み替えればよく、求め方自体は同一であり、ここでの重複説明は省略する。
Here, in the
ここでは、寒冷昇圧試験を行ない、寒冷昇圧刺激前(血圧変化前)と寒冷昇圧刺激後(血圧変化後)における、脈波伝搬速度PWVの変化を観察した。以下、ここでの説明に用いる記号について説明し、次いで寒冷昇圧試験結果について説明する。 Here, a cold pressurization test was performed, and changes in the pulse wave propagation speed PWV were observed before the cold pressurization stimulation (before the blood pressure change) and after the cold pressurization stimulation (after the blood pressure change). Hereinafter, symbols used in the description will be described, and then the results of the cold pressurization test will be described.
図4は、ここで用いる、人体の各部位等の記号の説明である。 FIG. 4 is an explanation of symbols used for each part of the human body and the like used here.
ここでは、上腕、心臓、股下、膝、および足首を、それぞれ、B,H,F,K,およびAで表わす。また、心臓Hと股下Fとの間の距離、股下Fと膝Kとの間の距離、膝Kと足首Aとの間の距離を、それぞれ、L1,L2,およびL3で表わし、心臓Hから股下Fまでの脈波伝搬時間、股下Fから膝Kまでの脈波伝搬時間、および膝Kから足首Aまでの脈波伝搬時間を、それぞれ、T1,T2,およびT3で表わす。さらに、心臓Hから股下Fまでの間の脈波伝搬速度、股下Fから膝Kまでの脈波伝搬速度、および膝Kから足首Aまでの脈波伝搬速度を、それぞれ、hfPWV,fkPWV,およびkaPWVで表わす。さらに、心臓Hから膝Kまでの脈波伝搬速度、および心臓Hから足首Aまでの脈波伝搬速度を、それぞれ、hkPWVおよびhaPWVで表わす。 Here, the upper arm, heart, inseam, knee, and ankle are represented by B, H, F, K, and A, respectively. The distance between the heart H and the inseam F, the distance between the inseam F and the knee K, and the distance between the knee K and the ankle A are represented by L1, L2, and L3, respectively. The pulse wave propagation time from the crotch F to the knee K, the pulse wave propagation time from the crotch F to the knee K, and the pulse wave propagation time from the knee K to the ankle A are represented by T1, T2, and T3, respectively. Furthermore, the pulse wave propagation speed from the heart H to the crotch F, the pulse wave propagation speed from the crotch F to the knee K, and the pulse wave propagation speed from the knee K to the ankle A are respectively represented by hfPWV, fkPWV, and kaPWV. It expresses by. Furthermore, the pulse wave propagation velocity from the heart H to the knee K and the pulse wave propagation velocity from the heart H to the ankle A are represented by hkPWV and haPWV, respectively.
表1に、あるひとりの被検者(59才、男性)についての寒冷昇圧試験結果を示す。 Table 1 shows the results of the cold pressurization test for one subject (59 years old, male).
この表1から、寒冷昇圧刺激前後で、T1,T2に比べT3が大きく変化していること、およびその結果、寒冷昇圧刺激前後でhfPWV,fkPWVは安定しており、したがってhkPWVが安定していること、それと比べ、haPWVが大きく変化していることが分かる。 From Table 1, it can be seen that T3 is significantly changed before and after the cold boost stimulation, and as a result, hfPWV and fkPWV are stable before and after the cold boost stimulation, and thus hkPWV is stable. In contrast, it can be seen that haPWV is greatly changed.
図5は、心臓Hから足首Aまでの脈波伝搬時間比(図5(A))および心臓Hから膝Kまでの脈波伝搬時間比(図5(B))を示す図である。 FIG. 5 is a diagram showing a pulse wave propagation time ratio from the heart H to the ankle A (FIG. 5A) and a pulse wave propagation time ratio from the heart H to the knee K (FIG. 5B).
心臓Hから足首Aまで脈波伝搬時間Tは、図4に示すように、
T=T1+T2+T3
で表わされる。
The pulse wave propagation time T from the heart H to the ankle A is as shown in FIG.
T = T1 + T2 + T3
It is represented by
ここでは、全体の時間Tを100%とし、その全体の時間Tを構成する各時間T1,T2,T3をその全体の時間Tに対する%で表現すると、寒冷昇圧刺激前後でT3が大きく変化する結果、図5(A)に示すようにその刺激前後でT1,T2,T3の比率が大きく変化している。 Here, when the total time T is 100% and each time T1, T2, T3 constituting the total time T is expressed as a percentage with respect to the total time T, T3 greatly changes before and after the cold boost stimulation. As shown in FIG. 5A, the ratio of T1, T2, and T3 changes greatly before and after the stimulation.
一方、心臓Hから膝Kまでの脈波伝搬時間Tは、図4に示すように、
T=T1+T2
で表わされ、この全体の時間Tを100%としT1およびT2を%で表現すると、図5(B)に示すように、寒冷昇圧刺激前後でT1とT2の比率はほとんど変化しない。
On the other hand, the pulse wave propagation time T from the heart H to the knee K is as shown in FIG.
T = T1 + T2
When the total time T is 100% and T1 and T2 are expressed as%, the ratio of T1 and T2 hardly changes before and after the cold pressurization stimulation as shown in FIG.
この図5に示す分析結果からも、心臓Hから膝Kまでの脈波伝搬速度が安定していることが分かる。 The analysis result shown in FIG. 5 also shows that the pulse wave velocity from the heart H to the knee K is stable.
図6は、複数の被検者に対する、心臓Hから膝Kまでの間の脈波伝搬速度の測定結果を示す図、図7は、同一の複数の被検者に対する、心臓Hから足首Aまでの間の脈波伝搬速度の測定結果を示す図である。 FIG. 6 is a diagram showing measurement results of pulse wave propagation speed between the heart H and the knee K for a plurality of subjects, and FIG. 7 is a diagram from the heart H to the ankle A for the same subjects. It is a figure which shows the measurement result of the pulse wave propagation velocity between.
図6、図7において、横軸は、コントロール(寒冷昇圧刺激前の脈波伝搬速度)を表わし、横軸は反応後(寒冷昇圧刺激後の脈波伝搬速度)を表わしている。斜めの破線はコントロールと反応後とが一致する点を結ぶ直線である。 6 and 7, the horizontal axis represents control (pulse wave propagation speed before cold pressurization stimulation), and the horizontal axis represents reaction (pulse wave propagation speed after cold pressurization stimulation). The diagonal broken line is a straight line connecting the points where the control and the post-reaction match.
図6と図7とを比較すると、これらの図からも、心臓Hから膝Fまでの間の脈波伝搬速度(図6)の方が、心臓Hから足首Aまでの間の脈波伝搬速度(図7)よりも、寒冷昇圧刺激(血圧の変化)の前後で安定していることが分かる。 Comparing FIG. 6 and FIG. 7, also from these figures, the pulse wave propagation velocity between the heart H and the knee F (FIG. 6) is higher than the pulse wave propagation velocity between the heart H and the ankle A. From FIG. 7, it can be seen that it is more stable before and after the cold pressor stimulation (change in blood pressure).
尚、ここでは、図3に示すように上腕用カフ113と膝用カフ114を備え、上腕と膝の脈波を測定したが、上腕用カフ113に代えて手首用カフを備え、手首と膝の脈波を検出してもよい。この場合も、図2(D)を手首の動脈波と読み替えて、図2を参照して説明した測定法をそのまま採用することができる。
Here, as shown in FIG. 3, the
また、ここでは、脈波を検出するにあたりカフを採用したが脈波センサとして他のタイプの脈波センサを採用してもよい。 Here, a cuff is used to detect a pulse wave, but another type of pulse wave sensor may be used as the pulse wave sensor.
10 生体計測装置
12 アナログ処理部
13 A/D変換部
14 デジタル処理部
20 被検者
21 心臓
111 心音マイク
113 上腕用カフ
114 膝用カフ
115,116 心電センサ
121 心電増幅器
122 心音増幅器
131,132 空気ポンプ
133,134 圧センサ
135,136 増幅器
141 CPU
142 メモリ
143 表示装置
144 記録装置
145 操作装置
146 ポンプ制御装置
147 バス
DESCRIPTION OF
142
Claims (3)
膝部位を除く他の所定の第2部位の脈波を検出する第2の脈波センサと、
心音を検出する心音センサと、
前記心音センサにより検出された心音、並びに、前記第1および第2の脈波センサで検出された脈波に基づいて、心臓と膝部位との間の脈波伝搬速度を求める演算部とを備えたことを特徴とする脈波伝搬速度測定装置。 A first pulse wave sensor for detecting a pulse wave of the knee region;
A second pulse wave sensor for detecting a pulse wave of a predetermined second part other than the knee part;
A heart sound sensor for detecting heart sounds;
A calculation unit that obtains a pulse wave velocity between the heart and the knee region based on the heart sound detected by the heart sound sensor and the pulse waves detected by the first and second pulse wave sensors; A pulse wave velocity measuring device characterized by the above.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004151745A JP5006509B2 (en) | 2004-05-21 | 2004-05-21 | Pulse wave velocity measurement method for measuring pulse wave velocity in a pulse wave velocity measuring device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004151745A JP5006509B2 (en) | 2004-05-21 | 2004-05-21 | Pulse wave velocity measurement method for measuring pulse wave velocity in a pulse wave velocity measuring device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005329122A true JP2005329122A (en) | 2005-12-02 |
JP5006509B2 JP5006509B2 (en) | 2012-08-22 |
Family
ID=35484142
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004151745A Expired - Lifetime JP5006509B2 (en) | 2004-05-21 | 2004-05-21 | Pulse wave velocity measurement method for measuring pulse wave velocity in a pulse wave velocity measuring device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5006509B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006110155A (en) * | 2004-10-15 | 2006-04-27 | Fukuda Denshi Co Ltd | Apparatus and program for blood vessel stiffness calculation |
JP2014008091A (en) * | 2012-06-27 | 2014-01-20 | A & D Co Ltd | Pulse wave propagation information measuring apparatus |
US10244952B2 (en) | 2015-09-28 | 2019-04-02 | Kyocera Corporation | Measuring apparatus and measuring system |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003290160A (en) * | 2002-03-29 | 2003-10-14 | Fukuda Denshi Co Ltd | Pulse wave transmitting velocity determining device |
JP2004016338A (en) * | 2002-06-13 | 2004-01-22 | Fukuda Denshi Co Ltd | Biological information processing apparatus |
JP2004236730A (en) * | 2003-02-04 | 2004-08-26 | Motoharu Hasegawa | Arteriosclerosis evaluation apparatus |
-
2004
- 2004-05-21 JP JP2004151745A patent/JP5006509B2/en not_active Expired - Lifetime
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003290160A (en) * | 2002-03-29 | 2003-10-14 | Fukuda Denshi Co Ltd | Pulse wave transmitting velocity determining device |
JP2004016338A (en) * | 2002-06-13 | 2004-01-22 | Fukuda Denshi Co Ltd | Biological information processing apparatus |
JP2004236730A (en) * | 2003-02-04 | 2004-08-26 | Motoharu Hasegawa | Arteriosclerosis evaluation apparatus |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006110155A (en) * | 2004-10-15 | 2006-04-27 | Fukuda Denshi Co Ltd | Apparatus and program for blood vessel stiffness calculation |
JP4606836B2 (en) * | 2004-10-15 | 2011-01-05 | フクダ電子株式会社 | Vascular sclerosis calculating device and vascular sclerosis calculating program |
JP2014008091A (en) * | 2012-06-27 | 2014-01-20 | A & D Co Ltd | Pulse wave propagation information measuring apparatus |
US10244952B2 (en) | 2015-09-28 | 2019-04-02 | Kyocera Corporation | Measuring apparatus and measuring system |
Also Published As
Publication number | Publication date |
---|---|
JP5006509B2 (en) | 2012-08-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7390300B2 (en) | Blood pressure measuring apparatus | |
JP5410210B2 (en) | Artifact removal method, blood volume measuring device and artifact removal program in respiratory stroke fluctuation analysis device for stroke volume | |
JP4231030B2 (en) | Blood pressure monitor and blood pressure measurement method using the same | |
WO2019206813A1 (en) | Methods to estimate the blood pressure and the arterial stiffness based on photoplethysmographic (ppg) signals | |
US6843772B2 (en) | Inferior-and-superior-limb blood-pressure-index measuring apparatus | |
US7029449B2 (en) | Arteriosclerosis inspecting apparatus | |
WO2002085203A1 (en) | Central blood pressure waveform estimating device and peripheral blood pressure waveform detecting device | |
JP2009136656A (en) | Improved estimation of arterial pressure at remote site by oscillometric waveform analysis by use of pressure cuff | |
JP5535477B2 (en) | Vascular aging detection system | |
WO2008007361A2 (en) | Wearable, ambulatory, continuous, non-invasive blood pressure measuring method and system | |
US20140316291A1 (en) | Measurement device, evaluating method, and evaluation program | |
JP2015157036A (en) | Hemodynamics measurement device, and hemodynamics measurement method | |
Vardoulis et al. | In vivo evaluation of a novel, wrist-mounted arterial pressure sensing device versus the traditional hand-held tonometer | |
JP4813815B2 (en) | Vascular sclerosis calculating device and vascular sclerosis calculating program | |
KR101918577B1 (en) | Blood Pressure Meter And Method For Measuring Blood Pressure Using The Same | |
US11298031B2 (en) | Sphygmomanometer, blood pressure measurement method, and blood pressure measurement program | |
CN114615929A (en) | Continuous non-invasive blood pressure measuring device | |
JP5006509B2 (en) | Pulse wave velocity measurement method for measuring pulse wave velocity in a pulse wave velocity measuring device | |
Xu et al. | Online continuous measurement of arterial pulse pressure and pressure waveform using ultrasound | |
US20140243691A1 (en) | Measurement device, index calculating method, and index calculating program | |
Nabeel et al. | Non-invasive assessment of local pulse wave velocity as function of arterial pressure | |
JP5236881B2 (en) | Blood pressure pulse wave inspection device and blood pressure pulse wave inspection method | |
JP4606836B2 (en) | Vascular sclerosis calculating device and vascular sclerosis calculating program | |
RU2327414C1 (en) | Method of blood pressure measurement based on three-dimensional compression oscillogram | |
Proença et al. | Continuous non-occlusive blood pressure monitoring at the sternum |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070411 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100330 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100531 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100914 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20101112 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110308 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110719 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110920 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120131 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120402 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120522 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120525 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150601 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 5006509 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |