Nothing Special   »   [go: up one dir, main page]

JP2005327972A - Thin-film multilayer wiring board - Google Patents

Thin-film multilayer wiring board Download PDF

Info

Publication number
JP2005327972A
JP2005327972A JP2004146160A JP2004146160A JP2005327972A JP 2005327972 A JP2005327972 A JP 2005327972A JP 2004146160 A JP2004146160 A JP 2004146160A JP 2004146160 A JP2004146160 A JP 2004146160A JP 2005327972 A JP2005327972 A JP 2005327972A
Authority
JP
Japan
Prior art keywords
insulating layer
wiring board
multilayer wiring
film multilayer
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004146160A
Other languages
Japanese (ja)
Inventor
Akihiko Furuya
明彦 古屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP2004146160A priority Critical patent/JP2005327972A/en
Publication of JP2005327972A publication Critical patent/JP2005327972A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thin-film multilayer wiring board high in electric signal transmission speed and in mechanical strength with a pattern thereon processable with high precision. <P>SOLUTION: For the formation of the thin-film multilayer wiring board, at least two wiring layers are formed on either or both sides of a first insulating layer-made inner board with second insulating layers sandwiched between. The first insulating layer 11 is formed of an insulating material having a Young's modulus of ≥5,000 MPa and a breaking strength of ≥400 MPa. The second insulating layers 51a are formed of insulating materials each having a Young's modulus of ≤2,500 MPa, a dielectric constant of ≤2.9 at 1 GHz, a dielectric dissipation factor of ≤0.01, and a water absorption coefficient of ≤0.3%. Each of second insulating layers 51a has a surface roughness Ra of ≥0.01 μm but ≤0.2 μm. Side faces of the first insulating layer 11 on the periphery of the thin-film multilayer wiring board is coated with resin 51 comprising the second insulating layers 51a. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は多層プリント配線板に関し、特に、高密度実装が可能な層厚が12μm以下の配線層にて形成された薄膜多層配線板に関する。   The present invention relates to a multilayer printed wiring board, and more particularly to a thin film multilayer wiring board formed with a wiring layer having a layer thickness of 12 μm or less capable of high-density mounting.

モバイル機器をはじめとする携帯電子機器の高性能化は著しく、それに用いられている基板は、高速化、薄型化、高集積化、軽量化の要求を満たすべく様々な工夫が施されている。この様な薄膜多層配線板としては、
(a)ビルドアップ型高密度配線板
(b)フィルム積層型高密度配線板
(c)金属板上におけるビルドアップ型高密度配線板等がある。
The performance of portable electronic devices such as mobile devices has been remarkably improved, and various devices have been applied to the substrates used therefor in order to meet the demands for speeding up, thinning, high integration, and weight reduction. As such a thin film multilayer wiring board,
(A) Build-up type high-density wiring board (b) Film laminated high-density wiring board (c) Build-up type high-density wiring board on a metal plate.

(a)のビルドアップ型高密度配線板では、図8に示すように、ガラスクロスにエポキシ樹脂を含浸させた絶縁基材111の両面に配線層102及びスルーホール101を形成したコア基板110上に絶縁層112、絶縁層113を積層し、配線層、ビアを形成して順次積み上げていくビルドアップ工法による薄膜多層配線板が一般的である。コア基板110、絶縁層112及び113の厚みを可能な限り薄くすることで薄膜化と軽量化を満たし、さらに、絶縁材料を低誘電率材料にすることにより高速化を満たす方法が知られている(例えば、特許文献1参照)。   In the build-up type high density wiring board (a), as shown in FIG. 8, on the core substrate 110 in which the wiring layer 102 and the through hole 101 are formed on both surfaces of the insulating base material 111 in which a glass cloth is impregnated with an epoxy resin. In general, a thin-film multilayer wiring board by a build-up method in which an insulating layer 112 and an insulating layer 113 are stacked on each other, and wiring layers and vias are formed and sequentially stacked. A method is known in which the core substrate 110 and the insulating layers 112 and 113 are made as thin as possible to satisfy a reduction in thickness and weight, and further, an insulating material is made of a low dielectric constant material to achieve high speed. (For example, refer to Patent Document 1).

また、(b)のフィルム積層型高密度配線板では、図9に示すように、コア基板をより薄い両面銅箔付き樹脂、例えば両面銅箔付きポリイミド基板311の両面に配線パターンを形成後、プリプレグ等の接着層321を介して片面銅箔付きポリイミド312を積層する。その後、配線パターン332、ソルダーレジストパターン351を形成して、フリップチップパッド341及びBGAパッド342を形成することにより薄膜多層配線板を作製する方法がある(例えば、特許文献2参照)。   Moreover, in the film lamination type high density wiring board of (b), as shown in FIG. 9, after forming a wiring pattern on both surfaces of a thinner resin with a double-sided copper foil, for example, a polyimide substrate 311 with a double-sided copper foil, A polyimide 312 with a single-sided copper foil is laminated via an adhesive layer 321 such as a prepreg. Thereafter, there is a method of forming a thin film multilayer wiring board by forming a wiring pattern 332 and a solder resist pattern 351 and forming a flip chip pad 341 and a BGA pad 342 (see, for example, Patent Document 2).

さらにまた、(c)の金属板上におけるビルドアップ型高密度配線板では、図10(a)に示すように、金属板410上に、電極パッド421を形成した後絶縁層411、ビア422、配線層423形成を順次繰り返し、最後に金属板410をエッチングで除去することにより図10(b)に示すような、絶縁層(絶縁基材)411の一方の面にBGAパッド421、他方の面にビア422、配線層423、ビア424,配線層425、ソルダーレジストパターン441及びフリップチップパッド431が形成された薄膜多層配線板を作製する方法が知られている。   Furthermore, in the build-up type high density wiring board on the metal plate of (c), as shown in FIG. 10A, after the electrode pad 421 is formed on the metal plate 410, the insulating layer 411, the via 422, By sequentially repeating the formation of the wiring layer 423 and finally removing the metal plate 410 by etching, the BGA pad 421 is formed on one surface of the insulating layer (insulating base material) 411 as shown in FIG. There is known a method of manufacturing a thin film multilayer wiring board in which a via 422, a wiring layer 423, a via 424, a wiring layer 425, a solder resist pattern 441 and a flip chip pad 431 are formed.

しかしながら、(a)のビルドアップ型高密度配線板では、ガラスクロスにエポキシ樹脂を含浸させたコア基板を含む構造となるため、基板全体を低誘電率化することができず、また基板の厚みも薄くすることができず、配線長が長くなるため、導体損失が大きくなり。電気信号の高速伝送において好ましくない。また、絶縁層111、絶縁層112及び絶縁層113の表面はアンカーリング効果によって配線層の密着性を確保するために数μmのオーダーの表面粗さを有しており、この絶縁層の表面粗さは、エッチングによってパターン加工する場合、配線加工精度(特に直線性)に影響を及ぼすと同時に、高周波領域での電気信号の伝送特性が劣化するという問題を有している。   However, since the build-up type high-density wiring board (a) includes a core substrate in which a glass cloth is impregnated with an epoxy resin, the entire substrate cannot be reduced in dielectric constant, and the thickness of the substrate can be reduced. However, it cannot be made thinner, and the wiring length becomes longer, resulting in higher conductor loss. This is not preferable for high-speed transmission of electrical signals. Further, the surfaces of the insulating layer 111, the insulating layer 112, and the insulating layer 113 have a surface roughness on the order of several μm in order to ensure the adhesion of the wiring layer by the anchoring effect. In the case of pattern processing by etching, there is a problem that the wiring processing accuracy (particularly linearity) is affected, and at the same time, the transmission characteristics of electric signals in a high frequency region are deteriorated.

(b)のフィルム積層型高密度配線板では、エポキシより低誘電率であるポリイミド等を使用できるが接着層を有するため、この部分及び両面銅箔付き樹脂自体の吸水率が高く、環境変動に伴い絶縁材料の電気特性が変動したり、信頼性が低下する問題がある、また第2絶縁層312を形成した後、CCDカメラにて内層基板の配線層の形状検査を行う場合400nmから700nmにおけるポリイミド絶縁層の光透過率が低いため、内層基板の配線層の良好なコントラストが得られず、CCDカメラを使用した内層基板の配線層の形状検査の所定の検査精度が得られないという問題がある。   In the film-laminated high-density wiring board of (b), polyimide having a dielectric constant lower than that of epoxy can be used, but since it has an adhesive layer, the water absorption rate of the resin itself with this part and the double-sided copper foil itself is high, resulting in environmental fluctuations. As a result, there is a problem that the electrical characteristics of the insulating material fluctuate and the reliability is lowered. In addition, after forming the second insulating layer 312, when the shape inspection of the wiring layer of the inner substrate is performed with a CCD camera, Since the light transmittance of the polyimide insulating layer is low, a good contrast of the wiring layer of the inner substrate cannot be obtained, and the predetermined inspection accuracy of the shape inspection of the wiring layer of the inner substrate using a CCD camera cannot be obtained. is there.

(c)の金属板上におけるビルドアップ型高密度配線板では、低吸水率で低誘電率を有する絶縁材料、例えばベンゾシクロブテン(BCB)を使用できるが、(a)と同様に配線層と密着性を得るため、絶縁層表面を荒らしており、配線加工精度が劣化するという問題がある。また、そのような材料はポリイミドと比較して機械強度が著しく劣るため基板にクラックが発生しやすい問題がある。
特許第3050807号公報 特開2002−319762号公報
In the build-up type high density wiring board on the metal plate of (c), an insulating material having a low water absorption and a low dielectric constant, for example, benzocyclobutene (BCB) can be used. In order to obtain adhesion, the surface of the insulating layer is roughened, and there is a problem that the wiring processing accuracy deteriorates. Moreover, since such a material has remarkably inferior mechanical strength as compared with polyimide, there is a problem that the substrate is likely to crack.
Japanese Patent No. 3050807 JP 2002-319762 A

本発明は、上記問題点に鑑み考案されたものであり、電気信号の高速伝送特性及び基板の機械強度を有し、パターン加工精度に優れた薄膜多層配線板を提供することを目的とする。   The present invention has been devised in view of the above problems, and an object of the present invention is to provide a thin-film multilayer wiring board having high-speed transmission characteristics of electric signals and mechanical strength of a substrate and having excellent pattern processing accuracy.

本発明は、上記課題を達成するために、まず、請求項1においては、第1絶縁層からなる内層基板の片面もしくは両面に第2絶縁層を介して少なくとも2層以上の配線層が形成されてなる多層配線板において、前記第1絶縁層は、ヤング率が5000MPa以上で、かつ破断強度が400MPa以上の絶縁材料から構成されていることを特徴とする薄膜多層配線板としたものである。   To achieve the above object, according to the first aspect of the present invention, in claim 1, at least two or more wiring layers are formed on one side or both sides of the inner layer substrate made of the first insulating layer via the second insulating layer. In the multilayer wiring board, the first insulating layer is made of an insulating material having a Young's modulus of 5000 MPa or more and a breaking strength of 400 MPa or more.

また、請求項2においては、前記第2絶縁層は、ヤング率が2500MPa以下で、1GHzにおける誘電率が2.9以下で、誘電正接が0.01以下で、かつ吸水率が0.3%以下である絶縁材料から構成されていることを特徴とする薄膜多層配線板としたものである。   In the present invention, the second insulating layer has a Young's modulus of 2500 MPa or less, a dielectric constant at 1 GHz of 2.9 or less, a dielectric loss tangent of 0.01 or less, and a water absorption of 0.3%. The thin film multilayer wiring board is characterized by being composed of the following insulating material.

また、請求項3においては、前記第2絶縁層の表面粗さRaが0.01μm以上0.2μm以下であることを特徴とする請求項1または2に記載の薄膜多層配線板としたものである。   The thin film multilayer wiring board according to claim 1 or 2, wherein the surface roughness Ra of the second insulating layer is 0.01 µm or more and 0.2 µm or less. is there.

また、請求項4においては、前記第2絶縁層は熱硬化性樹脂であることを特徴とする請求項1乃至3のいずれか一項に記載の薄膜多層配線板としたものである。   According to a fourth aspect of the present invention, the thin film multilayer wiring board according to any one of the first to third aspects is characterized in that the second insulating layer is a thermosetting resin.

また、請求項5においては、前記第2絶縁層は400nm〜700nmにおける光透過率が85%以上であることを特徴とする請求項1乃至4のいずれか一項に記載の薄膜多層配線板としたものである。   The thin film multilayer wiring board according to any one of claims 1 to 4, wherein the second insulating layer has a light transmittance of not less than 85% at 400 nm to 700 nm. It is a thing.

さらにまた、請求項6においては、請求項1乃至5のいずれか一項に記載の薄膜多層配線板の周辺部の第1絶縁層の側面が前記第2絶縁層からなる樹脂で被覆されていることを特徴とする薄膜多層配線板としたものである。   Furthermore, in claim 6, the side surface of the first insulating layer at the periphery of the thin film multilayer wiring board according to any one of claims 1 to 5 is covered with a resin made of the second insulating layer. The thin film multilayer wiring board is characterized by the above.

本発明によれば、第1絶縁層11としてヤング率が5000MPa以上、かつ破断強度が400MPa以上の絶縁材料を使用し、第1絶縁層(内層基板)を低誘電率、低誘電正接、低吸水率の絶縁材料からなる第2絶縁層の樹脂にて包み込む構造を取ることにより、薄膜多層基板の機械的強度を確保し、環境変動に伴う電気特性の変動を少なくでき、高信頼性の薄膜多層基板を得ることができる。   According to the present invention, an insulating material having a Young's modulus of 5000 MPa or more and a breaking strength of 400 MPa or more is used as the first insulating layer 11, and the first insulating layer (inner layer substrate) has a low dielectric constant, a low dielectric loss tangent, and a low water absorption. High-reliability thin-film multilayer can secure the mechanical strength of the thin-film multilayer substrate and reduce the fluctuation of electrical characteristics due to environmental fluctuations. A substrate can be obtained.

また、第2絶縁層を平滑化することにより、パターン加工精度を向上させると共に電気信号の高速伝送特性を向上させている。   Further, by smoothing the second insulating layer, the pattern processing accuracy is improved and the high-speed transmission characteristic of the electric signal is improved.

さらにまた、第2絶縁層の400nm〜700nmにおける光透過率を85%以上とすることにより、CCDカメラを使用した第2絶縁層を介しての内層基板の配線層の形状検査を可能にし、形状検査精度を向上させている。   Furthermore, by setting the light transmittance at 400 nm to 700 nm of the second insulating layer to 85% or more, the shape of the wiring layer of the inner substrate can be inspected through the second insulating layer using a CCD camera. Inspection accuracy is improved.

以下、本発明の実施の形態につき説明する。   Hereinafter, embodiments of the present invention will be described.

本発明の薄膜多層配線板の一実施例を図1に示す。本発明の薄膜多層配線板100は、第1絶縁層11からなる内層基板の両面に配線層24及び配線層21a、第2絶縁層51a、配線層26a及び配線層26b、ソルダーレジスト61、フリップチップパッド28及びBGAパッド29が順次形成されており、配線層24と配線層21aとはフィルドビア23にて、配線層24と配線層26aとはフィルドビア27にて、配線層21aと配線層26bとはビア27にて電気的に接続された構造となっており、薄膜多層配線板の周辺部側面は第2絶縁層51aの樹脂51で被覆されている。   One embodiment of the thin film multilayer wiring board of the present invention is shown in FIG. The thin film multilayer wiring board 100 of the present invention has a wiring layer 24 and a wiring layer 21a, a second insulating layer 51a, a wiring layer 26a and a wiring layer 26b, a solder resist 61, a flip chip on both surfaces of the inner layer substrate made of the first insulating layer 11. Pads 28 and BGA pads 29 are sequentially formed. The wiring layer 24 and the wiring layer 21a are filled via 23, the wiring layer 24 and the wiring layer 26a are filled via 27, and the wiring layer 21a and the wiring layer 26b are The via 27 is electrically connected, and the side surface of the thin film multilayer wiring board is covered with the resin 51 of the second insulating layer 51a.

請求項1に係る発明では、内層基板すなわち第1絶縁層11としてヤング率が5000MPa以上、かつ破断強度が400MPa以上の絶縁材料を使用したもので、このような高靭性材料を使用することで薄膜多層基板の機械的強度を確保できるようにしている。   In the invention according to claim 1, an insulating material having a Young's modulus of 5000 MPa or more and a breaking strength of 400 MPa or more is used as the inner layer substrate, that is, the first insulating layer 11. By using such a tough material, a thin film is obtained. The mechanical strength of the multilayer substrate can be secured.

請求項2に係る発明では、第2絶縁層51aとしてヤング率が2500MPa以上、誘電率が1GHzにおいて2.9以下、誘電正接が0.01以下、かつ吸水率が0.3%以下の絶縁材料を用いた構成になっている。ここで、吸水率はJISK7209−2000規定による吸水率であり、測定条件は100℃で24時間乾燥後デシケーターに入れて室温まで冷却後計測する。さらに、23℃の蒸留水中に24時間浸漬後試験片を取り出し、水分を拭き取り計測するA法で行う。   In the invention according to claim 2, as the second insulating layer 51a, an insulating material having a Young's modulus of 2500 MPa or more, a dielectric constant of 2.9 or less at 1 GHz, a dielectric loss tangent of 0.01 or less, and a water absorption of 0.3% or less. It has a configuration using. Here, the water absorptivity is a water absorptivity according to JISK 7209-2000, and the measurement conditions are measured after drying at 100 ° C. for 24 hours, cooling to room temperature. Furthermore, the test piece is taken out after being immersed in distilled water at 23 ° C. for 24 hours, and the test is performed by the A method in which moisture is wiped off and measured.

内層基板すなわち第1絶縁層11の外側を低誘電率、低誘電正接の絶縁材料を使用することで電気信号の高速伝送特性を向上させている。さらに、低吸水率の絶縁材料とすることにより、第1絶縁層に吸収される水分を抑制し、環境変動に伴う電気特性の変動を抑え、かつ高信頼性の多層基板を得ることができるようにしたものである。   By using an insulating material having a low dielectric constant and a low dielectric loss tangent on the outer side of the inner layer substrate, that is, the first insulating layer 11, the high-speed transmission characteristic of the electric signal is improved. Furthermore, by using an insulating material having a low water absorption rate, moisture absorbed in the first insulating layer can be suppressed, fluctuations in electrical characteristics due to environmental fluctuations can be suppressed, and a highly reliable multilayer substrate can be obtained. It is a thing.

請求項3に係る発明では、第2絶縁層の表面粗さRaを0.01μm以上、0.2μm以下、より好適には0.03μm以上0.1μm以下とすることにより、配線層のエッチング加工精度を向上させると共に電気信号の高速伝送特性を向上させている。ここで、表面粗さRaは、JIS規格B0601−1994規定における算術平均粗さであり、具体的には、AFM(原子間力顕微鏡)NV−3000(オリンパス社製)にて測定したものであり、測定条件は、走査範囲120mm角、走査線数256本、走査速度2秒/本である。   In the invention according to claim 3, the surface roughness Ra of the second insulating layer is 0.01 μm or more and 0.2 μm or less, more preferably 0.03 μm or more and 0.1 μm or less, whereby the wiring layer is etched. In addition to improving accuracy, the high-speed transmission characteristics of electrical signals are improved. Here, the surface roughness Ra is an arithmetic average roughness according to JIS standard B0601-1994, and specifically, measured with an AFM (atomic force microscope) NV-3000 (manufactured by Olympus). The measurement conditions are a scanning range of 120 mm square, 256 scanning lines, and a scanning speed of 2 seconds / line.

第2絶縁層と配線層の密着性は金属配位能を有する化合物を絶縁層表面に導入することにより、実用上必要な600gf/cmを確保している。また、Raが0.2μm以上になると配線層のエッチング加工精度(直線性)及び電気信号の高速伝送特性が低下するので好ましくない。   Adhesion between the second insulating layer and the wiring layer is ensured to be 600 gf / cm, which is practically necessary, by introducing a compound having metal coordination ability into the surface of the insulating layer. On the other hand, if Ra is 0.2 μm or more, the etching accuracy (linearity) of the wiring layer and the high-speed transmission characteristics of electric signals are not preferable.

請求項4に係る発明では、第2絶縁層として熱硬化性樹脂を使用しているため、第1絶縁層へ直接積層することができ、第1絶縁層と第2絶縁層の層間に吸水率の高い接着層を使用する必要がなく、高信頼性の薄膜多層配線板を得ることができる。   In the invention which concerns on Claim 4, since the thermosetting resin is used as a 2nd insulating layer, it can laminate | stack directly on a 1st insulating layer, and it has a water absorption rate between the layers of a 1st insulating layer and a 2nd insulating layer. It is not necessary to use a highly adhesive layer, and a highly reliable thin film multilayer wiring board can be obtained.

請求項5に係る発明では、第2絶縁層の400nm〜700nmにおける光透過率を85%以上とすることにより、CCDカメラを使用した第2絶縁層を介しての配線層の形状検査が可能となり、検査機の良否判定精度を向上させている。   In the invention according to claim 5, by making the light transmittance at 400 nm to 700 nm of the second insulating layer 85% or more, it becomes possible to inspect the shape of the wiring layer through the second insulating layer using a CCD camera. The accuracy of pass / fail judgment of the inspection machine is improved.

請求項6に係る発明では、薄膜多層配線板周辺部の第1絶縁層の側面部を第2絶縁層からなる樹脂で被覆することにより、薄膜多層配線板の第1絶縁層11側面からの吸湿を防ぐことができ、環境変動に伴う電気特性の変動を少なくでき、高信頼性の薄膜多層基板を得ることができる。   In the invention according to claim 6, moisture absorption from the side surface of the first insulating layer 11 of the thin film multilayer wiring board is achieved by coating the side surface portion of the first insulating layer at the periphery of the thin film multilayer wiring board with the resin made of the second insulating layer. Therefore, it is possible to reduce fluctuations in electrical characteristics due to environmental fluctuations, and to obtain a highly reliable thin film multilayer substrate.

薄膜多層配線板の周辺側面部への第2絶縁層の被覆は、断裁加工された薄膜多層配線板を所定枚数積層して、第2絶縁層の樹脂溶液をディッピング、ローラーコート、真空ラミネート等の方法で行うことができ、第2絶縁層の樹脂で被覆層を形成することができる。   The coating of the second insulating layer on the peripheral side surface portion of the thin film multilayer wiring board is performed by laminating a predetermined number of cut thin film multilayer wiring boards and dipping, roller coating, vacuum laminating, etc. the resin solution of the second insulating layer The covering layer can be formed with the resin of the second insulating layer.

また、図5(a)〜(e)に、多面付け法で薄膜多層配線板を作製する際の薄膜多層配線板の周辺側面部への第2絶縁層の被覆層を形成する一例を示す。まず、3面付けの第1絶縁層11からなる内層基板に配線層、ビア等を形成し(図5(a)参照)、次に、面付けユニット基板のパターン領域外の周辺部に開口溝33を形成する(図5(b)参照)。   FIGS. 5A to 5E show an example in which a coating layer of the second insulating layer is formed on the peripheral side surface portion of the thin film multilayer wiring board when the thin film multilayer wiring board is manufactured by the multi-sided attachment method. First, a wiring layer, a via, and the like are formed on the inner substrate composed of the first insulating layer 11 with three surfaces (see FIG. 5A), and then an opening groove is formed in the peripheral portion outside the pattern region of the imposition unit substrate. 33 is formed (see FIG. 5B).

次に、基板上に塗布法、転写法、真空ラミネート等の方法でで第2絶縁層51aを形成し、開口溝33にも第2絶縁樹脂を埋め込み、配線層、ビア等を形成し、3面付けの薄膜多層配線板を作製する(図5(c)及び(d)参照)。最後に、3面付けの薄膜多層配線板を断裁加工して、薄膜多層配線板の周辺部の第1絶縁層11の側面が第2絶縁層の樹脂51で被覆された薄膜多層配線板を得る。   Next, the second insulating layer 51a is formed on the substrate by a coating method, a transfer method, a vacuum laminating method, the second insulating resin is embedded in the opening groove 33, and a wiring layer, a via, and the like are formed. An imposition thin film multilayer wiring board is produced (see FIGS. 5C and 5D). Finally, the three-sided thin film multilayer wiring board is cut to obtain a thin film multilayer wiring board in which the side surface of the first insulating layer 11 at the periphery of the thin film multilayer wiring board is covered with the resin 51 of the second insulating layer. .

本発明の薄膜多層配線板の製造方法について説明する。   The manufacturing method of the thin film multilayer wiring board of this invention is demonstrated.

図2(a)〜(e)、図3(f)〜(j)、図4(k)〜(m)に、本発明の薄膜多層配線板の製造方法の一例を工程順に示す模式構成部分断面図を示す。   2 (a) to (e), FIGS. 3 (f) to (j), and FIGS. 4 (k) to (m), schematic constituent parts showing an example of the method of manufacturing the thin film multilayer wiring board according to the present invention in the order of steps. A cross-sectional view is shown.

まず、ヤング率が5000MPa以上で、かつ破断強度が400MPa以上の絶縁材料からなる第1絶縁層(絶縁基材)11の両面に銅箔21が積層された両面銅張り積層板10を準備する(図2(a)参照)。   First, a double-sided copper-clad laminate 10 in which a copper foil 21 is laminated on both sides of a first insulating layer (insulating base material) 11 made of an insulating material having a Young's modulus of 5000 MPa or more and a breaking strength of 400 MPa or more is prepared ( (See FIG. 2 (a)).

次に、両面銅張り積層板10の片面の所定位置にレーザー加工によりビア用孔31を形成し、ビア用孔31のデスミア、触媒核付与、無電解銅めっきを行って、めっき下地導体層(特に、図示せず)を形成する(図2(b)参照)。   Next, via holes 31 are formed by laser processing at a predetermined position on one side of the double-sided copper-clad laminate 10, desmear of the via holes 31, application of catalyst nuclei, and electroless copper plating are performed. In particular, it is formed (see FIG. 2B).

次に、電解銅めっきを行って、フィルドビア23及び所定厚の導体層22を形成する(図2(c)参照)。   Next, electrolytic copper plating is performed to form a filled via 23 and a conductor layer 22 having a predetermined thickness (see FIG. 2C).

次に、ドライフィルムをラミネートする等の方法で感光層を形成し、パターン露光、現像等の一連のパターニング処理を行って、レジストパターン41を形成する(図2(d)参照)。   Next, a photosensitive layer is formed by a method such as laminating a dry film, and a series of patterning processes such as pattern exposure and development are performed to form a resist pattern 41 (see FIG. 2D).

次に、レジストパターン41をマスクにして、導体層22及び銅箔21をエッチングして、配線層24及び配線層21aを形成した回路基板20を作製する(図2(e)参照)。   Next, using the resist pattern 41 as a mask, the conductor layer 22 and the copper foil 21 are etched to produce the circuit board 20 on which the wiring layer 24 and the wiring layer 21a are formed (see FIG. 2E).

次に、回路基板20の両面にヤング率が2500MPa以下で、1GHzにおける誘電率が2.9以下で、誘電正接が0.01以下で、かつ吸水率が0.3%以下である絶縁材料からなる絶縁フィルムシートを真空ラミネートして、所定厚の第2絶縁層51aを形成する(図3(f)参照)。   Next, an insulating material having a Young's modulus of 2500 MPa or less, a dielectric constant at 1 GHz of 2.9 or less, a dielectric loss tangent of 0.01 or less, and a water absorption of 0.3% or less on both surfaces of the circuit board 20 is used. The insulating film sheet to be formed is vacuum-laminated to form a second insulating layer 51a having a predetermined thickness (see FIG. 3 (f)).

次に、レーザー加工により第2絶縁層51aの所定位置にビア用孔32を形成し(図3(g)参照)、デスミア、触媒核付与、無電解銅めっきを行って、めっき下地導体層25を形成する(図3(h)参照)。   Next, via holes 32 are formed at predetermined positions of the second insulating layer 51a by laser processing (see FIG. 3G), desmear, catalyst nucleus application, and electroless copper plating are performed, and the plating base conductor layer 25 is formed. (See FIG. 3H).

次に、電解銅めっきを行って、フィルドビア27及び導体層26を形成する(図3(i)参照)。   Next, electrolytic copper plating is performed to form the filled via 27 and the conductor layer 26 (see FIG. 3I).

次に、ドライフィルムをラミネートする等の方法で感光層を形成し、パターン露光、現像等の一連のパターニング処理を行って、レジストパターン42を形成する(図3(j)参照)。   Next, a photosensitive layer is formed by a method such as laminating a dry film, and a series of patterning processes such as pattern exposure and development are performed to form a resist pattern 42 (see FIG. 3J).

次に、レジストパターン42をマスクにして、導体層26及びめっき下地導体層25をエッチングして、配線層26a及び配線層26bを形成する(図4(k)参照)。   Next, using the resist pattern 42 as a mask, the conductor layer 26 and the plating base conductor layer 25 are etched to form the wiring layer 26a and the wiring layer 26b (see FIG. 4K).

次に、ソルダーレジスト感光溶液をスクリーン印刷等で塗布し、ソルダーレジスト感光層を形成し、パターン露光、現像等の一連のパターニング処理を行って、ソルダーレジストパターン61を形成してフリップチップパッド28及びBGAパッド29を形成し、薄膜多層配線板を得る(図4(l)参照)。   Next, a solder resist photosensitive solution is applied by screen printing or the like, a solder resist photosensitive layer is formed, a series of patterning processes such as pattern exposure and development are performed, and a solder resist pattern 61 is formed to form the flip chip pad 28 and A BGA pad 29 is formed to obtain a thin film multilayer wiring board (see FIG. 4L).

最後に、多面付けの場合は個々に断裁加工した後、薄膜多層配線板を所定枚数積層して、薄膜多層配線板の周辺部側面に第2絶縁層の樹脂からなる被覆層51を形成して、第1絶縁層11からなる内層基板の両面に配線層24及び21a、第2絶縁層51a、配線層26a及び26b、ソルダーレジスト61、フリップチップパッド28及びBGAパッド29が形成され、配線層24と配線層21aとはフィルドビア23にて、配線層24と配線層26aとはフィルドビア27にて、配線層21aと配線層26bとはビア27にて電気的に接続され、薄膜多層配線板の周辺部側面が第2絶縁層51aの樹脂で被覆された本発明の薄膜多層配線板100を得る(図4(m)参照)。   Finally, in the case of multi-sided attachment, after cutting individually, a predetermined number of thin film multilayer wiring boards are laminated, and a coating layer 51 made of a resin of the second insulating layer is formed on the side surface of the thin film multilayer wiring board. The wiring layers 24 and 21a, the second insulating layer 51a, the wiring layers 26a and 26b, the solder resist 61, the flip chip pad 28, and the BGA pad 29 are formed on both surfaces of the inner layer substrate made of the first insulating layer 11, and the wiring layer 24 is formed. And the wiring layer 21a are electrically connected by a filled via 23, the wiring layer 24 and the wiring layer 26a are electrically connected by a filled via 27, and the wiring layer 21a and the wiring layer 26b are electrically connected by a via 27. The thin-film multilayer wiring board 100 according to the present invention whose side surfaces are covered with the resin of the second insulating layer 51a is obtained (see FIG. 4 (m)).

ここでは、断裁加工した後、薄膜多層配線板の周辺部側面に第2絶縁層の樹脂を被覆したが、前述したように、第2絶縁層形成前に第1絶縁層(内層基板)の周辺に開口溝を形成して、第2絶縁層を形成してやれば、最後に断裁加工した時点で本発明の薄膜多層配線板100を得ることができる。   Here, after cutting, the peripheral side surface of the thin film multilayer wiring board is coated with the resin of the second insulating layer, but as described above, the periphery of the first insulating layer (inner layer substrate) is formed before the second insulating layer is formed. If the second insulating layer is formed by forming an opening groove in the thin film, the thin film multilayer wiring board 100 of the present invention can be obtained at the time of the last cutting.

以下実施例により本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail by way of examples.

まず、ヤング率=9121Pa、破断強度=520MPaのポリイミドフィルム(ユピセルN BE1420:宇部興産社製商品名)からなる50μm厚の第1絶縁層(絶縁基材)11の両面に9μm厚の銅箔21を積層した100mm×100mmサイズの両面銅張り積層板10を準備した(図2(a)参照)。   First, a 9 μm-thick copper foil 21 is formed on both surfaces of a 50 μm-thick first insulating layer (insulating base material) 11 made of a polyimide film (Iupicel N BE1420: trade name manufactured by Ube Industries) having a Young's modulus = 9121 Pa and a breaking strength = 520 MPa. A double-sided copper-clad laminate 10 having a size of 100 mm × 100 mm was prepared (see FIG. 2A).

次に、YAGレーザー第3高調波からなる紫外線を用いて、両面銅張り積層板10の所定位置に直径が40μmのビア用孔31を形成した(図2(b)参照)。次いで、過マンガン酸濃度70g/l、水酸化ナトリウム濃度30g/lになるように調整した70℃の水溶液に20分間浸漬し、次いで、基板を水洗したのち、硫酸ヒドロキシルアミン濃度20g/l、硫酸50g/lになるように調整した45℃の水溶液に5分間浸漬し、中和還元処理を施した。   Next, a via hole 31 having a diameter of 40 μm was formed at a predetermined position of the double-sided copper-clad laminate 10 using ultraviolet rays composed of the third harmonic of the YAG laser (see FIG. 2B). Next, the substrate was immersed in an aqueous solution at 70 ° C. adjusted to have a permanganate concentration of 70 g / l and a sodium hydroxide concentration of 30 g / l for 20 minutes, and after washing the substrate with water, the hydroxylamine sulfate concentration was 20 g / l, sulfuric acid. It was immersed in an aqueous solution at 45 ° C. adjusted to 50 g / l for 5 minutes and subjected to neutralization reduction treatment.

次いで、基板をプリディップネオガントB(アトテック株式会社製商品名)が20ml/l、硫酸濃度1ml/lになるように調整したプリディップ溶液に25℃、1分間浸漬した後、アクチベーターネオガント834コンク(アトテック株式会社製商品名)30ml/l、ホウ酸濃度5g/l、水酸化ナトリウムによりPH=11.0になるように調整した40℃のPd触媒溶液に5分間浸漬した。   Next, the substrate was immersed in a pre-dip solution prepared so that Pre-dip Neogant B (trade name, manufactured by Atotech Co., Ltd.) was 20 ml / l and sulfuric acid concentration was 1 ml / l at 25 ° C. for 1 minute, and then the activator neo-gant 834 concrete (trade name, manufactured by Atotech Co., Ltd.) 30 ml / l, boric acid concentration 5 g / l, and immersed in a Pd catalyst solution at 40 ° C. adjusted to PH = 11.0 with sodium hydroxide for 5 minutes.

次いで、基板を水洗した後、リデューサーネオガントWA(アトテック株式会社商品名)5ml/l、ホウ酸濃度25g/lになるように調整した溶液に30℃で5分間浸漬し、メッキ触媒を還元した。   Next, after washing the substrate with water, the plating catalyst was reduced by immersing in a solution adjusted to reducer neogant WA (Atotech Co., Ltd.) 5 ml / l and boric acid concentration 25 g / l at 30 ° C. for 5 minutes. .

こうして得られた基板を金属銅濃度として2.3g/l、EDTA(エチレンジアミン四酢酸)を20g/l、ホルマリン濃度1.0g/lを基本組成とし、水酸化ナトリウムにてpHを12.0に調整した無電解銅めっき液KC−500(ジャパンエナジー株式会社製商品名)からなる無電解銅めっき液を空気攪拌しながら温度60℃にて15分間浸漬し、無電解銅めっき処理してめっき下地導体層(特に、図示せず)を形成した。   The substrate thus obtained has a metal copper concentration of 2.3 g / l, EDTA (ethylenediaminetetraacetic acid) of 20 g / l, and a formalin concentration of 1.0 g / l as the basic composition. The pH is adjusted to 12.0 with sodium hydroxide. An electroless copper plating solution made of the adjusted electroless copper plating solution KC-500 (trade name, manufactured by Japan Energy Co., Ltd.) is immersed in air at 60 ° C. for 15 minutes while being stirred in air, and is subjected to electroless copper plating treatment and a plating base. A conductor layer (particularly not shown) was formed.

次に、基板を硫酸銅五水和物濃度200g/l、硫酸濃度100g/l、塩素濃度50mg/l、添加剤としてキュプロナールVF−A(メルテックス株式会社商品名)1.5ml/l、キュプロナールVF−B(メルテックス会社商品名)20ml/lになるように調整した電解銅めっきを空気撹拌しながら温度23℃にて電流密度1A/dmになるように電気を通電しながら75分間電気めっき処理を施して厚さ12μmの導体層22及びフィルドビア23を形成した(図2(c)参照)。 Next, the substrate was copper sulfate pentahydrate concentration 200 g / l, sulfuric acid concentration 100 g / l, chlorine concentration 50 mg / l, cupronal VF-A (trade name of Meltex Co., Ltd.) 1.5 ml / l as an additive, Cupronal VF-B (trade name of Meltex company) 75 while supplying electricity to a current density of 1 A / dm 2 at a temperature of 23 ° C. while stirring the electrolytic copper plating adjusted to 20 ml / l with air. The electroplating process was performed for a minute, and the 12-micrometer-thick conductor layer 22 and the filled via | veer 23 were formed (refer FIG.2 (c)).

次に、この基板を水洗、乾燥した後、ドライフィルムレジストRY3215(日立化成株式会社製商品名)を熱圧着して貼り付けて感光層を形成し、パターン露光、現像等の一連のパターニング処理を行って、レジストパターン41を形成した(図2(d)参照)。   Next, after washing and drying the substrate, a dry film resist RY3215 (trade name, manufactured by Hitachi Chemical Co., Ltd.) is bonded by thermocompression bonding to form a photosensitive layer, and a series of patterning processes such as pattern exposure and development are performed. As a result, a resist pattern 41 was formed (see FIG. 2D).

次に、レジストパターン41をマスクにして、比重=1.3g/cm、遊離塩酸濃度=0.3%の塩化第2鉄液を用いて温度=40℃、圧力=1.5kg/cmの条件でスプレーエッチングを行い、配線層24及び配線層21aを形成した回路基板20を得た(図2(e)参照)。次いで、レーザー加工により回路基板20のパターン領域外の外周部に開口溝33を形成した(図5(b)参照)。 Next, using the resist pattern 41 as a mask, a ferric chloride solution having a specific gravity of 1.3 g / cm 3 and a free hydrochloric acid concentration of 0.3%, temperature = 40 ° C., pressure = 1.5 kg / cm 2 Spray etching was performed under the above conditions to obtain the circuit board 20 on which the wiring layer 24 and the wiring layer 21a were formed (see FIG. 2E). Next, an opening groove 33 was formed in the outer peripheral portion outside the pattern region of the circuit board 20 by laser processing (see FIG. 5B).

一方、硬化性組成物としては、8−エチル−テトラシクロ[4.4.0.12,517,10]ドデカ−3−エンの開環重合体を水素添加し、さらに無水マレイン酸変性して得られた変性水素化重合体(Mn=33,200、Mw=68,300、Tg=170℃、マレイン酸残基含有率=25モル%):100部、ビスフェノールAビス(プロピレングリコールグリシジルエーテル)エーテル:40部、2−[2−ヒドロキシ−3,5−ビス(α,α−ジメチルベンジル)フェニル]ベンゾトリアゾール:5部及び1−ベンジル−2−フェニルイミダゾール:0.1部を、キシレン215部及びシクロペンタノン54部からなる混合溶剤に溶解させてワニスを得た。 On the other hand, as the curable composition, 8-ethyl-tetracyclo [4.4.0.1 2,5 . 17,10 ] a hydrogenated polymer obtained by hydrogenating a ring-opened polymer of dodec -3-ene and further modifying with maleic anhydride (Mn = 33,200, Mw = 68,300, Tg = 170). ° C, maleic acid residue content = 25 mol%): 100 parts, bisphenol A bis (propylene glycol glycidyl ether) ether: 40 parts, 2- [2-hydroxy-3,5-bis (α, α-dimethylbenzyl) ) Phenyl] benzotriazole: 5 parts and 1-benzyl-2-phenylimidazole: 0.1 part were dissolved in a mixed solvent consisting of 215 parts of xylene and 54 parts of cyclopentanone to obtain a varnish.

次いで、当該ワニスを、ダイコーターを用いて、300mm角の厚さ40μmのポリエチレンナフタレートフィルムからなるキャリアフィルム12上に塗工し、その後、窒素オーブン中で、例えば、120℃で10分間乾燥し、厚み40μmの第2絶縁樹脂層51が形成されたキャリア付き絶縁層フィルム30を得た。次いで、回路基板20の両面にキャリア付き絶縁層フィルムの第2絶縁樹脂層面が内側となるようにして重ね合わせた(図2(e)参照)。   Next, the varnish is coated on a carrier film 12 made of a polyethylene naphthalate film having a thickness of 300 mm square and a thickness of 40 μm using a die coater, and then dried in a nitrogen oven, for example, at 120 ° C. for 10 minutes. An insulating layer film 30 with a carrier on which a second insulating resin layer 51 having a thickness of 40 μm was formed was obtained. Next, the circuit board 20 was superposed on both surfaces so that the second insulating resin layer surface of the insulating layer film with a carrier was inside (see FIG. 2E).

次に、耐熱ゴム製プレス板を上下に備えた真空ラミネータを用いて、200Paに減圧して、温度125℃、圧力0.5MPaで60秒間加熱圧着して、回路基板20上に硬化性組成物膜を形成したのち、キャリアフィルム20を剥離して、次いで、1−(2−アミノエチル)−2−メチルイミダゾール(AMZ)が0.3%になるように調整した水溶液に25℃で10分間浸漬させたのち、別の水槽に1分間浸漬する処理を3回繰り返して水洗し、次いで、エアーナイフにて余分な溶液を除去したのち、これを170℃の窒素オーブン中に60分間放置し、回路基板20の両面に30μm厚の第2絶縁層51aを形成した(図3(f)参照)。   Next, using a vacuum laminator provided with heat-resistant rubber press plates at the top and bottom, the pressure is reduced to 200 Pa, and thermocompression bonding is performed at a temperature of 125 ° C. and a pressure of 0.5 MPa for 60 seconds to form a curable composition on the circuit board 20. After forming the film, the carrier film 20 was peeled off, and then the aqueous solution adjusted so that 1- (2-aminoethyl) -2-methylimidazole (AMZ) was 0.3% at 25 ° C. for 10 minutes. After immersing, the treatment of immersing in another water bath for 1 minute is repeated 3 times to wash with water, and then the excess solution is removed with an air knife, and then left in a nitrogen oven at 170 ° C. for 60 minutes, A second insulating layer 51a having a thickness of 30 μm was formed on both surfaces of the circuit board 20 (see FIG. 3F).

ここで、開口溝にも第2絶縁層51aからなる樹脂51が充填された。第2絶縁層51aのヤング率は2100MPa、破断強度は70MPa、蒸留水中に24時間浸漬させた後の吸水率は0.07%であった。   Here, the opening 51 was also filled with the resin 51 made of the second insulating layer 51a. The Young's modulus of the second insulating layer 51a was 2100 MPa, the breaking strength was 70 MPa, and the water absorption after being immersed in distilled water for 24 hours was 0.07%.

次に、YAGレーザ第3高調波(THG)からなる紫外線を用いて、第2絶縁層51aの所定位置に直径が40μmφのビア用孔を形成した(図3(g)参照)。次いで、過マンガン酸濃度80g/リットル、水酸化ナトリウム濃度40g/リットルになるように調整した80℃の水溶液に5分間浸漬した。この時の絶縁層2の表面粗さRaは0.1μmであった。次いで、基板を水槽に1分間浸漬する処理を2回繰り返し、更に別の25℃の水槽中で超音波を2分間照射することにより、基板を水洗したのち、硫酸ヒドロキシルアミン濃度20g/リットル、硫酸50g/リットルになるように調整した45℃の水溶液に、基板を5分間浸漬し、中和還元処理をした後、60℃で10分湯洗をした。次いで、湯洗後の多層基板をプリディップネオガントB(アトテック株式会社製商品名)が20ml/リットル、硫酸濃度1ml/リットルになるように調整したプリディップ溶液に25℃、1分間浸漬した後、アクチベーターネオガント834コンク(アトテック株式会社製商品名)30ml/リットル、ホウ酸濃度5g/リットル、水酸化ナトリウム濃度によりpH=11.0になるように調整した50℃のPd塩含有めっき触媒溶液に5分間浸漬した。   Next, a via hole having a diameter of 40 μmφ was formed at a predetermined position of the second insulating layer 51a using ultraviolet light composed of YAG laser third harmonic (THG) (see FIG. 3G). Subsequently, it was immersed for 5 minutes in the 80 degreeC aqueous solution adjusted so that it might become a permanganic acid density | concentration of 80 g / liter and sodium hydroxide density | concentration of 40 g / liter. At this time, the surface roughness Ra of the insulating layer 2 was 0.1 μm. Next, the treatment of immersing the substrate in a water bath for 1 minute is repeated twice, and further, the substrate is washed with water by irradiating ultrasonic waves in another water bath at 25 ° C. for 2 minutes, and then the hydroxylamine sulfate concentration is 20 g / liter, sulfuric acid. The substrate was immersed in an aqueous solution at 45 ° C. adjusted to 50 g / liter for 5 minutes, neutralized and reduced, and then washed with hot water at 60 ° C. for 10 minutes. Next, after immersing the multilayer substrate after hot water washing at 25 ° C. for 1 minute in a pre-dip solution prepared so that Pre-dip Neogant B (trade name, manufactured by Atotech Co., Ltd.) is 20 ml / liter and sulfuric acid concentration is 1 ml / liter. Activator Neogant 834 Conch (trade name, manufactured by Atotech Co., Ltd.) 30 ml / liter, boric acid concentration 5 g / liter, 50 ° C. Pd salt-containing plating catalyst adjusted to pH = 11.0 with sodium hydroxide concentration Immerse in the solution for 5 minutes.

次いで、上述と同じ方法で基板を水洗した後、リデューサーネオガントWA(アトテック株式会社製商品名)5ml/リットル、ホウ酸濃度25g/リットルになるように調整した溶液に30℃で、5分間、浸漬し、めっき触媒を還元処理した。さらに、金属Cuとして2.3g/リットル、EDTAを20g/リットル、ホルマリン1.0g/リットルを基本組成とし、水酸化ナトリウムにてpHを12.5に調整した無電解銅めっき液KC−500(ジャパンエナジー株式会社製商品名)からなる無電解めっき液に空気を吹き込みながら、温度60℃、15分間浸漬して無電解めっきを行って、めっき下地導体層25を形成した(図3(h)参照)。   Next, after washing the substrate with the same method as described above, reducer Neogant WA (trade name, manufactured by Atotech Co., Ltd.) 5 ml / liter, adjusted to a boric acid concentration of 25 g / liter at 30 ° C. for 5 minutes, Immersion was performed to reduce the plating catalyst. Furthermore, an electroless copper plating solution KC-500 having a basic composition of 2.3 g / liter of metal Cu, 20 g / liter of EDTA, 1.0 g / liter of formalin, and adjusted to pH 12.5 with sodium hydroxide ( The plating base conductor layer 25 was formed by performing electroless plating by dipping for 15 minutes at a temperature of 60 ° C. while blowing air into an electroless plating solution made of Japan Energy Co., Ltd. (trade name) (FIG. 3 (h)). reference).

次いで、上述と同様に水洗し、次に基板を硫酸銅五水和物濃度200g/l、硫酸濃度濃度100g/l、塩素濃度50mg/l、添加剤としてキュプロナールVF−A(メルテックス株式会社商品名)1.5ml/l、キュプロナールVF−B(メルテックス会社商品名)20ml/lになるように調整した電解銅めっきを空気撹拌しながら温度23℃にて電流密度1A/dmになるように電気を通電しながら75分間電気めっき処理を施して厚さ12μmの導体層26及びフィルドビア27を形成した(図3(i)参照)。 Subsequently, it was washed with water in the same manner as described above, and then the substrate was copper sulfate pentahydrate concentration 200 g / l, sulfuric acid concentration 100 g / l, chlorine concentration 50 mg / l, and cupronal VF-A (Meltex Co., Ltd.) as an additive. (Trade name) 1.5 ml / l, cupronal VF-B (Meltex company trade name) adjusted to 20 ml / l, electrolytic copper plating adjusted to a current density of 1 A / dm 2 at a temperature of 23 ° C. with air stirring. Thus, the electroplating process was performed for 75 minutes while energizing electricity, and the 12-micrometer-thick conductor layer 26 and the filled via | veer 27 were formed (refer FIG.3 (i)).

次に、水洗、乾燥した後、ドライフィルムレジストRY3215(日立化成株式会社製商品名)を熱圧着して貼り付けて感光層を形成し、パターン露光、現像等の一連のパターニング処理を行って、レジストパターン42を形成した(図3(j)参照)。   Next, after washing and drying, a dry film resist RY3215 (trade name, manufactured by Hitachi Chemical Co., Ltd.) is bonded by thermocompression bonding to form a photosensitive layer, and a series of patterning processes such as pattern exposure and development are performed. A resist pattern 42 was formed (see FIG. 3J).

次に、レジストパターン42をマスクにして、導体層26を比重=1.3g/cm、遊離塩酸濃度=0.3%、の塩化第2鉄液を用いて温度=40℃、圧力=1.5kg/cmの条件でエッチングラインアンドスペース(L/S)が20μmの配線層26a及び26bを形成した(図4(k)参照)。 Next, using the resist pattern 42 as a mask, the conductor layer 26 is made of a ferric chloride solution having a specific gravity = 1.3 g / cm 3 and a free hydrochloric acid concentration = 0.3%, temperature = 40 ° C., pressure = 1. Wiring layers 26a and 26b having an etching line and space (L / S) of 20 μm were formed under the condition of 0.5 kg / cm 2 (see FIG. 4 (k)).

次いで、OPCディフェンサー(奥野製薬株式会社製商品名)が8ml/リットルになるよう調整した防錆溶液に25℃、1分間浸漬し、水洗した後、乾燥し、防錆処理を施し、170℃30分間オーブンにて加熱処理を行った。さらに、ソルダーレジストインク(PSR−4000(商品名):太陽インキ製)をスクリーン印刷で塗布し、乾燥して、ソルダーレジスト層を形成し、パターン露光、現像等のパターニング処理を行って、ソルダーレジストパターン61を形成してフリップチップパッド28及びBGAパッド29を形成し、薄膜多層配線板の周辺部の第1絶縁層側面が第2絶縁層51aの樹脂51で被覆された本発明の薄膜多層配線板100を得た(図4(m)参照)。   Next, the OPC Defencer (trade name, manufactured by Okuno Pharmaceutical Co., Ltd.) was immersed in a rust prevention solution adjusted to 8 ml / liter at 25 ° C. for 1 minute, washed with water, dried, subjected to rust prevention treatment, and 170 ° C. Heat treatment was performed in an oven for 30 minutes. Furthermore, a solder resist ink (PSR-4000 (trade name): manufactured by Taiyo Ink) is applied by screen printing and dried to form a solder resist layer, and patterning treatment such as pattern exposure and development is performed. A thin film multilayer wiring of the present invention in which a flip chip pad 28 and a BGA pad 29 are formed by forming a pattern 61 and the side surface of the first insulating layer in the peripheral portion of the thin film multilayer wiring board is covered with the resin 51 of the second insulating layer 51a. A plate 100 was obtained (see FIG. 4 (m)).

上記薄膜多層配線板100の破断強度は500MPaと非常に高強度であり、蒸留水中に24時間浸漬前後の第1絶縁層の誘電率、誘電正接に変化は見られなかった。さらに、CCDカメラの第2絶縁層を介しての画像取り込みによる配線層形状検査のエラー発生率も5%以下ときわめて良好であった。   The breaking strength of the thin film multilayer wiring board 100 was as high as 500 MPa, and no change was observed in the dielectric constant and dielectric loss tangent of the first insulating layer before and after being immersed in distilled water for 24 hours. Further, the error occurrence rate of the wiring layer shape inspection by taking in the image through the second insulating layer of the CCD camera was very good at 5% or less.

まず、ヤング率=9121Pa、破断強度=520MPaのポリイミドフィルム(ユピセルN BE1420:宇部興産社製商品名)からなる50μm厚の第1絶縁層(絶縁基材)11の両面に9μm厚の銅箔21を積層した100mm×100mmサイズの両面銅張り積層板10を準備した(図2(a)参照)。   First, a 9 μm-thick copper foil 21 is formed on both sides of a 50 μm-thick first insulating layer (insulating base material) 11 made of a polyimide film (Iupicel N BE1420: trade name manufactured by Ube Industries) having a Young's modulus = 9121 Pa and a breaking strength = 520 MPa. A double-sided copper-clad laminate 10 having a size of 100 mm × 100 mm was prepared (see FIG. 2A).

次に、実施例1と同様な材料を用いた処方で、両面銅張り積層板10の両面に厚さ32μmの第2絶縁層51aを形成し、ビア用孔形成、導体層形成、パターニング加工を行って、信号線幅77μm、信号線長50mmの配線層を有するマイクロストリップライン構造の実施例2の薄膜多層配線板を得た。   Next, a second insulating layer 51a having a thickness of 32 μm is formed on both sides of the double-sided copper-clad laminate 10 with a prescription using the same material as in Example 1, and via hole formation, conductor layer formation, and patterning are performed. The thin film multilayer wiring board of Example 2 having a microstrip line structure having a wiring layer with a signal line width of 77 μm and a signal line length of 50 mm was obtained.

得られた薄膜多層基板の電気特性評価結果を図6及び図7に示す。このように本発明の薄膜多層配線板は上述の信号線を透過した信号の減衰率を表すS21パラメータでは40GHzにおいて−8dbと小さいものであった。また、立ち上がり時間(tr)35psecの信号を上述の線路に入力した際の信号の立ち上がり特性を評価したTDTでは60psecと立ち上がり時間も早い結果となった。   The electrical property evaluation results of the obtained thin film multilayer substrate are shown in FIGS. Thus, the thin-film multilayer wiring board of the present invention has a small S21 parameter of −8 db at 40 GHz in the S21 parameter indicating the attenuation rate of the signal transmitted through the signal line. In addition, TDT which evaluated the rise characteristic of a signal when a signal having a rise time (tr) of 35 psec was input to the above-described line showed an early rise time of 60 psec.

実施例1と同様な方法で、まず、ヤング率=9121Pa、破断強度=520MPaのポリイミドフィルム(ユピセルN BE1420:宇部興産社製商品名)からなる50μm厚の第1絶縁層(絶縁基材)11の両面に配線層21a、配線層24及びフィルドビア23を形成した回路基板20の両面にヤング率=2900MPa、蒸留水に24時間浸漬した後の吸水率が1.2%の熱硬化性エポキシ樹脂(ABF−SH9K:味の素ファインテック製)を耐熱ゴムプレス板を上下に備えた真空ラミネーターを用いて200Paに減圧して、温度100℃、圧力0.7MPaで30秒間、さらに温度=100℃、圧力=5.5MPaにて60秒加熱の2段加熱圧着して熱硬化製樹脂層からなる第2絶縁層を形成した。次いで、過マンガン酸濃度80g/リットル、水酸化ナトリウム濃度40g/リットルになるように調整した70℃の水溶液に20分間浸漬した。このとき、絶縁層の表面粗さRaは1.5μmであった。   In the same manner as in Example 1, first, a first insulating layer (insulating base material) 11 having a thickness of 50 μm made of a polyimide film having a Young's modulus = 9121 Pa and a breaking strength = 520 MPa (Iupicel N BE1420: trade name manufactured by Ube Industries, Ltd.) A thermosetting epoxy resin having a Young's modulus = 2900 MPa on both sides of the circuit board 20 on which the wiring layer 21a, the wiring layer 24 and the filled via 23 are formed, and a water absorption rate of 1.2% after being immersed in distilled water for 24 hours. ABF-SH9K (manufactured by Ajinomoto Finetech) was depressurized to 200 Pa using a vacuum laminator equipped with heat-resistant rubber press plates at the top and bottom, temperature 100 ° C., pressure 0.7 MPa for 30 seconds, temperature = 100 ° C., pressure = A second insulating layer made of a thermosetting resin layer was formed by two-step thermocompression bonding at 5.5 MPa for 60 seconds. Subsequently, it was immersed for 20 minutes in the 70 degreeC aqueous solution adjusted so that it might become a permanganic acid density | concentration of 80 g / liter and sodium hydroxide density | concentration of 40 g / liter. At this time, the surface roughness Ra of the insulating layer was 1.5 μm.

次に、実施例1と同様な処方で、ビア用孔形成、導体層形成、導体層のパターニング処理を行って、実施例3の薄膜多層配線板を得た。実施例3の薄膜多層配線板の破断強度は500MPaと非常に高強度であったが、第2絶縁層はJIS71132号片引っ張り試験片において100MPaを超えたあたりからクラックが生じ、薄膜多層基板の機械強度は実用レベル以下であった。さらに蒸留水中に24時間浸漬させる処理前後で第1の絶縁層の誘電率及び誘電正接は10%変動した。   Next, via-hole formation, conductor layer formation, and conductor layer patterning treatment were performed with the same formulation as in Example 1 to obtain a thin film multilayer wiring board of Example 3. The breaking strength of the thin film multilayer wiring board of Example 3 was very high at 500 MPa, but the second insulating layer cracked in the JIS 71132 single tensile test piece from above 100 MPa, and the mechanical properties of the thin film multilayer substrate The strength was below the practical level. Further, the dielectric constant and dielectric loss tangent of the first insulating layer fluctuated by 10% before and after the treatment immersed in distilled water for 24 hours.

この様に実施例3においては第2絶縁層として本発明の第2絶縁層よりヤング率、破断強度が低い材料を用いた結果、上述の引っ張り試験において100MPa程度からクラックが生じ、さらに、環境変動に伴い、第1絶縁層の誘電率、誘電正接が10%変動するため、特性インピーダンスの整合が重要な高周波領域になると電気信号の高速伝送特性に悪影響を与える。このことから、第2絶縁層はヤング率が低く、かつ低吸水率の材料の方が望ましいことが裏付けられた。   Thus, in Example 3, as a result of using a material having a Young's modulus and breaking strength lower than those of the second insulating layer of the present invention as the second insulating layer, cracks were generated from about 100 MPa in the above-described tensile test, and environmental fluctuations were further observed. Accordingly, since the dielectric constant and dielectric loss tangent of the first insulating layer fluctuate by 10%, the high-speed transmission characteristic of an electric signal is adversely affected when the characteristic impedance matching is important. This proves that the second insulating layer is preferably a material having a low Young's modulus and a low water absorption.

まず、ヤング率=9121Pa、破断強度=520MPaのポリイミドフィルム(ユピセルN BE1420:宇部興産社製商品名)からなる50μm厚の第1絶縁層(絶縁基材)11の両面に9μm厚の銅箔21を積層した100mm×100mmサイズの両面銅張り積層板10の両面に、実施例3と同様ような処方で、厚さ32μm厚の第2絶縁層を形成し、ビア用孔形成、導体層形成、パターニング加工を行って、信号線幅71μm、信号線長50mmの配線層を有するマイクロストリップライン構造の実施例4の薄膜多層配線板を得た。   First, a 9 μm-thick copper foil 21 is formed on both sides of a 50 μm-thick first insulating layer (insulating base material) 11 made of a polyimide film (Iupicel N BE1420: trade name manufactured by Ube Industries) having a Young's modulus = 9121 Pa and a breaking strength = 520 MPa. A second insulating layer having a thickness of 32 μm is formed on both surfaces of a 100 mm × 100 mm double-sided copper-clad laminate 10 having a thickness similar to that in Example 3 to form via holes, conductor layers, Patterning was performed to obtain a thin film multilayer wiring board of Example 4 having a microstrip line structure having a wiring layer with a signal line width of 71 μm and a signal line length of 50 mm.

得られた実施例4の薄膜多層配線板の電気特性評価結果を図6及び図7に示す。このように実施例4の薄膜多層配線板は上述の信号線を透過した信号の減衰率を表すS21パラメータでは40GHzにおいて−16dbと大きいものであった。これは第2絶縁層表面の表面粗さが荒く、さらに第2絶縁層の誘電率、誘電正接が高い為である。また、立ち上がり時間(tr)35psecの信号を上述の線路に入力した際の信号の立ち上がり特性を評価したTDTでは140psecと立ち上がり時間も遅い結果となった。   The electrical property evaluation results of the thin film multilayer wiring board obtained in Example 4 are shown in FIGS. Thus, the thin-film multilayer wiring board of Example 4 was as large as −16 db at 40 GHz in the S21 parameter representing the attenuation rate of the signal transmitted through the signal line. This is because the surface roughness of the surface of the second insulating layer is rough and the dielectric constant and dielectric loss tangent of the second insulating layer are high. In addition, TDT which evaluated the rise characteristic of a signal when a signal having a rise time (tr) of 35 psec is input to the above-mentioned line has a slow rise time of 140 psec.

つまり、誘電正接が高いため、立ち上がりは鈍く、さらに第2絶縁層の表面が荒れているため表皮効果の影響により、信号の立ち上がり特性も悪くなっている。これらの結果より、表面粗さRaは0.2μm以下でかつ、第2絶縁層の誘電率および誘電正接が低い方が望ましいことが裏付けられた。   That is, since the dielectric loss tangent is high, the rise is slow, and the surface of the second insulating layer is rough, and the rise characteristic of the signal is also deteriorated due to the skin effect. From these results, it was confirmed that the surface roughness Ra is 0.2 μm or less and that the dielectric constant and dielectric loss tangent of the second insulating layer are preferably low.

本発明の薄膜多層配線板の一実施例を示す模式構成部分断面図である。1 is a schematic partial sectional view showing an embodiment of a thin film multilayer wiring board according to the present invention. (a)〜(e)は、本発明の薄膜多層配線板の製造方法における製造工程の一部を模式的に示す部分断面図である。(A)-(e) is a fragmentary sectional view which shows typically a part of manufacturing process in the manufacturing method of the thin film multilayer wiring board of this invention. (f)〜(j)は、本発明の薄膜多層配線板の製造方法における製造工程の一部を模式的に示す部分断面図である。(F)-(j) is a fragmentary sectional view which shows typically a part of manufacturing process in the manufacturing method of the thin film multilayer wiring board of this invention. (k)〜(m)は、本発明の薄膜多層配線板の製造方法における製造工程の一部を模式的に示す部分断面図である。(K)-(m) is a fragmentary sectional view which shows typically a part of manufacturing process in the manufacturing method of the thin film multilayer wiring board of this invention. (a)〜(e)は、本発明の薄膜多層配線板の周辺部側面に第2絶縁層の樹脂を被覆する方法の一例を示す説明図である。(a)は、3面付けの第1絶縁層11に配線層等を形成した模式平面図である。(b)は、第1絶縁層11のパターン領域外の周辺部に開口溝を形成した模式平面図である。(c)は、第2絶縁層51aを形成した模式平面図である。(d)は、(c)をA−A’線で切断した模式断面図である。(e)は、断裁加工した薄膜多層配線板の模式断面図である。(A)-(e) is explanatory drawing which shows an example of the method of coat | covering the resin of a 2nd insulating layer on the peripheral part side surface of the thin film multilayer wiring board of this invention. (A) is the model top view which formed the wiring layer etc. in the 1st insulating layer 11 of 3 surfaces. FIG. 4B is a schematic plan view in which an opening groove is formed in the peripheral portion outside the pattern region of the first insulating layer 11. (C) is the schematic top view which formed the 2nd insulating layer 51a. (D) is the schematic cross section which cut | disconnected (c) by the A-A 'line | wire. (E) is a schematic cross-sectional view of a cut thin film multilayer wiring board. 本発明の実施例で得られた薄膜多層配線板のS21パラメーター特性を示す説明図である。It is explanatory drawing which shows the S21 parameter characteristic of the thin film multilayer wiring board obtained by the Example of this invention. 本発明の実施例で得られた薄膜多層配線板の信号の立ち上がり特性を示す説明図である。It is explanatory drawing which shows the starting characteristic of the signal of the thin film multilayer wiring board obtained by the Example of this invention. 従来の多層配線板の一例を示す模式構成部分断面図である。It is a typical structure fragmentary sectional view which shows an example of the conventional multilayer wiring board. 従来の多層配線板の一例を示す模式構成部分断面図である。It is a typical structure fragmentary sectional view which shows an example of the conventional multilayer wiring board. (a)は、従来の多層配線板の製造方法の一例を示す工程模式構成部分断面図である。(b)は、従来の多層配線板の一例を示す模式構成部分断面図である。(A) is process schematic structure partial sectional drawing which shows an example of the manufacturing method of the conventional multilayer wiring board. (B) is a schematic structure fragmentary sectional view which shows an example of the conventional multilayer wiring board.

符号の説明Explanation of symbols

10……両面銅張り積層板
11……第1絶縁層(絶縁基材)
12……キャリアフィルム
20……回路基板
21……銅箔
21a、24、26a、26b、102、112、122、332、423、425……配線層
22、26……導体層
23、27、111、121、331、422、424……フィルドビア
25……めっき下地導体層
28、131、341、431……フリップチップパッド
29、132、342、421……BGAパッド
30……キャリア付き絶縁層フィルム
31、32……ビア用孔
33……開口溝
41、42……レジストパターン
51……第2絶縁樹脂層
51a……第2絶縁層
61、141、351、441……ソルダーレジストパターン
111……絶縁基材
101……スルーホール
110……コア基板
112、113、411、412……絶縁層
311……両面銅箔付きポリイミド基板
312……片面銅箔付きポリイミド
321……接着層
410……金属板
421……電極パッド
10 …… Double-sided copper-clad laminate 11 …… First insulation layer (insulation substrate)
DESCRIPTION OF SYMBOLS 12 ... Carrier film 20 ... Circuit board 21 ... Copper foil 21a, 24, 26a, 26b, 102, 112, 122, 332, 423, 425 ... Wiring layers 22, 26 ... Conductive layers 23, 27, 111 , 121, 331, 422, 424 ... filled via 25 ... plating conductor layers 28, 131, 341, 431 ... flip chip pads 29, 132, 342, 421 ... BGA pad 30 ... insulating layer film 31 with carrier 32 ... via hole 33 ... opening groove 41, 42 ... resist pattern 51 ... second insulating resin layer 51a ... second insulating layer 61, 141, 351, 441 ... solder resist pattern 111 ... insulation Base material 101 ... Through hole 110 ... Core substrate 112, 113, 411, 412 ... Insulating layer 311 ... Poly with double-sided copper foil Bromide substrate 312 ...... single-sided copper foil polyimide 321 ...... adhesive layer 410 ...... metal plate 421 ...... electrode pads

Claims (6)

第1絶縁層からなる内層基板の片面もしくは両面に第2絶縁層を介して少なくとも2層以上の配線層が形成されてなる多層配線板において、前記第1絶縁層は、ヤング率が5000MPa以上で、かつ破断強度が400MPa以上の絶縁材料から構成されていることを特徴とする薄膜多層配線板。   In a multilayer wiring board in which at least two wiring layers are formed on one or both surfaces of an inner substrate composed of a first insulating layer via a second insulating layer, the first insulating layer has a Young's modulus of 5000 MPa or more. And a thin film multilayer wiring board comprising an insulating material having a breaking strength of 400 MPa or more. 前記第2絶縁層は、ヤング率が2500MPa以下で、1GHzにおける誘電率が2.9以下で、誘電正接が0.01以下で、かつ吸水率が0.3%以下である絶縁材料から構成されていることを特徴とする薄膜多層配線板。   The second insulating layer is made of an insulating material having a Young's modulus of 2500 MPa or less, a dielectric constant at 1 GHz of 2.9 or less, a dielectric loss tangent of 0.01 or less, and a water absorption of 0.3% or less. A thin film multilayer wiring board, characterized in that 前記第2絶縁層の表面粗さRaが0.01μm以上0.2μm以下であることを特徴とする請求項1または2に記載の薄膜多層配線板。   The thin film multilayer wiring board according to claim 1 or 2, wherein the surface roughness Ra of the second insulating layer is 0.01 µm or more and 0.2 µm or less. 前記第2絶縁層は熱硬化性樹脂であることを特徴とする請求項1乃至3のいずれか一項に記載の薄膜多層配線板。   The thin film multilayer wiring board according to any one of claims 1 to 3, wherein the second insulating layer is a thermosetting resin. 前記第2絶縁層は400nm〜700nmにおける光透過率が85%以上であることを特徴とする請求項1乃至4のいずれか一項に記載の薄膜多層配線板。   5. The thin film multilayer wiring board according to claim 1, wherein the second insulating layer has a light transmittance of not less than 85% at 400 nm to 700 nm. 請求項1乃至5のいずれか一項に記載の薄膜多層配線板周辺部の第1絶縁層の側面が前記第2絶縁層の樹脂で被覆されていることを特徴とする薄膜多層配線板。   6. The thin film multilayer wiring board according to claim 1, wherein a side surface of the first insulating layer in the periphery of the thin film multilayer wiring board according to claim 1 is covered with a resin of the second insulating layer.
JP2004146160A 2004-05-17 2004-05-17 Thin-film multilayer wiring board Pending JP2005327972A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004146160A JP2005327972A (en) 2004-05-17 2004-05-17 Thin-film multilayer wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004146160A JP2005327972A (en) 2004-05-17 2004-05-17 Thin-film multilayer wiring board

Publications (1)

Publication Number Publication Date
JP2005327972A true JP2005327972A (en) 2005-11-24

Family

ID=35474056

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004146160A Pending JP2005327972A (en) 2004-05-17 2004-05-17 Thin-film multilayer wiring board

Country Status (1)

Country Link
JP (1) JP2005327972A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008288463A (en) * 2007-05-18 2008-11-27 Toppan Printing Co Ltd Multilayered wiring board
WO2015015975A1 (en) * 2013-07-30 2015-02-05 株式会社村田製作所 Multilayer substrate and method for manufacturing multilayer substrate
JP2016076514A (en) * 2014-10-02 2016-05-12 大日本印刷株式会社 Wiring board and electronic module

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008288463A (en) * 2007-05-18 2008-11-27 Toppan Printing Co Ltd Multilayered wiring board
WO2015015975A1 (en) * 2013-07-30 2015-02-05 株式会社村田製作所 Multilayer substrate and method for manufacturing multilayer substrate
JP5900664B2 (en) * 2013-07-30 2016-04-06 株式会社村田製作所 Multilayer substrate and method for manufacturing multilayer substrate
US9485860B2 (en) 2013-07-30 2016-11-01 Murata Manufacturing Co., Ltd. Multilayer board
JP2016076514A (en) * 2014-10-02 2016-05-12 大日本印刷株式会社 Wiring board and electronic module

Similar Documents

Publication Publication Date Title
JP4944246B2 (en) Printed wiring board and manufacturing method thereof
KR100733253B1 (en) High density printed circuit board and manufacturing method thereof
JP5580135B2 (en) Printed wiring board manufacturing method and printed wiring board
JPWO2009054456A1 (en) Method for manufacturing printed wiring board
TWI392428B (en) Method for manufacturing double sided flexible printed wiring board
JP2005322868A (en) Method for electrolytic gold plating of printed circuit board
JP4129166B2 (en) Electrolytic copper foil, film with electrolytic copper foil, multilayer wiring board, and manufacturing method thereof
JP2006196656A (en) Wiring board and manufacturing method thereof
JPH11214846A (en) Multilayer printed wiring board
JP2005327972A (en) Thin-film multilayer wiring board
TWI805902B (en) Surface treated copper foil, copper clad laminate and printed circuit board
KR100722599B1 (en) All layer inner via hall printed circuit board and the manufacturing method that utilize the fill plating
JP2011023428A (en) Method for manufacturing composite, and composite
JPH11307936A (en) Multi-layer printed circuit board
JP2005191080A (en) Laminate plate and multilayer printed circuit board using it and these manufacturing method
JP2010232585A (en) Multilayer wiring board and method of manufacturing the same
JP5622356B2 (en) Circuit board and manufacturing method thereof
JP2003115663A (en) Multilayer printed wiring board
JP2003008221A (en) Multilayer printed wiring board and method of manufacturing the same
JP2000151118A (en) Manufacture of multilayer printed wiring board
JP2005153357A (en) Resin film with metal foil, its production method, wiring board, and its production method
JP2002280737A (en) Multilayer printed wiring board
JP2011254026A (en) Method of producing composite and composite
KR200412591Y1 (en) A multi-layer board provide with interconnect bump hole of the inner layer RCC
KR20060003847A (en) A multi-layer board provide with interconnect bump hole of the inner layer rcc and therefor method