Nothing Special   »   [go: up one dir, main page]

JP2005326192A - Three-dimensional shape measuring device - Google Patents

Three-dimensional shape measuring device Download PDF

Info

Publication number
JP2005326192A
JP2005326192A JP2004143023A JP2004143023A JP2005326192A JP 2005326192 A JP2005326192 A JP 2005326192A JP 2004143023 A JP2004143023 A JP 2004143023A JP 2004143023 A JP2004143023 A JP 2004143023A JP 2005326192 A JP2005326192 A JP 2005326192A
Authority
JP
Japan
Prior art keywords
light
fourier transform
dimensional shape
shape measuring
diffraction grating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004143023A
Other languages
Japanese (ja)
Inventor
Akira Imaizumi
陽 今泉
Yoshihiro Uehara
良浩 上原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2004143023A priority Critical patent/JP2005326192A/en
Publication of JP2005326192A publication Critical patent/JP2005326192A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To perform a precise three-dimensional measurement in a largely changing environment while preventing deterioration of accuracy by vibration, fluctuation or the like of an optical system. <P>SOLUTION: This device is adapted to project interference fringes by two parallel luminous fluxes L<SB>1</SB>and L<SB>2</SB>obtained by separating 0-order light and primary light of laser beam made parallel by a collimator lens 2 and transmitted by a transmission type diffraction grating 3 by a space filter 5 to a measuring object W<SB>1</SB>, image the modulated interference fringes by an imaging element 7, and perform image processing in an imge processor 8. According to this, the deterioration of accuracy by vibration, fluctuation or the like can be avoided due to a common path system in which the two parallel luminous fluxes L<SB>1</SB>and L<SB>2</SB>following the same optical path generate interference fringes based on a displacement quantity by focal position slippage of the 0-order light and primary light in a lens 4a. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、干渉縞の投影によって大面積の形状計測を高精度で行うことができる3次元形状測定装置に関するものである。   The present invention relates to a three-dimensional shape measuring apparatus capable of measuring a shape of a large area with high accuracy by projecting interference fringes.

物体の3次元形状を測定する手法として、格子パターン投影による3次元形状計測法が提案されている。この技術は、特許文献1で提案されている手法で、測定対象に格子パターンを投影し、形状に応じて変調された格子パターンから形状を求める手法である。この手法の特徴として面内形状の一括計測を行うことが可能である。また、投影するパターンの格子周波数に応じて測定レンジを大きく変えることができるため、人体の形状等の大形状からμmオーダの形状計測まで幅広い応用が可能である。このμmオーダの形状計測が可能で、面内一括計測であるため測定時間が短いという2つの特徴から、格子パターン投影法は成形品の形状検査装置等への応用が期待されている。   As a method for measuring the three-dimensional shape of an object, a three-dimensional shape measurement method using lattice pattern projection has been proposed. This technique is a technique proposed in Patent Document 1, in which a lattice pattern is projected onto a measurement target, and a shape is obtained from a lattice pattern modulated according to the shape. As a feature of this method, it is possible to perform in-plane shape batch measurement. In addition, since the measurement range can be greatly changed according to the grating frequency of the pattern to be projected, a wide range of applications from large shapes such as the shape of the human body to shape measurements on the order of μm is possible. The lattice pattern projection method is expected to be applied to a shape inspection apparatus for molded products because of the two features that it is possible to measure the shape in the order of μm and that the measurement time is short because of in-plane collective measurement.

格子パターン投影法でμmオーダの形状計測を行うためには、投影格子間隔をμmオーダまで狭めてやる必要がある。しかし、実体格子パターンの投影を行う場合、格子間隔が狭くなることで回折の影響が顕在化し、理想的な格子パターンを投影することができなくなるという未解決の課題がある。投影格子の格子間隔を狭める場合には、回折の影響を逃れ理想的な格子パターンを投影できる方法として干渉縞投影を利用する方法があり、特許文献2にて提案されている。   In order to perform shape measurement on the order of μm by the grating pattern projection method, it is necessary to narrow the projection grating interval to the order of μm. However, when projecting an actual lattice pattern, there is an unsolved problem that the effect of diffraction becomes obvious due to a narrow lattice interval, making it impossible to project an ideal lattice pattern. In the case of narrowing the grating interval of the projection grating, there is a method using interference fringe projection as a method that can avoid the influence of diffraction and project an ideal grating pattern, which is proposed in Patent Document 2.

この技術では格子周波数の調整が容易な系として、図5に示すように、レーザ光源101、コリメートレンズ102、ビームスプリッタ103、平面ミラー104からなる2光束干渉系が用いられる。ビームスプリッタ103によって分離された2つの光束L1 、L2 をホルダー105上の被測定物W0 の表面で交差させ、発生した干渉縞を対物レンズ106を介して撮像素子107で撮像し、画像処理装置108において画像処理する。 In this technique, a two-beam interference system including a laser light source 101, a collimating lens 102, a beam splitter 103, and a plane mirror 104 is used as a system that can easily adjust the grating frequency, as shown in FIG. The two light beams L 1 and L 2 separated by the beam splitter 103 are crossed at the surface of the object to be measured W 0 on the holder 105, and the generated interference fringes are imaged by the image sensor 107 through the objective lens 106. The processing device 108 performs image processing.

このような干渉縞投影では、上記の回折の影響を受けないことに加えて、投影パターンが正弦波状のプロファイルをもつという長所をもつ。投影パターンが正弦波状であることから、位相シフト法に代表されるような位相解析技術を用いることによって、測定分解能を更に高めることが可能となる。特に位相解析手法にフーリエ変換法を利用すれば、解析に必要とされる変調縞画像は1枚のみであるため、瞬時形状計測・リアルタイム形状計測といった測定にも対応することが可能である。以上のことから、数十μm間隔の干渉縞を投影することで、μmオーダの分解能で、極めて高速に形状計測を行うことが可能であることがわかる。
特開2002−224828号公報 特公平3−12684号公報
Such interference fringe projection has the advantage that the projection pattern has a sinusoidal profile in addition to being unaffected by the diffraction. Since the projection pattern is sinusoidal, the measurement resolution can be further increased by using a phase analysis technique represented by the phase shift method. In particular, if the Fourier transform method is used for the phase analysis method, since only one modulation fringe image is required for the analysis, it is possible to cope with measurement such as instantaneous shape measurement and real-time shape measurement. From the above, it can be seen that by measuring interference fringes at intervals of several tens of μm, shape measurement can be performed at a very high speed with a resolution of the order of μm.
JP 2002-224828 A Japanese Patent Publication No. 3-12684

しかしながら、上記の方法で干渉縞投影を行う場合、2光束干渉系に機械的振動や熱的な揺らぎが存在する場合には、投影パターンに振動・変調が起こってしまう。このため、制御された環境下以外では測定精度が大きく損なわれてしまい、生産ライン等の悪環境下では測定が行えない。ラインと切り離された検査装置として使用する場合であっても、環境制御された場所での使用、あるいは環境制御機構を装置自身に組み込むことが要求され、ハイコストの原因となるという未解決の課題があった。   However, when interference fringe projection is performed by the above-described method, if there is mechanical vibration or thermal fluctuation in the two-beam interference system, vibration / modulation occurs in the projection pattern. For this reason, the measurement accuracy is greatly impaired except in a controlled environment, and measurement cannot be performed in a bad environment such as a production line. Even if it is used as an inspection device separated from the line, there is an unresolved problem that it is required to use in an environment-controlled place or to incorporate an environmental control mechanism in the device itself, which causes high costs was there.

本発明は上記従来の技術の有する未解決の課題に鑑みてなされたものであり、分割された2つの光束が1つの光束系を共有するコモンパス干渉を利用することによって、熱的・機械的な揺らぎの存在する環境下においても、測定精度を損なうことなく3次元形状測定を自動で行うことを可能とする3次元形状計測装置を提供することを目的とするものである。   The present invention has been made in view of the above-mentioned unsolved problems of the prior art. By utilizing common path interference in which two divided light beams share one light beam system, thermal and mechanical properties are obtained. It is an object of the present invention to provide a three-dimensional shape measuring apparatus that can automatically perform three-dimensional shape measurement without impairing measurement accuracy even in an environment where fluctuations exist.

上記目的を達成するため、本発明の3次元形状測定装置は、レーザ光源と、前記レーザ光源のレーザ光を平行光に変換する光学素子と、前記光学素子から出射する平行光を光線シェア手段によって同じ進行方向の2本の平行光束に分割し、前記2本の平行光束が重複する部分で発生する干渉縞を被測定物に投影する干渉縞投影光学系と、前記干渉縞が投影された前記被測定物の表面の変調縞を撮像する撮像素子とを備え、前記撮像素子によって撮像された前記変調縞の位相情報に基づいて前記被測定物の形状を演算によって求めることを特徴とする。   In order to achieve the above object, a three-dimensional shape measuring apparatus of the present invention includes a laser light source, an optical element that converts laser light from the laser light source into parallel light, and parallel light emitted from the optical element by a light beam sharing means. An interference fringe projection optical system that divides the light into two parallel light beams in the same traveling direction and projects an interference fringe generated at a portion where the two parallel light beams overlap with the object to be measured; And an imaging device that images the modulation fringes on the surface of the object to be measured. The shape of the object to be measured is obtained by calculation based on phase information of the modulation fringes imaged by the imaging device.

平行光に変換されたレーザ光を、回折格子等を用いた光線シェア手段によって同じ光路上で重複する2本の平行光束に分割し、両者の間の変位量、シフト角または位相差によって干渉縞を発生させるものであるため、分割した2つの光束を個別の光路を経て干渉させる2光束干渉系に比べて、光学系の熱的・機械的な揺らぎに影響されることがない。   The laser light converted into parallel light is divided into two parallel light beams overlapping on the same optical path by a light beam sharing means using a diffraction grating or the like, and interference fringes are generated by the displacement amount, shift angle or phase difference between them. Therefore, compared to a two-beam interference system in which two divided beams interfere with each other through separate optical paths, the optical system is not affected by thermal and mechanical fluctuations.

従って、変化の大きい環境下においても高精度な3次元計測を安定して行うことのできる信頼性の高い3次元形状測定装置を実現できる。   Accordingly, it is possible to realize a highly reliable three-dimensional shape measuring apparatus capable of stably performing high-precision three-dimensional measurement even in an environment with a large change.

本発明の実施の形態を図面に基づいて説明する。   Embodiments of the present invention will be described with reference to the drawings.

図1は本発明の実施例1を説明する図である。図1(a)は3次元形状測定装置全体を説明する模式図である。図1(a)に示すように、干渉縞を形成するためのコモンパス干渉のための光線シェア手段であるシアリング干渉系を使用した干渉縞投影系を備え、この干渉縞投影系によって被測定物W1 の表面に投影された変調干渉縞を撮像素子7によって撮像し、撮像素子7から得られた変調縞画像を取得し、画像処理装置8においてフーリエ変換位相解析法を使用して3次元形状を算出する。 FIG. 1 is a diagram for explaining a first embodiment of the present invention. FIG. 1A is a schematic diagram illustrating the entire three-dimensional shape measuring apparatus. As shown in FIG. 1A, an interference fringe projection system using a shearing interference system, which is a light-sharing means for common path interference for forming interference fringes, is provided. The modulation interference fringes projected on the surface of 1 are imaged by the image sensor 7, the modulation fringe image obtained from the image sensor 7 is acquired, and the three-dimensional shape is obtained using the Fourier transform phase analysis method in the image processing device 8. calculate.

図1(b)は図1(a)に示したシアリング干渉系を説明する詳細図である。図1(b)のシアリング干渉系は、透過型回折格子3と、この回折格子のフーリエ変換像を形成するフーリエ変換素子であるレンズ4aと、フーリエ変換像の0次と1次のみを透過する空間フィルタ5と、透過した0次・1次光を逆フーリエ変換する逆フーリエ変換素子であるレンズ4bとで構成され、この0次・1次光の干渉によって干渉縞を発生させる。   FIG. 1B is a detailed diagram for explaining the shearing interference system shown in FIG. The shearing interference system in FIG. 1B transmits only the transmissive diffraction grating 3, the lens 4a that is a Fourier transform element that forms a Fourier transform image of the diffraction grating, and only the 0th and 1st orders of the Fourier transform image. The spatial filter 5 and a lens 4b, which is an inverse Fourier transform element that performs inverse Fourier transform on the transmitted 0th-order / first-order light, generate interference fringes by the interference of the 0th-order / first-order light.

図1に示すように、レーザ光源1から射出したレーザ光は、光学系であるコリメートレンズ2によって平行光となり、透過型回折格子3へ入射する。   As shown in FIG. 1, the laser light emitted from the laser light source 1 is converted into parallel light by a collimating lens 2 that is an optical system, and is incident on a transmissive diffraction grating 3.

この回折格子を透過した光は回折の影響でn次の平行光束に分割される。このときn次光の0次光に対する回折角の大きさは、回折格子の格子間隔とレーザの波長によって決定される。回折格子の格子間隔をd、レーザ波長をλとすると、n次光の回折角θは式(1)で表される。   The light transmitted through this diffraction grating is divided into n-order parallel light beams due to the influence of diffraction. At this time, the magnitude of the diffraction angle of the nth-order light with respect to the 0th-order light is determined by the grating interval of the diffraction grating and the wavelength of the laser. Assuming that the grating interval of the diffraction grating is d and the laser wavelength is λ, the diffraction angle θ of the n-order light is expressed by the following equation (1).

Figure 2005326192
n次に分割された平行光束をそのまま照射すると各光束が多重に干渉し、等間隔の格子パターンは投影されない。そのため、透過型回折格子3の後にレンズ4aを配置して回折光を集光させる。各次の回折光はそれぞれ異なる角度でレンズ4aに入射するため、焦点位置はそれぞれ異なった位置になる。このときの焦点位置の変位量ΔHは、レンズ4aの焦点距離をfとすると式(2)で表される。
Figure 2005326192
When the n-order-divided parallel light beams are irradiated as they are, the light beams interfere with each other in multiple ways, and the equally spaced lattice pattern is not projected. Therefore, the lens 4a is disposed after the transmissive diffraction grating 3 to collect the diffracted light. Since the respective diffracted lights are incident on the lens 4a at different angles, the focal positions are different from each other. The displacement ΔH of the focal position at this time is expressed by Expression (2), where f is the focal length of the lens 4a.

Figure 2005326192
この焦点位置の分布は、回折格子のフーリエ変換像に対応している。フーリエ変換像は0〜n次が完全に分離して現れるため、焦点位置に空間フィルタ5を配置することで、任意の次数の回折光を抽出することができる。干渉縞を発生させるためには2本の光束のみを抽出すればよい。また、投影光の強度が最大となるとき、測定感度を最も高めることができることから、空間フィルタ5は0次光と1次光のみを透過するように設計する。0次と1次光のフーリエ変換像は隣接しているため、空間フィルタ5はピンホール1つでよい。ピンホールの直径は焦点位置の変位量ΔHに依存し、その大きさは式(3)で表される。
Figure 2005326192
This distribution of focal positions corresponds to a Fourier transform image of the diffraction grating. Since the Fourier transform image appears with the 0th to nth orders completely separated, diffracted light of an arbitrary order can be extracted by arranging the spatial filter 5 at the focal position. In order to generate interference fringes, only two light beams need be extracted. Further, since the measurement sensitivity can be maximized when the intensity of the projection light is maximized, the spatial filter 5 is designed to transmit only the 0th-order light and the 1st-order light. Since the Fourier transform images of the 0th order and the 1st order light are adjacent, the spatial filter 5 may be a single pinhole. The diameter of the pinhole depends on the amount of displacement ΔH of the focal position, and its size is expressed by equation (3).

Figure 2005326192
空間フィルタ5を透過した0次・1次光は、レンズ4bによって逆フーリエ変換され変位量ΔHを有する平行光束L1 、L2 へと戻される。このときのレンズ4bはレンズ4aと同じFナンバーのものを使用する。この結果、シェアされた0次と1次光が干渉し、干渉縞が被測定物W1 に投影される。干渉縞の投影方向は0次と1次光のなす角の二等分線の方向となる。すなわち、0次光と投影光のなす角は式(4)で表される角度となる。
Figure 2005326192
The 0th-order / first-order light transmitted through the spatial filter 5 is inverse Fourier transformed by the lens 4b and returned to the parallel light beams L 1 and L 2 having the displacement amount ΔH. The lens 4b at this time uses the same F number as the lens 4a. As a result, the zero-order and first-order light shares interference, the interference fringes are projected onto the object to be measured W 1. The projection direction of the interference fringes is the direction of the bisector of the angle formed by the 0th order and the primary light. That is, the angle formed by the 0th-order light and the projection light is an angle represented by Expression (4).

Figure 2005326192
このときに投影される干渉縞の格子間隔は0次と1次光のなす角から一意に決定される。この格子間隔dp は、式(5)で表される大きさとなる。
Figure 2005326192
The lattice spacing of the interference fringes projected at this time is uniquely determined from the angle formed between the 0th order and the primary light. The lattice spacing d p has a size represented by the equation (5).

Figure 2005326192
被測定物W1 に対してシアリング干渉縞を投影し、被測定物W1 の形状に応じて変調された変調縞を対物レンズ6で撮像素子7に対して結像させる。撮像素子7で撮像された変調縞は画像処理装置8へと取り込まれ、フーリエ変換位相解析により位相情報への変換が行われる。さらに位相のアンラッピング処理を行うことにより、被測定物W1 の形状情報が算出される。
Figure 2005326192
Projecting the shearing interference pattern relative to the DUT W 1, it is imaged to the imaging device 7 a modulation pattern that is modulated in accordance with the shape of the workpiece W 1 by the objective lens 6. The modulation fringes imaged by the image sensor 7 are taken into the image processing device 8 and converted into phase information by Fourier transform phase analysis. Further, the shape information of the workpiece W 1 is calculated by performing the phase unwrapping process.

このような構成とすることにより、光学系の熱的・機械的な揺らぎに影響されることがなく、変化の大きい環境下においても高精度な3次元計測を安定して行うことのできる3次元形状測定装置を実現することができる。   By adopting such a configuration, it is possible to stably perform highly accurate three-dimensional measurement even in a large change environment without being affected by thermal and mechanical fluctuations of the optical system. A shape measuring device can be realized.

図2は本発明の実施例2を説明する図である。図2(a)は3次元形状測定装置全体を説明する模式図であり、図2(b)は図2(a)に示したシアリング干渉系を説明する詳細図である。図2で示す3次元形状測定装置は反射型回折格子13と、この回折格子のフーリエ変換像を形成するフーリエ変換素子であるレンズ14aと、フーリエ変換像の0次と1次のみを透過する空間フィルタ15と、透過した0次・1次光を逆フーリエ変換する逆フーリエ変換素子であるレンズ14bとで構成され、この0次・1次光の干渉によって干渉縞を発生させる。なお、図2(a)、(b)において図1(a)、(b)と同じ部材には同じ符号を付し、その説明は省略している。   FIG. 2 is a diagram for explaining a second embodiment of the present invention. 2A is a schematic diagram for explaining the entire three-dimensional shape measuring apparatus, and FIG. 2B is a detailed diagram for explaining the shearing interference system shown in FIG. 2A. The three-dimensional shape measuring apparatus shown in FIG. 2 includes a reflective diffraction grating 13, a lens 14a that is a Fourier transform element that forms a Fourier transform image of the diffraction grating, and a space that transmits only the 0th and 1st orders of the Fourier transform image. The filter 15 includes a lens 14b that is an inverse Fourier transform element that performs inverse Fourier transform on the transmitted 0th-order / first-order light, and interference fringes are generated by the interference of the 0th-order / first-order light. 2 (a) and 2 (b), the same members as those in FIGS. 1 (a) and 1 (b) are denoted by the same reference numerals, and the description thereof is omitted.

図2(c)は図2(b)に示した反射型回折格子13による回折光の出射角を説明する模式図である。図2は反射型回折格子13によるシアリング干渉縞投影系を用いているもので、コリメートレンズ2によってコリメート(平行化)されたレーザ光は、反射型回折格子13に角度θi で入射する。反射型回折格子13の格子間隔dとすると、このとき±n次の回折光の出射角θd (θi −θS )は式(6)で表される角度となる。 FIG. 2C is a schematic diagram for explaining the exit angle of the diffracted light by the reflective diffraction grating 13 shown in FIG. FIG. 2 uses a shearing interference fringe projection system with a reflective diffraction grating 13, and the laser light collimated (collimated) by the collimating lens 2 enters the reflective diffraction grating 13 at an angle θ i . Assuming that the grating interval d of the reflective diffraction grating 13 is, the emission angle θ di −θ S ) of ± n-order diffracted light at this time is an angle represented by equation (6).

Figure 2005326192
図1の透過型回折格子を使用した場合と同様に、反射型回折格子13の後にレンズ14aを配置して回折光を集光させる。各次の回折光はそれぞれ異なる角度でレンズ14aに入射するため、焦点位置はそれぞれ異なった位置になる。このときの焦点位置の変位量ΔHは、レンズ14aの焦点距離をfとすると式(7)で表される。
Figure 2005326192
As in the case where the transmission type diffraction grating of FIG. 1 is used, a lens 14 a is arranged after the reflection type diffraction grating 13 to collect diffracted light. Since the respective diffracted lights are incident on the lens 14a at different angles, the focal positions are different from each other. The displacement ΔH of the focal position at this time is expressed by Expression (7), where f is the focal length of the lens 14a.

Figure 2005326192
焦点位置に0次光と1次光のみを透過する空間フィルタ15を設置する。この空間フィルタ15はピンホール1つで形成される。ピンホールの直径rは焦点位置の変位量ΔHに依存し、その大きさは式(8)で表される。
Figure 2005326192
A spatial filter 15 that transmits only the 0th order light and the 1st order light is installed at the focal position. This spatial filter 15 is formed by one pinhole. The diameter r of the pinhole depends on the focal position displacement amount ΔH, and the size thereof is expressed by Expression (8).

Figure 2005326192
空間フィルタ15を透過した0次・1次光は、レンズ14bによって平行光束へと戻される。このときのレンズ14bはレンズ14aと同じFナンバーのものを使用する。この結果、シェアされた2本の平行光束L1 、L2 が干渉し、干渉縞が被測定物W2 に投影される。干渉縞の投影方向は0次と1次光のなす角の二等分線の方向となる。すなわち、0次光と投影光のなす角は式(9)で表される角度となる。
Figure 2005326192
The 0th-order / first-order light transmitted through the spatial filter 15 is returned to a parallel light beam by the lens 14b. At this time, the lens 14b having the same F number as the lens 14a is used. As a result, the two shared parallel light beams L 1 and L 2 interfere with each other, and the interference fringes are projected onto the workpiece W 2 . The projection direction of the interference fringes is the direction of the bisector of the angle formed by the 0th order and the primary light. That is, the angle formed by the 0th-order light and the projection light is an angle represented by Expression (9).

Figure 2005326192
このときに投影される干渉縞の格子間隔は0次と1次光のなす角から一意に決定される。この格子間隔dp は、式(10)で表される大きさとなる。
Figure 2005326192
The lattice spacing of the interference fringes projected at this time is uniquely determined from the angle formed between the 0th order and the primary light. The lattice spacing d p has a size represented by the equation (10).

Figure 2005326192
被測定物W2 に対してシアリング干渉縞を投影し、被測定物W2 の形状に応じて変調された変調縞を対物レンズ6で撮像素子7に対して結像させる。撮像素子7で撮像された変調縞は画像処理装置8へと取り込まれ、フーリエ変換位相解析により位相情報への変換が行われる。さらに位相のアンラッピング処理を行うことにより、被測定物W2 の形状情報が算出される。
Figure 2005326192
Projecting the shearing interference pattern with respect to the measured object W 2, it is imaged to the imaging device 7 a modulation pattern that is modulated in accordance with the shape of the workpiece W 2 by the objective lens 6. The modulation fringes imaged by the image sensor 7 are taken into the image processing device 8 and converted into phase information by Fourier transform phase analysis. Further, by performing the phase unwrapping process, the shape information of the workpiece W 2 is calculated.

このような構成とすることにより、光学系の熱的・機械的な揺らぎに影響されることがなく、変化の大きい環境下においても高精度な3次元計測を安定して行うことのできる3次元形状測定装置を実現することができる。また、反射型回折格子の角度を調整することで、投影格子間隔の調整を行うことも可能となる。   By adopting such a configuration, it is possible to stably perform highly accurate three-dimensional measurement even in a large change environment without being affected by thermal and mechanical fluctuations of the optical system. A shape measuring device can be realized. Further, the projection grating interval can be adjusted by adjusting the angle of the reflective diffraction grating.

図3は本発明の実施例3を説明する図である。図3(a)は3次元形状測定装置全体を説明する模式図であり、図3で示す3次元形状測定装置は、ウェッジ付透明基板23で構成され、このウェッジ付透明基板23の表面と裏面からの反射光L1 、L2 の干渉によって干渉縞を発生させる。なお、図3(a)において図1(a)と同じ部材には同じ符号を付し、その説明は省略している。 FIG. 3 is a diagram for explaining a third embodiment of the present invention. FIG. 3A is a schematic diagram for explaining the entire three-dimensional shape measuring apparatus. The three-dimensional shape measuring apparatus shown in FIG. 3 includes a transparent substrate 23 with wedges, and the front and back surfaces of the transparent substrate 23 with wedges. Interference fringes are generated by the interference of the reflected lights L 1 and L 2 from. In FIG. 3A, the same members as those in FIG. 1A are denoted by the same reference numerals, and the description thereof is omitted.

図3(a)は図3(b)に拡大して示したウェッジ付透明基板23によるシアリング干渉縞投影系を用いているもので、コリメートレンズ2によってコリメート(平行化)されたレーザ光は、ウェッジ付透明基板23に角度θi で入射する。ウェッジ付透明基板23は、レーザ光を透過する素材で形成され、ウェッジ角θw を持っているとすると、基板表面からの反射光と基板裏面からの反射光のなすシフト角θP は式(11)で表される。 FIG. 3 (a) uses a shearing interference fringe projection system by the transparent substrate 23 with wedges shown in FIG. 3 (b), and the laser light collimated (collimated) by the collimating lens 2 is The light enters the transparent substrate 23 with wedges at an angle θ i . If the transparent substrate 23 with wedges is formed of a material that transmits laser light and has a wedge angle θ w , the shift angle θ P formed by the reflected light from the substrate surface and the reflected light from the back surface of the substrate is expressed by the formula ( 11).

Figure 2005326192
このときに投影される干渉縞の格子間隔dp は、式(12)で表される大きさとなる。
Figure 2005326192
The lattice spacing d p of the interference fringes projected at this time has a size represented by Expression (12).

Figure 2005326192
被測定物W3 に対してシアリング干渉縞を投影し、被測定物W3 の形状に応じて変調された変調縞を対物レンズ6で撮像素子7に対して結像させる。撮像素子7で撮像された変調縞は画像処理装置8へと取り込まれ、フーリエ変換位相解析により位相情報への変換が行われる。さらに位相のアンラッピング処理を行うことにより、被測定物W3 の形状情報が算出される。
Figure 2005326192
Projecting the shearing interference pattern with respect to the measured object W 3, it is imaged to the imaging device 7 a-modulated fringe objective lens 6 in accordance with the shape of the workpiece W 3. The modulation fringes imaged by the image sensor 7 are taken into the image processing device 8 and converted into phase information by Fourier transform phase analysis. Further, the shape information of the workpiece W 3 is calculated by performing the phase unwrapping process.

このような構成とすることにより、光学系の熱的・機械的な揺らぎに影響されることがなく、変化の大きい環境下においても高精度な3次元計測を安定して行うことのできる3次元形状測定装置を実現することができる。また、回折によって光束を分割する場合と比較して、空間フィルタ機構を必要としないため、投影光学系の小型化を実現することも可能となる。   By adopting such a configuration, it is possible to stably perform highly accurate three-dimensional measurement even in a large change environment without being affected by thermal and mechanical fluctuations of the optical system. A shape measuring device can be realized. Further, since the spatial filter mechanism is not required as compared with the case where the light beam is divided by diffraction, it is possible to reduce the size of the projection optical system.

図4は本発明の実施例4を説明する図である。図4(a)は3次元形状測定装置全体を説明する模式図であり、図4(b)は図4(a)に示した光線シェア手段を説明する詳細図である。偏光プリズム33とその直後に配置された偏光板34とで構成され、偏光プリズム33で分割された2本の光束L1 、L2 の干渉によって干渉縞を発生させる。なお、図2(a)、(b)において図1(a)、(b)と同じ部材には同じ符号を付し、その説明は省略している。 FIG. 4 is a diagram for explaining a fourth embodiment of the present invention. 4A is a schematic diagram for explaining the entire three-dimensional shape measuring apparatus, and FIG. 4B is a detailed diagram for explaining the light beam sharing means shown in FIG. 4A. An interference fringe is generated by the interference of the two light beams L 1 and L 2 divided by the polarizing prism 33, which is composed of the polarizing prism 33 and the polarizing plate 34 disposed immediately thereafter. 2 (a) and 2 (b), the same members as those in FIGS. 1 (a) and 1 (b) are denoted by the same reference numerals, and the description thereof is omitted.

コリメートレンズ2によってコリメートされたレーザ光は、偏光プリズム(ウォラストンプリズム)33へ入射する。入射した平行光はp偏光成分とs偏光成分とに分割され、別々に異なった方向に出射する。このときのp偏光成分とs偏光成分の進行方向のなす角度をθとする。   The laser light collimated by the collimating lens 2 enters a polarizing prism (Wollaston prism) 33. The incident parallel light is divided into a p-polarized component and an s-polarized component, and is emitted separately in different directions. The angle formed by the traveling direction of the p-polarized component and the s-polarized component at this time is defined as θ.

偏光プリズム33から出射したp偏光成分とs偏光成分は、直後に配置された偏光板34によって45°方向の直線偏光へと変換される。その結果、2つの光束は可干渉となるため、干渉縞が形成される。このときの干渉縞の縞間隔は偏光プリズム33で与えられた角度に応じて決定され、式(13)で表される。   The p-polarized component and the s-polarized component emitted from the polarizing prism 33 are converted into linearly polarized light in the 45 ° direction by the polarizing plate 34 disposed immediately after. As a result, the two light beams become coherent, so that interference fringes are formed. The fringe spacing of the interference fringes at this time is determined according to the angle given by the polarizing prism 33 and is expressed by equation (13).

Figure 2005326192
被測定物W4 に対してシアリング干渉縞を投影し、被測定物W4 の形状に応じて変調された干渉縞を対物レンズ6で撮像素子7に対して結像させる。撮像素子7で撮像された変調縞は画像処理装置8へと取り込まれ、フーリエ変換位相解析により位相情報への変換が行われる。さらに位相のアンラッピング処理を行うことにより、被測定物W4 の形状情報が算出される。
Figure 2005326192
Projecting the shearing interference pattern with respect to the measured object W 4, is imaged to the imaging device 7 a modulated interference fringes by the objective lens 6 in accordance with the shape of the workpiece W 4. The modulation fringes imaged by the image sensor 7 are taken into the image processing device 8 and converted into phase information by Fourier transform phase analysis. Further, the shape information of the workpiece W 4 is calculated by performing the phase unwrapping process.

このような構成とすることにより、光学系の熱的・機械的な揺らぎに影響されることがなく、変化の大きい環境下においても高精度な3次元計測を安定して行うことのできる3次元形状測定装置を実現することができる。また、回折によって光束を分割する場合と比較して、空間フィルタ機構を必要としないため、投影光学系の小型化を実現することも可能となる。   By adopting such a configuration, it is possible to stably perform highly accurate three-dimensional measurement even in a large change environment without being affected by thermal and mechanical fluctuations of the optical system. A shape measuring device can be realized. Further, since the spatial filter mechanism is not required as compared with the case where the light beam is divided by diffraction, it is possible to reduce the size of the projection optical system.

実施例1を示すもので、(a)は3次元形状測定装置全体を説明する模式図、(b)は透過型回折格子によるシアリング干渉系を説明する図である。FIGS. 1A and 1B show a first embodiment, in which FIG. 1A is a schematic diagram for explaining an entire three-dimensional shape measuring apparatus, and FIG. 1B is a diagram for explaining a shearing interference system using a transmission diffraction grating. 実施例2を示すもので、(a)は3次元形状測定装置全体を説明する模式図、(b)は反射型回折格子によるシアリング干渉系を説明する図、(c)は回折光の出射角を説明する模式図である。FIG. 9 shows a second embodiment, where (a) is a schematic diagram for explaining the entire three-dimensional shape measuring apparatus, (b) is a diagram for explaining a shearing interference system using a reflective diffraction grating, and (c) is an exit angle of diffracted light. FIG. 実施例3を示すもので、(a)は3次元形状測定装置全体を説明する模式図、(b)はウェッジ付透明基板による反射方向を説明する模式図である。FIG. 9 shows a third embodiment, in which (a) is a schematic diagram for explaining the entire three-dimensional shape measuring apparatus, and (b) is a schematic diagram for explaining a reflection direction by a transparent substrate with a wedge. 実施例4を示すもので、(a)は3次元形状測定装置全体を説明する模式図、(b)は偏光プリズムによるシアリング干渉系を説明する図である。FIGS. 4A and 4B show a fourth embodiment, in which FIG. 4A is a schematic diagram for explaining an entire three-dimensional shape measuring apparatus, and FIG. 4B is a diagram for explaining a shearing interference system using a polarizing prism. 従来の干渉縞投影による3次元形状測定装置を説明する模式図である。It is a schematic diagram explaining the three-dimensional shape measuring apparatus by the conventional interference fringe projection.

符号の説明Explanation of symbols

1 レーザ光源
2 コリメートレンズ
3 透過型回折格子
4a、4b、14a、14b レンズ
5、15 空間フィルタ
6 対物レンズ
7 撮像素子
8 画像処理装置
13 反射型回折格子
23 ウェッジ付透明基板
33 偏光プリズム
34 偏光板
DESCRIPTION OF SYMBOLS 1 Laser light source 2 Collimating lens 3 Transmission type diffraction grating 4a, 4b, 14a, 14b Lens 5, 15 Spatial filter 6 Objective lens 7 Imaging element 8 Image processing apparatus 13 Reflection type diffraction grating 23 Transparent substrate with wedge 33 Polarizing prism 34 Polarizing plate

Claims (5)

レーザ光源と、前記レーザ光源のレーザ光を平行光に変換する光学素子と、前記光学素子から出射する平行光を光線シェア手段によって同じ進行方向の2本の平行光束に分割し、前記2本の平行光束が重複する部分で発生する干渉縞を被測定物に投影する干渉縞投影光学系と、前記干渉縞が投影された前記被測定物の表面の変調縞を撮像する撮像素子とを備え、前記撮像素子によって撮像された前記変調縞の位相情報に基づいて前記被測定物の形状を演算によって求めることを特徴とする3次元形状測定装置。   A laser light source, an optical element that converts laser light from the laser light source into parallel light, and parallel light emitted from the optical element are divided into two parallel light beams in the same traveling direction by a light sharing means, An interference fringe projection optical system for projecting an interference fringe generated at a portion where parallel light beams overlap on the object to be measured; and an imaging element for imaging a modulation fringe on the surface of the object to be measured on which the interference fringe is projected; A three-dimensional shape measuring apparatus, wherein the shape of the object to be measured is obtained by calculation based on phase information of the modulation fringes imaged by the image sensor. 光線シェア手段が、透過型回折格子と、前記透過型回折格子のフーリエ変換像を形成するフーリエ変換素子と、前記フーリエ変換像の0次光と1次光のみを透過させる空間フィルタと、前記0次光と前記1次光を逆フーリエ変換する逆フーリエ変換素子とを有することを特徴とする請求項1記載の3次元形状測定装置。   A light sharing means, a transmissive diffraction grating, a Fourier transform element that forms a Fourier transform image of the transmissive diffraction grating, a spatial filter that transmits only the 0th order light and the 1st order light of the Fourier transform image, and the 0 The three-dimensional shape measuring apparatus according to claim 1, further comprising a secondary light and an inverse Fourier transform element that performs inverse Fourier transform on the primary light. 光線シェア手段が、反射型回折格子と、前記反射型回折格子のフーリエ変換像を形成するフーリエ変換素子と、前記フーリエ変換像の0次光と1次光のみを透過させる空間フィルタと、前記0次光と前記1次光を逆フーリエ変換する逆フーリエ変換素子とを有することを特徴とする請求項1記載の3次元形状測定装置。   A light sharing means, a reflection type diffraction grating, a Fourier transform element that forms a Fourier transform image of the reflection type diffraction grating, a spatial filter that transmits only the 0th order light and the 1st order light of the Fourier transform image, and the 0 The three-dimensional shape measuring apparatus according to claim 1, further comprising a secondary light and an inverse Fourier transform element that performs inverse Fourier transform on the primary light. 光線シェア手段が、ウェッジ付透明基板を有することを特徴とする請求項1記載の3次元形状測定装置。   The three-dimensional shape measuring apparatus according to claim 1, wherein the light beam sharing means has a transparent substrate with a wedge. 光線シェア手段が、偏光プリズムと、前記偏光プリズムの直後に配置された偏光板とを有することを特徴とする請求項1記載の3次元形状測定装置。   2. The three-dimensional shape measuring apparatus according to claim 1, wherein the light beam sharing means includes a polarizing prism and a polarizing plate disposed immediately after the polarizing prism.
JP2004143023A 2004-05-13 2004-05-13 Three-dimensional shape measuring device Pending JP2005326192A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004143023A JP2005326192A (en) 2004-05-13 2004-05-13 Three-dimensional shape measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004143023A JP2005326192A (en) 2004-05-13 2004-05-13 Three-dimensional shape measuring device

Publications (1)

Publication Number Publication Date
JP2005326192A true JP2005326192A (en) 2005-11-24

Family

ID=35472668

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004143023A Pending JP2005326192A (en) 2004-05-13 2004-05-13 Three-dimensional shape measuring device

Country Status (1)

Country Link
JP (1) JP2005326192A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007121292A (en) * 2005-10-24 2007-05-17 General Electric Co <Ge> Method and apparatus for inspecting object
KR100862637B1 (en) 2006-05-30 2008-10-09 (주) 인텍플러스 And method for optical visual examination
KR100975349B1 (en) * 2007-11-16 2010-08-11 강원대학교산학협력단 System and method for generating 3D image
CN102231037A (en) * 2010-06-16 2011-11-02 微软公司 Illuminator for depth camera with superradiation light-emitting diode
CN109631792A (en) * 2017-10-09 2019-04-16 和全丰光电股份有限公司 Non-contact surface profile scan device
CN113819847A (en) * 2021-09-23 2021-12-21 中北大学 Dislocation two-dimensional grating array-based double-grating structure three-dimensional micro-displacement sensor

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007121292A (en) * 2005-10-24 2007-05-17 General Electric Co <Ge> Method and apparatus for inspecting object
KR100862637B1 (en) 2006-05-30 2008-10-09 (주) 인텍플러스 And method for optical visual examination
KR100975349B1 (en) * 2007-11-16 2010-08-11 강원대학교산학협력단 System and method for generating 3D image
CN102231037A (en) * 2010-06-16 2011-11-02 微软公司 Illuminator for depth camera with superradiation light-emitting diode
US8670029B2 (en) 2010-06-16 2014-03-11 Microsoft Corporation Depth camera illuminator with superluminescent light-emitting diode
CN109631792A (en) * 2017-10-09 2019-04-16 和全丰光电股份有限公司 Non-contact surface profile scan device
CN113819847A (en) * 2021-09-23 2021-12-21 中北大学 Dislocation two-dimensional grating array-based double-grating structure three-dimensional micro-displacement sensor
CN113819847B (en) * 2021-09-23 2023-12-12 中北大学 Double-grating structure three-dimensional micro-displacement sensor based on dislocation two-dimensional grating array

Similar Documents

Publication Publication Date Title
US10794689B2 (en) Autofocus system and method
TWI471535B (en) Method for determining information about changes along a degree of freedom of an encoder scale, encoder system, lithography method, and lithography system
JP5349739B2 (en) Interferometer and interferometer calibration method
JP5149486B2 (en) Interferometer, shape measurement method
EP1717546B1 (en) Interferometer and method of calibrating the interferometer
TW201333432A (en) Double pass interferometric encoder system
US9091529B2 (en) Grating-based scanner with phase and pitch adjustment
US5995224A (en) Full-field geometrically-desensitized interferometer employing diffractive and conventional optics
JP2004144581A (en) Displacement detecting apparatus
CN108957910A (en) Three-dimensional imaging is carried out using multiphase projector
US20120257214A1 (en) Optical displacement measurement device
US7349102B2 (en) Methods and apparatus for reducing error in interferometric imaging measurements
JP3185901B2 (en) Measurement and analysis method of interference fringes by hologram interferometer
US9297745B2 (en) Shape measuring apparatus, and method of manufacturing article
JPS5818604B2 (en) How to measure thickness
JPS58191907A (en) Method for measuring extent of movement
JP2005326192A (en) Three-dimensional shape measuring device
JP5825622B2 (en) Displacement / strain distribution measurement optical system and measurement method
JP2823707B2 (en) Phase-shift grazing incidence interferometer
JP2006349382A (en) Phase shift interferometer
JP3714853B2 (en) Planar shape measuring method in phase shift interference fringe simultaneous imaging device
JP3773073B2 (en) Apparatus and method for measuring aspheric shape
DE102018112204A1 (en) Displacement detection device
JP3461566B2 (en) Interferometer for measuring cone shape
US12104891B1 (en) Spatially filtered talbot interferometer for wafer distortion measurement