Nothing Special   »   [go: up one dir, main page]

JP2005343737A - Apparatus for manufacturing compound semiconductor single crystal - Google Patents

Apparatus for manufacturing compound semiconductor single crystal Download PDF

Info

Publication number
JP2005343737A
JP2005343737A JP2004164707A JP2004164707A JP2005343737A JP 2005343737 A JP2005343737 A JP 2005343737A JP 2004164707 A JP2004164707 A JP 2004164707A JP 2004164707 A JP2004164707 A JP 2004164707A JP 2005343737 A JP2005343737 A JP 2005343737A
Authority
JP
Japan
Prior art keywords
compound semiconductor
single crystal
crucible
crystal
semiconductor single
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004164707A
Other languages
Japanese (ja)
Inventor
Shinji Yabuki
伸司 矢吹
Michinori Wachi
三千則 和地
Takuji Nagayama
卓司 長山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2004164707A priority Critical patent/JP2005343737A/en
Publication of JP2005343737A publication Critical patent/JP2005343737A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an apparatus for manufacturing a compound semiconductor single crystal, with which the shape of the solid-liquid interface can be effectively made into a projected shape, the assembly of dislocations generated in crystal is reduced, and the crystallization degree of the single crystal can be enhanced. <P>SOLUTION: The apparatus for manufacturing the compound semiconductor single crystal by an LEC method is constituted so that a compound semiconductor melt 11 is formed in a crucible 2 by heating Ga, As and the like in the crucible 2 with a resistance-heating heater 4, a seed crystal 9 is brought into contact with the upper part of the melt 11, the compound semiconductor single crystal 12 is pulled while being grown, and the crucible 2 is raised so as to keep the solid-liquid interface constant. A cylindrical heat-shielding tube 13 is provided between the curved part close to the bottom part of the crucible 2 and the resistance-heating heater 4 so as to suppress the increase of the temperature gradient in the compound semiconductor melt 11 by shielding the thermal radiation from the resistance-heating heater 4 and to enhance the projection degree of the solid-liquid interface. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、LEC(liquid encapsulated Czockralski method:液体封止引き上げ法)による化合物半導体単結晶の製造装置に関し、特に、固液界面形状を効果的に凸化することができ、結晶に発生する転位の集合が低減され、結晶化率を向上させることが可能な化合物半導体単結晶の製造装置に関するものである。   The present invention relates to an apparatus for producing a compound semiconductor single crystal by LEC (liquid encapsulated Czockralski method), and in particular, it can effectively project a solid-liquid interface shape, and dislocation generated in the crystal. The present invention relates to an apparatus for manufacturing a compound semiconductor single crystal that can reduce aggregation and improve the crystallization rate.

図2は、従来の化合物半導体単結晶の製造装置を示す。化合物半導体単結晶製造装置1は、PBN(Pyrolytic Boron Nitride)等を用いて鍋状に作られているルツボ2と、このルツボ2の底面に取り付けられてルツボ2を回転および上下動させるルツボ軸3と、ルツボ2の側面を取り巻くように設置された抵抗加熱ヒータ4と、ルツボ2の底部および抵抗加熱ヒータ4の外側に配設された断熱材5と、種結晶を保持する種ホルダ6と、この種ホルダ6を下端に取り付けた状態で結晶成長時に回転しながら上昇する引上軸7と、ルツボ2上に密封空間を形成する炉体としてのチャンバ8とを備える。   FIG. 2 shows a conventional compound semiconductor single crystal manufacturing apparatus. The compound semiconductor single crystal manufacturing apparatus 1 includes a crucible 2 made in a pot shape using PBN (Pyrolytic Boron Nitride) and the like, and a crucible shaft 3 attached to the bottom surface of the crucible 2 to rotate and move the crucible 2 up and down. A resistance heater 4 installed so as to surround the side surface of the crucible 2, a heat insulating material 5 disposed on the bottom of the crucible 2 and outside the resistance heater 4, a seed holder 6 for holding a seed crystal, With the seed holder 6 attached to the lower end, a pulling shaft 7 that rises while rotating during crystal growth and a chamber 8 as a furnace body that forms a sealed space on the crucible 2 are provided.

図2の製造装置の動作について説明する。この製造装置は、LEC法により化合物半導体単結晶、特に、GaAs単結晶の製造を行うものである。種ホルダ6には、結晶の元になる種結晶9が取り付けられる。この種結晶9は、ルツボ2内のGaAs融液と接する面を(100)面とする。さらに、ルツボ2には、ガリウム(Ga)と砒素(As)のほか、Asの揮発防止材である三酸化硼素10が原料として入れられる。   The operation of the manufacturing apparatus in FIG. 2 will be described. This manufacturing apparatus manufactures a compound semiconductor single crystal, particularly a GaAs single crystal, by the LEC method. A seed crystal 9 as a crystal base is attached to the seed holder 6. The seed crystal 9 has a (100) plane that is in contact with the GaAs melt in the crucible 2. Furthermore, in addition to gallium (Ga) and arsenic (As), boron trioxide 10 which is an As volatilization preventive material is put in the crucible 2 as a raw material.

上記原料をチャンバ8にセットした後、チャンバ8内を真空にし、不活性ガスを充填する。その後、抵抗加熱ヒータ4に通電し、チャンバ8内の温度を昇温させ、ルツボ2内のGaとAsを合成し、GaAsを作製する。その後、更に昇温させ、融液化したGaAs(化合物半導体融液11)を生成する。   After the raw material is set in the chamber 8, the inside of the chamber 8 is evacuated and filled with an inert gas. Thereafter, the resistance heater 4 is energized, the temperature in the chamber 8 is raised, and Ga and As in the crucible 2 are synthesized to produce GaAs. Thereafter, the temperature is further raised to produce melted GaAs (compound semiconductor melt 11).

次に、引上軸7とルツボ軸3を互いに逆方向に回転する。この状態で、種ホルダ6に取り付けられた種結晶9が、融液化したGaAsに接触するまで下降させる。次に、抵抗加熱ヒータ4の設定温度を徐々に下げつつ、引上軸7を一定の速度で上昇させ、種結晶9から徐々に結晶径を太らせることにより結晶肩部を形成する。   Next, the pull-up shaft 7 and the crucible shaft 3 are rotated in opposite directions. In this state, the seed crystal 9 attached to the seed holder 6 is lowered until it contacts the melted GaAs. Next, while gradually lowering the set temperature of the resistance heater 4, the pulling shaft 7 is raised at a constant speed, and the crystal diameter is gradually increased from the seed crystal 9 to form a crystal shoulder.

結晶肩部を形成後、目標とする結晶外径になれば、外径を一定に保つため、外形を制御しつつ、GaAs単結晶(化合物半導体単結晶12)の製造を行う。又、GaAs単結晶の成長中は、融液化したGaAsの液面が常に一定の位置になるようにGaAs単結晶を成長させるとともに、融液化したGaAsの液面が減少した分だけ引上軸7を上昇させる制御を行う。なお、GaAs単結晶の成長においては、結晶が有転位結晶であるため、転位集合防止のために、その固液界面形状は、融液側に凸となる形状で行うのが一般的である。   After the formation of the crystal shoulder, the GaAs single crystal (compound semiconductor single crystal 12) is manufactured while controlling the outer shape in order to keep the outer diameter constant when the target crystal outer diameter is reached. Further, during the growth of the GaAs single crystal, the GaAs single crystal is grown so that the melted GaAs liquid level is always at a fixed position, and the pulling shaft 7 is increased by the amount corresponding to the decrease in the melted GaAs liquid level. Control to raise. In the growth of a GaAs single crystal, since the crystal is a dislocation crystal, in order to prevent dislocation aggregation, the solid-liquid interface shape is generally a shape that protrudes toward the melt side.

GaAs結晶成長における問題点の一つとして、転位の集合による結晶の多結晶化がある。転位は、GaAs単結晶と融液の境界面である固液界面に垂直に伝播する性質があり、固液界面が融液側に凹面形状を成していると、転位の集合が生じる。よって、転位の集合を防止するためには、GaAs単結晶の成長中、常に融液側に凸となるように固液界面の形状を制御する必要がある。また、この固液界面の凸度と転位の集合には、これまでの調査により、凸度が大きいほど、転位集合が発生し難いという相関関係があることが知られている。   One of the problems in GaAs crystal growth is crystal polycrystallization by dislocation aggregation. Dislocations have the property of propagating perpendicularly to the solid-liquid interface, which is the boundary surface between the GaAs single crystal and the melt. If the solid-liquid interface has a concave shape on the melt side, a set of dislocations occurs. Therefore, in order to prevent dislocation aggregation, it is necessary to control the shape of the solid-liquid interface so that it always protrudes toward the melt during the growth of the GaAs single crystal. Further, it is known from the investigations so far that the convexity of the solid-liquid interface and the set of dislocations have a correlation that the higher the convexity, the less likely the dislocation set is generated.

固液界面形状は、熱流に対して垂直に形成される。よって、固液界面を凸形状にするには、固液界面で発生した凝固熱をGaAs単結晶(化合物半導体単結晶12)を通して結晶外部へ放出することで達成が可能である。また、固液界面の凸度を増すためには、より凝固熱を放熱出来るように炉内の温度条件を調節する必要がある。   The solid-liquid interface shape is formed perpendicular to the heat flow. Therefore, the convex shape of the solid-liquid interface can be achieved by releasing the heat of solidification generated at the solid-liquid interface to the outside of the crystal through the GaAs single crystal (compound semiconductor single crystal 12). Moreover, in order to increase the convexity of the solid-liquid interface, it is necessary to adjust the temperature conditions in the furnace so that the heat of solidification can be dissipated more.

図3は、固液界面における熱収支モデルを示す。固液界面への流入熱として、融液化したGaAs(化合物半導体融液11)からくる熱量Q1がある。この熱量Q1の大きさは、融液化したGaAsの温度勾配によって決まると考えられる。また、固液界面で発生する凝固熱Q2がある。さらに、固液界面から既に固化したGaAs単結晶へ放出する熱量Q3ある。この熱量Q3の大きさは、固化したGaAs単結晶12内の温度勾配によって決まると考えられる。これら3つの熱量には、以下の(1)の関係式が成立する。
Q1+Q2=Q3 ・・・(1)
FIG. 3 shows a heat balance model at the solid-liquid interface. As heat flowing into the solid-liquid interface, there is a heat quantity Q1 coming from melted GaAs (compound semiconductor melt 11). The magnitude of the heat quantity Q1 is considered to be determined by the temperature gradient of melted GaAs. There is also a solidification heat Q2 generated at the solid-liquid interface. Furthermore, there is an amount of heat Q3 released from the solid-liquid interface to the already solidified GaAs single crystal. The magnitude of the heat quantity Q3 is considered to be determined by the temperature gradient in the solidified GaAs single crystal 12. The following equation (1) is established for these three heat quantities.
Q1 + Q2 = Q3 (1)

この(1)式から、固液界面の凸度を増すために、より凝固熱を放熱できるようにするためには、一つには、熱量Q3を増加させる、つまり、固化した結晶部の温度勾配を大きくする手法がある。また、他の手法として、熱量Q1を低減、つまり、融液化したGaAs中の温度勾配を小さくする手法が考えられる。   From this equation (1), in order to increase the degree of convexity at the solid-liquid interface, in order to further dissipate the heat of solidification, the amount of heat Q3 is increased, that is, the temperature of the solidified crystal part. There is a method to increase the gradient. As another method, a method of reducing the amount of heat Q1, that is, a method of reducing a temperature gradient in melted GaAs can be considered.

従来、熱量Q3を増加させて、固液界面の凸度の向上を図るべく、結晶の冷却化を促進し、結晶部の温度勾配が大きくなるようにした炉内構造にし、これにより凸化の改善を図っている。   Conventionally, in order to improve the degree of convexity of the solid-liquid interface by increasing the amount of heat Q3, the cooling of the crystal is promoted and the in-furnace structure in which the temperature gradient of the crystal part becomes large is obtained. We are trying to improve.

また、LEC法によるGaAs結晶製造において、結晶成長中常にGaAs融液液面を一定の位置に保つため、結晶の固化のために融液が減少した分を、ルツボを上昇させて制御する単結晶製造装置が開示されている(例えば、特許文献1参照。)。
特開平5−330974号公報([0013]〜[0016]、図1)
In addition, in the manufacture of GaAs crystals by the LEC method, a single crystal that controls the amount of melt decrease due to solidification of the crystal by raising the crucible in order to keep the GaAs melt surface constant during crystal growth. A manufacturing apparatus is disclosed (for example, refer to Patent Document 1).
JP-A-5-330974 ([0013] to [0016], FIG. 1)

しかし、従来の化合物半導体単結晶の製造装置によると、結晶部の温度勾配が大きくなるようにした炉内構造にすると、結晶の冷却を極端に行った場合、結晶にスリップ転位が発生するという問題があり、無制限に結晶冷却を促進するという手段は取れない。     However, according to the conventional compound semiconductor single crystal manufacturing apparatus, when the furnace structure is designed to increase the temperature gradient of the crystal part, slip dislocation occurs in the crystal when the crystal is extremely cooled. Therefore, there is no way to promote crystal cooling without limitation.

また、特許文献1の製造装置では、結晶の成長に伴い、ルツボの底面がヒータに徐々に近づき、ヒータからの熱輻射の影響が増大し、ルツボの底面付近の温度が徐々に上昇していくという現象が発生する。この現象は、結晶の成長に伴いGaAs融液中の温度勾配が徐々に増加、即ち、上記(1)式の熱量Q1が増加することを意味する。そのため、結晶の成長が進むに伴い、固液界面の凸度が減少、場合によっては凹面になるという結果をもたらし、強いては、転位集合による結晶の多結晶が発生するという問題が発生する。この問題の対策として、炉内のヒータの構造を多数ゾーン化して制御することが試みられているが、制御の複雑化、製造装置のコストアップ等の課題が残されている。   Further, in the manufacturing apparatus of Patent Document 1, as the crystal grows, the bottom surface of the crucible gradually approaches the heater, the influence of thermal radiation from the heater increases, and the temperature near the bottom surface of the crucible gradually increases. The phenomenon that occurs. This phenomenon means that the temperature gradient in the GaAs melt gradually increases as the crystal grows, that is, the amount of heat Q1 in the above equation (1) increases. Therefore, as the crystal growth proceeds, the convexity of the solid-liquid interface decreases, sometimes resulting in a concave surface, and there arises a problem that a crystal polycrystal is generated due to dislocation aggregation. As a countermeasure against this problem, attempts have been made to control the structure of the heater in the furnace in a number of zones, but problems such as complicated control and increased cost of the manufacturing apparatus remain.

本発明の目的は、固液界面形状を効果的に凸化することができ、結晶に発生する転位の集合が低減され、結晶化率を向上させることが可能な化合物半導体単結晶の製造装置を提供することにある。   An object of the present invention is to provide an apparatus for producing a compound semiconductor single crystal capable of effectively projecting a solid-liquid interface shape, reducing the number of dislocations generated in the crystal, and improving the crystallization rate. It is to provide.

本発明は、上記目的を達成するため、化合物半導体の融液収納するルツボと、このルツボを側面から加熱する加熱手段とを備え、LEC法(液体封止引き上げ法)により化合物半導体の単結晶を製造する化合物半導体単結晶の製造装置において、前記ルツボの底部近傍の湾曲部と前記加熱手段との間に円筒形の熱遮蔽部材を配設したことを特徴とする化合物半導体単結晶の製造装置を提供する。   In order to achieve the above object, the present invention comprises a crucible for storing a melt of a compound semiconductor and a heating means for heating the crucible from the side surface. An apparatus for manufacturing a compound semiconductor single crystal, comprising: a compound semiconductor single crystal manufacturing apparatus, wherein a cylindrical heat shield member is disposed between a curved portion near the bottom of the crucible and the heating means. provide.

本発明の化合物半導体単結晶の製造装置によれば、固液界面形状を効果的に凸化することができ、結晶に発生する転位の集合が低減され、結晶化率を向上させることが可能になる。   According to the compound semiconductor single crystal manufacturing apparatus of the present invention, it is possible to effectively project the solid-liquid interface shape, reduce the number of dislocations generated in the crystal, and improve the crystallization rate. Become.

[実施の形態]
(製造装置の構成)
図1は、本発明の実施の形態に係る製造装置の構成を示す。化合物半導体単結晶製造装置1は、PBN等を用いて作られている原料容器としてのルツボ2と、このルツボ2の中心に取り付けられたルツボ軸3と、ルツボ2の外周を取り巻くように設置された加熱手段としての抵抗加熱ヒータ4と、ルツボ2の底部および抵抗加熱ヒータ4の外側に配設された断熱材5と、種結晶を保持する種ホルダ6と、この種ホルダ6を下端に取り付けた状態で回転しながら上昇する引上軸7と、ルツボ2上に密封空間を形成する炉体としてのチャンバ8と、ルツボ2の下辺周囲を囲む熱遮蔽部材としての熱遮蔽筒13とを備える。熱遮蔽筒13は、熱遮蔽特性に優れる材料、例えば、グラファイト等を用いて円筒形に形成され、ルツボ2の下部の湾曲部と抵抗加熱ヒータ4との間に設けられている。
[Embodiment]
(Configuration of manufacturing equipment)
FIG. 1 shows a configuration of a manufacturing apparatus according to an embodiment of the present invention. The compound semiconductor single crystal manufacturing apparatus 1 is installed so as to surround the crucible 2 as a raw material container made of PBN or the like, the crucible shaft 3 attached to the center of the crucible 2, and the outer periphery of the crucible 2. A resistance heater 4 as a heating means, a heat insulating material 5 disposed on the bottom of the crucible 2 and outside the resistance heater 4, a seed holder 6 for holding a seed crystal, and the seed holder 6 are attached to the lower end. A pulling shaft 7 that rises while rotating in a closed state, a chamber 8 as a furnace body that forms a sealed space on the crucible 2, and a heat shielding cylinder 13 as a heat shielding member surrounding the lower side of the crucible 2. . The heat shielding cylinder 13 is formed in a cylindrical shape using a material having excellent heat shielding characteristics, for example, graphite or the like, and is provided between the lower curved portion of the crucible 2 and the resistance heater 4.

(製造装置の動作)
上記実施の形態において半導体単結晶を製造する動作は、図2の従来構成の場合と同じであるので、ここでは説明は省略する。上記した様に、固液界面の凸度を増すために熱量Q3を増加させようとして結晶の冷却を極端に行うと、スリップ転位が発生するため、冷却には限界がある。そこで、本発明は、熱量Q1を低減し、結晶成長に伴うルツボ2の底面付近の温度上昇による融液化したGaAs(化合物半導体融液11)中の温度勾配増加を抑制する手段として、熱遮蔽筒13を設け、抵抗加熱ヒータ4からの熱輻射を遮蔽し、ルツボ2の上昇に伴うルツボ2の底部付近の温度上昇を抑制している。
(Operation of manufacturing equipment)
Since the operation for manufacturing the semiconductor single crystal in the above embodiment is the same as that in the conventional configuration of FIG. 2, the description thereof is omitted here. As described above, if the crystal is extremely cooled in order to increase the amount of heat Q3 in order to increase the convexity of the solid-liquid interface, slip dislocation occurs and cooling is limited. Accordingly, the present invention provides a heat shielding cylinder as means for reducing the amount of heat Q1 and suppressing an increase in temperature gradient in melted GaAs (compound semiconductor melt 11) due to a temperature rise near the bottom of the crucible 2 accompanying crystal growth. 13 is provided to shield the heat radiation from the resistance heater 4 and suppress the temperature rise near the bottom of the crucible 2 due to the rise of the crucible 2.

(実施の形態の効果)
この実施の形態によれば、熱遮蔽筒13を設けたことにより、抵抗加熱ヒータ4からの熱輻射を遮蔽することができるため、固液界面形状を効果的に凸化することができ、結晶に発生する転位の集合が低減され、結晶化率を向上させることが可能になる。また、熱遮蔽筒13を設けるのみで済むため、構成の簡略化が図れ、コストアップを防止することができる。
(Effect of embodiment)
According to this embodiment, since the heat shielding cylinder 13 is provided, the heat radiation from the resistance heater 4 can be shielded, so that the solid-liquid interface shape can be effectively convex, and the crystal This reduces the number of dislocations that occur in the crystallographic structure and improves the crystallization rate. Further, since it is only necessary to provide the heat shielding cylinder 13, the configuration can be simplified and the cost can be prevented from increasing.

次に、本発明の実施例について説明する。ここでは、図1の構成の化合物半導体単結晶製造装置1を用いて、LEC法により6φサイズのGaAs単結晶(化合物半導体単結晶12)を試作した。ルツボ2に原料であるGaを12,000g、Asを13,000g、及びAsの揮発防止材である三酸化硼素10を2,000g入れた。また、結晶の元となる種結晶9を種ホルダ6に取りつけた。なお、この種結晶9は、融液化したGaAs(化合物半導体融液11)と接する面を(100)面とした。   Next, examples of the present invention will be described. Here, a 6φ size GaAs single crystal (compound semiconductor single crystal 12) was prototyped by the LEC method using the compound semiconductor single crystal manufacturing apparatus 1 having the configuration shown in FIG. Crucible 2 was charged with 12,000 g of Ga as a raw material, 13,000 g of As, and 2,000 g of boron trioxide 10 which is an As volatilization preventive material. In addition, a seed crystal 9 as a crystal base was attached to the seed holder 6. The seed crystal 9 has a (100) plane in contact with the melted GaAs (compound semiconductor melt 11).

チャンバ8内に上記原料をセットした後、チャンバ8内を真空にし、更に不活性ガスを充填し、その後、抵抗加熱ヒータ4に通電を行ってチャンバ8内の温度を昇温させ、GaとAsを合成し、GaAsを作製し、更に昇温を続けてGaAsを融液化させた。続いて、引上軸7を10rpmで回転させると共に、ルツボ軸3を引上軸7とは逆方向に20rpmで回転させた。この状態で、種結晶9が融液化したGaAsに接触するまで引上軸7を下降させ、続いて、抵抗加熱ヒータ4の設定温度を徐々に下げつつ引上軸を10mm/hの速度で上昇させ、GaAs単結晶(化合物半導体単結晶12)の成長を行った。   After the raw material is set in the chamber 8, the inside of the chamber 8 is evacuated and filled with an inert gas, and then the resistance heater 4 is energized to raise the temperature in the chamber 8, and Ga and As And GaAs was produced, and the temperature was further raised to melt the GaAs. Subsequently, the pull-up shaft 7 was rotated at 10 rpm, and the crucible shaft 3 was rotated at 20 rpm in the direction opposite to the pull-up shaft 7. In this state, the pull-up shaft 7 is lowered until the seed crystal 9 comes into contact with the melted GaAs, and then the pull-up shaft is raised at a speed of 10 mm / h while gradually lowering the set temperature of the resistance heater 4. GaAs single crystal (compound semiconductor single crystal 12) was grown.

比較検証のため、図2の構成の製造装置を用いて比較例となる結晶を試作した。この比較例と本発明による実施例とを、固液界面の凸度と、相関が強い結晶の単結晶化率について比較調査した。なお、実施例および比較例は、それぞれについて10ロットを試作した。   For comparative verification, a crystal serving as a comparative example was prototyped using the manufacturing apparatus configured as shown in FIG. This comparative example and the example according to the present invention were comparatively investigated with respect to the degree of convexity of the solid-liquid interface and the single crystallization rate of crystals having a strong correlation. In the examples and comparative examples, 10 lots were produced for each trial.

Figure 2005343737
Figure 2005343737

表1は、比較例と実施例の結晶の単結晶化率を示す。ここで、結晶の単結晶化率とは、結晶のウエハ取得可能な理想有効長に対して、結晶外観で多結晶ではない単結晶部分の有効長の割合を示す指標である。   Table 1 shows the single crystallization ratios of the crystals of the comparative example and the example. Here, the single crystallization ratio of the crystal is an index indicating the ratio of the effective length of the single crystal portion that is not polycrystal in the crystal appearance to the ideal effective length that can be obtained for the crystal wafer.

表1から明らかなように、本発明の実施例によれば、比較例に比べ、単結晶化率を向上できることが確かめられた。   As is clear from Table 1, it was confirmed that according to the example of the present invention, the single crystallization rate can be improved as compared with the comparative example.

[他の実施の形態]
上記実施の形態においては、LEC法によりGaAs単結晶を製造したが、本発明は、GaAs以外の材料を用いたLEC法単結晶製造装置についても適用可能である。
[Other embodiments]
In the above embodiment, a GaAs single crystal is manufactured by the LEC method. However, the present invention is also applicable to an LEC method single crystal manufacturing apparatus using a material other than GaAs.

また、上記実施の形態においては、加熱手段として抵抗加熱ヒータ4を用いたが、他の動作原理による加熱手段を用いてもよい。   Moreover, in the said embodiment, although the resistance heater 4 was used as a heating means, you may use the heating means by another operating principle.

本発明の実施の形態に係る化合物半導体単結晶の製造装置を示す断面図である。It is sectional drawing which shows the manufacturing apparatus of the compound semiconductor single crystal which concerns on embodiment of this invention. 従来の化合物半導体単結晶の製造装置を示す断面図である。It is sectional drawing which shows the manufacturing apparatus of the conventional compound semiconductor single crystal. 固液界面における熱収支モデルを示す説明図である。It is explanatory drawing which shows the heat balance model in a solid-liquid interface.

符号の説明Explanation of symbols

1 化合物半導体単結晶製造装置
2 ルツボ
3 ルツボ軸
4 抵抗加熱ヒータ
5 断熱材
6 種ホルダ
7 引上軸
8 チャンバ
9 種結晶
10 三酸化硼素
11 化合物半導体融液
12 化合物半導体単結晶
13 熱遮蔽筒
Q1 熱量
Q2 凝固熱
Q3 熱量
DESCRIPTION OF SYMBOLS 1 Compound semiconductor single crystal manufacturing apparatus 2 Crucible 3 Crucible shaft 4 Resistance heater 5 Thermal insulation material 6 Kind holder 7 Pulling-up axis 8 Chamber 9 Seed crystal 10 Boron trioxide 11 Compound semiconductor melt 12 Compound semiconductor single crystal 13 Heat shield cylinder Q1 Amount of heat Q2 Heat of solidification Q3 Amount of heat

Claims (3)

化合物半導体の融液を収納するルツボと、このルツボを側面から加熱する加熱手段とを備え、LEC法により化合物半導体の単結晶を製造する化合物半導体単結晶の製造装置において、
前記ルツボの底部近傍の湾曲部と前記加熱手段との間に円筒形の熱遮蔽部材を配設したことを特徴とする化合物半導体単結晶の製造装置。
In a compound semiconductor single crystal manufacturing apparatus for manufacturing a compound semiconductor single crystal by an LEC method, comprising a crucible for storing a melt of a compound semiconductor and a heating means for heating the crucible from the side,
An apparatus for producing a compound semiconductor single crystal, wherein a cylindrical heat shielding member is disposed between a curved portion near the bottom of the crucible and the heating means.
前記熱遮蔽部材は、グラファイトを用いていることを特徴とする請求項1記載の化合物半導体単結晶の製造装置。   The apparatus for producing a compound semiconductor single crystal according to claim 1, wherein the heat shielding member uses graphite. 前記加熱手段は、抵抗加熱ヒータであることを特徴とする請求項1記載の化合物半導体単結晶の製造装置。   2. The apparatus for producing a compound semiconductor single crystal according to claim 1, wherein the heating means is a resistance heater.
JP2004164707A 2004-06-02 2004-06-02 Apparatus for manufacturing compound semiconductor single crystal Pending JP2005343737A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004164707A JP2005343737A (en) 2004-06-02 2004-06-02 Apparatus for manufacturing compound semiconductor single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004164707A JP2005343737A (en) 2004-06-02 2004-06-02 Apparatus for manufacturing compound semiconductor single crystal

Publications (1)

Publication Number Publication Date
JP2005343737A true JP2005343737A (en) 2005-12-15

Family

ID=35496454

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004164707A Pending JP2005343737A (en) 2004-06-02 2004-06-02 Apparatus for manufacturing compound semiconductor single crystal

Country Status (1)

Country Link
JP (1) JP2005343737A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100826588B1 (en) 2006-12-28 2008-04-30 주식회사 실트론 Apparatus and method of manufacturing silicon single crystal ingot and heater for apparatus of manufacturing silicon single crystal ingot
KR100831809B1 (en) 2006-12-29 2008-05-28 주식회사 실트론 Heater used for growing ingot based on czochralski technology and apparatus using the same
CN109695055A (en) * 2019-03-11 2019-04-30 苏州新美光纳米科技有限公司 Long crystal furnace and crystal system
CN115261975A (en) * 2022-08-11 2022-11-01 中国电子科技集团公司第二十六研究所 Temperature-gradient dynamically adjustable artificial crystal growth temperature field structure and temperature field adjusting method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100826588B1 (en) 2006-12-28 2008-04-30 주식회사 실트론 Apparatus and method of manufacturing silicon single crystal ingot and heater for apparatus of manufacturing silicon single crystal ingot
KR100831809B1 (en) 2006-12-29 2008-05-28 주식회사 실트론 Heater used for growing ingot based on czochralski technology and apparatus using the same
CN109695055A (en) * 2019-03-11 2019-04-30 苏州新美光纳米科技有限公司 Long crystal furnace and crystal system
CN115261975A (en) * 2022-08-11 2022-11-01 中国电子科技集团公司第二十六研究所 Temperature-gradient dynamically adjustable artificial crystal growth temperature field structure and temperature field adjusting method
CN115261975B (en) * 2022-08-11 2024-04-05 中国电子科技集团公司第二十六研究所 Temperature gradient dynamically adjustable artificial crystal growth temperature field structure and temperature field adjusting method

Similar Documents

Publication Publication Date Title
JP2002201092A (en) Apparatus for manufacturing single crystal ingot
KR101105950B1 (en) Manufacturing device for crystal ingot
JP4917519B2 (en) Method for producing silicon single crystal
JP2005343737A (en) Apparatus for manufacturing compound semiconductor single crystal
KR100331552B1 (en) Czochralski Pullers and Pulling Methods for Manufacturing Monocrystalline Silicon Ingots by Controlling Temperature Gradients at the Center and Edge of an Ingot-Melt Interface
JP4144349B2 (en) Compound semiconductor manufacturing equipment
JP2004323247A (en) FURNACE FOR MANUFACTURING SiC SINGLE CRYSTAL
JP2006327879A (en) Method for manufacturing compound semiconductor single crystal
JP4940610B2 (en) Sapphire single crystal growth method
KR20100127699A (en) Semiconductor single crystal ingot dopped by carbon and method of manufacturing the same
JP2006232570A (en) METHOD FOR PRODUCING GaAs SINGLE CRYSTAL
JP3018738B2 (en) Single crystal manufacturing equipment
JP2009161395A (en) Method for manufacturing compound semiconductor single crystal
JP2814796B2 (en) Method and apparatus for producing single crystal
JP2004277266A (en) Method for manufacturing compound semiconductor single crystal
JP2005298256A (en) Crucible and apparatus and method for manufacturing compound semiconductor single crystal
KR102167633B1 (en) Crystal pull-up heat tracing and impeller
JPH04198084A (en) Jig for preventing bottom adhesion in pull-up of semiconductor single crystal
JP2010163287A (en) METHOD FOR PRODUCING GaAs SINGLE CRYSTAL
JP2006219310A (en) Apparatus and method for manufacturing semiconductor single crystal
KR20030070477A (en) Crystal Growing Apparatus For Increasing GaAs Single Crystal Yield
JP2006188403A (en) Compound semiconductor single crystal and its manufacturing method and apparatus
JP2005298255A (en) Method for producing compound semiconductor single crystal
JPH08104591A (en) Apparatus for growing single crystal
JP2004323269A (en) Method for producing compound semiconductor single crystal