Nothing Special   »   [go: up one dir, main page]

JP2005342779A - Method for forming gear - Google Patents

Method for forming gear Download PDF

Info

Publication number
JP2005342779A
JP2005342779A JP2004167967A JP2004167967A JP2005342779A JP 2005342779 A JP2005342779 A JP 2005342779A JP 2004167967 A JP2004167967 A JP 2004167967A JP 2004167967 A JP2004167967 A JP 2004167967A JP 2005342779 A JP2005342779 A JP 2005342779A
Authority
JP
Japan
Prior art keywords
gear
mold
forming
tooth
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004167967A
Other languages
Japanese (ja)
Inventor
Tadashi Suzuki
正 鈴木
Shoichi Koyama
祥一 小山
Yasuhisa Murakoshi
靖久 村越
Masanori Nakai
正規 中井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Univance Corp
Original Assignee
Fuji Univance Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Univance Corp filed Critical Fuji Univance Corp
Priority to JP2004167967A priority Critical patent/JP2005342779A/en
Publication of JP2005342779A publication Critical patent/JP2005342779A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Forging (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for forming a gear with which the formation of the gear can be performed by a simple process and in good precision. <P>SOLUTION: The processes for forming an internal gear 2, are as the followings, in which firstly, a material is cut off (B1); an outer shape forming process is performed with hot-forging (B2); successively, oxidized film formed on a product surface with the hot-forging is removed by applying shot-blasting (B3); successively, lubricating treatment is performed (a lubricating treatment process B4); a die and the material are irradiated with near infrared rays and heated to 50-200°C (a heating process B5); and an extrusion-formation is performed with cold-forging (an extrusion-working process B6). <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、歯車の成形方法に関し、特に冷間鍛造により歯車を成形する方法に関する。   The present invention relates to a gear forming method, and more particularly to a method of forming a gear by cold forging.

従来、歯車の成形方法には、熱間鍛造にて中間製品としての形状を整え、続いてショットブラストにより製品表面に形成された酸化被膜を除去し、潤滑処理を施した後、常温において冷間鍛造を行うという方法が知られていた。   Conventionally, the gear is formed by hot forging to adjust the shape as an intermediate product, followed by shot blasting to remove the oxide film formed on the product surface, lubrication, and cold at room temperature. A method of forging was known.

例えば、特開平10−99937号公報(特許文献1)に開示されている成形方法では、図3(b)に示すように、まず、材料を切断し(B11)、つぎに熱間鍛造にて歯部を含む所定の形状に成形し(B12)、ショットブラスト処理(B13)および潤滑処理(B14)の後、常温において冷間鍛造により歯車素材を歯車に成形していた(B15)。この特許文献1に開示された歯車の成形方法によれば、冷間鍛造において、熱間鍛造により成形された歯車素材の歯部をしごき加工することにより、歯形精度を得ている。特に歯先面および歯面のしごき量よりも歯底面のしごき量を小さくすることにより従来みられた歯底に対する金型のカジリの発生を防止することができるとしている。
特開平10−99937号公報
For example, in the molding method disclosed in Japanese Patent Application Laid-Open No. 10-99937 (Patent Document 1), as shown in FIG. 3B, first, the material is cut (B11), and then by hot forging. A gear material was formed into a gear by cold forging at room temperature after molding into a predetermined shape including a tooth portion (B12), shot blasting (B13) and lubrication (B14) (B15). According to the gear forming method disclosed in Patent Document 1, in cold forging, the tooth profile accuracy is obtained by ironing the tooth portion of the gear material formed by hot forging. In particular, it is said that the occurrence of galling of the mold with respect to the tooth bottom, which has been conventionally observed, can be prevented by making the amount of ironing of the tooth bottom surface smaller than the amount of ironing on the tooth tip surface and the tooth surface.
JP-A-10-99937

しかしながら、上記特許文献1に開示された成形方法では、冷間鍛造においては、しごき加工を行うものであり、特に歯先面および歯面のしごき量よりも歯底面のしごき量を小さくするように熱間鍛造において完成寸法に近い状態に成形しているため、熱間鍛造においては、加熱する温度を充分管理する必要があるという問題点があった。   However, in the forming method disclosed in Patent Document 1, ironing is performed in cold forging, and in particular, the ironing amount of the tooth bottom surface is made smaller than the ironing amount of the tooth tip surface and the tooth surface. Since the hot forging is formed in a state close to the completed dimensions, the hot forging has a problem that it is necessary to sufficiently control the heating temperature.

また、常温において冷間鍛造を行う場合、加工数が増加するに従って成形された製品の寸法が変化するという問題点がある(図6参照)。また、常温において冷間鍛造を行う場合、成形を行うための荷重は、加工数が少ない場合には大きく、加工数が多くなるに従って減少するという問題点がある(図7参照)。すなわち、加工数が所定数を超える場合には、小さいプレス装置でよいが、加工数が少ない段階で荷重が大きいために大きなプレス装置が必要であるという問題点があった。   Further, when cold forging is performed at room temperature, there is a problem that the dimension of the molded product changes as the number of processes increases (see FIG. 6). Further, when cold forging is performed at room temperature, there is a problem that the load for forming is large when the number of processing is small and decreases as the number of processing increases (see FIG. 7). That is, when the number of processing exceeds a predetermined number, a small pressing device may be used, but there is a problem that a large pressing device is necessary because the load is large when the number of processing is small.

また、内歯歯車(インターナルギア)の場合には、歯底長さBL(図2参照)が短いと加工数が少ない段階において、カジリを発生しやすい。この歯底長さBLが、0.3mm以下の場合は、特に顕著である。   In the case of an internal gear (internal gear), if the tooth bottom length BL (see FIG. 2) is short, galling is likely to occur when the number of machining is small. This is particularly noticeable when the root length BL is 0.3 mm or less.

本発明は、上記問題点を解決するもので、簡単な工程で精度良く歯車の成形を行うことができる歯車の成形方法を提供することを目的とする。   The present invention solves the above-described problems, and an object of the present invention is to provide a gear forming method capable of forming a gear with high accuracy by a simple process.

この目的を達成するために、請求項1記載の歯車の成形方法は、歯車素材を熱間鍛造して歯車の外形を成形する外形成形工程と、その外形成形工程により成形された歯車素材に潤滑処理を施す潤滑処理工程と、その潤滑処理工程により潤滑処理された歯車素材または金型を50度C(摂氏、以下Cと記載する)から200度Cに加温する加温工程と、その加温工程により50度Cから200度Cに加温された歯車素材または金型を、冷間鍛造において押出し加工して歯車の歯形を成形する押出工程とを備えている。   In order to achieve this object, the gear forming method according to claim 1 includes: an outer shape forming step in which a gear material is hot forged to form an outer shape of the gear; and a gear material formed by the outer shape forming step is lubricated. A lubrication treatment step for performing the treatment, a heating step for heating the gear material or mold lubricated by the lubrication treatment step from 50 ° C. (hereinafter referred to as C) to 200 ° C., and A gear material or a mold heated from 50 ° C. to 200 ° C. by a temperature process is extruded in cold forging to form a gear tooth profile.

請求項2記載の歯車の成形方法は、請求項1記載の歯車の成形方法において、前記加温工程は、前記歯車素材と金型とのうち、金型のみを加温するものである。   A gear forming method according to a second aspect is the gear forming method according to the first aspect, wherein the heating step heats only the mold out of the gear material and the mold.

請求項3記載の歯車の成形方法は、請求項1記載の歯車の成形方法において、前記加温工程は、前記歯車素材と金型とのうち、少なくとも歯車素材を加温するものである。   According to a third aspect of the present invention, there is provided a method of forming a gear according to the first aspect of the present invention, wherein the heating step heats at least the gear material out of the gear material and the mold.

請求項4記載の歯車の成形方法は、請求項1から3のいずれかに記載の歯車の成形方法において、前記加温工程は、近赤外線を照射することにより行うものである。   A gear forming method according to a fourth aspect is the gear forming method according to any one of the first to third aspects, wherein the heating step is performed by irradiating near infrared rays.

請求項5記載の歯車の成形方法は、請求項1から4のいずれかに記載の歯車の成形方法において、前記歯車は、内歯歯車である。   The gear forming method according to claim 5 is the gear forming method according to any one of claims 1 to 4, wherein the gear is an internal gear.

請求項6記載の歯車の成形方法は、請求項5記載の歯車の成形方法において、前記歯車は、ヘリカル内歯歯車である。   A gear forming method according to a sixth aspect is the gear forming method according to the fifth aspect, wherein the gear is a helical internal gear.

請求項1記載の歯車の成形方法によれば、歯車素材を熱間鍛造して歯車の外形を成形する外形成形工程においては、歯形が成形されないため精度の高い金型が不要であり、熱間鍛造を行う際の温度管理が容易であるという効果がある。また、歯車素材または金型を50度Cから200度Cに加温する加温工程により金型または歯車素材を加温するので、押出工程において、カジリの発生を防止することができる。特に、歯底長さが短い内歯歯車においてもカジリの発生を防止することができる。また、多数の歯車を製造する場合の加工数が少ない初期の段階において、成形荷重を低減できるため、プレス装置を小型化できる。また、多数の歯車を製造する場合に、加工数が少ない初期の段階で成形される歯車の寸法と、加工数が多い段階で成形される歯車の寸法との変動が少ないため、精度の良い成形を行うことができる。また、加温する温度を200度Cを越えない範囲としたので、潤滑処理により歯車素材に施された被膜が劣化することがなく、金型と歯車素材との間に焼き付きやカジリを生じず金型の寿命を短縮することがない。   According to the method for forming a gear according to claim 1, in the outer shape forming process in which the gear material is hot forged to shape the outer shape of the gear, since a tooth shape is not formed, a highly accurate mold is not required, There is an effect that temperature control at the time of forging is easy. Further, since the mold or the gear material is heated by the heating process of heating the gear material or the mold from 50 degrees C to 200 degrees C, it is possible to prevent galling in the extrusion process. In particular, it is possible to prevent galling even in an internal gear having a short root length. In addition, since the forming load can be reduced at the initial stage where the number of processing when manufacturing a large number of gears is small, the press device can be downsized. In addition, when manufacturing a large number of gears, there is little variation between the dimensions of the gears formed at the initial stage where the number of processing is small and the dimensions of the gears formed at the stage where the number of processing is large. It can be performed. In addition, since the heating temperature is set within a range not exceeding 200 ° C., the coating applied to the gear material by the lubrication process does not deteriorate, and seizure and galling do not occur between the mold and the gear material. The life of the mold is not shortened.

請求項2記載の歯車の成形方法によれば、請求項1記載の歯車の成形方法の奏する効果に加え、加温工程は、金型のみを加温するので、多数の歯車を製造する場合に、最初に金型を加温し、連続して加工を行えば加工により発生する熱により金型の温度が維持されるため、以降の加工においては加温する必要がない。よって、加工数が少ない初期の段階において成形される歯車の寸法と、加工数が多い段階において成形される歯車の寸法との変動が少ないため、精度の良い成形を行うことができる。   According to the method for forming a gear according to claim 2, in addition to the effect produced by the method for forming a gear according to claim 1, the heating step only heats the mold. If the mold is first heated and continuously processed, the temperature of the mold is maintained by the heat generated by the processing, and thus it is not necessary to heat the subsequent processes. Therefore, since there is little fluctuation | variation with the dimension of the gearwheel shape | molded in the initial stage with few numbers of processes, and the dimension of the gearwheel shape | molded in the stage with many numbers of processes, it can shape | mold highly accurately.

請求項3記載の歯車の成形方法によれば、請求項1記載の歯車の成形方法の奏する効果に加え、加温工程は、歯車素材と金型とのうち、少なくとも歯車素材を加温するものであるので、多数の歯車を加工する場合に、常温において加工を行う場合に比べ、加工を開始する初期の段階および加工数が増加した段階において成形荷重を小さくでき、プレス装置を小型化できるという効果がある。   According to the method for forming a gear according to claim 3, in addition to the effect produced by the method for forming a gear according to claim 1, the heating step heats at least the gear material out of the gear material and the mold. Therefore, when processing a large number of gears, the molding load can be reduced at the initial stage of processing and the number of processes increased compared to when processing at normal temperature, and the press device can be downsized. effective.

請求項4記載の歯車の成形方法によれば、請求項1から3のいずれかに記載の歯車の成形方法の奏する効果に加え、加温工程は、近赤外線を照射することにより行うので、遠赤外線や中赤外線を用いて加温する場合には、所定温度に加温するには長時間を要するところ、短時間で効率よく加温することができるという効果がある。   According to the method for forming a gear according to claim 4, in addition to the effect exhibited by the method for forming a gear according to any one of claims 1 to 3, the heating step is performed by irradiating near infrared rays. When heating is performed using infrared rays or mid-infrared rays, it takes a long time to warm to a predetermined temperature, and there is an effect that the heating can be efficiently performed in a short time.

請求項5記載の歯車の成形方法によれば、請求項1から4のいずれかに記載の歯車の成形方法の奏する効果に加え、歯車は、内歯歯車であり内歯車の歯底長さが短い(歯底径が大きい)場合に、カジリが発生することを防止することができる。   According to the method for forming a gear according to claim 5, in addition to the effect produced by the method for forming a gear according to any one of claims 1 to 4, the gear is an internal gear and the tooth bottom length of the internal gear is When it is short (the root diameter is large), it is possible to prevent galling.

請求項6記載の歯車の成形方法によれば、請求項5記載の歯車の成形方法の奏する効果に加え、歯車は、ヘリカル内歯歯車であり、ヘリカル歯の傾斜角度が大きい場合には、成形荷重が大きくなるが、加温することにより成形荷重をより顕著に減らすことができるという効果がある。   According to the method for forming a gear according to claim 6, in addition to the effect produced by the method for forming a gear according to claim 5, the gear is a helical internal gear, and when the inclination angle of the helical tooth is large, the forming is performed. Although the load increases, there is an effect that the molding load can be more significantly reduced by heating.

以下、本発明の好ましい実施例について、添付図面を参照して説明する。図1は、本発明により製造される歯車装置の一例である遊星歯車装置を示す図である。リング状の内歯ギヤ2の軸心部に太陽ギア3を同軸に嵌合させ、内歯ギア2と太陽ギア3との間に3個の遊星ギア4を等間隔で配置し、遊星ギア4は、内歯ギア2と太陽ギア3とに噛合わせる。3個の遊星ギア4は、遊星キャリア5により互いに連結されている。これらの内歯ギア2、太陽ギア3、遊星ギア4の歯2a、3a、4aは、軸心線に対し所定の角度で傾斜するヘリカル歯である。   Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings. FIG. 1 is a diagram showing a planetary gear device which is an example of a gear device manufactured according to the present invention. The sun gear 3 is coaxially fitted to the axial center portion of the ring-shaped internal gear 2, and three planetary gears 4 are arranged at equal intervals between the internal gear 2 and the sun gear 3. Meshes with the internal gear 2 and the sun gear 3. The three planetary gears 4 are connected to each other by a planet carrier 5. The teeth 2a, 3a, 4a of the internal gear 2, the sun gear 3, and the planetary gear 4 are helical teeth that are inclined at a predetermined angle with respect to the axis.

図2は、本発明により成形された内歯ギア2の歯部の拡大斜視図である。内歯ギア2の歯2aは、軸心線に対し所定角度で傾斜し、歯厚Tが歯の全長に亘って等厚であるヘリカル歯であり、この歯は、内歯ギア2の内周に沿って等ピッチで形成されている。歯底長さBLは、大きなトルクを伝達するために短く成形される必要がある。この歯底長さBLが短いと、冷間鍛造において、カジリが発生しやすい傾向がある。太陽ギア3,遊星ギア4の歯も同様にヘリカル歯に形成されている。   FIG. 2 is an enlarged perspective view of a tooth portion of the internal gear 2 formed according to the present invention. The tooth 2a of the internal gear 2 is a helical tooth that is inclined at a predetermined angle with respect to the axial center line, and the tooth thickness T is the same thickness over the entire length of the tooth. Are formed at an equal pitch. The root length BL needs to be formed short in order to transmit a large torque. When the root length BL is short, galling tends to occur in cold forging. Similarly, the teeth of the sun gear 3 and the planetary gear 4 are formed into helical teeth.

図3(A)は、本発明の内歯ギア2を成形する工程を示すもので、まず材料を切断し(B1)、熱間鍛造にて外形成形工程を行い(B2)、続いてショットブラストにて熱間鍛造で製品表面に形成された酸化被膜を除去し(B3)、次に潤滑処理を行い(潤滑処理工程、B4)、近赤外線を金型および材料に照射して50〜200度Cに加温し(加温工程、B5)、冷間鍛造により押出し成形を行う(押出加工工程、B6)。   FIG. 3 (A) shows the process of molding the internal gear 2 of the present invention. First, the material is cut (B1), the outer shape is formed by hot forging (B2), and then shot blasting is performed. The oxide film formed on the surface of the product by hot forging is removed (B3), and then a lubrication process is performed (lubricating process, B4), and near infrared rays are irradiated to the mold and the material at 50 to 200 degrees. C is heated (warming process, B5), and extrusion molding is performed by cold forging (extrusion process, B6).

外形成形工程B2は、歯車の歯先径に沿う外形の成形を行うもので、歯形である歯面および歯底の成形は行わない。潤滑処理工程B4は、ボンデライト処理と呼ばれる歯車素材の表面にリン酸亜鉛被膜を形成する方法が用いられる。このボンデライト処理により形成された被膜は、200度Cを越えると飴状になり潤滑能力が低下する。潤滑能力が低下すると、金型と材料との間に焼き付きやカジリを生じ、金型の寿命を短縮したり、加工そのものを不可能にすることがある。したがって、本発明では、加温する温度を200度Cを越えない範囲としている。   In the outer shape forming step B2, the outer shape is formed along the tooth tip diameter of the gear, and the tooth surface and the tooth bottom which are tooth shapes are not formed. In the lubrication treatment step B4, a method of forming a zinc phosphate coating on the surface of the gear material called bonderite treatment is used. The film formed by this bonderite treatment becomes cocoon-shaped when the temperature exceeds 200 ° C., and the lubricating ability decreases. When the lubrication capability is lowered, seizure or galling occurs between the mold and the material, and the life of the mold may be shortened or the processing itself may be impossible. Therefore, in the present invention, the temperature to be heated is set in a range not exceeding 200 degrees C.

加温工程B5の方法としては、近赤外線を金型または歯車素材に照射する方法がとられる。この方法によれば、短時間で所定の温度に加温することができる。別の方法としては、水または油などの液体を加熱して、その液体に浸すという方法や、金型の場合には、電気炉で加熱する方法がある。   As a method of the heating step B5, a method of irradiating a mold or a gear material with near infrared rays is used. According to this method, it is possible to heat to a predetermined temperature in a short time. As another method, there is a method in which a liquid such as water or oil is heated and immersed in the liquid, and in the case of a mold, there is a method in which it is heated in an electric furnace.

冷間鍛造による押出加工工程については、その詳細を後述する。押出加工工程の後、歯車素材には、サイジング加工が行われる。このサイジング加工とは、寸法精度を向上させる冷間鍛造である。その後、必要に応じてターニングなどの機械加工を行いバリを除去するとともに寸法精度を向上させ、最後に焼き入れ処理を行う。   The details of the extrusion process by cold forging will be described later. After the extrusion process, the gear material is subjected to sizing. This sizing process is cold forging that improves dimensional accuracy. Then, if necessary, machining such as turning is performed to remove burrs and improve dimensional accuracy, and finally quenching is performed.

図4は、上記のように50〜200度Cに加温された金型および材料を用いて冷間鍛造を行う金型装置9の動作を示す図である。金型装置9は、図示しないプレス装置に装着されて、成形加工が行われる。コンテナ6の軸心部にマンドレル10が配置され、コンテナ6は、締金7により嵌合保持されて下部プレート8に回転可能に載置され、図示しないプレス装置のシリンダにより下部プレート8に対して所定量上下動可能に形成されている。   FIG. 4 is a diagram illustrating the operation of the mold apparatus 9 that performs cold forging using the mold and the material heated to 50 to 200 degrees C as described above. The mold apparatus 9 is mounted on a press apparatus (not shown) to perform molding processing. A mandrel 10 is disposed at the axial center of the container 6, the container 6 is fitted and held by a clamp 7 and is rotatably mounted on the lower plate 8, and is mounted on the lower plate 8 by a cylinder of a pressing device (not shown). It is formed to be movable up and down by a predetermined amount.

コンテナ6は、その軸心部にリング状の素材Wが通過する円形の沿う挿通孔6aを有し、その挿通孔6aにマンドレル10を同心に嵌合する環状の成形空間(ア)を形成する。マンドレル10は、下部プレート8に回転可能に載置され、その下部外周に成形歯11が円周方向に所定ピッチで形成されている。   The container 6 has a circular along-hole 6a through which a ring-shaped material W passes at the axial center thereof, and an annular molding space (a) in which the mandrel 10 is fitted concentrically is formed in the insertion hole 6a. . The mandrel 10 is rotatably mounted on the lower plate 8, and molding teeth 11 are formed on the outer periphery of the lower plate 8 at a predetermined pitch in the circumferential direction.

この成形歯11は、マンドレル10の軸心線に対して所定角度で傾斜するヘリカル成形歯であって、図5に示すように素材Wが供給される上流側を予備成形歯11aとし、素材Wを排出する下流側を仕上げ成形歯11bとする。予備成形歯11aは、対象とする内歯ギヤ2の歯2aに対してマイナス転位させた歯形に形成するもので、歯底円の径D3、歯先円の径D5、及び歯厚Tを対象とした内歯ギヤ2よりも若干小さくし、上流側11a−1の歯先部は、傾斜角度αが約15度となる緩い角度で立ち上がらせ、その立ち上がった部分11a−2を下流側に向けて所定長さ延長している。   This forming tooth 11 is a helical forming tooth inclined at a predetermined angle with respect to the axial center line of the mandrel 10, and the upstream side to which the material W is supplied as shown in FIG. The downstream side from which the air is discharged is referred to as finish molding tooth 11b. The pre-formed tooth 11a is formed in a tooth profile that is negatively displaced with respect to the tooth 2a of the target internal gear 2, and covers the diameter D3 of the root circle, the diameter D5 of the tip circle, and the tooth thickness T. The tooth tip portion of the upstream side 11a-1 is raised at a gentle angle with an inclination angle α of about 15 degrees, and the raised portion 11a-2 is directed to the downstream side. Extend the specified length.

仕上げ成形歯11bは、対象とする内歯ギヤ2の歯2aと略等しくなる歯形に形成する。即ち、歯底円の径D3、歯先円の径D5及び歯厚Tを対象とする内歯ギヤ2のそれらと略等しくし、歯先部は、予備成形歯11aの下流端11a−2から傾斜角度βが約15度となる緩い角度で立ち上がらせる。また、下流側11−bの歯底部は、上流側11−aの歯底部の下流端から半径Rが約45mmとなる緩い円弧で立ち上がらせ、立ち上がった部分を所定長さ延長している。   The finish molding teeth 11b are formed in a tooth profile that is substantially equal to the teeth 2a of the target internal gear 2. That is, the diameter D3 of the root circle, the diameter D5 of the tooth tip circle, and the tooth thickness T are made substantially equal to those of the internal gear 2 and the tooth tip portion is formed from the downstream end 11a-2 of the preformed tooth 11a. The tilt angle β is raised at a gentle angle of about 15 degrees. The tooth bottom portion on the downstream side 11-b is raised from a downstream end of the tooth bottom portion on the upstream side 11-a by a gentle arc having a radius R of about 45 mm, and the raised portion is extended by a predetermined length.

コンテナ6、マンドレル10の上方には円筒状のパンチ13を配置し、パンチ13は、ラムにより上下動されて下端部が環状の成形空間(ア)に嵌合可能となっており、下方に移動された際には成形空間(ア)に嵌合された素材Wを下方に押圧移動させる。上記成形空間(ア)内には例えば3個の素材W1,W2,W3が順次重ねて嵌合され、パンチ13が下方に1動作する毎に上記素材Wが1個づつ第1成形歯11部を通過し、該素材Wの内周面にヘリカル歯が形成される。   A cylindrical punch 13 is disposed above the container 6 and the mandrel 10, and the punch 13 is moved up and down by a ram so that its lower end can be fitted into an annular molding space (a) and moved downward. When done, the material W fitted in the molding space (a) is pressed and moved downward. In the molding space (A), for example, three materials W1, W2, and W3 are sequentially stacked and fitted, and each time the punch 13 moves downward, one portion of the material W is 11 parts of the first molding tooth. And helical teeth are formed on the inner peripheral surface of the material W.

上記パンチ13が下方に移動されると、図4の左半部に示すように、コンテナ6及びマンドレル10が下方に移動して下部プレート8に当接し、最下部の素材W1が成形歯11部を通過して該素材W1の内周面にヘリカル歯が形成され、内周にヘリカル歯14aを有するヘリカル内歯ギヤ2を得る。そして、パンチ13が上方に移動されると、図4の右半部に示すように、コンテナ6がシリンダによって所定量上方に移動され、これに伴ってマンドレル10が成形空間(ア)に介在する素材Wを介して所定量上方に移動される。これにより、下部プレート8の上部に取出空間(イ)が形成されて該下部プレート8上に落下した内歯ギヤ2(ヘリカル歯が形成された素材W1)を取り出すことができる。パンチ13はその後、図1の仮想線で示すようにさらに上方に移動してコンテナ6及びマンドレル10から離間し、新たな素材Wが上方から成形空間(ア)内に嵌合できるようになっている。   When the punch 13 is moved downward, as shown in the left half of FIG. 4, the container 6 and the mandrel 10 are moved downward to come into contact with the lower plate 8, and the lowermost material W1 is formed into 11 molded teeth. And helical teeth are formed on the inner peripheral surface of the material W1, and the helical internal gear 2 having the helical teeth 14a on the inner periphery is obtained. When the punch 13 is moved upward, as shown in the right half of FIG. 4, the container 6 is moved upward by a predetermined amount by the cylinder, and accordingly, the mandrel 10 is interposed in the molding space (a). It is moved upward by a predetermined amount via the material W. Thereby, an extraction space (A) is formed in the upper part of the lower plate 8, and the internal gear 2 (the material W1 in which helical teeth are formed) that has dropped onto the lower plate 8 can be taken out. After that, the punch 13 moves further upward as shown by the phantom line in FIG. 1 to move away from the container 6 and the mandrel 10 so that a new material W can be fitted into the molding space (a) from above. Yes.

図6は、常温で成形した場合と加温して成形した場合との加工数に対し、成形された歯車のB.B.D.の変化を示す図である。ここで、B.B.D.とは、Between Balls Diameterの頭文字であって、歯車の直径を挟む歯の歯面に硬球(Ball)を挟み、その硬球間の長さを測る測定方法である。この図には、金型も材料も常温で成形した場合と、金型と材料を100度Cに加温した場合と、金型のみを100度Cに加温した場合と、材料のみを100度Cに加温した場合とにおいて、横軸を加工数とし、縦軸をB.B.D.とし、完成品の上限値、下限値とともに表示されている。   FIG. 6 is a graph showing the B.B. of the formed gear with respect to the number of processed cases of forming at normal temperature and forming by heating. B. D. It is a figure which shows the change of. Here, B.I. B. D. Is an acronym for Between Balls Diameter, which is a measurement method in which a hard ball (Ball) is sandwiched between the tooth surfaces of the teeth sandwiching the diameter of the gear and the length between the hard balls is measured. In this figure, both the mold and the material are molded at room temperature, the mold and the material are heated to 100 degrees C, the mold alone is heated to 100 degrees C, and only the material is 100 In the case of heating to degree C, the horizontal axis is the machining number, and the vertical axis is B.P. B. D. It is displayed together with the upper and lower limits of the finished product.

この図から明らかなように、加工数が20までの初期において、常温の場合と材料のみを加温した場合とは、B.B.D.の値がしだいに増加しているのが認めらる。一方、金型のみを加温した場合と金型と材料の両方を加温した場合には、加工を始めた初めからほぼ一定のB.B.D.値が得られている。加工数が30個を越えると、いずれの場合もばらつきが減少し、安定した寸法が得られる。   As is apparent from this figure, in the initial stage of processing up to 20, the case of normal temperature and the case of heating only the material are B. D. It is recognized that the value of increases gradually. On the other hand, when only the mold is heated and when both the mold and the material are heated, the B.V. B. D. The value is obtained. When the number of processing exceeds 30, the variation is reduced in any case, and a stable dimension can be obtained.

したがって、金型のみを加温する、あるいは、金型と材料とを加温すれば、加工数にほとんど影響されず、安定した寸法の歯車を製造することができる。   Therefore, if only the mold is heated, or if the mold and the material are heated, a gear having a stable dimension can be manufactured without being affected by the number of processes.

図7は、同様に、常温で成形した場合と、加温して成形した場合とにおいて、加工数に対し、成形に要する荷重の変化を示す図である。横軸を加工数とし、縦軸を成形荷重とし、荷重の単位をKN(キロニュートン)で表している。   Similarly, FIG. 7 is a diagram showing a change in load required for molding with respect to the number of processing in the case of molding at normal temperature and in the case of molding by heating. The horizontal axis is the number of processes, the vertical axis is the forming load, and the unit of the load is represented by KN (kilonewton).

この図から明らかなように、加工数が20個までの初期において、いずれの場合もしだいに成形荷重は減少するが、常温の場合に比べ、材料または金型、材料と金型の両者を加温した場合は、加工個数が20個までの初期において成形荷重が小さくなる。特に、材料のみを加温した場合および材料と金型との両者を加温した場合は、加工数が20個を越える場合に、常温に比べて成形荷重が小さいことが分かる。   As is apparent from this figure, in the initial stage of processing up to 20, the molding load gradually decreases, but compared to the case at room temperature, the material or the mold, both the material and the mold are added. In the case of warming, the molding load becomes small at the initial stage of processing up to 20 pieces. In particular, it can be seen that when only the material is heated and when both the material and the mold are heated, the molding load is smaller than the normal temperature when the number of processing exceeds 20.

したがって、材料または材料と金型とを加温することにより、成形荷重を減少させることができるので、プレス装置を小型化することができる。   Therefore, by heating the material or the material and the mold, the molding load can be reduced, so that the press device can be reduced in size.

以上のように、本発明による歯車の成形方法によれば、熱間鍛造により、歯車の外形を成形し、潤滑処理を行った後、金型または歯車素材を、あるいは金型および歯車素素材を50〜200度Cに加温し、冷間鍛造により歯形の押出し加工を行うので、熱間鍛造においては、歯車の歯形の成形は、行わずラフな成形でよいので、金型の精度を高くする必要がなく温度管理も比較的ラフでよい。また、この冷間鍛造において、金型または歯車素材を加温することにより、多数の歯車を製造する場合の、加工数が少ない初期における歯車の寸法の変動を抑制することができるため、寸法精度のよい製品を製造することができる。特に、歯底長さが短い内歯ギアやヘリカル内歯ギヤの歯形を押出し加工により成形を行う場合においてカジリの発生を防止することができ、少ない工程で効率よく成形することができる。また、少なくとも歯車素材を加温する、すなわち歯車素材を加温する場合と、歯車素材と金型とを加温する場合には、成形荷重を小さくすることができる。   As described above, according to the method for forming a gear according to the present invention, the outer shape of the gear is formed by hot forging and lubrication is performed, and then the mold or the gear material, or the mold and the gear element material are used. Since the tooth profile is extruded by cold forging and heated to 50 to 200 ° C., the gear tooth profile is not formed in hot forging, and rough molding is possible. There is no need to control the temperature, and the temperature control is relatively rough. Also, in this cold forging, by heating the mold or gear material, it is possible to suppress variations in the gear dimensions at the initial stage when the number of processing is small when manufacturing a large number of gears. A good product can be manufactured. In particular, when the tooth profile of an internal gear or a helical internal gear with a short root length is formed by extrusion, galling can be prevented and the molding can be efficiently performed with fewer steps. Further, at least when the gear material is heated, that is, when the gear material is heated and when the gear material and the mold are heated, the molding load can be reduced.

以上、上記実施例に基づき本発明を説明したが、本発明は、上記実施例に何ら限定されるものでなく、本発明の趣旨を逸脱しない範囲内で種々の改良変形が可能であることは容易に推察できるものである。   The present invention has been described above based on the above embodiments, but the present invention is not limited to the above embodiments, and various improvements and modifications can be made without departing from the spirit of the present invention. It can be easily guessed.

例えば、上記実施例では、熱間鍛造B2において、外形のみを成形するものとしたが、歯形を少し成形するものとしてもよい。特に歯車の大きさが大きい場合には、冷間鍛造において成形するしごき量が少ないほどカジリの発生を防止することができ、かつ成形荷重が小さくてよい。したがって、冷間加工において、しごき量が少ないとともに金型または歯車素材を加温することにより、より良くカジリの発生を防止することができ、寸法精度が良好な歯車を小さい成形荷重で成形することができる。   For example, in the above embodiment, only the outer shape is formed in the hot forging B2, but the tooth profile may be formed a little. In particular, when the size of the gear is large, the smaller the amount of ironing formed in cold forging, the more the generation of galling can be prevented, and the molding load may be small. Therefore, in cold working, the amount of ironing is small, and by heating the mold or gear material, galling can be better prevented, and gears with good dimensional accuracy can be molded with a small molding load. Can do.

また、上記実施例では、ヘリカル内歯ギアの成形について説明したが、平歯車などの他の歯車の成形に本発明を適用してもよい。   In the above embodiment, the formation of the helical internal gear has been described. However, the present invention may be applied to the formation of other gears such as a spur gear.

遊星歯車装置を示す図である。It is a figure which shows a planetary gear apparatus. 内歯ギヤのヘリカル歯を示す図である。It is a figure which shows the helical tooth of an internal gear. (a)は本発明の成形工程(b)は、従来の成形工程を示す図である。(A) is a figure which shows the conventional shaping | molding process of the shaping | molding process (b) of this invention. 内歯ギヤを成形する金型装置の断面図である。It is sectional drawing of the metal mold | die apparatus which shape | molds an internal gear. 金型の歯を成形するため部分の拡大図である。It is an enlarged view of the part for shape | molding the tooth | gear of a metal mold | die. 常温と加温をした場合の加工数に対する成形された歯車の寸法(B.B.D.)の変化を示す図である。It is a figure which shows the change of the dimension (BBD) of the shape | molded gearwheel with respect to the number of processes at the time of normal temperature and heating. 常温と加温をした場合の加工数に対する成形荷重の変化を示す図である。It is a figure which shows the change of the shaping | molding load with respect to the number of processes at the time of normal temperature and heating.

符号の説明Explanation of symbols

1 遊星歯車装置
2 ヘリカル内歯ギヤ
2a 歯(ヘリカル歯)
6 コンテナ
9 ヘリカル内歯ギヤの金型装置
10 マンドレル
13 パンチ
W 歯車素材
1 planetary gear device 2 helical internal gear 2a tooth (helical tooth)
6 Container 9 Helical internal gear mold device 10 Mandrel 13 Punch W Gear material

Claims (6)

歯車の成形方法において、
歯車素材を熱間鍛造して歯車の外形を成形する外形成形工程と、
その外形成形工程により成形された歯車素材に潤滑処理を施す潤滑処理工程と、
その潤滑処理工程により潤滑処理された歯車素材または金型を50度Cから200度Cに加温する加温工程と、
その加温工程により50度Cから200度Cに加温された歯車素材または金型を、冷間鍛造において押出し加工して歯車の歯形を成形する押出工程とを備えていることを特徴とする歯車の成形方法。
In the gear forming method,
An outer shape forming process in which the gear material is hot forged to shape the outer shape of the gear;
A lubrication treatment step for subjecting the gear material formed by the outer shape formation step to a lubrication treatment;
A heating step of heating the gear material or the mold lubricated by the lubrication treatment step from 50 degrees C to 200 degrees C;
A gear material or mold heated from 50 ° C. to 200 ° C. in the warming step is extruded in cold forging to form a gear tooth shape. Gear molding method.
前記加温工程は、前記歯車素材と金型とのうち、金型のみを加温するものであることを特徴とする請求項1記載の歯車の成形方法。   The gear forming method according to claim 1, wherein the heating step is to heat only the mold among the gear material and the mold. 前記加温工程は、前記歯車素材と金型とのうち、少なくとも歯車素材を加温するものであることを特徴とする請求項1記載の歯車の成形方法。   The gear forming method according to claim 1, wherein the heating step heats at least the gear material out of the gear material and the mold. 前記加温工程は、近赤外線を照射することにより行うことを特徴とする請求項1から3のいずれかに記載の歯車の成形方法。   The gear forming method according to any one of claims 1 to 3, wherein the heating step is performed by irradiating near infrared rays. 前記歯車は、内歯歯車であることを特徴とする請求項1から4のいずれかに記載の歯車の成形方法。   The gear forming method according to claim 1, wherein the gear is an internal gear. 前記歯車は、ヘリカル内歯歯車であることを特徴とする請求項5記載の歯車の成形方法。
The gear forming method according to claim 5, wherein the gear is a helical internal gear.
JP2004167967A 2004-06-07 2004-06-07 Method for forming gear Pending JP2005342779A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004167967A JP2005342779A (en) 2004-06-07 2004-06-07 Method for forming gear

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004167967A JP2005342779A (en) 2004-06-07 2004-06-07 Method for forming gear

Publications (1)

Publication Number Publication Date
JP2005342779A true JP2005342779A (en) 2005-12-15

Family

ID=35495619

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004167967A Pending JP2005342779A (en) 2004-06-07 2004-06-07 Method for forming gear

Country Status (1)

Country Link
JP (1) JP2005342779A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010064100A (en) * 2008-09-10 2010-03-25 Daido Steel Co Ltd Gear production device and method for producing the same
CN101590588B (en) * 2008-05-29 2011-05-11 江苏威鹰机械有限公司 Method for manufacturing mechanical drive chain wheel
KR101057214B1 (en) 2008-11-20 2011-08-16 주식회사 나래코퍼레이션 Manufacturing method of hypoid ring gear for four wheel vehicle
JP2012000625A (en) * 2010-06-15 2012-01-05 Daido Steel Co Ltd Mandrel for manufacturing internal gear, and method and device for manufacturing internal gear using the mandrel
CN106826110A (en) * 2016-12-29 2017-06-13 兴化市鑫翔机械有限公司 A kind of cold Warm Extrusion preparation technology of winding drum output wheel frame plate
CN115178702A (en) * 2022-06-16 2022-10-14 东风商用车有限公司 Die for cold extrusion molding of integrated duplicate gear and cold extrusion molding method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH079066A (en) * 1991-09-24 1995-01-13 Suzuki Motor Corp Extrusion forming apparatus
JPH07132342A (en) * 1993-11-09 1995-05-23 Toyota Motor Corp Method and device for machining tooth shaped part
JPH09104945A (en) * 1995-10-05 1997-04-22 Kobe Steel Ltd Steel for high strength bolt excellent in cold workability and delayed fracture resistance, production of high strength bolt, and high strength bolt
JPH09327744A (en) * 1996-06-11 1997-12-22 Tdk Corp Sizing method of metal stock body
JPH1076346A (en) * 1996-08-30 1998-03-24 Daido Steel Co Ltd Helical gear forming device with spline
JP2000015379A (en) * 1998-07-02 2000-01-18 Daido Steel Co Ltd Forging method of high carbon steel
JP2002086244A (en) * 2000-09-08 2002-03-26 Tokyo Seitankosho:Kk Blank for formed body

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH079066A (en) * 1991-09-24 1995-01-13 Suzuki Motor Corp Extrusion forming apparatus
JPH07132342A (en) * 1993-11-09 1995-05-23 Toyota Motor Corp Method and device for machining tooth shaped part
JPH09104945A (en) * 1995-10-05 1997-04-22 Kobe Steel Ltd Steel for high strength bolt excellent in cold workability and delayed fracture resistance, production of high strength bolt, and high strength bolt
JPH09327744A (en) * 1996-06-11 1997-12-22 Tdk Corp Sizing method of metal stock body
JPH1076346A (en) * 1996-08-30 1998-03-24 Daido Steel Co Ltd Helical gear forming device with spline
JP2000015379A (en) * 1998-07-02 2000-01-18 Daido Steel Co Ltd Forging method of high carbon steel
JP2002086244A (en) * 2000-09-08 2002-03-26 Tokyo Seitankosho:Kk Blank for formed body

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101590588B (en) * 2008-05-29 2011-05-11 江苏威鹰机械有限公司 Method for manufacturing mechanical drive chain wheel
JP2010064100A (en) * 2008-09-10 2010-03-25 Daido Steel Co Ltd Gear production device and method for producing the same
KR101057214B1 (en) 2008-11-20 2011-08-16 주식회사 나래코퍼레이션 Manufacturing method of hypoid ring gear for four wheel vehicle
JP2012000625A (en) * 2010-06-15 2012-01-05 Daido Steel Co Ltd Mandrel for manufacturing internal gear, and method and device for manufacturing internal gear using the mandrel
CN106826110A (en) * 2016-12-29 2017-06-13 兴化市鑫翔机械有限公司 A kind of cold Warm Extrusion preparation technology of winding drum output wheel frame plate
CN115178702A (en) * 2022-06-16 2022-10-14 东风商用车有限公司 Die for cold extrusion molding of integrated duplicate gear and cold extrusion molding method

Similar Documents

Publication Publication Date Title
EP0955115B1 (en) Method for producing fully dense powdered metal helical gear
JP7254520B2 (en) Spindle nut, screw transmission, and method of manufacturing spindle nut
CN105179450A (en) Production method of car transmission input axle hubs
KR101367051B1 (en) A manufacturing method of helical gear
JP2005342779A (en) Method for forming gear
JP2015136736A (en) Manufacturing method of two-stage gear by forging and two-stage cold extrusion processing
EP1574271B1 (en) Method and device for manufacturing a gear
KR101105488B1 (en) Method for Manufacturing a Gear
KR102273238B1 (en) Hub bolt and manufacturing therof
KR101138785B1 (en) A manufacturing method of helical gear using forward extrusion mold with helical gear tooth
KR20120015643A (en) Manufacturing method for outer race of one-way clutch of vehicle with cold forging
JP2009285688A (en) Method for manufacturing hollow toothed part
Samołyk et al. Analysis of single-operation cold forging of a hollow ball from a tubular billet
JP3700156B2 (en) Helical gear and differential device
JP5070516B2 (en) Gear molding die and extrusion molding apparatus equipped with the gear molding die
WO2017163161A1 (en) A finisher die assembly and a forging process to make a pinion drive, and a pinion drive
JP6708907B2 (en) Forging device and forging method
JP2017030023A (en) Manufacturing method of ring gear for differential
JP3494349B2 (en) Helical gear manufacturing method
JP2612072B2 (en) Cylindrical iron-based sintered slag for plastic working and method for producing the same
JPH02235525A (en) Manufacture of screw rotor
JP7430555B2 (en) Cold forged parts having tooth profile parts, manufacturing method and manufacturing equipment thereof
KR101424044B1 (en) Manufacturing method of turning gear for construction machine
CN113478188B (en) Parking gear tooth profile lateral extrusion forming method
CN215746170U (en) Parking gear tooth-shaped lateral extrusion forming device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070326

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080826

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090924

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091124

RD02 Notification of acceptance of power of attorney

Effective date: 20100421

Free format text: JAPANESE INTERMEDIATE CODE: A7422

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100608