Nothing Special   »   [go: up one dir, main page]

JP2005233671A - Thermal infrared sensor element and thermal type infrared sensor array - Google Patents

Thermal infrared sensor element and thermal type infrared sensor array Download PDF

Info

Publication number
JP2005233671A
JP2005233671A JP2004040092A JP2004040092A JP2005233671A JP 2005233671 A JP2005233671 A JP 2005233671A JP 2004040092 A JP2004040092 A JP 2004040092A JP 2004040092 A JP2004040092 A JP 2004040092A JP 2005233671 A JP2005233671 A JP 2005233671A
Authority
JP
Japan
Prior art keywords
infrared sensor
sensor element
thermal
film
infrared
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004040092A
Other languages
Japanese (ja)
Other versions
JP4315832B2 (en
Inventor
Yoshiyuki Nakagi
義幸 中木
Yoshio Fujii
善夫 藤井
Hisatoshi Hata
久敏 秦
Hiromoto Inoue
博元 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2004040092A priority Critical patent/JP4315832B2/en
Priority to US10/855,507 priority patent/US7145144B2/en
Publication of JP2005233671A publication Critical patent/JP2005233671A/en
Application granted granted Critical
Publication of JP4315832B2 publication Critical patent/JP4315832B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/0225Shape of the cavity itself or of elements contained in or suspended over the cavity
    • G01J5/023Particular leg structure or construction or shape; Nanotubes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/0225Shape of the cavity itself or of elements contained in or suspended over the cavity
    • G01J5/024Special manufacturing steps or sacrificial layers or layer structures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0808Convex mirrors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0853Optical arrangements having infrared absorbers other than the usual absorber layers deposited on infrared detectors like bolometers, wherein the heat propagation between the absorber and the detecting element occurs within a solid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/10Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors
    • G01J5/20Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors using resistors, thermistors or semiconductors sensitive to radiation, e.g. photoconductive devices

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Radiation Pyrometers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve an infrared absorption efficiency without increasing a heat capacity in a thermal infrared sensor element. <P>SOLUTION: This thermal infrared sensor element is equipped with a substrate 1 having a recessed part 12, a temperature detection part 2 held in the air over the recessed part 12 by being connected to the substrate 1 through a support leg 3, an infrared reflecting film 9 arranged so as to cover the upside of at least a part of the support leg 3 in the thermally unconnected state to the temperature detection part 2, and an absorbing umbrella part 6 thermally connected to the temperature detection part 2, held on the furthermore upside than the infrared reflecting film 9 in the thermally unconnected state to the infrared reflecting film 9, and spread tabularly sideward so as to cover at least a part of the infrared reflecting film 9. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、熱型赤外センサ素子および熱型赤外センサアレイに関するものである。   The present invention relates to a thermal infrared sensor element and a thermal infrared sensor array.

従来の熱型赤外センサ素子としては、たとえば特開2003−207391号公報(特許文献1)の段落0011〜0012および図1(a),(b)に示されるように、μm単位の立体構造を構築することによって実効的反射率を低減し、赤外線吸収効率を高める技術が提案されている。また、たとえば特開平7−190854号公報(特許文献2)の段落0007に示されるように、入射した赤外光を検知部としての凹部の内部で多数回反射させ、実質的に赤外吸収効率を高めた熱型赤外センサ素子も提案されている。これらの熱型赤外センサ素子は、シリコン基板の表面を掘り下げて凹部を形成する技術であるバルクマイクロマシニング技術を用いて作製されている。   As a conventional thermal infrared sensor element, for example, as shown in paragraphs 0011 to 0012 of Japanese Patent Laid-Open No. 2003-207391 (Patent Document 1) and FIGS. A technique has been proposed in which effective reflectivity is reduced and infrared absorption efficiency is increased by constructing the structure. Further, for example, as shown in paragraph 0007 of Japanese Patent Laid-Open No. 7-190854 (Patent Document 2), incident infrared light is reflected a number of times inside a concave portion as a detection unit, so that the infrared absorption efficiency is substantially increased. A thermal infrared sensor element having an improved resistance has also been proposed. These thermal infrared sensor elements are manufactured using a bulk micromachining technique, which is a technique for forming a recess by digging down the surface of a silicon substrate.

さらに、たとえば特許第3062627号公報(特許文献3)の第2頁右欄第44行〜第3頁左欄第27行および図1に示されるように、基板上面に反射層18を形成し、その上方に吸収材コーティング層23を形成し、同公報の第4頁左欄第11〜15行および図3に示されるように赤外吸収効率を高くする技術も提案されている。この熱型赤外センサ素子は、基板の上側に犠牲層を形成してこの犠牲層を加工することによって基板上面の上側に構造物を設ける技術である表面マイクロマシニング技術を用いて作製されている。
特開2003−207391号公報(段落0011〜0012および図1(a),(b)) 特開平7−190854号公報(段落0007) 特許第3062627号公報(第2頁右欄第44行〜第3頁左欄第27行、第4頁左欄第11〜15行、図1および図3) 米国特許6,576,556号公報(図1〜図7) 特開2000−321125号公報(図1)
Further, as shown in, for example, Japanese Patent No. 3062627 (Patent Document 3), page 2, right column, line 44 to page 3, left column, line 27 and FIG. 1, a reflective layer 18 is formed on the upper surface of the substrate, There has also been proposed a technique in which an absorber coating layer 23 is formed thereabove to increase the infrared absorption efficiency as shown in page 4, left column, lines 11 to 15 and FIG. This thermal infrared sensor element is manufactured using a surface micromachining technique, which is a technique for forming a sacrificial layer on the upper side of the substrate and processing the sacrificial layer to provide a structure on the upper side of the upper surface of the substrate. .
Japanese Patent Laying-Open No. 2003-207391 (paragraphs 0011 to 0012 and FIGS. 1A and 1B) Japanese Unexamined Patent Publication No. 7-190854 (paragraph 0007) Japanese Patent No. 3062627 (page 2, right column, line 44 to page 3, left column, line 27, page 4, left column, lines 11 to 15, lines 1 and 3) US Pat. No. 6,576,556 (FIGS. 1-7) JP 2000-321125 A (FIG. 1)

上述のような従来の熱型赤外センサ素子では、高い吸収効率を得るために、複雑な構造を必要としている。複雑な構造やμmオーダーという大きな膜厚を有するために、熱型赤外センサ素子全体の熱容量が大きくなっていた。しかし、熱型赤外センサ素子の高性能化のためには、断熱特性を向上させること、および、受光した赤外線(熱線)をより大きな温度変化に変換することが必要である。断熱特性を向上させても応答性を良好に保つためには、熱型赤外センサ素子全体の熱容量を小さくしなければならない。   The conventional thermal infrared sensor element as described above requires a complicated structure in order to obtain high absorption efficiency. Since it has a complicated structure and a large film thickness on the order of μm, the thermal capacity of the entire thermal infrared sensor element is large. However, in order to improve the performance of the thermal infrared sensor element, it is necessary to improve the heat insulation characteristics and to convert the received infrared rays (heat rays) into a larger temperature change. In order to maintain good responsiveness even if the heat insulation characteristics are improved, the heat capacity of the entire thermal infrared sensor element must be reduced.

一方、表面マイクロマシニング技術を用いた従来の熱型赤外センサ素子においては、複雑な構造を必要とせずに高い赤外吸収効率が実現できるが、特殊材料が必要であるので、生産性に問題がある。   On the other hand, a conventional thermal infrared sensor element using surface micromachining technology can achieve high infrared absorption efficiency without requiring a complicated structure, but a special material is required, so there is a problem in productivity. There is.

一方、米国特許6,576,556号公報(特許文献4)の図1〜図7では、バルクマイクロマシニング技術と表面マイクロマシニング技術とを組み合わせたバルク表面複合マイクロマシニング技術によって半導体生産設備で作製可能なダイオード型赤外センサ素子が提案されている。同公報の図1〜図7は製造工程を示しており、これらのうち図7が完成品である。この赤外センサ素子では、高い赤外吸収効率を実現している。さらに、特開2000−321125号公報(特許文献5)の図1では、特性向上を目指して検知部に反射層10を設けた構造が示されている。しかし、特許文献5の構造では、特許文献4の構造に比べれば熱容量が増加してしまっており、応答性の低下が問題となる。   On the other hand, in FIGS. 1 to 7 of US Pat. No. 6,576,556 (Patent Document 4), it can be manufactured in a semiconductor production facility by a bulk surface composite micromachining technology combining a bulk micromachining technology and a surface micromachining technology. A diode-type infrared sensor element has been proposed. 1 to 7 of the publication show the manufacturing process, and FIG. 7 is a finished product among these. This infrared sensor element achieves high infrared absorption efficiency. Furthermore, FIG. 1 of Japanese Patent Laid-Open No. 2000-321125 (Patent Document 5) shows a structure in which a reflective layer 10 is provided on a detection unit with the aim of improving characteristics. However, in the structure of Patent Document 5, the heat capacity is increased as compared with the structure of Patent Document 4, and a decrease in responsiveness becomes a problem.

そこで、本発明は、熱容量を増加させることなく赤外吸収効率を向上させた熱型赤外センサ素子および熱型赤外センサアレイを提供することを目的とする。   SUMMARY OF THE INVENTION An object of the present invention is to provide a thermal infrared sensor element and a thermal infrared sensor array having improved infrared absorption efficiency without increasing the heat capacity.

上記目的を達成するため、本発明に基づく熱型赤外センサ素子は、凹部を有する基板と、上記基板に対して支持脚を介して接続されることによって上記凹部の上部の空中に保持された温度検知部と、上記温度検知部と熱的に接続されない状態で上記支持脚の少なくとも一部の上方を覆うように配置された赤外反射膜と、上記温度検知部とは熱的に接続され、上記赤外反射膜とは熱的に接続されない状態で上記赤外反射膜よりも上方に保持され、上記赤外反射膜の少なくとも一部を覆い隠すように側方に板状に広がる吸収傘部とを備える。   In order to achieve the above object, a thermal infrared sensor element according to the present invention is held in the air above the concave portion by being connected to the substrate having the concave portion via a support leg to the substrate. The temperature detection unit, the infrared reflection film disposed so as to cover at least a part of the support leg in a state not thermally connected to the temperature detection unit, and the temperature detection unit are thermally connected. An absorbing umbrella that is held above the infrared reflective film in a state where it is not thermally connected to the infrared reflective film, and spreads in a plate shape to the side so as to cover at least part of the infrared reflective film A part.

本発明によれば、上方から照射される赤外線は、吸収傘部に直接入射する以外に赤外反射膜によって反射されて下側からも吸収傘部に入射することとなるので、吸収傘部による赤外線の吸収効率が向上する。しかも、赤外反射膜は、温度検知部とは熱的に隔離されているため、センサの熱容量を増大させることなく吸収効率を上げることができる。   According to the present invention, the infrared ray irradiated from above is reflected by the infrared reflecting film and directly enters the absorbing umbrella part from the lower side, in addition to being directly incident on the absorbing umbrella part. Infrared absorption efficiency is improved. Moreover, since the infrared reflective film is thermally isolated from the temperature detection unit, the absorption efficiency can be increased without increasing the heat capacity of the sensor.

(実施の形態1)
(構成)
図1、図2を参照して、本発明に基づく実施の形態1における熱型赤外センサ素子について説明する。この熱型赤外センサ素子は、上方から見ると図1のように、赤外反射膜9の上にかぶさるように設けられた吸収傘部6が見える。吸収傘部6のほぼ中央には支柱部13の凹みがあり、この凹みからやや離れた位置でこの凹みを挟むように除去孔11が2つ設けられている。図1のII−II線に関する矢視端面図を図2に示す。吸収傘部6の下方では基板1を掘り下げて凹部12が形成されている。基板1はたとえばシリコン基板である。
(Embodiment 1)
(Constitution)
With reference to FIG. 1 and FIG. 2, the thermal-type infrared sensor element in Embodiment 1 based on this invention is demonstrated. When viewed from above, this thermal infrared sensor element shows an absorbing umbrella 6 provided so as to cover the infrared reflection film 9 as shown in FIG. There is a recess of the support column 13 at the approximate center of the absorbent umbrella 6, and two removal holes 11 are provided so as to sandwich the recess at a position slightly away from the recess. FIG. 2 shows an end view taken along the line II-II in FIG. Below the absorber umbrella 6, the substrate 1 is dug down to form a recess 12. The substrate 1 is, for example, a silicon substrate.

この熱型赤外センサ素子は、温度変化を電気信号に変換するための温度検知部2を備えている。温度検知部2は、基板1に対して支持脚3を介して接続されることによって凹部12の上部の空中に保持されている。支持脚3は、この例では2本あり、上方から見ると図3に示すようにそれぞれL字形に折れ曲がった橋のような形状をしている。支持脚3は薄膜金属配線8とこれを支える誘電体膜とを含んでいる。   This thermal infrared sensor element includes a temperature detection unit 2 for converting a temperature change into an electrical signal. The temperature detection unit 2 is held in the air above the recess 12 by being connected to the substrate 1 via the support legs 3. There are two support legs 3 in this example. When viewed from above, the support legs 3 are each shaped like a bridge bent into an L shape as shown in FIG. The support leg 3 includes a thin-film metal wiring 8 and a dielectric film that supports it.

温度検知部2は検知膜7を含んでいる。検知膜7はたとえば結晶シリコンを用いたダイオードである。薄膜金属配線8は、検知膜7とアルミ配線5とを電気的に接続している。薄膜金属配線8はたとえば厚み100nmのチタン合金の膜によって形成される。検知膜7が出力した電気信号は、支持脚3に含まれる薄膜金属配線8を経由してアルミ配線5に伝わり、さらに図示しない検出回路によって取り出される。薄膜金属配線8と検知膜7との間、および、薄膜金属配線8とアルミ配線5との間の電気的接続は、必要に応じて上下方向に延在する導電体(図示せず)を介在させて行なわれている。   The temperature detection unit 2 includes a detection film 7. The detection film 7 is a diode using crystalline silicon, for example. The thin film metal wiring 8 electrically connects the detection film 7 and the aluminum wiring 5. The thin film metal wiring 8 is formed of a titanium alloy film having a thickness of 100 nm, for example. The electrical signal output from the detection film 7 is transmitted to the aluminum wiring 5 via the thin film metal wiring 8 included in the support leg 3 and further taken out by a detection circuit (not shown). The electrical connection between the thin-film metal wiring 8 and the detection film 7 and between the thin-film metal wiring 8 and the aluminum wiring 5 includes a conductor (not shown) extending in the vertical direction as necessary. Has been done.

赤外反射膜9は支持体10の上面に形成され、赤外反射膜9は支持体10によって凹部12の上部をほぼ覆うように支持されている。ただし、赤外反射膜9および支持体10は、温度検知部2とは熱的に接続されない状態で、支持脚3の少なくとも一部の上方を覆うように配置されている。支持体10はアンカ部20を介してアルミ配線5を内部に収める配線保護絶縁膜28に固定されている。したがって、赤外反射膜9は配線保護絶縁膜28に熱的にも機械的にも接続されている。   The infrared reflection film 9 is formed on the upper surface of the support 10, and the infrared reflection film 9 is supported by the support 10 so as to substantially cover the upper part of the recess 12. However, the infrared reflection film 9 and the support 10 are arranged so as to cover at least a part of the support leg 3 in a state where the infrared reflection film 9 and the support 10 are not thermally connected to the temperature detection unit 2. The support 10 is fixed to a wiring protection insulating film 28 that accommodates the aluminum wiring 5 through an anchor portion 20. Therefore, the infrared reflection film 9 is thermally and mechanically connected to the wiring protection insulating film 28.

吸収傘部6は、吸収膜となる金属薄膜とこれを支える誘電体膜とを含む。図中では吸収膜と誘電体膜との区別は詳細に図示していないが、これらはたとえば2層構造となっている。吸収膜はたとえばクロムで厚み5nmに形成した膜であり、誘電体膜はたとえば酸化シリコンで厚み200nmに形成した膜である。吸収傘部6は、図2に示すように温度検知部2の上側に支柱部13を介して取り付けられている。これは吸収傘部6が温度検知部2に対して熱的に接続されていることを意味する。吸収傘部6は、赤外反射膜9および支持体10とは熱的に接続されない状態で赤外反射膜9よりも上方に保持され、赤外反射膜9の少なくとも一部を覆い隠すように側方に板状に広がっている。   The absorbent umbrella 6 includes a metal thin film that serves as an absorption film and a dielectric film that supports the metal thin film. Although the distinction between the absorption film and the dielectric film is not shown in detail in the drawing, they have, for example, a two-layer structure. The absorption film is, for example, a film formed with chromium to a thickness of 5 nm, and the dielectric film is a film formed with silicon oxide, for example, to a thickness of 200 nm. As shown in FIG. 2, the absorbent umbrella 6 is attached to the upper side of the temperature detector 2 via a support column 13. This means that the absorbent umbrella 6 is thermally connected to the temperature detector 2. The absorbing umbrella 6 is held above the infrared reflective film 9 in a state where it is not thermally connected to the infrared reflective film 9 and the support 10 so as to cover at least a part of the infrared reflective film 9. It spreads like a plate on the side.

除去孔11においては、吸収傘部6に貫通孔があいているだけでなく、赤外反射膜9および支持体10にも貫通孔があいている。その結果、吸収傘部6の上側の空間から凹部12の内部にかけて連通している。   In the removal hole 11, not only a through hole is formed in the absorbing umbrella part 6, but also a through hole is formed in the infrared reflection film 9 and the support 10. As a result, it communicates from the space above the absorbent umbrella 6 to the inside of the recess 12.

吸収傘部6の吸収膜と、赤外反射膜9との間の上下方向の距離を以下「吸収膜間隔」というものとする。吸収膜間隔は、検出対象である赤外線の波長の約1/4の光学長さになるように設計されている。たとえば、遠赤外線を対象とする熱型赤外センサ素子の場合、吸収膜間隔は約2μmとする。   The distance in the vertical direction between the absorption film of the absorption umbrella 6 and the infrared reflection film 9 is hereinafter referred to as “absorption film interval”. The absorption film interval is designed so as to have an optical length of about ¼ of the wavelength of infrared rays to be detected. For example, in the case of a thermal infrared sensor element for far infrared rays, the absorption film interval is set to about 2 μm.

(作用・効果)
本実施の形態では、上方から照射される赤外線は、上側から直接吸収傘部6に吸収される以外に、赤外反射膜9によって反射されて下側からも吸収傘部6に入射して吸収傘部6に吸収されることとなる。凹部12は赤外反射膜9によってほぼ覆われているので赤外線が直接凹部12に入ることはほとんどなくなる。こうして、赤外線は吸収傘部6によって効率良く吸収される。一例としては、本実施の形態における構成によって、70%以上の吸収効率を実現することができる。上方から降り注ぐ多くの赤外線が入射することとなる赤外反射膜9は、温度検知部2とは熱的に隔離されているため、センサの熱容量を増大させることなく吸収効率を上げることができる。なお、吸収傘部6と温度検知部2との間は筒型の支柱部13によって熱的に接続されているので、吸収傘部6で赤外線を吸収したことによる温度変化は温度検知部2に迅速に正確に伝えられ、正確に温度を検出することができる。
(Action / Effect)
In the present embodiment, the infrared light irradiated from above is directly absorbed by the absorbing umbrella portion 6 from the upper side, is reflected by the infrared reflecting film 9 and is also incident on the absorbing umbrella portion 6 from the lower side and absorbed. It will be absorbed by the umbrella part 6. Since the concave portion 12 is almost covered with the infrared reflecting film 9, infrared rays hardly enter the concave portion 12 directly. In this way, infrared rays are efficiently absorbed by the absorbing umbrella 6. As an example, the absorption efficiency of 70% or more can be realized by the configuration of the present embodiment. Since the infrared reflection film 9 on which a large amount of infrared rays that pour down from above is incident is thermally isolated from the temperature detection unit 2, the absorption efficiency can be increased without increasing the heat capacity of the sensor. In addition, since the absorption umbrella part 6 and the temperature detection part 2 are thermally connected by the cylindrical support | pillar part 13, the temperature change by absorbing the infrared rays in the absorption umbrella part 6 is in the temperature detection part 2. It can be transmitted quickly and accurately, and the temperature can be detected accurately.

(製造方法)
図3〜図7、図1、図2を参照して、本発明に基づく実施の形態1における熱型赤外センサ素子の製造方法について説明する。まず、図3、図4に示す構造を作製する。図4は図3のIV−IV線に関する矢視端面図である。図4に示すように、基板1に溝を形成し、この溝を埋めるように耐エッチング壁4を形成する。耐エッチング壁4の上側にアルミ配線5を形成する。一方、上から見て耐エッチング壁4同士の間に相当する領域の中央に公知技術を利用して温度検知部2を形成する。温度検知部2は検知膜7を含むように形成されている。温度検知部2は、支持脚3によってアルミ配線5を内部に収める配線保護絶縁膜28とつながるように支持脚3が形成されている。支持脚3に含まれる薄膜金属配線8はアルミ配線5と電気的に接続されている。
(Production method)
With reference to FIGS. 3-7, FIG. 1, and FIG. 2, the manufacturing method of the thermal type infrared sensor element in Embodiment 1 based on this invention is demonstrated. First, the structure shown in FIGS. 3 and 4 is fabricated. FIG. 4 is an end view taken along the line IV-IV in FIG. As shown in FIG. 4, a groove is formed in the substrate 1, and an etching resistant wall 4 is formed so as to fill the groove. Aluminum wiring 5 is formed on the upper side of the etching resistant wall 4. On the other hand, the temperature detector 2 is formed using a known technique in the center of the region corresponding to the space between the etching resistant walls 4 when viewed from above. The temperature detector 2 is formed so as to include a detection film 7. The temperature detection unit 2 is formed with the support legs 3 so as to be connected to the wiring protection insulating film 28 in which the aluminum wiring 5 is accommodated by the support legs 3. The thin film metal wiring 8 included in the support leg 3 is electrically connected to the aluminum wiring 5.

図5、図6に示すように、基板1の上側を覆うように犠牲層22を形成する。図6は図5のVI−VI線に関する矢視端面図である。犠牲層22は、耐熱性のある有機系の膜を用いてフォトリソグラフィ法によって形成することができる。犠牲層22のうち、のちに凹部21およびアンカ部20(図6参照)となる領域に開口部を設ける。   As shown in FIGS. 5 and 6, a sacrificial layer 22 is formed so as to cover the upper side of the substrate 1. 6 is an end view taken along the line VI-VI in FIG. The sacrificial layer 22 can be formed by a photolithography method using a heat-resistant organic film. In the sacrificial layer 22, an opening is provided in a region that later becomes the recess 21 and the anchor portion 20 (see FIG. 6).

さらに、犠牲層22の上側を覆うように支持体10および赤外反射膜9を形成する。このとき、配線保護絶縁膜28の上側に設けられていた開口部の内部は支持体10と同じ材料で埋められてアンカ部20となる。その結果、支持体10はアンカ部20を介して配線保護絶縁膜28の上側に載るように形成される。赤外反射膜9の最表面にはアルミニウム、金、白金などの反射率の高い金属を用いることができる。支持体10はたとえば酸化シリコンで形成してよい。必要に応じてCMP(化学機械研磨)法やプラズマドライエッチングによるエッチバック法などの公知技術によって犠牲層22をさらに平坦化する。   Further, the support 10 and the infrared reflecting film 9 are formed so as to cover the upper side of the sacrificial layer 22. At this time, the inside of the opening provided on the upper side of the wiring protection insulating film 28 is filled with the same material as that of the support 10 to become the anchor portion 20. As a result, the support 10 is formed so as to be placed on the upper side of the wiring protection insulating film 28 via the anchor portion 20. A metal having high reflectivity such as aluminum, gold, or platinum can be used for the outermost surface of the infrared reflection film 9. The support 10 may be made of silicon oxide, for example. If necessary, the sacrificial layer 22 is further planarized by a known technique such as a CMP (chemical mechanical polishing) method or an etch back method using plasma dry etching.

中央部において赤外反射膜9、支持体10および犠牲層22を貫通するように凹部21を設ける。凹部21の両側に少し離れた位置にのちに除去孔となるべき開口部27をそれぞれ設ける。これらの開口部27においては、支持体10および赤外反射膜9が除去され、犠牲層22が露出している。   A concave portion 21 is provided so as to penetrate the infrared reflecting film 9, the support 10 and the sacrificial layer 22 in the central portion. Openings 27 to be removed holes are provided on both sides of the recess 21 at positions slightly apart from each other. In these openings 27, the support 10 and the infrared reflecting film 9 are removed, and the sacrificial layer 22 is exposed.

図7に示すように、赤外反射膜9の上側を覆うように有機系材料で犠牲層23を形成する。必要に応じて公知技術によって犠牲層23をさらに平坦化する。さらに、犠牲層23を貫通するように凹部を延長し、この凹部の内部および犠牲層23の上面を覆うように膜を形成する。この膜が支柱部13および吸収傘部6となる。さらに吸収傘部6の上側を覆うように保護レジスト26を形成する。この保護レジスト26をパターニングし、保護レジスト26をマスクとして除去孔11を形成する。除去孔11は、犠牲層23、開口部27、犠牲層22を順に貫通するように形成される。その結果、除去孔11の底には基板1が露出する。   As shown in FIG. 7, a sacrificial layer 23 is formed of an organic material so as to cover the upper side of the infrared reflective film 9. If necessary, the sacrificial layer 23 is further planarized by a known technique. Further, the recess is extended so as to penetrate the sacrificial layer 23, and a film is formed so as to cover the inside of the recess and the upper surface of the sacrificial layer 23. This film becomes the support column 13 and the absorbing umbrella 6. Further, a protective resist 26 is formed so as to cover the upper side of the absorbent umbrella 6. The protective resist 26 is patterned, and the removal hole 11 is formed using the protective resist 26 as a mask. The removal hole 11 is formed so as to penetrate the sacrificial layer 23, the opening 27, and the sacrificial layer 22 in order. As a result, the substrate 1 is exposed at the bottom of the removal hole 11.

保護レジスト26をマスクとしてフッ酸または気相フッ化水素によるエッチングを行なう。シリコンからなる基板1に対しては、除去孔11を通じてたとえば2フッ化キセノンガスによる自発的等方性エッチングが行なわれ、耐エッチング壁4同士に挟まれた領域の基板1が等方的に除去される。犠牲層22,23に対しては、除去孔11を通じてたとえば酸素ガスを主体とした等方性エッチングが行なわれ、吸収傘部6の下側の犠牲層22,23が除去される。   Etching with hydrofluoric acid or vapor phase hydrogen fluoride is performed using the protective resist 26 as a mask. The substrate 1 made of silicon is subjected to, for example, spontaneous isotropic etching with a xenon difluoride gas through the removal hole 11 so that the substrate 1 in the region sandwiched between the etching resistant walls 4 is isotropically removed. Is done. The sacrificial layers 22 and 23 are isotropically etched mainly using oxygen gas, for example, through the removal holes 11, and the sacrificial layers 22 and 23 on the lower side of the absorber 6 are removed.

こうして、図1、図2に示す構造の熱型赤外センサ素子が得られる。   Thus, the thermal infrared sensor element having the structure shown in FIGS. 1 and 2 is obtained.

なお、犠牲層22,23は有機系のものをスピンコート法で形成し、フォトリソグラフィ法でパターニングすることとすれば、従来の熱型赤外センサ素子に比べても容易に作製することができる。   If the sacrificial layers 22 and 23 are made of organic layers by spin coating and patterned by photolithography, the sacrificial layers 22 and 23 can be easily manufactured as compared with conventional thermal infrared sensor elements. .

なお、上述の例では、支柱部13となる凹部は、犠牲層22と犠牲層23とでそれぞれ別個の工程によって形成することとしたが、犠牲層22、赤外反射膜9、支持体10および犠牲層23を積み重ねるように形成してから一括して凹部を形成することとしてもよい。   In the above-described example, the concave portion that becomes the support column 13 is formed in the sacrificial layer 22 and the sacrificial layer 23 through separate processes, but the sacrificial layer 22, the infrared reflective film 9, the support 10 and The sacrificial layers 23 may be formed so as to be stacked, and then the recesses may be formed collectively.

(実施の形態2)
(構成)
図8を参照して、本発明に基づく実施の形態2における熱型赤外センサ素子について説明する。この熱型赤外センサ素子は、基本的には、実施の形態1におけるものと同様の構造であるが、実施の形態1におけるものにはアンカ部20(図2参照)があったのに対して、本実施の形態における熱型赤外センサ素子では、アンカ部に相当するものがなく、図8に示すように支持体10が配線保護絶縁膜28の上側に直接設けられている。
(Embodiment 2)
(Constitution)
With reference to FIG. 8, the thermal-type infrared sensor element in Embodiment 2 based on this invention is demonstrated. This thermal infrared sensor element basically has the same structure as that in the first embodiment, but the one in the first embodiment has an anchor portion 20 (see FIG. 2). In the thermal infrared sensor element according to the present embodiment, there is nothing corresponding to the anchor portion, and the support 10 is directly provided on the upper side of the wiring protective insulating film 28 as shown in FIG.

この熱型赤外センサ素子は、実施の形態1で示した製造方法の一部を変更することによって得られる。すなわち、犠牲層22を形成する際に犠牲層22の高さを配線保護絶縁膜28の高さと同程度にし、犠牲層22のうち凹部21となる領域に開口部を設け、さらに、犠牲層22の上側を覆うように支持体10および赤外反射膜9を形成することによって得ることができる。   This thermal infrared sensor element can be obtained by changing a part of the manufacturing method shown in the first embodiment. That is, when the sacrificial layer 22 is formed, the height of the sacrificial layer 22 is set to be substantially the same as the height of the wiring protection insulating film 28, an opening is provided in a region of the sacrificial layer 22 that becomes the recess 21, and the sacrificial layer 22 The support 10 and the infrared reflecting film 9 can be obtained so as to cover the upper side of the substrate.

(作用・効果)
本実施の形態では、実施の形態1で示した構造に比べてアンカ部20の段差がなくなるため、素子全体の高さを小さくすることができる。また、製造時のフォトリソグラフィ工程の簡便化を図ることができる。
(Action / Effect)
In the present embodiment, since the step of the anchor portion 20 is eliminated as compared with the structure shown in the first embodiment, the height of the entire element can be reduced. Moreover, simplification of the photolithography process at the time of manufacture can be achieved.

さらに、赤外反射膜9を形成する際には、図8に示すように、支持体10のうちアルミ配線5の上側に相当する領域を避けるように赤外反射膜9を形成することがより好ましい。こうすれば、赤外反射膜9とアルミ配線5との間に生じる電気浮遊容量の低減を図ることができる。また、この構造にした場合、赤外反射膜9の面積が小さくなるが、その分、アルミ配線5自体が赤外反射膜9の代りの役割を果たし、上方からの赤外線を吸収傘部6に向けて反射することとなるので、赤外吸収特性の劣化は回避できる。   Furthermore, when forming the infrared reflective film 9, it is more preferable to form the infrared reflective film 9 so as to avoid a region corresponding to the upper side of the aluminum wiring 5 in the support 10 as shown in FIG. preferable. By doing so, it is possible to reduce the electric stray capacitance generated between the infrared reflection film 9 and the aluminum wiring 5. In addition, in this structure, the area of the infrared reflection film 9 is reduced, but the aluminum wiring 5 itself plays a role instead of the infrared reflection film 9, and infrared rays from above are absorbed into the absorber umbrella 6. Therefore, the infrared absorption characteristics can be prevented from deteriorating.

(実施の形態3)
(構成)
図9、図10を参照して、本発明に基づく実施の形態1における熱型赤外センサ素子について説明する。この熱型赤外センサ素子は、上方から見ると図9のように、赤外反射膜9の上にかぶさるように設けられた吸収傘部6が見える。吸収傘部6のほぼ中央には支柱部13の凹みがあり、この凹みに一部重なる位置でこの凹みを挟むように除去孔11が2つ設けられている。図9におけるX−X線に関する矢視端面図を図10に示す。吸収傘部6の下方で基板1に凹部12が形成されている点などその他の構成は実施の形態1で説明したものと同様である。
(Embodiment 3)
(Constitution)
With reference to FIG. 9, FIG. 10, the thermal-type infrared sensor element in Embodiment 1 based on this invention is demonstrated. When viewed from above, this thermal infrared sensor element shows an absorbing umbrella 6 provided so as to cover the infrared reflective film 9 as shown in FIG. There is a recess in the support column 13 at the approximate center of the absorbent umbrella 6, and two removal holes 11 are provided so as to sandwich the recess at a position partially overlapping with the recess. FIG. 10 shows an end view taken along the line XX in FIG. Other configurations such as a recess 12 formed in the substrate 1 below the absorbent umbrella 6 are the same as those described in the first embodiment.

本実施の形態では、図10に示すように、除去孔11は、支柱部13の側面を含む領域を開口させることによって形成されており、このことによって凹部12の内部空間と吸収傘部6の上側の空間とは連通している。   In the present embodiment, as shown in FIG. 10, the removal hole 11 is formed by opening a region including the side surface of the support column 13, and thereby, the internal space of the recess 12 and the absorbent umbrella 6. It communicates with the upper space.

(作用・効果)
除去孔11は赤外線が入射しても吸収できない部分に該当するが、本実施の形態では、上から見たときに除去孔11が支柱部13と一部重なるように配置されているので、赤外線が入射しても吸収できない部分の合計面積を小さくすることができる。特に支柱部13の側面に相当する部分を利用して大きく開口しておけば、上から見たときの除去孔11の面積は小さくすることができ、しかも、支柱部13の側面に相当する部分は、もともと赤外線の吸収にはほとんど寄与していない部分であるので、赤外線の吸収効率を低下させることなく除去孔11を設けることができる。しかも、本実施の形態では、付加的な構造を作製する必要もなく、熱容量を増大させることもない。
(Action / Effect)
Although the removal hole 11 corresponds to a portion that cannot be absorbed even when infrared rays are incident, in the present embodiment, the removal hole 11 is arranged so as to partially overlap the support column 13 when viewed from above. It is possible to reduce the total area of the portions that cannot be absorbed even if incident. In particular, if the opening corresponding to the side surface of the support column 13 is opened wide, the area of the removal hole 11 when viewed from above can be reduced, and the portion corresponding to the side surface of the support column 13 can be reduced. Since it is a part which has hardly contributed to the absorption of infrared rays from the beginning, the removal hole 11 can be provided without reducing the infrared absorption efficiency. In addition, in this embodiment, it is not necessary to produce an additional structure and the heat capacity is not increased.

凹部12を形成するエッチングにおいては、基板1は除去孔11から等方的にエッチングされるので、凹部12の底面は一般に、除去孔11の真下が最も深くえぐれた形となる。本実施の形態では、除去孔11が中央付近にあるので、凹部12の底面は図10に示すように中央部付近が最も深くなる傾向にある。その分、周縁部では凹部12の底面は浅くなる。したがって、耐エッチング壁4の下端の位置は浅くてもよくなる。よって、耐エッチング壁4の形成が容易になる。   In the etching for forming the recess 12, the substrate 1 is isotropically etched from the removal hole 11, so that the bottom surface of the recess 12 is generally deepened directly under the removal hole 11. In this embodiment, since the removal hole 11 is near the center, the bottom surface of the recess 12 tends to be deepest near the center as shown in FIG. Accordingly, the bottom surface of the recess 12 is shallow at the peripheral edge. Therefore, the position of the lower end of the etching resistant wall 4 may be shallow. Therefore, formation of the etching resistant wall 4 is facilitated.

(製造方法)
図11〜図14、図9、図10を参照して、本発明に基づく実施の形態3における熱型赤外センサ素子の製造方法について説明する。まず、図11に示す構造を作成する。図11に示すのは、のちの吸収傘部6(図10参照)の材料となる膜29を全面に形成し、吸収傘部6の形状を規定するためのフォトレジスト25を形成したところである。等方的なエッチングを行なうことによって、フォトレジスト25に覆われない部分の膜29は除去されて図12に示す構造となる。すなわち、吸収傘部6が形成される。このとき、たとえば4フッ化炭素ガスを用いた等方性エッチングによれば、支柱部13のほぼ鉛直な面に、のちに除去孔11となる開口部30が形成される。さらに等方的な酸素を主体としたプラズマエッチングを行なうことによって、やがて凹部は図13に示すように基板1に到達し、除去孔11となる。この凹部の底には基板1が露出するようになる。ここで、図14に示すように保護レジスト26を形成し、基板1のエッチングを行なう。エッチングは除去孔11を通じて行なわれる。その結果、図9、図10に示す構造の熱型赤外センサ素子が得られる。
(Production method)
With reference to FIGS. 11 to 14, 9, and 10, a method for manufacturing a thermal infrared sensor element according to the third embodiment of the present invention will be described. First, the structure shown in FIG. 11 is created. FIG. 11 shows a state in which a film 29 to be a material of the later absorbing umbrella portion 6 (see FIG. 10) is formed on the entire surface, and a photoresist 25 for defining the shape of the absorbing umbrella portion 6 is formed. By performing isotropic etching, the portion of the film 29 that is not covered with the photoresist 25 is removed, and the structure shown in FIG. 12 is obtained. That is, the absorption umbrella part 6 is formed. At this time, according to isotropic etching using, for example, carbon tetrafluoride gas, an opening 30 that will later become the removal hole 11 is formed on a substantially vertical surface of the column 13. Further, by performing plasma etching mainly composed of isotropic oxygen, the concave portion eventually reaches the substrate 1 as shown in FIG. The substrate 1 is exposed at the bottom of the recess. Here, a protective resist 26 is formed as shown in FIG. 14, and the substrate 1 is etched. Etching is performed through the removal hole 11. As a result, a thermal infrared sensor element having the structure shown in FIGS. 9 and 10 is obtained.

なお、保護レジスト26としては、感光した部分だけが残るネガ型のフォトレジストを用いることが好ましい。ネガ型のフォトレジストを用いた場合は、赤外反射膜9より下側にはフォトリソグラフィ工程における露光光はほぼ到達しないため、赤外反射膜9より下側では保護レジスト26は感光せず現像時に洗い流される。したがって、赤外反射膜9より下側において除去孔11が保護レジスト26で埋まってしまうことが防止でき、円滑にエッチングを行なうことができる。   As the protective resist 26, it is preferable to use a negative photoresist in which only the exposed portion remains. When a negative type photoresist is used, the exposure light in the photolithography process hardly reaches below the infrared reflecting film 9, so that the protective resist 26 is not exposed below the infrared reflecting film 9 and developed. Sometimes washed away. Accordingly, it is possible to prevent the removal hole 11 from being filled with the protective resist 26 below the infrared reflection film 9 and to perform etching smoothly.

(実施の形態4)
(構成)
実施の形態1〜3においては、1個の熱型赤外センサ素子のみに注目して説明してきたが、この熱型赤外センサ素子をアレイ状に配置した熱型赤外センサアレイとして用いることができる。
(Embodiment 4)
(Constitution)
In the first to third embodiments, the description has been focused on only one thermal infrared sensor element, but this thermal infrared sensor element is used as a thermal infrared sensor array arranged in an array. Can do.

図15、図16を参照して、本発明に基づく実施の形態4における熱型赤外センサアレイについて説明する。図15は本実施の形態における熱型赤外センサアレイの平面図である。ここでは説明を簡明にするため3行3列の合計9個の熱型赤外センサ素子からなる熱型赤外センサアレイを例示している。各々の熱形赤外センサ素子は、実施の形態1で説明したものである。図15からわかるように、熱形赤外センサ素子が基板1表面に配列されることによって、各々の熱形赤外センサ素子が備える吸収傘部6が規則正しく配列される形となり、アレイをなす領域のほぼ全面を被覆している。図15におけるXVI−XVI線に関する矢視端面図を図16に示す。   A thermal infrared sensor array according to the fourth embodiment of the present invention will be described with reference to FIGS. FIG. 15 is a plan view of a thermal infrared sensor array in the present embodiment. Here, in order to simplify the description, a thermal infrared sensor array composed of a total of nine thermal infrared sensor elements in 3 rows and 3 columns is illustrated. Each thermal infrared sensor element has been described in the first embodiment. As can be seen from FIG. 15, by arranging the thermal infrared sensor elements on the surface of the substrate 1, the absorber umbrellas 6 included in the respective thermal infrared sensor elements are regularly arranged to form an array. It covers almost the entire surface. FIG. 16 shows an end view taken along the line XVI-XVI in FIG.

(作用・効果)
本実施の形態では、熱型赤外センサアレイの上面の大部分を吸収傘部6が覆うこととなるので、入射する赤外光を有効に検出に利用することができる。図15に示される熱形赤外センサアレイはこの図に示されていない外部のたとえば走査回路により、各行および各列の熱型赤外センサ素子を選択して、各熱型赤外センサ素子が検出している内容を時系列信号として取り出すこととしてもよい。
(Action / Effect)
In the present embodiment, the absorbing umbrella 6 covers most of the upper surface of the thermal infrared sensor array, so that incident infrared light can be used effectively for detection. In the thermal infrared sensor array shown in FIG. 15, the thermal infrared sensor elements in each row and each column are selected by, for example, an external scanning circuit not shown in this figure, and each thermal infrared sensor element is The detected content may be extracted as a time series signal.

ここでは、3行3列のアレイの例を示したが、アレイを構成する個数はこれに限らない。2次元的に広がる配列とする代わりに1行N列またはN行1列になるように熱型赤外センサ素子が配置されたリニアアレイセンサであってもよい。信号の読み出し方式も上述の方式のほかに、各々の熱型赤外センサ素子から並列に読み出す方式などであってもよい。   Here, an example of an array of 3 rows and 3 columns is shown, but the number of the arrays is not limited to this. Instead of a two-dimensionally expanding array, a linear array sensor in which thermal type infrared sensor elements are arranged so as to be in 1 row N columns or N rows 1 column may be used. In addition to the above-described method, the signal reading method may be a method of reading in parallel from each thermal infrared sensor element.

この構成によれば、赤外領域での熱画像イメージャとしての機能を有するセンサの作製が可能となる。   According to this configuration, it is possible to produce a sensor having a function as a thermal imager in the infrared region.

なお、今回開示した上記実施の形態はすべての点で例示であって制限的なものではない。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更を含むものである。   In addition, the said embodiment disclosed this time is an illustration in all the points, Comprising: It is not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and includes all modifications within the scope and meaning equivalent to the terms of the claims.

本発明に基づく実施の形態1における熱型赤外センサ素子の平面図である。It is a top view of the thermal type infrared sensor element in Embodiment 1 based on this invention. 図1のII−II線に関する矢視端面図である。It is an arrow end view regarding the II-II line of FIG. 本発明に基づく実施の形態1における熱型赤外センサ素子の製造工程のうち第1の段階での平面図である。It is a top view in the 1st step among the manufacturing processes of the thermal type infrared sensor element in Embodiment 1 based on this invention. 図3のIV−IV線に関する矢視端面図である。FIG. 4 is an end view taken along the line IV-IV in FIG. 3. 本発明に基づく実施の形態1における熱型赤外センサ素子の製造工程のうち第2の段階での平面図である。It is a top view in the 2nd step among the manufacturing processes of the thermal type infrared sensor element in Embodiment 1 based on this invention. 図5のVI−VI線に関する矢視端面図である。It is an arrow end view regarding the VI-VI line of FIG. 本発明に基づく実施の形態1における熱型赤外センサ素子の製造工程のうち第3の段階での端面図である。It is an end elevation in the 3rd step among the manufacturing processes of the thermal type infrared sensor element in Embodiment 1 based on the present invention. 本発明に基づく実施の形態2における熱型赤外センサ素子の端面図である。It is an end view of the thermal type infrared sensor element in Embodiment 2 based on this invention. 本発明に基づく実施の形態3における熱型赤外センサ素子の平面図である。It is a top view of the thermal type infrared sensor element in Embodiment 3 based on this invention. 図9のX−X線に関する矢視端面図である。FIG. 10 is an end view taken along the line XX in FIG. 9. 本発明に基づく実施の形態3における熱型赤外センサ素子の製造工程のうち第1の段階での端面図である。It is an end view in the 1st step in the manufacturing process of the thermal type infrared sensor element in Embodiment 3 based on this invention. 本発明に基づく実施の形態3における熱型赤外センサ素子の製造工程のうち第2の段階での端面図である。It is an end view in the 2nd step in the manufacturing process of the thermal type infrared sensor element in Embodiment 3 based on this invention. 本発明に基づく実施の形態3における熱型赤外センサ素子の製造工程のうち第3の段階での端面図である。It is an end view in the 3rd step among the manufacturing processes of the thermal type infrared sensor element in Embodiment 3 based on this invention. 本発明に基づく実施の形態3における熱型赤外センサ素子の製造工程のうち第4の段階での端面図である。It is an end view in the 4th step among the manufacturing processes of the thermal type infrared sensor element in Embodiment 3 based on this invention. 本発明に基づく実施の形態4における熱型赤外センサアレイの平面図である。It is a top view of the thermal type infrared sensor array in Embodiment 4 based on this invention. 本発明に基づく実施の形態4における熱型赤外センサアレイのXVI−XVI線に関する矢視端面図である。It is an arrow end view regarding the XVI-XVI line of the thermal type infrared sensor array in Embodiment 4 based on this invention.

符号の説明Explanation of symbols

1 基板、2 温度検知部、3 支持脚、4 耐エッチング壁、5 アルミ配線、6 吸収傘部、7 検知膜、8 薄膜金属配線、9 赤外反射膜、10 支持体、11 除去孔、12 凹部、13 支柱部、20 アンカ部、21 (支柱部を形成するための)凹部、22,23 犠牲層、25 フォトレジスト、26 保護レジスト、27 開口部、28 配線保護絶縁膜、29 (吸収傘部の材料となる)膜、30 (除去孔形成のために支柱部に設けられた)開口部。   DESCRIPTION OF SYMBOLS 1 Board | substrate, 2 Temperature detection part, 3 Support leg, 4 Etching-resistant wall, 5 Aluminum wiring, 6 Absorbing umbrella part, 7 Detection film | membrane, 8 Thin film metal wiring, 9 Infrared reflective film, 10 Support body, 11 Removal hole, 12 Concave part, 13 support part, 20 anchor part, 21 concave part (for forming the support part), 22, 23 sacrificial layer, 25 photoresist, 26 protective resist, 27 opening part, 28 wiring protective insulating film, 29 (absorbing umbrella) 30) Opening (provided in the column for forming the removal hole).

Claims (6)

凹部を有する基板と、
前記基板に対して支持脚を介して接続されることによって前記凹部の上部の空中に保持された温度検知部と、
前記温度検知部と熱的に接続されない状態で前記支持脚の少なくとも一部の上方を覆うように配置された赤外反射膜と、
前記温度検知部とは熱的に接続され、前記赤外反射膜とは熱的に接続されない状態で前記赤外反射膜よりも上方に保持され、前記赤外反射膜の少なくとも一部を覆い隠すように側方に板状に広がる吸収傘部とを備える、熱型赤外センサ素子。
A substrate having a recess;
A temperature detector held in the air above the recess by being connected to the substrate via a support leg;
An infrared reflective film disposed so as to cover at least a part of the support leg in a state not thermally connected to the temperature detection unit;
The temperature detection unit is thermally connected to the temperature detection unit and is not thermally connected to the infrared reflection film. The temperature detection unit is held above the infrared reflection film and covers at least a part of the infrared reflection film. A thermal infrared sensor element comprising an absorbing umbrella part spreading in a plate shape on the side.
前記基板のうち前記凹部でない部分の上側に配置された配線と、
前記配線を直接覆う配線保護絶縁膜と、
前記配線保護絶縁膜の上側に直接形成され、側方に延在する平坦な板状の支持体とを備え、
前記赤外反射膜は前記支持体の上側に接して配置されている、請求項1に記載の熱型赤外センサ素子。
Wiring disposed above the portion of the substrate that is not the recess;
A wiring protective insulating film directly covering the wiring;
A flat plate-like support formed directly on the upper side of the wiring protection insulating film and extending laterally;
The thermal infrared sensor element according to claim 1, wherein the infrared reflecting film is disposed in contact with the upper side of the support.
前記赤外反射膜は、前記支持体のうち前記配線保護絶縁膜の上方を避けた部分に配置されている、請求項2に記載の熱型赤外センサ素子。   The thermal infrared sensor element according to claim 2, wherein the infrared reflection film is disposed in a portion of the support member that avoids the wiring protection insulating film. 前記吸収傘部の前記温度検知部に対する熱的接続は、前記温度検知部の上側に接して配置された上下方向に延在する筒型の支柱部を介することによって行なわれており、
前記支柱部の側面を含む領域が開口されることによって前記凹部の内部空間と前記吸収傘部の上側の空間とを連通させる除去孔が設けられている、請求項1に記載の熱型赤外センサ素子。
The thermal connection of the absorption umbrella part to the temperature detection part is performed through a cylindrical column part extending in the up-down direction and arranged in contact with the upper side of the temperature detection part,
2. The thermal infrared of claim 1, wherein a removal hole is provided to communicate the internal space of the recess and the space above the absorber umbrella by opening a region including a side surface of the support column. Sensor element.
前記除去孔が、平面的に見た前記凹部のほぼ中央に配置されている、請求項4に記載の熱型赤外センサ素子。   The thermal infrared sensor element according to claim 4, wherein the removal hole is disposed substantially at the center of the recess when viewed in plan. 請求項1から5のいずれかに記載の熱型赤外センサ素子を複数個備え、前記複数個の熱型赤外センサ素子はアレイ状に配列されている、熱型赤外センサアレイ。   A thermal infrared sensor array comprising a plurality of thermal infrared sensor elements according to claim 1, wherein the plurality of thermal infrared sensor elements are arranged in an array.
JP2004040092A 2004-02-17 2004-02-17 Thermal infrared sensor element and thermal infrared sensor array Expired - Fee Related JP4315832B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004040092A JP4315832B2 (en) 2004-02-17 2004-02-17 Thermal infrared sensor element and thermal infrared sensor array
US10/855,507 US7145144B2 (en) 2004-02-17 2004-05-28 Thermal infrared sensor device and thermal infrared sensor array

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004040092A JP4315832B2 (en) 2004-02-17 2004-02-17 Thermal infrared sensor element and thermal infrared sensor array

Publications (2)

Publication Number Publication Date
JP2005233671A true JP2005233671A (en) 2005-09-02
JP4315832B2 JP4315832B2 (en) 2009-08-19

Family

ID=34836366

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004040092A Expired - Fee Related JP4315832B2 (en) 2004-02-17 2004-02-17 Thermal infrared sensor element and thermal infrared sensor array

Country Status (2)

Country Link
US (1) US7145144B2 (en)
JP (1) JP4315832B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008241438A (en) * 2007-03-27 2008-10-09 Nec Corp Bolometer type thz wave detector
JP2009133825A (en) * 2007-11-09 2009-06-18 Mitsubishi Electric Corp Infrared imaging sensor and method of producing the same
JP2009139111A (en) * 2007-12-03 2009-06-25 Toyota Central R&D Labs Inc Thermal infrared sensor and thermal infrared image sensor
JP2009216558A (en) * 2008-03-11 2009-09-24 Oki Semiconductor Co Ltd Manufacturing method of infrared detection element
JP2009222633A (en) * 2008-03-18 2009-10-01 Mitsubishi Electric Corp Thermal infrared imaging element
JP2010507082A (en) * 2006-10-20 2010-03-04 アナログ・デバイシズ・インコーポレーテッド Thermal sensor with thermal insulation layer
JP2010151736A (en) * 2008-12-26 2010-07-08 Mitsubishi Electric Corp Infrared detector and manufacturing method of the same, infrared solid imager
JP2011095137A (en) * 2009-10-30 2011-05-12 Mitsubishi Electric Corp Semiconductor optical element and semiconductor optical device
WO2011121706A1 (en) * 2010-03-29 2011-10-06 株式会社 東芝 Infrared ray imaging element and infrared ray imaging device
CN102401699A (en) * 2010-09-17 2012-04-04 三菱综合材料株式会社 Temperature sensor
JP2012154762A (en) * 2011-01-26 2012-08-16 Mitsubishi Electric Corp Infrared sensor and infrared sensor array
JP2015138971A (en) * 2014-01-21 2015-07-30 エクセリタス テクノロジーズ シンガポール プライヴェート リミテッド Cmos integrated method for fabrication of thermopile pixel on semiconductor substrate with buried insulation regions

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10219927A1 (en) * 2002-05-03 2003-11-20 Philips Intellectual Property X-ray examination device with a dose measuring device
US8559101B2 (en) * 2005-08-26 2013-10-15 Panasonic Corporation Reflector and apparatus including the reflector
DE102006012366A1 (en) 2006-03-17 2007-09-20 Air Liquide Deutschland Gmbh Process for modifying the surface of plastic moldings by fluorine-initiated oxidation
US7905855B2 (en) * 2007-07-05 2011-03-15 Baxter International Inc. Dialysis system having non-invasive temperature sensing
US7825379B2 (en) * 2007-11-09 2010-11-02 Mitsubishi Electric Corporation Thermal-type infrared image sensing device and method of producing the same
US7888763B2 (en) * 2008-02-08 2011-02-15 Omnivision Technologies, Inc. Backside illuminated imaging sensor with improved infrared sensitivity
JP2010237118A (en) * 2009-03-31 2010-10-21 Panasonic Electric Works Co Ltd Infrared array sensor
WO2011055734A1 (en) * 2009-11-04 2011-05-12 ローム株式会社 Pressure sensor and method for manufacturing pressure sensor
US9568367B2 (en) * 2010-05-30 2017-02-14 Technion Research And Development Foundation Ltd. Sensing device having a thermal antenna and a method for sensing electromagnetic radiation
CN102386268B (en) * 2010-08-30 2013-11-27 中国科学院微电子研究所 Infrared focal plane array device and manufacturing method thereof
JP5754626B2 (en) * 2011-03-30 2015-07-29 三菱マテリアル株式会社 Infrared sensor
TWI439679B (en) * 2011-08-03 2014-06-01 Univ Nat Chiao Tung Electrical calibrated radiometer
KR101701275B1 (en) 2012-02-16 2017-02-01 하이만 센서 게엠베하 Thermopile infrared sensor structure with a high filling level
DE102012218414A1 (en) * 2012-10-10 2014-04-10 Robert Bosch Gmbh Integrated diode arrangement and corresponding manufacturing method
DE102012220207A1 (en) 2012-11-07 2014-05-08 Robert Bosch Gmbh An image pixel device for detecting electromagnetic radiation, a sensor array for detecting electromagnetic radiation and a method for detecting electromagnetic radiation by means of an image pixel device
MY182329A (en) * 2013-05-17 2021-01-19 Panasonic Ip Corp America Thermal image sensor and user interface
US9219185B2 (en) * 2013-12-19 2015-12-22 Excelitas Technologies Singapore Pte. Ltd CMOS integrated method for the fabrication of thermopile pixel with umbrella absorber on semiconductor substrate
US9373772B2 (en) 2014-01-15 2016-06-21 Excelitas Technologies Singapore Pte. Ltd. CMOS integrated method for the release of thermopile pixel on a substrate by using anisotropic and isotropic etching
US9431443B1 (en) * 2015-05-28 2016-08-30 Semiconductor Components Industries, Llc Image sensor with heating effect and related methods
CN106935677B (en) * 2015-12-31 2018-12-11 上海丽恒光微电子科技有限公司 A kind of infrared detector and preparation method thereof
JP6279011B2 (en) * 2016-05-13 2018-02-14 三菱電機株式会社 Thermal infrared detector and method for manufacturing thermal infrared detector
JP6440805B1 (en) * 2017-11-16 2018-12-19 三菱電機株式会社 Thermal infrared detector and method for manufacturing the same
US10883804B2 (en) * 2017-12-22 2021-01-05 Ams Sensors Uk Limited Infra-red device
FR3099248B1 (en) * 2019-07-26 2021-08-06 Commissariat Energie Atomique Umbrella absorber bolometer, component comprising such a bolometer and method of manufacturing such a bolometer

Family Cites Families (103)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4426712A (en) * 1981-05-22 1984-01-17 Massachusetts Institute Of Technology Correlation system for global position receiver
US4445118A (en) * 1981-05-22 1984-04-24 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Navigation system and method
US4870422A (en) * 1982-03-01 1989-09-26 Western Atlas International, Inc. Method and system for determining position from signals from satellites
US4894662A (en) * 1982-03-01 1990-01-16 Western Atlas International, Inc. Method and system for determining position on a moving platform, such as a ship, using signals from GPS satellites
US4809005A (en) * 1982-03-01 1989-02-28 Western Atlas International, Inc. Multi-antenna gas receiver for seismic survey vessels
US4667203A (en) * 1982-03-01 1987-05-19 Aero Service Div, Western Geophysical Method and system for determining position using signals from satellites
US4578678A (en) * 1983-11-14 1986-03-25 The United States Of America As Represented By The United States National Aeronautics And Space Administration High dynamic global positioning system receiver
US4754465A (en) * 1984-05-07 1988-06-28 Trimble Navigation, Inc. Global positioning system course acquisition code receiver
US4821294A (en) * 1987-07-08 1989-04-11 California Institute Of Technology Digital signal processor and processing method for GPS receivers
US5108334A (en) * 1989-06-01 1992-04-28 Trimble Navigation, Ltd. Dual down conversion GPS receiver with single local oscillator
US4998111A (en) * 1989-11-27 1991-03-05 Motorola, Inc. CPS transform correlation receiver and method
US5177490A (en) * 1989-12-12 1993-01-05 Pioneer Electronic Corporation Gps satellite signal tracking system for gps receivers
US5134407A (en) * 1991-04-10 1992-07-28 Ashtech Telesis, Inc. Global positioning system receiver digital processing technique
US5202829A (en) * 1991-06-10 1993-04-13 Trimble Navigation Limited Exploration system and method for high-accuracy and high-confidence level relative position and velocity determinations
DE69221871T2 (en) * 1991-07-01 1998-04-02 Hakan Saltsjoebaden Lans POSITION INDICATION SYSTEM
US5311195A (en) * 1991-08-30 1994-05-10 Etak, Inc. Combined relative and absolute positioning method and apparatus
US5379224A (en) * 1991-11-29 1995-01-03 Navsys Corporation GPS tracking system
US5323164A (en) * 1992-03-16 1994-06-21 Pioneer Electronic Corporation Satellite radio wave capturing method for a global positioning system (GPS) receiver
US5223844B1 (en) * 1992-04-17 2000-01-25 Auto Trac Inc Vehicle tracking and security system
US5889474A (en) * 1992-05-18 1999-03-30 Aeris Communications, Inc. Method and apparatus for transmitting subject status information over a wireless communications network
EP0649517B1 (en) 1992-07-08 1997-08-27 Honeywell Inc. Microstructure design for high ir sensitivity
JP3283913B2 (en) * 1992-08-20 2002-05-20 日本無線株式会社 GPS receiver
US5422813A (en) * 1992-12-17 1995-06-06 Stanford Telecommunications, Inc. No-outage GPS/commercial RF positioning system
US5726893A (en) * 1992-12-17 1998-03-10 Stanford Telecommunications, Inc. Cellular telephone with voice-in-data modem
US5420593A (en) * 1993-04-09 1995-05-30 Trimble Navigation Limited Method and apparatus for accelerating code correlation searches in initial acquisition and doppler and code phase in re-acquisition of GPS satellite signals
US5917444A (en) * 1995-05-22 1999-06-29 Trimble Navigation Ltd. Reduction of time to first fix in an SATPS receiver
US5416712A (en) * 1993-05-28 1995-05-16 Trimble Navigation Limited Position and velocity estimation system for adaptive weighting of GPS and dead-reckoning information
US5402347A (en) * 1993-07-22 1995-03-28 Trimble Navigation Limited Satellite search methods for improving time to first fix in a GPS receiver
US5504684A (en) * 1993-12-10 1996-04-02 Trimble Navigation Limited Single-chip GPS receiver digital signal processing and microcomputer
JPH07190854A (en) 1993-12-25 1995-07-28 Nippondenso Co Ltd Infrared sensor
KR960009539B1 (en) * 1993-12-27 1996-07-20 Hyundai Electronics Ind Apparatus for synchronizing time using satellite
US5907809A (en) * 1994-01-11 1999-05-25 Ericsson Inc. Position determination using multiple base station signals
US5625668A (en) * 1994-04-12 1997-04-29 Trimble Navigation Limited Position reporting cellular telephone
US5592173A (en) * 1994-07-18 1997-01-07 Trimble Navigation, Ltd GPS receiver having a low power standby mode
US5594425A (en) * 1994-10-31 1997-01-14 Peoplenet, Inc. Locator device
US6526352B1 (en) * 2001-07-19 2003-02-25 Intelligent Technologies International, Inc. Method and arrangement for mapping a road
US6405132B1 (en) * 1997-10-22 2002-06-11 Intelligent Technologies International, Inc. Accident avoidance system
US6720920B2 (en) * 1997-10-22 2004-04-13 Intelligent Technologies International Inc. Method and arrangement for communicating between vehicles
US5724660A (en) * 1995-06-07 1998-03-03 At&T Wireless Services, Inc. Method and apparatus for locating a mobile station by comparing calculated location area with GPS coordinates
US5841396A (en) * 1996-03-08 1998-11-24 Snaptrack, Inc. GPS receiver utilizing a communication link
WO1997014055A1 (en) * 1995-10-09 1997-04-17 Snaptrack, Inc. Method and apparatus for determining the location of an object which may have an obstructed view of the sky
US6133871A (en) * 1995-10-09 2000-10-17 Snaptrack, Inc. GPS receiver having power management
US5884214A (en) * 1996-09-06 1999-03-16 Snaptrack, Inc. GPS receiver and method for processing GPS signals
GB2339100B (en) * 1995-10-24 2000-05-31 Inmarsat Ltd Satellite radiodetermination
US6047017A (en) * 1996-04-25 2000-04-04 Cahn; Charles R. Spread spectrum receiver with multi-path cancellation
US5907578A (en) * 1996-05-20 1999-05-25 Trimble Navigation Weighted carrier phase multipath reduction
US5739786A (en) * 1996-06-12 1998-04-14 The Charles Stark Draper Laboratory, Inc. GPS transfer initialization system
US6185427B1 (en) * 1996-09-06 2001-02-06 Snaptrack, Inc. Distributed satellite position system processing and application network
US6236365B1 (en) * 1996-09-09 2001-05-22 Tracbeam, Llc Location of a mobile station using a plurality of commercial wireless infrastructures
JP3040356B2 (en) * 1997-01-27 2000-05-15 三菱電機株式会社 Infrared solid-state imaging device
US5812087A (en) * 1997-02-03 1998-09-22 Snaptrack, Inc. Method and apparatus for satellite positioning system based time measurement
US5883594A (en) * 1997-02-20 1999-03-16 Trimble Navigation Limited GPS receiver using a message system for reducing power consumption
DE19707681C1 (en) * 1997-02-26 1998-05-07 Raimund Prof Dr Med Erbel Mobile telephone for recording ECG signals
US5877725A (en) * 1997-03-06 1999-03-02 Trimble Navigation Limited Wide augmentation system retrofit receiver
US5764184A (en) * 1997-03-10 1998-06-09 Deere & Company Method and system for post-processing differential global positioning system satellite positional data
US5877724A (en) * 1997-03-25 1999-03-02 Trimble Navigation Limited Combined position locating and cellular telephone system with a single shared microprocessor
US5903654A (en) * 1997-08-06 1999-05-11 Rockwell Science Center, Inc. Method and apparatus for eliminating ionospheric delay error in global positioning system signals
US6041222A (en) * 1997-09-08 2000-03-21 Ericsson Inc. Systems and methods for sharing reference frequency signals within a wireless mobile terminal between a wireless transceiver and a global positioning system receiver
US7268700B1 (en) * 1998-01-27 2007-09-11 Hoffberg Steven M Mobile communication device
US6081229A (en) * 1998-03-17 2000-06-27 Qualcomm Incorporated System and method for determining the position of a wireless CDMA transceiver
US6353412B1 (en) * 1998-03-17 2002-03-05 Qualcomm, Incorporated Method and apparatus for determining position location using reduced number of GPS satellites and synchronized and unsynchronized base stations
US6871061B1 (en) * 1998-04-21 2005-03-22 Ericsson Inc. Systems, methods and terminals that obtain coarse position information from satellite radiotelephone systems
US6061018A (en) * 1998-05-05 2000-05-09 Snaptrack, Inc. Method and system for using altitude information in a satellite positioning system
US6178195B1 (en) * 1998-05-14 2001-01-23 Motorola, Inc. Method and apparatus for detecting spread spectrum signals using a signal from a secondary source
US6249245B1 (en) * 1998-05-14 2001-06-19 Nortel Networks Limited GPS and cellular system interworking
US6252543B1 (en) * 1998-05-28 2001-06-26 Ericsson Inc. Location system combining ranging measurements from GPS and cellular networks
GB2338374A (en) * 1998-06-10 1999-12-15 Motorola Ltd Locating a mobile telephone using time of arrival measurements
US6236354B1 (en) * 1998-07-02 2001-05-22 Snaptrack, Inc. Reducing satellite signal interference in a global positioning system receiver
US6188351B1 (en) * 1998-08-13 2001-02-13 Ericsson Inc. Method for improving signal acquistion in a global positioning system receiver
US6222483B1 (en) * 1998-09-29 2001-04-24 Nokia Mobile Phones Limited GPS location for mobile phones using the internet
KR100403748B1 (en) * 1999-01-23 2003-11-03 삼성전자주식회사 Method for tracking a location of mobile telephone in mobile telecommunication network
US6058338A (en) * 1999-02-12 2000-05-02 Qualcomm Incorporated Method and apparatus for efficient GPS assistance in a communication system
US6453237B1 (en) * 1999-04-23 2002-09-17 Global Locate, Inc. Method and apparatus for locating and providing services to mobile devices
JP2000321125A (en) 1999-05-13 2000-11-24 Mitsubishi Electric Corp Infrared sensor element
US6222484B1 (en) * 1999-06-16 2001-04-24 Ronald L. Seiple Personal emergency location system
US7760137B2 (en) * 1999-06-18 2010-07-20 Pfizer, Inc. Portable position determining device
US6172640B1 (en) * 1999-06-18 2001-01-09 Jennifer Durst Pet locator
US6211817B1 (en) * 1999-07-27 2001-04-03 Trimble Navigation Limited Differential global positioning system using almanac data for a fast time to first fix
US6559793B1 (en) * 1999-07-27 2003-05-06 Trimble Navigation Limited Differential global positioning system using coarse GPS data for a fast time to a precise first fix
DE69922802D1 (en) * 1999-08-24 2005-01-27 Ericsson Telefon Ab L M Parallel operation of devices with several communication standards
US6211819B1 (en) * 1999-08-27 2001-04-03 Motorola, Inc. Mobile station location determination in a radio communication system
JP3514681B2 (en) * 1999-11-30 2004-03-31 三菱電機株式会社 Infrared detector
US6225944B1 (en) * 1999-12-11 2001-05-01 Ericsson Inc. Manual reporting of location data in a mobile communications network
US6343290B1 (en) * 1999-12-22 2002-01-29 Celeritas Technologies, L.L.C. Geographic network management system
JP3921320B2 (en) * 2000-01-31 2007-05-30 日本電気株式会社 Thermal infrared detector and method for manufacturing the same
US6505161B1 (en) * 2000-05-01 2003-01-07 Sprint Communications Company L.P. Speech recognition that adjusts automatically to input devices
US6684158B1 (en) * 2001-02-28 2004-01-27 Sirf Technology, Inc. Method for aiding a global positioning system
US6389291B1 (en) * 2000-08-14 2002-05-14 Sirf Technology Multi-mode global positioning system for use with wireless networks
US6427120B1 (en) * 2000-08-14 2002-07-30 Sirf Technology, Inc. Information transfer in a multi-mode global positioning system used with wireless networks
US20080005275A1 (en) * 2000-06-02 2008-01-03 Econnectix, Llc Method and apparatus for managing location information in a network separate from the data to which the location information pertains
US6456234B1 (en) * 2000-06-07 2002-09-24 William J. Johnson System and method for proactive content delivery by situation location
FI108372B (en) * 2000-06-30 2002-01-15 Nokia Corp Method and apparatus for position measurement
AU2001277085A1 (en) * 2000-08-24 2002-03-04 Sirf Technology, Inc. Apparatus for reducing auto-correlation or cross-correlation in weak cdma signals
US6576556B2 (en) 2000-09-21 2003-06-10 Mitsubishi Denki Kabushiki Kaisha Method of manufacturing semiconductor device and method of manufacturing infrared image sensor
US6535815B2 (en) * 2000-12-22 2003-03-18 Telefonaktiebolaget L. M. Ericsson Position updating method for a mobile terminal equipped with a positioning receiver
US6433735B1 (en) * 2000-12-26 2002-08-13 Telefonaktiebolaget (Lme) Mobile terminal and system and method for determining the geographic location of a mobile terminal
US6570530B2 (en) * 2001-03-05 2003-05-27 Qualcomm Incorporated Method and apparatus providing improved position estimate based on an initial coarse position estimate
JP4135857B2 (en) * 2001-03-27 2008-08-20 独立行政法人産業技術総合研究所 Infrared sensor manufacturing method
US6738630B2 (en) * 2001-04-10 2004-05-18 Knowtate, Inc. Combining markers with location information to deliver domain-specific content to mobile devices
US6667479B2 (en) 2001-06-01 2003-12-23 Raytheon Company Advanced high speed, multi-level uncooled bolometer and method for fabricating same
US6515620B1 (en) * 2001-07-18 2003-02-04 Fast Location.Net, Llc Method and system for processing positioning signals in a geometric mode
JP2003207391A (en) 2002-01-17 2003-07-25 Nissan Motor Co Ltd Infrared detecting element and method and device for manufacturing the same
JP3944465B2 (en) * 2003-04-11 2007-07-11 三菱電機株式会社 Thermal infrared detector and infrared focal plane array

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010507082A (en) * 2006-10-20 2010-03-04 アナログ・デバイシズ・インコーポレーテッド Thermal sensor with thermal insulation layer
JP2008241438A (en) * 2007-03-27 2008-10-09 Nec Corp Bolometer type thz wave detector
JP2009133825A (en) * 2007-11-09 2009-06-18 Mitsubishi Electric Corp Infrared imaging sensor and method of producing the same
JP2009139111A (en) * 2007-12-03 2009-06-25 Toyota Central R&D Labs Inc Thermal infrared sensor and thermal infrared image sensor
JP2009216558A (en) * 2008-03-11 2009-09-24 Oki Semiconductor Co Ltd Manufacturing method of infrared detection element
JP2009222633A (en) * 2008-03-18 2009-10-01 Mitsubishi Electric Corp Thermal infrared imaging element
JP2010151736A (en) * 2008-12-26 2010-07-08 Mitsubishi Electric Corp Infrared detector and manufacturing method of the same, infrared solid imager
JP2011095137A (en) * 2009-10-30 2011-05-12 Mitsubishi Electric Corp Semiconductor optical element and semiconductor optical device
WO2011121706A1 (en) * 2010-03-29 2011-10-06 株式会社 東芝 Infrared ray imaging element and infrared ray imaging device
CN102401699A (en) * 2010-09-17 2012-04-04 三菱综合材料株式会社 Temperature sensor
JP2012154762A (en) * 2011-01-26 2012-08-16 Mitsubishi Electric Corp Infrared sensor and infrared sensor array
JP2015138971A (en) * 2014-01-21 2015-07-30 エクセリタス テクノロジーズ シンガポール プライヴェート リミテッド Cmos integrated method for fabrication of thermopile pixel on semiconductor substrate with buried insulation regions

Also Published As

Publication number Publication date
US7145144B2 (en) 2006-12-05
JP4315832B2 (en) 2009-08-19
US20050178967A1 (en) 2005-08-18

Similar Documents

Publication Publication Date Title
JP4315832B2 (en) Thermal infrared sensor element and thermal infrared sensor array
JP4978501B2 (en) Thermal infrared detector and method for manufacturing the same
JP5685980B2 (en) Thermal photodetector, thermal photodetector, and electronic device
JP6758053B2 (en) Radiation detector with encapsulation structure with improved mechanical strength
JP5636787B2 (en) Thermal photodetector, thermal photodetector, and electronic device
KR102605880B1 (en) Detection device with suspended bolometric membranes having a high absorption efficiency and signal-to-noise ratio
JP5259430B2 (en) Photodetector
KR102636590B1 (en) Method For Producing A Bolometric Detector
US9851254B2 (en) Device for detecting electromagnetic radiation possessing a hermetic encapsulating structure comprising an exhaust vent
EP2261617B1 (en) Photodetector
WO2010103932A1 (en) Non-cooled infrared image sensor
WO2023013521A1 (en) Photodetector, manufacturing method therefor, and electronic device
US9831371B2 (en) Device for detecting radiation including an encapsulating structure having an improved mechanical strength
JP4208846B2 (en) Uncooled infrared detector
CN113447148A (en) Infrared focal plane detector
JP2010101675A (en) Infrared imaging element and method of manufacturing the same
CN113447143A (en) Thermal symmetry type infrared detector
WO2015107597A1 (en) Infrared sensor and method for manufacturing same
JP2006138747A (en) Infrared detection element and its manufacturing method
JP3810293B2 (en) Thermal infrared solid-state imaging device and manufacturing method thereof
CN114088209B (en) Infrared detector based on CMOS technology
JP5008580B2 (en) Infrared imaging device manufacturing method and infrared imaging device
KR20200117529A (en) Bolometer moudle
JP5016527B2 (en) Thermal infrared image sensor
TW202339234A (en) Infrared sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061013

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080702

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090512

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090519

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4315832

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120529

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120529

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130529

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140529

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees