JP2005232007A - Method for producing (meth)acrylic acid - Google Patents
Method for producing (meth)acrylic acid Download PDFInfo
- Publication number
- JP2005232007A JP2005232007A JP2001360436A JP2001360436A JP2005232007A JP 2005232007 A JP2005232007 A JP 2005232007A JP 2001360436 A JP2001360436 A JP 2001360436A JP 2001360436 A JP2001360436 A JP 2001360436A JP 2005232007 A JP2005232007 A JP 2005232007A
- Authority
- JP
- Japan
- Prior art keywords
- acrylic acid
- meth
- solution
- polymerization inhibitor
- purification
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
Description
【0001】
【発明の属する技術分野】
本発明は気相接触酸化反応により得た(メタ)アクリル酸を含む反応生成ガスから、捕集、予備精製及び精製の各工程を経て、精製された(メタ)アクリル酸を製造する方法に関するものである。特に本発明は、反応生成ガス中の(メタ)アクリル酸から精製されたメタアクリル酸を収率よく回収する方法に関するものである。なお本明細書において(メタ)アクリル酸とは、アクリル酸及びメタクリル酸を意味する。
【0002】
【従来の技術】
(メタ)アクリル酸の製造方法としては、対応するニトリル化合物を加水分解する方法などもあるが、現在では対応する炭化水素、すなわちプロピレン又はイソブチレンの気相接触酸化法が主として行われている。最近ではオレフィンの代りにより安価な対応するアルカンを原料とする気相接触酸化法も検討されている。
【0003】
気相接触酸化法による(メタ)アクリル酸の製造では、先ず(メタ)アクリル酸を含む反応生成ガスを吸収溶剤、通常は水と接触させて、ガス中の(メタ)アクリル酸を(メタ)アクリル酸溶液として回収する。この溶液中には、(メタ)アクリル酸以外に、気相接触酸化に際して副生した種々の不純物、例えばアクリル酸の場合であれば、酢酸、マレイン酸、アクロレイン、フルフラール、ベンズアルデヒド、アセトンなども含まれている。この(メタ)アクリル酸溶液から精製された(メタ)アクリル酸を回収する方法はいくつも提案されているが、その主流をなしているのは(メタ)アクリル酸溶液から予備精製工程で吸収溶剤及び不純物の一部を除去して、実質的に(メタ)アクリル酸とその二量体その他の重質成分から成る粗(メタ)アクリル酸とし、次いでこれを精製工程で精製して所望の品位の製品とする方法である。
【0004】
(メタ)アクリル酸は重合し易い物質なので、吸収溶剤には重合禁止剤を含有させておくことが一般に行われている。また予備精製工程及び精製工程でも必要に応じて重合禁止剤の添加が行われている。重合禁止剤としては、酸素などのガス状物をはじめ、有機又は無機の各種の化合物が知られている。通常は酸素と有機又は無機の化合物とを併用することが多い。
【0005】
【発明が解決しようとする課題】
有機又は無機の化合物を重合禁止剤として用いる場合には、一般にこれらの化合物を溶液として用いる。例えば特開平10−17524号公報には、予備精製工程で(メタ)アクリル酸溶液から脱水蒸留により水を留去する際に得られる酢酸水溶液に、重合禁止剤として炭酸銅や水酸化銅のような銅化合物とハイドロキノンとを溶解して調製した溶液を用いることが記載されている。この方法により得られる重合禁止剤溶液は優れた性能を有しているが、予備精製工程において除去すべき酢酸成分を系内に持込んでおり、予備精製工程での精製負荷を増大させるという問題がある。従って本発明はこのような問題のない(メタ)アクリル酸の製造方法を提供しようとするものである。
【0006】
【課題を解決するための手段】
本発明によれば、気相接触酸化反応により得られた(メタ)アクリル酸を含む反応生成ガスを水性吸収液と接触させて、ガス中の(メタ)アクリル酸を吸収液中に吸収する捕集工程、得られた(メタ)アクリル酸溶液から吸収液及び不純物を除去して粗(メタ)アクリル酸を取得する予備精製工程、及び減圧蒸留により(メタ)アクリル酸を留出させることを含む精製処理により粗(メタ)アクリル酸から精製された(メタ)アクリル酸を取得する精製工程の各工程を経て(メタ)アクリル酸を製造するに際し、精製工程及び/又は予備精製工程の減圧源で発生する(メタ)アクリル酸を含む廃水を用いて重合禁止剤溶液を調製し、これを捕集工程以降の工程に供給することにより、系内に精製負荷を増大させる不純物を持込むことなく、(メタ)アクリル酸の収率を改善することができる。
【0007】
【発明の実施の形態】
本発明では気相接触酸化及びそれに続く予備精製は常法により行えばよい。例えばアクリル酸であれば、プロピレンを直接アクリル酸にまで酸化する一段酸化法、及びプロピレンを先ずアクロレインに酸化し、アクロレインをアクリル酸に酸化する二段酸化法が知られているが、いずれの方法によることもできる。気相接触酸化により生成したアクリル酸を含むガスは、水と接触させてアクリル酸をアクリル酸水溶液として回収し、これから予備精製により水及び酢酸その他の不純物を除去して粗アクリル酸とする。これらの捕集及び予備精製工程も常法に従って行えばよい。例えば共沸蒸留により脱水したのち、更に蒸留して酢酸その他の低沸点成分を除去する方法によることができる。このようにして得られた粗(メタ)アクリル酸の純度は通常は少なくとも85重量%以上であり、多くの場合に90重量%以上である。この粗(メタ)アクリル酸の純度は、当然のことながら高い方が好ましい。この粗(メタ)アクリル酸に含まれている不純物は、(メタ)アクリル酸の二量体その他の重質成分であり、低沸点成分は実質上含まれていない。
【0008】
この粗(メタ)アクリル酸は次いで精製工程で更に精製して所望の品位の(メタ)アクリル酸とする。精製方法はいくつも提案されているが、いずれの方法でも減圧蒸留により精製された(メタ)アクリル酸を塔頂留出物として取得している。プロセスによっては、精製工程においてこの減圧蒸留以外にも減圧蒸留により(メタ)アクリル酸を中間的な塔頂留出物として取得することがある。これらの減圧蒸留の真空源としては、一般にスチームエジェクターや水封式真空ポンプなどが用いられている。ところでこれらの真空源には、蒸留塔の凝縮器で凝縮しきれなかった、すなわち凝縮温度における蒸気圧相当の(メタ)アクリル酸が流入してくる。従ってスチームエジェクターの凝縮器からの廃水など、真空源から排出される廃水には(メタ)アクリル酸が溶解している。しかしこの廃水には、(メタ)アクリル酸にとって不純物となるようなものは殆んど含まれていない。
【0009】
本発明ではこの廃水を重合禁止剤を溶解する溶剤として用いる。これにより廃水中の(メタ)アクリル酸を製品として回収することができ、しかも精製系の負荷を増加させることもない。重合禁止剤としては公知の有機、無機の各種のものを用いることができる。例えばハイドロキノン、ハイドロキノンモノメチルエーテル、ピロガロール、カテコール及びレゾルシンのようなフェノール性化合物を用いることができる。また、第3ブチルニトロオキシド、2,2,6,6−テトラメチル−4−ヒドロキシピペリジン−1−オキシル、2,2,6,6−テトラメチルピペリジン−1−オキシル、4,4′,4″−トリス−(2,2,6,6−テトラメチルピペリジノオキシル)フォスファイトのようなN−オキシル化合物を用いることもできる。
【0010】
種々の金属化合物も重合禁止剤として用いることができるが、最も一般的なのは金属塩である。例えば塩化第2銅、酢酸銅、炭酸銅、アクリル酸銅のような銅塩や、酢酸マンガン、オクタン酸マンガンなどのマンガン化合物が用いられる。本発明では安価な炭酸銅又は水酸化銅を用いるのが好ましい。これらは水には不溶であるが真空源からの廃水には容易に溶解する。これは溶存している(メタ)アクリル酸と反応して(メタ)アクリル酸塩を形成するためと思われる。廃水に対する銅化合物の添加量は任意であるが、通常は1重量ppm〜10重量%である。なお、精製工程の真空源から得られる(メタ)アクリル酸を含む廃水の代りに、予備精製工程の真空源、例えば酢酸その他の低沸点成分を除去する軽沸蒸留塔の真空源で発生する廃水を用いることもできる。しかし、この廃水中には(メタ)アクリル酸以外に酢酸も溶解しており、かつ(メタ)アクリル酸の濃度も通常は低いので、上述の精製工程の真空源の廃水を用いるのが好ましい。
【0011】
真空源からの(メタ)アクリル酸を含む廃水を用いて調製された重合禁止剤溶液は、主として反応生成ガスを捕集する吸収液に添加する。これにより真空源の廃水中の(メタ)アクリル酸が精製系に供給されることになり、(メタ)アクリル酸の収率を向上させることができる。
【0012】
【実施例】
図1に示す、捕集塔(A)、脱水塔(B)、軽沸除去塔(C)、精製塔(D)及び熱分解塔(E)から成る装置を用いて、プロピレンの気相接触酸化反応により得られたアクリル酸を含む反応生成ガスから精製されたアクリル酸を取得する場合を例にとって本発明を更に具体的に説明する。捕集塔(A)に反応生成ガスを供給し、塔頂からガス中のアクリル酸1kgに対して約0.6kgの水を流下させてアクリル酸を吸収させる。捕集塔(A)からは水1リットルにつきアクリル酸約1.7kgを含むアクリル酸溶液を抜出して脱水塔(B)に供給する。また、捕集塔には重合禁止剤溶液を供給して、塔内の重合禁止剤濃度が一定に保たれるようにする。脱水塔(B)では共沸剤を用いて共沸蒸留し、塔頂から流出したガスは凝縮器で凝縮させ、凝縮液は成層分離させて水は系外に排出し、共沸剤は塔に戻す。脱水塔の塔底液は次いで軽沸除去塔(C)に供給され、減圧下に蒸留して酢酸その他のアクリル酸よりも低沸点の成分を実質上全量留出させる。この蒸留は、通常は軽度の減圧下に行い、アクリル酸ができるだけ留出しないように行うのが好ましい。軽沸除去塔(C)の塔底液は精製塔(D)に供給し、塔頂圧力20〜30mmHgの減圧下に蒸留して精製されたアクリル酸を留出させる。精製塔(D)の真空源としてはスチームエジェクターを用いる。
【0013】
精製塔(D)の塔底液は熱分解塔(E)に供給し、塔頂から留出するアクリル酸を含む軽沸留分は軽沸除去塔(C)に供給し、重質成分は系外に排出する。上記のプロセスで10000kg/Hrの生産量で精製されたアクリル酸を生産する場合、精製塔(D)の真空源のスチームエジェクターの凝縮水(アクリル酸濃度10重量%)に炭酸第二銅又は酢酸マンガンを6000重量ppm、ハイドロキノンを5重量%となるように溶解して調製した重合禁止剤溶液を捕集塔(A)に400kg/Hrで供給すると、反応生成ガス中のアクリル酸に対して96.6%の収率で精製されたアクリル酸を取得することができる。これに対して、脱水塔の塔頂から得られる廃水(酢酸濃度10重量%)に炭酸第二銅又酢酸マンガンを6000重量ppm、ハイドロキノンを5重量%となるように溶解して調製した重合禁止剤溶液を400kg/Hrで供給した場合には、精製アクリル酸の収率は96.1%に止まる。
【図面の簡単な説明】
【図1】図はアクリル酸の製造プロセスのフローシートの1例である。
【符号の説明】
A 捕集塔
B 脱水塔
C 軽沸除去塔
D 精製塔
E 熱分解塔
1 反応生成ガス導入管
2 吸収水導入管
3 重合禁止剤溶液導入管
4 留出水排出管
5 留出軽沸物排出管
6 精製アクリル酸抜出管
7 軽沸留分抜出管
8 重質成分抜出管[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing purified (meth) acrylic acid from a reaction product gas containing (meth) acrylic acid obtained by a gas phase catalytic oxidation reaction, through each step of collection, preliminary purification and purification. It is. In particular, the present invention relates to a method for recovering methacrylic acid purified from (meth) acrylic acid in a reaction product gas with high yield. In the present specification, (meth) acrylic acid means acrylic acid and methacrylic acid.
[0002]
[Prior art]
As a method for producing (meth) acrylic acid, there is a method of hydrolyzing a corresponding nitrile compound, but at present, a gas phase catalytic oxidation method of a corresponding hydrocarbon, that is, propylene or isobutylene is mainly performed. Recently, a gas phase catalytic oxidation method using a corresponding alkane as a raw material instead of olefin has been studied.
[0003]
In the production of (meth) acrylic acid by the gas phase catalytic oxidation method, first, a reaction product gas containing (meth) acrylic acid is brought into contact with an absorbing solvent, usually water, and (meth) acrylic acid in the gas is converted to (meth). Collect as an acrylic acid solution. In this solution, in addition to (meth) acrylic acid, various impurities by-produced during vapor phase catalytic oxidation, for example, in the case of acrylic acid, acetic acid, maleic acid, acrolein, furfural, benzaldehyde, acetone, etc. are also included. It is. A number of methods for recovering purified (meth) acrylic acid from this (meth) acrylic acid solution have been proposed, but the mainstream is the absorption solvent from the (meth) acrylic acid solution in the preliminary purification step And a part of the impurities are removed to obtain crude (meth) acrylic acid substantially composed of (meth) acrylic acid and its dimer and other heavy components, which are then purified in a purification step to obtain a desired quality. It is a method to make a product.
[0004]
Since (meth) acrylic acid is a substance that is easily polymerized, it is generally practiced to contain a polymerization inhibitor in the absorbing solvent. In addition, a polymerization inhibitor is added as necessary in the preliminary purification step and the purification step. As the polymerization inhibitor, various organic or inorganic compounds such as gaseous substances such as oxygen are known. Usually, oxygen and an organic or inorganic compound are often used in combination.
[0005]
[Problems to be solved by the invention]
When using an organic or inorganic compound as a polymerization inhibitor, these compounds are generally used as a solution. For example, in Japanese Patent Laid-Open No. 10-17524, an aqueous acetic acid solution obtained by distilling off water from a (meth) acrylic acid solution by a dehydration distillation in a pre-purification step is used as a polymerization inhibitor such as copper carbonate or copper hydroxide. The use of a solution prepared by dissolving a copper compound and hydroquinone is described. Although the polymerization inhibitor solution obtained by this method has excellent performance, the acetic acid component to be removed in the pre-purification step is brought into the system, which increases the purification load in the pre-purification step. There is. Therefore, the present invention intends to provide a method for producing (meth) acrylic acid free from such problems.
[0006]
[Means for Solving the Problems]
According to the present invention, a reaction product gas containing (meth) acrylic acid obtained by a gas phase catalytic oxidation reaction is brought into contact with an aqueous absorbing liquid, and (meth) acrylic acid in the gas is absorbed into the absorbing liquid. Collecting step, removing the absorbing solution and impurities from the resulting (meth) acrylic acid solution to obtain crude (meth) acrylic acid, and distilling (meth) acrylic acid by vacuum distillation When producing (meth) acrylic acid through each step of the purification step for obtaining (meth) acrylic acid purified from crude (meth) acrylic acid by a purification treatment, a reduced pressure source for the purification step and / or preliminary purification step By preparing a polymerization inhibitor solution using the generated wastewater containing (meth) acrylic acid and supplying it to the steps after the collection step, without introducing impurities that increase the purification load in the system, ( Data) can improve the yield of acrylic acid.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, vapor phase catalytic oxidation and subsequent prepurification may be carried out by a conventional method. For example, in the case of acrylic acid, a one-stage oxidation method in which propylene is directly oxidized to acrylic acid and a two-stage oxidation method in which propylene is first oxidized to acrolein and acrolein is oxidized to acrylic acid are known. It can also be. A gas containing acrylic acid generated by vapor phase contact oxidation is brought into contact with water to recover acrylic acid as an aqueous acrylic acid solution, from which water, acetic acid and other impurities are removed by preliminary purification to obtain crude acrylic acid. These collection and preliminary purification steps may be carried out in accordance with conventional methods. For example, after dehydrating by azeotropic distillation, acetic acid and other low-boiling components can be removed by further distillation. The purity of the crude (meth) acrylic acid thus obtained is usually at least 85% by weight and in many cases 90% by weight. As a matter of course, a higher purity of the crude (meth) acrylic acid is preferable. Impurities contained in the crude (meth) acrylic acid are dimers of (meth) acrylic acid and other heavy components, and low-boiling components are substantially not contained.
[0008]
This crude (meth) acrylic acid is then further refined in a purification step to (meth) acrylic acid of the desired quality. Several purification methods have been proposed. In any method, (meth) acrylic acid purified by distillation under reduced pressure is obtained as a top distillate. Depending on the process, (meth) acrylic acid may be obtained as an intermediate overhead distillate by vacuum distillation in addition to this vacuum distillation in the purification step. As a vacuum source for these vacuum distillations, a steam ejector, a water ring vacuum pump or the like is generally used. By the way, (meth) acrylic acid corresponding to the vapor pressure at the condensation temperature flows into these vacuum sources, which cannot be condensed by the condenser of the distillation column. Therefore, (meth) acrylic acid is dissolved in the wastewater discharged from the vacuum source, such as the wastewater from the condenser of the steam ejector. However, this waste water contains almost no impurities that cause (meth) acrylic acid.
[0009]
In the present invention, this waste water is used as a solvent for dissolving the polymerization inhibitor. Thereby, (meth) acrylic acid in waste water can be recovered as a product, and the load on the purification system is not increased. As the polymerization inhibitor, various known organic and inorganic substances can be used. For example, phenolic compounds such as hydroquinone, hydroquinone monomethyl ether, pyrogallol, catechol and resorcin can be used. Also, tertiary butyl nitrooxide, 2,2,6,6-tetramethyl-4-hydroxypiperidine-1-oxyl, 2,2,6,6-tetramethylpiperidine-1-oxyl, 4,4 ′, 4 N-oxyl compounds such as “-tris- (2,2,6,6-tetramethylpiperidinooxyl) phosphite can also be used.
[0010]
Various metal compounds can also be used as polymerization inhibitors, but the most common are metal salts. For example, copper salts such as cupric chloride, copper acetate, copper carbonate, and copper acrylate, and manganese compounds such as manganese acetate and manganese octoate are used. In the present invention, it is preferable to use inexpensive copper carbonate or copper hydroxide. They are insoluble in water but readily dissolve in waste water from a vacuum source. This is considered to react with dissolved (meth) acrylic acid to form (meth) acrylate. The amount of the copper compound added to the waste water is arbitrary, but is usually 1 ppm by weight to 10% by weight. In addition, instead of the waste water containing (meth) acrylic acid obtained from the vacuum source of the purification process, the waste water generated in the vacuum source of the pre-purification process, for example, the vacuum source of the light boiling distillation column that removes acetic acid and other low-boiling components. Can also be used. However, in addition to (meth) acrylic acid, acetic acid is also dissolved in the wastewater, and the concentration of (meth) acrylic acid is usually low, so it is preferable to use wastewater from the vacuum source in the above-described purification process.
[0011]
The polymerization inhibitor solution prepared using waste water containing (meth) acrylic acid from a vacuum source is mainly added to an absorbing solution for collecting the reaction product gas. Thereby, the (meth) acrylic acid in the waste water of a vacuum source will be supplied to a refinement | purification system, and the yield of (meth) acrylic acid can be improved.
[0012]
【Example】
Gas phase contact of propylene using the apparatus shown in FIG. 1 comprising a collection tower (A), a dehydration tower (B), a light boiling removal tower (C), a purification tower (D), and a pyrolysis tower (E) The present invention will be described more specifically by taking as an example the case of obtaining purified acrylic acid from a reaction product gas containing acrylic acid obtained by an oxidation reaction. The reaction product gas is supplied to the collection tower (A), and about 0.6 kg of water is allowed to flow down from the top of the tower with respect to 1 kg of acrylic acid in the gas to absorb acrylic acid. From the collection tower (A), an acrylic acid solution containing about 1.7 kg of acrylic acid per liter of water is extracted and supplied to the dehydration tower (B). Further, a polymerization inhibitor solution is supplied to the collection tower so that the polymerization inhibitor concentration in the tower is kept constant. In the dehydration tower (B), azeotropic distillation is performed using an azeotropic agent, the gas flowing out from the top of the tower is condensed by a condenser, the condensate is stratified and water is discharged out of the system, and the azeotropic agent is Return to. The bottom liquid of the dehydration tower is then supplied to the light boiling removal tower (C) and distilled under reduced pressure to distill off substantially all components having a lower boiling point than acetic acid and other acrylic acids. This distillation is usually carried out under mild pressure reduction so that acrylic acid is not distilled as much as possible. The liquid at the bottom of the light boiling removal tower (C) is supplied to the purification tower (D), and distilled and purified acrylic acid is distilled off under reduced pressure at a tower top pressure of 20 to 30 mmHg. A steam ejector is used as a vacuum source for the purification tower (D).
[0013]
The bottom liquid of the purification tower (D) is supplied to the pyrolysis tower (E), the light boiling fraction containing acrylic acid distilled from the top of the tower is supplied to the light boiling removal tower (C), and the heavy components are Discharge out of the system. In the case of producing acrylic acid purified at a production rate of 10,000 kg / Hr in the above process, cupric carbonate or acetic acid is added to the condensed water (acrylic acid concentration 10% by weight) of the steam ejector as the vacuum source of the purification tower (D). When a polymerization inhibitor solution prepared by dissolving 6000 ppm by weight of manganese and 5% by weight of hydroquinone is supplied to the collection tower (A) at 400 kg / Hr, it is 96 with respect to acrylic acid in the reaction product gas. Purified acrylic acid can be obtained with a yield of 6%. On the other hand, polymerization inhibition prepared by dissolving cupric carbonate or manganese acetate to 6000 wtppm and hydroquinone to 5 wt% in the waste water (acetic acid concentration 10 wt%) obtained from the top of the dehydration tower. When the agent solution is supplied at 400 kg / Hr, the yield of purified acrylic acid is only 96.1%.
[Brief description of the drawings]
FIG. 1 is an example of a flow sheet of an acrylic acid production process.
[Explanation of symbols]
A Collection tower B Dehydration tower C Light boiling removal tower D Purification tower E Thermal decomposition tower 1 Reaction product gas introduction pipe 2 Absorbed water introduction pipe 3 Polymerization inhibitor solution introduction pipe 4 Distilled water discharge pipe 5 Distillation light boiling substance discharge Pipe 6 Purified acrylic acid extraction pipe 7 Light boiling fraction extraction pipe 8 Heavy component extraction pipe
Claims (7)
Priority Applications (9)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001360436A JP4074455B2 (en) | 2001-11-27 | 2001-11-27 | Method for producing (meth) acrylic acid |
CNB2004100453760A CN1274659C (en) | 2001-08-22 | 2002-08-21 | Distillation apparatus for readily polymerizable compound |
PCT/JP2002/008428 WO2003018162A1 (en) | 2001-08-22 | 2002-08-21 | Distilling equipment for lase-of-polymerization compound |
CN200410045378A CN100589861C (en) | 2001-08-22 | 2002-08-21 | Distillation apparatus for readily polymerizable compound |
CNB2004100453775A CN1307145C (en) | 2001-08-22 | 2002-08-21 | Distillation apparatus for readily polymerizable compound |
CNB028193032A CN1305544C (en) | 2001-08-22 | 2002-08-21 | Distillation apparatus for readily polymerizable compound |
CNB2004100453794A CN1330625C (en) | 2001-08-22 | 2002-08-21 | Distillation apparatus for readily polymerizable compound |
US10/781,986 US7288169B2 (en) | 2001-08-22 | 2004-02-20 | Distillation apparatus for readily polymerizable compound |
US11/188,710 US7473338B2 (en) | 2001-08-22 | 2005-07-26 | Distillation apparatus for readily polymerizable compound |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001360436A JP4074455B2 (en) | 2001-11-27 | 2001-11-27 | Method for producing (meth) acrylic acid |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005232007A true JP2005232007A (en) | 2005-09-02 |
JP4074455B2 JP4074455B2 (en) | 2008-04-09 |
Family
ID=35015331
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001360436A Expired - Lifetime JP4074455B2 (en) | 2001-08-22 | 2001-11-27 | Method for producing (meth) acrylic acid |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4074455B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008146613A1 (en) * | 2007-05-29 | 2008-12-04 | Nippon Shokubai Co., Ltd. | Process for production of (meth)acrylic acid |
JP2014079677A (en) * | 2012-10-15 | 2014-05-08 | Nippon Shokubai Co Ltd | Method for treating waste gas |
JP2019014750A (en) * | 2013-10-29 | 2019-01-31 | 三菱ケミカル株式会社 | Method for reduced-pressure distillation of easily polymerizable compound, and manufacturing method of acrylic acid |
-
2001
- 2001-11-27 JP JP2001360436A patent/JP4074455B2/en not_active Expired - Lifetime
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008146613A1 (en) * | 2007-05-29 | 2008-12-04 | Nippon Shokubai Co., Ltd. | Process for production of (meth)acrylic acid |
US8278481B2 (en) | 2007-05-29 | 2012-10-02 | Nippon Shokubai Co., Ltd. | Method for producing (meth)acrylic acid |
JP5378207B2 (en) * | 2007-05-29 | 2013-12-25 | 株式会社日本触媒 | Method for producing (meth) acrylic acid |
JP2014079677A (en) * | 2012-10-15 | 2014-05-08 | Nippon Shokubai Co Ltd | Method for treating waste gas |
JP2019014750A (en) * | 2013-10-29 | 2019-01-31 | 三菱ケミカル株式会社 | Method for reduced-pressure distillation of easily polymerizable compound, and manufacturing method of acrylic acid |
Also Published As
Publication number | Publication date |
---|---|
JP4074455B2 (en) | 2008-04-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3937462B2 (en) | Acrylic acid purification method | |
JP3028925B2 (en) | Method for producing acrylic acid | |
KR100535323B1 (en) | Method for refining (meth)acrylic acid | |
JP3957298B2 (en) | Acrylic acid production method | |
KR102263549B1 (en) | Improved (meth)acrylic acid production process | |
JP5368673B2 (en) | Method for producing (meth) acrylic acid | |
EP2546228A1 (en) | Method for removal of organic compounds from waste water streams in a process for production of (meth)acrylic acid | |
JP2005015478A (en) | Method for production of acrylic acid | |
EP3063117B1 (en) | Process for preparing methyl methacrylate | |
CN103391914B (en) | A kind of (methyl) acrylic acid continuous collection method and collection device | |
JP3568209B2 (en) | Method for purifying acrylic acid obtained by catalytic oxidation of propylene | |
JP2004091432A (en) | Method for preventing polymerization in acrylic acid manufacturing process | |
JP4074455B2 (en) | Method for producing (meth) acrylic acid | |
JP6602490B2 (en) | Method for recovering (meth) acrylic acid | |
JP3918528B2 (en) | (Meth) acrylic acid purification method | |
JP4300224B2 (en) | Acrylic acid production method | |
JP3832868B2 (en) | Acrylic acid purification method | |
JPS6059889B2 (en) | Hydroquinone recovery method | |
JP2000281617A (en) | Purification of acrylic acid | |
JP3937495B2 (en) | Acrylic acid recovery method | |
JPH0813779B2 (en) | Method for recovering methacrylic acid as methyl methacrylate | |
JP3246216B2 (en) | Method for separating methacrylic acid | |
JPS58140039A (en) | Purification method of acrylic acid | |
JPH10306052A (en) | Recovery of acrylic acid | |
JPH11269121A (en) | Polymerization inhibition of acrylic acid |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070320 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070518 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20070522 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070711 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070831 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20071121 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20071220 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080122 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080125 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110201 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 4074455 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120201 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120201 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130201 Year of fee payment: 5 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
EXPY | Cancellation because of completion of term |