Nothing Special   »   [go: up one dir, main page]

JP2005223182A - Structure and method for mounting component - Google Patents

Structure and method for mounting component Download PDF

Info

Publication number
JP2005223182A
JP2005223182A JP2004030345A JP2004030345A JP2005223182A JP 2005223182 A JP2005223182 A JP 2005223182A JP 2004030345 A JP2004030345 A JP 2004030345A JP 2004030345 A JP2004030345 A JP 2004030345A JP 2005223182 A JP2005223182 A JP 2005223182A
Authority
JP
Japan
Prior art keywords
conductive adhesive
adhesive
component
insulating adhesive
curing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004030345A
Other languages
Japanese (ja)
Other versions
JP4566573B2 (en
Inventor
Norito Tsukahara
法人 塚原
Kazuhiro Nishikawa
和宏 西川
Hideyuki Tsujimura
英之 辻村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2004030345A priority Critical patent/JP4566573B2/en
Publication of JP2005223182A publication Critical patent/JP2005223182A/en
Application granted granted Critical
Publication of JP4566573B2 publication Critical patent/JP4566573B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Structures For Mounting Electric Components On Printed Circuit Boards (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a component mounting structure which can make a connection resistance value low and its variations small while making large the bonding strength of a mounting component to a wiring board using a conductive adhesive and an insulative adhesive, and to provide a component mounting method. <P>SOLUTION: The structure has a wiring substrate 1 having at least a surface formed with a wiring pattern having terminals 2, a mounting component 5 having electrode terminals 6 electrically connected with the terminal 2 of the wiring pattern, a conductive adhesive 7 for bonding and fixing the electrode terminals 6 of the mounting component 5 and the terminals 2 of the wiring substrate 1 to be conducted and connected with each other, and an insulative adhesive 8 for bonding and fixing the mounting component 5 and the wiring substrate 1 between the electrode terminals 6 of the mounting component 5. The conductive and insulative adhesives 7 and 8 satisfy at least one of conditions that the curing temperature of the insulative adhesive 8 is not lower than that of the conductive adhesive 7, and that the curing time of the insulative adhesive 8 is not shorter than that of the conductive adhesive 7. The conductive adhesive 7 and the insulative adhesive 8 are cured to be partially overlapped. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、種々の配線基板上に実装部品を実装する部品実装構造、特に導電性接着剤と絶縁性接着剤とを用いて実装する部品実装構造および部品実装方法に関する。   The present invention relates to a component mounting structure for mounting a mounting component on various wiring boards, and more particularly to a component mounting structure and a component mounting method for mounting using a conductive adhesive and an insulating adhesive.

近年、配線基板上に半導体素子やチップ部品等の実装部品を実装する方法として、従来の鉛半田に換えて鉛フリー半田が使用されつつある。さらに最近では、耐熱性の比較的弱い電子部品や樹脂基板を用いた電子回路装置を実現するために導電性接着剤を用いた実装方式も注目されている。しかしながら、導電性接着剤のみによる実装では、実装面積も小さいため接合強度が不足し、このため接続抵抗値がばらついたり、経時変化することがある。   In recent years, lead-free solder is being used in place of conventional lead solder as a method for mounting mounting components such as semiconductor elements and chip components on a wiring board. Furthermore, recently, a mounting method using a conductive adhesive has attracted attention in order to realize an electronic circuit device using an electronic component or a resin substrate having relatively low heat resistance. However, in the mounting using only the conductive adhesive, the mounting area is small and the bonding strength is insufficient. For this reason, the connection resistance value may vary or may change over time.

これに対して、実装部品の電極端子と配線基板の端子部とを導電性接着剤により接着するとともに、電極端子間において配線基板と対向する実装部品の面と配線基板との間を接合強度が比較的強い絶縁性接着剤で接着することによって、実装部品と配線基板との間の接合強度を確保する方法が行われている。   In contrast, the electrode terminal of the mounting component and the terminal portion of the wiring board are bonded with a conductive adhesive, and the bonding strength between the surface of the mounting component facing the wiring board between the electrode terminals and the wiring board is high. A method of securing a bonding strength between a mounted component and a wiring board by bonding with a relatively strong insulating adhesive is performed.

このような部品実装構造として、例えば、図7および図8に示す部品実装方法がある(例えば、特許文献1)。図7はこの実装方法を説明する主要工程の部分断面図で、図8は実装部品が配置された配線基板を加熱装置で加熱するときの温度プロファイルである。なお、この例では、絶縁性接着剤は導電性接着剤に比較して、硬化温度が低く、かつ硬化収縮率が大きい特性を有する材料を選択して用いている。   As such a component mounting structure, for example, there is a component mounting method shown in FIGS. 7 and 8 (for example, Patent Document 1). FIG. 7 is a partial cross-sectional view of the main process for explaining this mounting method, and FIG. 8 is a temperature profile when the wiring board on which the mounting components are arranged is heated by a heating device. In this example, as the insulating adhesive, a material having a characteristic that the curing temperature is lower and the curing shrinkage ratio is larger than that of the conductive adhesive is selected and used.

実装工程においては、まず、図7(a)に示すように配線パターンの所定の位置に端子部200が形成された配線基板100を用意する。つぎに、図7(b)に示すように、この所定の端子部200上に導電性接着剤300を塗布する。さらに、これらの端子部200の間の配線基板面100上に絶縁性接着剤400を塗布する。ついで、図7(c)に示すように、塗布された導電性接着剤300の上に実装部品500の電極端子510を対向させ、かつ絶縁性接着剤400の上に実装部品500の配線基板100に対向する対向面520を対応させるように位置決めして配置する。これは、一般にマウンターを用いて端子部200の位置を自動認識させて実装部品500をこの位置に位置合せして行っている。このとき、導電性接着剤300と絶縁性接着剤400との粘着性により実装部品500は仮固定される。ついで、このように実装部品500が仮固定された状態で配線基板100を加熱炉にいれ、導電性接着剤300と絶縁性接着剤400とを硬化させる。これにより、導電性接着剤300により電極端子510と端子部200との間の接続と接合、および絶縁性接着剤400により実装部品500の対向面520と配線基板100との間の接合が行われる。この接合後の状態を図7(d)に示す。   In the mounting process, first, as shown in FIG. 7A, a wiring board 100 in which terminal portions 200 are formed at predetermined positions of a wiring pattern is prepared. Next, as shown in FIG. 7B, a conductive adhesive 300 is applied on the predetermined terminal portion 200. Further, an insulating adhesive 400 is applied on the wiring board surface 100 between these terminal portions 200. Next, as shown in FIG. 7C, the electrode terminal 510 of the mounting component 500 is opposed to the applied conductive adhesive 300, and the wiring substrate 100 of the mounting component 500 is placed on the insulating adhesive 400. Are positioned and arranged so as to correspond to the facing surface 520 facing each other. This is generally performed by automatically recognizing the position of the terminal portion 200 using a mounter and aligning the mounting component 500 at this position. At this time, the mounting component 500 is temporarily fixed by the adhesiveness between the conductive adhesive 300 and the insulating adhesive 400. Next, the wiring board 100 is placed in a heating furnace with the mounting component 500 temporarily fixed in this manner, and the conductive adhesive 300 and the insulating adhesive 400 are cured. As a result, connection and bonding between the electrode terminal 510 and the terminal portion 200 are performed by the conductive adhesive 300, and bonding between the facing surface 520 of the mounting component 500 and the wiring substrate 100 is performed by the insulating adhesive 400. . The state after this joining is shown in FIG.

加熱炉中で加熱されるときに、導電性接着剤300と絶縁性接着剤400とは、図8に示すように時間tの経過とともに温度Tが上昇していく。この場合に、絶縁性接着剤400の硬化温度が導電性接着剤300の硬化温度よりも低いので、絶縁性接着剤400が温度T1になると先に硬化収縮を生じる。その後、さらに温度Tが高くなりT2になったときに導電性接着剤300が硬化収縮をはじめる。ここで、絶縁性接着剤400の硬化収縮率が導電性接着剤300よりも大きいので、絶縁性接着剤400の硬化収縮により、導電性接着剤300は電極端子510と端子部200との間で圧縮された状態となったまま硬化収縮が生じる。このように圧縮された状態で硬化収縮させることで接続抵抗を低くできる。また、絶縁性接着剤400により実装部品500の対向面520が配線基板100と強固に接着固定されているので、導電性接着剤300の接合強度が弱くても全体として実装部品500を安定して接着固定させることができることが示されている。
特開2001−284780号公報
When heated in a heating furnace, the temperature T of the conductive adhesive 300 and the insulating adhesive 400 increases with the passage of time t as shown in FIG. In this case, since the curing temperature of the insulating adhesive 400 is lower than the curing temperature of the conductive adhesive 300, when the insulating adhesive 400 reaches the temperature T1, the curing shrinkage occurs first. Thereafter, when the temperature T is further increased to T2, the conductive adhesive 300 starts to cure and shrink. Here, since the curing shrinkage rate of the insulating adhesive 400 is larger than that of the conductive adhesive 300, the conductive adhesive 300 is interposed between the electrode terminal 510 and the terminal portion 200 by the curing shrinkage of the insulating adhesive 400. Curing shrinkage occurs in the compressed state. The connection resistance can be lowered by curing and shrinking in such a compressed state. Further, since the facing surface 520 of the mounting component 500 is firmly bonded and fixed to the wiring substrate 100 by the insulating adhesive 400, the mounting component 500 is stably stabilized as a whole even if the bonding strength of the conductive adhesive 300 is weak. It has been shown that it can be adhesively fixed.
JP 2001-284780 A

しかし、上記従来の部品実装構造および実装方法では、絶縁性接着剤の硬化温度が導電性接着剤の硬化温度よりも低く設定されているため、加熱硬化時に絶縁性接着剤が先に硬化し、その後に導電性接着剤が硬化する。これにより、実装部品と配線基板とは強固に接合される。しかし、先に絶縁性接着剤が硬化し、この硬化に伴う収縮により導電性接着剤は圧縮されるが、圧縮された状態ではまだ導電性接着剤は未硬化のままである。この状態で、導電性接着剤が硬化する場合、実装部品と配線基板との間隔は硬化した絶縁性接着剤により規定されてしまうため、導電性接着剤は硬化時に収縮ができなくなる。このため、硬化収縮不足が生じやすい。このような硬化収縮不足が生じると、導電性接着剤中の導電性フィラー同士の接触にムラが生じ、接続抵抗値やそのバラツキが大きくなりやすい。また、絶縁性接着剤は実装部品の対向面のみに形成され、側面部には形成されていないので、実装部品を垂直方向に引き剥がすための強度は大きいが、配線基板と平行な方向、すなわちシェア強度は小さいという課題もあった。   However, in the above conventional component mounting structure and mounting method, since the curing temperature of the insulating adhesive is set lower than the curing temperature of the conductive adhesive, the insulating adhesive is cured first at the time of heat curing, Thereafter, the conductive adhesive is cured. Thereby, the mounting component and the wiring board are firmly bonded. However, the insulating adhesive is hardened first, and the conductive adhesive is compressed by the shrinkage accompanying this hardening, but the conductive adhesive remains uncured in the compressed state. In this state, when the conductive adhesive is cured, the interval between the mounting component and the wiring board is defined by the cured insulating adhesive, and therefore the conductive adhesive cannot be shrunk during curing. For this reason, insufficient curing shrinkage tends to occur. When such curing shrinkage is insufficient, contact between the conductive fillers in the conductive adhesive is uneven, and the connection resistance value and its variation tend to increase. Further, since the insulating adhesive is formed only on the facing surface of the mounting component and not on the side surface portion, the strength for peeling off the mounting component in the vertical direction is high, but the direction parallel to the wiring board, that is, There was also a problem that the share strength was small.

本発明は上記課題を解決するためになされたもので、導電性接着剤と絶縁性接着剤を用いて各種実装部品を配線基板に実装する場合に、配線基板に対する実装部品の接合強度を大きくできるとともに、接続抵抗値を低く、かつそのバラツキを小さくすることが可能な部品実装構造および部品実装方法を提供することを目的とする。   The present invention has been made to solve the above-described problems, and when mounting various mounting parts on a wiring board using a conductive adhesive and an insulating adhesive, the bonding strength of the mounting parts to the wiring board can be increased. In addition, an object is to provide a component mounting structure and a component mounting method capable of reducing the connection resistance value and reducing the variation thereof.

上述したような問題を解決するために、本発明の部品実装構造は、端子部を有する配線パターンが少なくとも表面に形成された配線基板と、配線パターンの端子部と電気的に接続する電極端子を有する実装部品と、実装部品の電極端子と配線基板の端子部とをそれぞれ接着固定するとともに導通接続する導電性接着剤と、実装部品の電極端子間において実装部品と配線基板とを接着固定する絶縁性接着剤とを有し、絶縁性接着剤の硬化温度が導電性接着剤の硬化温度以上、または絶縁性接着剤の硬化時間が導電性接着剤の硬化時間以上の少なくとも一方の条件を有する組合せの材料からなる。   In order to solve the above-described problems, the component mounting structure of the present invention includes a wiring board on which a wiring pattern having a terminal portion is formed on at least a surface, and an electrode terminal that is electrically connected to the terminal portion of the wiring pattern. The mounting component, the electrode terminal of the mounting component, and the terminal portion of the wiring board that are bonded and fixed, and the conductive adhesive that is electrically connected, and the insulating that bonds and fixes the mounting component and the wiring board between the electrode terminals of the mounting component A combination having a curing temperature of the insulating adhesive equal to or higher than the curing temperature of the conductive adhesive or a curing time of the insulating adhesive equal to or higher than the curing time of the conductive adhesive. Made of materials.

さらに、導電性接着剤と絶縁性接着剤とは、導電性接着剤の硬化温度領域と絶縁性接着剤の硬化温度領域および導電性接着剤の硬化時間と絶縁性接着剤の硬化時間の少なくとも一方が一部重なる組合せの材料としてもよい。   Further, the conductive adhesive and the insulating adhesive include at least one of a curing temperature region of the conductive adhesive, a curing temperature region of the insulating adhesive, a curing time of the conductive adhesive, and a curing time of the insulating adhesive. It is good also as the material of the combination which overlaps.

このような構成とすることにより、実装部品の電極端子と配線基板の端子部との間を接続する導電性接着剤は加熱硬化するときに、絶縁性接着剤が硬化収縮することによる圧縮力を受けながら硬化する。導電性接着剤が硬化した後も、絶縁性接着剤は硬化収縮をするので、さらに導電性接着剤に圧縮力が加わる。この結果、導電性接着剤に含まれる導電性フィラー同士の接触部が増して導通パスが増加するので、端子部と電極端子との間を接続する導電性接着剤の接続抵抗値とそのバラツキを小さくできる。また、実装部品は絶縁性接着剤で配線基板と強固に接着されるので接合強度も大きくできる。   By adopting such a configuration, when the conductive adhesive that connects between the electrode terminal of the mounting component and the terminal portion of the wiring board is heated and cured, the compressive force due to the shrinkage of the insulating adhesive is reduced. Hardens while receiving. Even after the conductive adhesive is cured, the insulating adhesive undergoes curing shrinkage, and thus a compressive force is further applied to the conductive adhesive. As a result, the contact portion between the conductive fillers contained in the conductive adhesive increases and the conduction path increases, so the connection resistance value of the conductive adhesive connecting the terminal portion and the electrode terminal and the variation thereof are reduced. Can be small. Further, since the mounted component is firmly bonded to the wiring board with an insulating adhesive, the bonding strength can be increased.

また、本発明の部品実装構造は、絶縁性接着剤が実装部品の配線基板と対向する面上と側面部とに形成されてサイドフィレットを構成してもよい。サイドフィレットを形成する場合、絶縁性接着剤の塗布量が電極端子と端子部とを電気的に接続する導電性接着剤の厚みおよび配線基板の端子部の厚みを加えた厚み、実装部品の配線基板に対向する面の幅、および端子部の間の長さで規定される空間領域部の容積の1.0〜1.7倍に相当する量とすることが望ましい。   In the component mounting structure of the present invention, the side fillet may be formed by forming an insulating adhesive on the surface and the side surface of the mounting component facing the wiring board. When forming the side fillet, the coating amount of the insulating adhesive is the sum of the thickness of the conductive adhesive that electrically connects the electrode terminal and the terminal portion and the thickness of the terminal portion of the wiring board, the wiring of the mounting component It is desirable that the amount corresponds to 1.0 to 1.7 times the volume of the space region defined by the width of the surface facing the substrate and the length between the terminal portions.

このような構成とすることにより、配線基板に対する実装部品の接合強度がより大きくできる。特に、配線基板に対して平行な方向の力、すなわちシェア強度を大きくできる。   By setting it as such a structure, the joint strength of the mounted component with respect to a wiring board can be made larger. In particular, the force in the direction parallel to the wiring board, that is, the shear strength can be increased.

また、本発明の実装部品の部品実装方法は、端子部を有する配線パターンが少なくとも表面に形成された配線基板の上記配線パターンの端子部上に導電性接着剤を塗布する工程と、端子部間の配線基板面上に、導電性接着剤の硬化温度以上または硬化時間以上の少なくとも一方の条件を有する絶縁性接着剤を塗布する工程と、導電性接着剤と実装部品の電極端子とが接触し、絶縁性接着剤と実装部品の電極端子間の配線基板と対向する面とが接触するように実装部品を配線基板上に配置する工程と、実装部品が配置された配線基板を絶縁性接着剤の硬化温度まで加熱して、導電性接着剤の硬化に引き続いて絶縁性接着剤を硬化させる工程とを具備する方法からなる。   Further, the component mounting method of the mounting component according to the present invention includes a step of applying a conductive adhesive on the terminal portion of the wiring pattern on the wiring board on which at least the wiring pattern having the terminal portion is formed, and between the terminal portions. The step of applying an insulating adhesive having at least one of the conditions above the curing temperature of the conductive adhesive or the curing time on the wiring board surface of the conductive adhesive and the electrode terminals of the mounting component are in contact with each other. A step of placing the mounting component on the wiring board such that the insulating adhesive and the surface facing the wiring board between the electrode terminals of the mounting component are in contact with each other; and the wiring board on which the mounting component is placed And a step of curing the insulating adhesive subsequent to curing of the conductive adhesive.

さらに、上記の実装方法において、絶縁性接着剤は、導電性接着剤の硬化温度領域と絶縁性接着剤の硬化温度領域および導電性接着剤の硬化時間と絶縁性接着剤の硬化時間の少なくとも一方が一部重なる特性を有する材料を用いてもよい。   Further, in the above mounting method, the insulating adhesive is at least one of a curing temperature region of the conductive adhesive, a curing temperature region of the insulating adhesive, a curing time of the conductive adhesive, and a curing time of the insulating adhesive. Alternatively, a material having a characteristic of partially overlapping each other may be used.

この方法によれば、配線基板上の配線パターンの端子部に対し、実装部品の電極端子が導電性接着剤で導通接続されるとともに、実装部品は配線基板に対して絶縁性接着剤で接着固定される。しかも、実装部品の電極端子と配線基板の端子部との間を接続する導電性接着剤は加熱硬化するときに、絶縁性接着剤が硬化収縮することによる圧縮力を受けながら硬化する。導電性接着剤が硬化した後も、絶縁性接着剤は硬化収縮をするので、さらに導電性接着剤に圧縮力が加わる。この結果、導電性接着剤に含まれる導電性フィラー同士の接触部が増して導通パスが増加するので、端子部と電極端子との間を接続する導電性接着剤の接続抵抗値とそのバラツキを小さくできる。また、実装部品は絶縁性接着剤で配線基板と強固に接着されるので接合強度も大きくできる。   According to this method, the electrode terminal of the mounting component is conductively connected to the terminal portion of the wiring pattern on the wiring board with the conductive adhesive, and the mounting component is bonded and fixed to the wiring board with the insulating adhesive. Is done. In addition, when the conductive adhesive connecting the electrode terminals of the mounted component and the terminal portion of the wiring board is cured by heating, the conductive adhesive is cured while receiving a compressive force due to the shrinkage of the insulating adhesive. Even after the conductive adhesive is cured, the insulating adhesive undergoes curing shrinkage, and thus a compressive force is further applied to the conductive adhesive. As a result, the contact portion between the conductive fillers contained in the conductive adhesive increases and the conduction path increases, so the connection resistance value of the conductive adhesive connecting the terminal portion and the electrode terminal and the variation thereof are reduced. Can be small. Further, since the mounted component is firmly bonded to the wiring board with an insulating adhesive, the bonding strength can be increased.

さらに、このような部品実装方法における絶縁性接着剤の塗布工程において、絶縁性接着剤の塗布量が電極端子と端子部とを電気的に接続する導電性接着剤の厚みおよび配線基板の端子部の厚みを加えた厚み、実装部品の配線基板に対向する面の幅、および端子部の間の長さで規定される空間領域部の容積の1.0〜1.7倍に相当する量を塗布するようにしてもよい。   Furthermore, in the coating process of the insulating adhesive in such a component mounting method, the coating amount of the insulating adhesive is such that the thickness of the conductive adhesive that electrically connects the electrode terminal and the terminal part and the terminal part of the wiring board The amount corresponding to 1.0 to 1.7 times the volume of the space region defined by the thickness of the space, the width of the surface of the mounting component facing the wiring board, and the length between the terminal portions You may make it apply | coat.

これにより、実装部品の形状に対応して適正な塗布量を塗布し、絶縁性接着剤を実装部品の側面部分まで回り込ませて最適な形状のサイドフィレットを容易に形成することができる。   As a result, an appropriate application amount corresponding to the shape of the mounted component can be applied, and the insulating adhesive can be caused to wrap around the side surface portion of the mounted component, so that a side fillet having an optimal shape can be easily formed.

また、このような実装方法において、導電性接着剤と絶縁性接着剤とは、導電性接着剤の硬化温度が絶縁性接着剤の硬化温度より低く、かつ導電性接着剤の硬化時間が絶縁性接着剤の硬化時間以下である組合せの材料、または導電性接着剤の硬化温度領域と絶縁性接着剤の硬化温度領域および導電性接着剤の硬化時間と絶縁性接着剤の硬化時間の少なくとも一方が一部重なる特性を有する材料を用いてもよい。さらに、導電性接着剤と絶縁性接着剤とは、硬化温度が同じで、かつ導電性接着剤に比べて絶縁性接着剤の硬化時間が長い組合せの材料を用いてもよい。   Further, in such a mounting method, the conductive adhesive and the insulating adhesive are those in which the curing temperature of the conductive adhesive is lower than the curing temperature of the insulating adhesive and the curing time of the conductive adhesive is insulative. A combination of materials that are equal to or less than the curing time of the adhesive, or at least one of the curing temperature region of the conductive adhesive and the curing temperature region of the insulating adhesive, and the curing time of the conductive adhesive and the curing time of the insulating adhesive A material having partially overlapping characteristics may be used. Further, the conductive adhesive and the insulating adhesive may be a combination of materials having the same curing temperature and a longer curing time of the insulating adhesive than that of the conductive adhesive.

このような材料の組合せによる実装方法により、導電性接着剤が先に硬化をはじめ、引き続いて絶縁性接着剤を硬化させることができる。   By the mounting method using such a combination of materials, the conductive adhesive can be cured first, and the insulating adhesive can be subsequently cured.

本発明の部品実装構造は、配線基板上に形成された配線パターンの端子部に対し、実装部品の電極端子が導電性接着剤で導通接続され、かつ実装部品は絶縁性接着剤で配線基板に接着固定されるので、配線基板への実装部品の接合強度を大きくできる。また、導電性接着剤が硬化するときに絶縁性接着剤の硬化収縮に伴う圧縮力を受けるので、導電性接着剤に含まれる導電性フィラー同士の接触部が増して導通パスを増加させることができ、端子部と電極端子とを接続する導電性接着剤の接続抵抗値とそのバラツキを小さくできる。この結果、より特性が良好で、高信頼性の電子回路装置を実現できるという大きな効果を奏する。   In the component mounting structure of the present invention, the electrode terminal of the mounting component is conductively connected to the terminal portion of the wiring pattern formed on the wiring substrate with a conductive adhesive, and the mounting component is connected to the wiring substrate with an insulating adhesive. Since it is bonded and fixed, the bonding strength of the mounted component to the wiring board can be increased. Further, since the compressive force accompanying the shrinkage of the insulating adhesive is received when the conductive adhesive is cured, the contact portion between the conductive fillers contained in the conductive adhesive may be increased to increase the conduction path. It is possible to reduce the connection resistance value and the variation of the conductive adhesive connecting the terminal portion and the electrode terminal. As a result, there is a great effect that an electronic circuit device having better characteristics and high reliability can be realized.

以下、本発明の実施の形態について、図面を参照しながら説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

(実施の形態1)
図1は本発明の実施の形態1にかかる部品実装構造10の部分断面図である。本実施の形態による部品実装構造10は、配線パターンの一部に端子部2が形成された配線基板1上に、両端部に電極端子6を有する実装部品5が導電性接着剤7と絶縁性接着剤8とにより接着固定された構成からなる。
(Embodiment 1)
FIG. 1 is a partial cross-sectional view of a component mounting structure 10 according to a first embodiment of the present invention. In the component mounting structure 10 according to the present embodiment, the mounting component 5 having the electrode terminals 6 at both ends is insulated from the conductive adhesive 7 on the wiring substrate 1 in which the terminal portion 2 is formed in a part of the wiring pattern. It is configured to be bonded and fixed by the adhesive 8.

ところで、本実施の形態に用いる配線基板1は、ガラス繊維入りエポキシ樹脂等の複合基材やセラミック材料等の無機材料基材、またはポリエステル樹脂、アクリルニトリルブタジエンスチレン(ABS)樹脂、ポリカーボネート樹脂あるいはポリイミド樹脂等の高分子樹脂からなる基材と、この基材上に形成された所定の配線パターンと、この配線パターンのあらかじめ設定された個所に端子部2が形成された構成からなる。なお、配線パターンは基材の内部にも形成されていてもよいし、基材の表面に配線パターンを形成したものを多層に積層した構成、あるいは基材表面にビルドアップ方式で多層配線を形成した構成であってもよい。少なくとも基材の表面に配線パターンが形成されており、その配線パターンの所定位置に端子部2が設けられていればよく、多層構成であってもまた単層構成であっても特に限定はされない。   By the way, the wiring board 1 used in this embodiment is a composite base material such as an epoxy resin containing glass fiber, an inorganic material base material such as a ceramic material, or a polyester resin, acrylonitrile butadiene styrene (ABS) resin, polycarbonate resin or polyimide. A base material made of a polymer resin such as a resin, a predetermined wiring pattern formed on the base material, and a terminal portion 2 is formed at a predetermined location of the wiring pattern. In addition, the wiring pattern may be formed inside the base material, or the structure in which the wiring pattern is formed on the surface of the base material is laminated in multiple layers, or the multilayer wiring is formed on the base material surface by the build-up method. It may be the configuration. A wiring pattern is formed at least on the surface of the base material, and the terminal portion 2 only needs to be provided at a predetermined position of the wiring pattern. There is no particular limitation on the multilayer structure or the single-layer structure. .

実装部品5は、抵抗やコンデンサ等のチップ部品、または端部に接続用の電極端子が形成されている半導体素子等の表面実装部品であればよい。   The mounting component 5 may be a chip component such as a resistor or a capacitor, or a surface mounting component such as a semiconductor element in which an electrode terminal for connection is formed at the end.

導電性接着剤7は、導電性フィラー、熱硬化型樹脂および硬化剤からなり、導電性フィラーは銀(Ag)、ニッケル(Ni)、銅(Cu)または金(Au)の微粒子、あるいは銀(Ag)をコーティングした樹脂ビーズ等が用いられる。その粒径は特に限定されず、また微粒子の形状については球状、鱗片状あるいはさらに異形であってもよい。熱硬化型樹脂はエポキシ系樹脂やアクリル系樹脂等が主として用いられるが、特にこれらに限定されるものではない。   The conductive adhesive 7 includes a conductive filler, a thermosetting resin, and a curing agent. The conductive filler is fine particles of silver (Ag), nickel (Ni), copper (Cu), or gold (Au), or silver ( Resin beads coated with Ag) are used. The particle size is not particularly limited, and the shape of the fine particles may be spherical, scaly or even irregular. As the thermosetting resin, an epoxy resin, an acrylic resin, or the like is mainly used, but is not particularly limited thereto.

また、絶縁性接着剤8は熱硬化型樹脂と硬化剤からなり、エポキシ系樹脂やアクリル系樹脂等が同様に主として用いられるが、特にこれらに限定されるものではない。ただし、絶縁性接着剤8と導電性接着剤7とは、一定の条件を有する組合せとすることが必要とされる。すなわち、導電性接着剤7が少なくとも先に硬化をはじめ、この導電性接着剤7が硬化を完了する前に絶縁性接着剤8の硬化がはじまることが必要である。このためには、絶縁性接着剤8の硬化温度が導電性接着剤7の硬化温度以上か、あるいは絶縁性接着剤8の硬化時間が導電性接着剤7の硬化時間以上の少なくとも一方の条件を満たす特性を有する組合せとすればよい。   The insulating adhesive 8 is composed of a thermosetting resin and a curing agent, and an epoxy resin, an acrylic resin, or the like is mainly used in the same manner, but is not particularly limited thereto. However, the insulating adhesive 8 and the conductive adhesive 7 are required to be a combination having certain conditions. That is, it is necessary that the conductive adhesive 7 begins to cure at least first, and the insulating adhesive 8 begins to cure before the conductive adhesive 7 completes the curing. For this purpose, at least one of the conditions that the curing temperature of the insulating adhesive 8 is equal to or higher than the curing temperature of the conductive adhesive 7 or the curing time of the insulating adhesive 8 is equal to or longer than the curing time of the conductive adhesive 7 is satisfied. What is necessary is just to set it as the combination which has the characteristic to satisfy | fill.

このような組合せとすれば、加熱炉等で加熱するときに、導電性接着剤7が少なくとも先に硬化をはじめ、引き続いて絶縁性接着剤8が硬化収縮するので、先に硬化をはじめた導電性接着剤7は圧縮力を受けながら硬化する。したがって、この圧縮力と導電性接着剤7自体の硬化収縮力とにより、導電性接着剤7に含まれる導電性フィラー同士の接触部が増し、導通パスが増加する。この結果、配線パターンの端子部2と実装部品5の電極端子6とを接続する導電性接着剤7の接続抵抗値とそのバラツキをさらに小さくすることができる。また、配線基板1への実装部品5の接合強度は導電性接着剤7のみで接合するよりも大きくなり、接合の信頼性を向上させることもできる。   In such a combination, when heated in a heating furnace or the like, the conductive adhesive 7 begins to cure at least first, and the insulating adhesive 8 subsequently cures and shrinks. The adhesive 7 is cured while receiving a compressive force. Accordingly, the compressive force and the curing shrinkage force of the conductive adhesive 7 itself increase the contact portion between the conductive fillers contained in the conductive adhesive 7 and increase the conduction path. As a result, the connection resistance value of the conductive adhesive 7 that connects the terminal portion 2 of the wiring pattern and the electrode terminal 6 of the mounting component 5 and its variation can be further reduced. Further, the bonding strength of the mounting component 5 to the wiring board 1 becomes larger than that of bonding with the conductive adhesive 7 alone, and the reliability of bonding can be improved.

つぎに、このような導電性接着剤7と絶縁性接着剤8とを用いて実装部品5を実装して部品実装構造10を製造する製造方法について説明する。   Next, a manufacturing method for manufacturing the component mounting structure 10 by mounting the mounting component 5 using the conductive adhesive 7 and the insulating adhesive 8 will be described.

図2は、本実施の形態にかかる部品実装構造10の実装方法を説明するための主要工程の断面図である。図2(a)は、配線パターンの所定個所に端子部2が形成されている配線基板1の断面図である。なお、図面の簡略化のために端子部2のみ示しているが、配線基板1にはあらかじめ設計された位置に配線パターンが端子部2の形成されている面やその裏面あるいは基材の内層部分にも形成されている。   FIG. 2 is a cross-sectional view of main processes for explaining the mounting method of the component mounting structure 10 according to the present embodiment. FIG. 2A is a cross-sectional view of the wiring board 1 in which the terminal portion 2 is formed at a predetermined portion of the wiring pattern. Although only the terminal portion 2 is shown for simplification of the drawing, the wiring board 1 has a surface where the wiring pattern is formed at a predesigned position, the back surface thereof, or the inner layer portion of the base material. Also formed.

つぎに、図2(b)に示すように、この配線基板1の端子部2上に導電性接着剤7を、例えばスクリーン印刷法により塗布する。さらにその後、図2(c)に示すように、2つの端子部2の間に絶縁性接着剤8を塗布する。   Next, as shown in FIG. 2B, a conductive adhesive 7 is applied onto the terminal portion 2 of the wiring board 1 by, for example, a screen printing method. Thereafter, as shown in FIG. 2C, an insulating adhesive 8 is applied between the two terminal portions 2.

ついで、図2(d)に示すように、塗着された導電性接着剤7に対して実装部品5の両端の電極端子6を位置決めして実装部品5を導電性接着剤7と絶縁性接着剤8上に配置する。これは、マウンターを用いて行うが、導電性接着剤7と絶縁性接着剤8の粘着性により実装部品5は仮固定される。   Next, as shown in FIG. 2 (d), the electrode terminals 6 at both ends of the mounting component 5 are positioned with respect to the applied conductive adhesive 7, and the mounting component 5 is insulatively bonded to the conductive adhesive 7. Place on agent 8. Although this is performed using a mounter, the mounting component 5 is temporarily fixed by the adhesiveness of the conductive adhesive 7 and the insulating adhesive 8.

この後、実装部品5が仮固定された状態の配線基板1を、例えばトンネル炉等の加熱装置にいれて所定の温度と時間だけ加熱し、導電性接着剤7と絶縁性接着剤8を硬化させる。図3は、このときの加熱装置内での導電性接着剤7と絶縁性接着剤8との温度変化を示す図である。   Thereafter, the wiring substrate 1 in which the mounting component 5 is temporarily fixed is placed in a heating apparatus such as a tunnel furnace and heated for a predetermined temperature and time to cure the conductive adhesive 7 and the insulating adhesive 8. Let FIG. 3 is a diagram showing a temperature change between the conductive adhesive 7 and the insulating adhesive 8 in the heating device at this time.

本実施の形態の製造方法においては、導電性接着剤7と絶縁性接着剤8とは、導電性接着剤7の硬化温度Pの方が絶縁性接着剤8の硬化温度Qよりも低い材料の組合せからなり、さらに実装部品5としてはチップ抵抗を用いた場合について説明する。   In the manufacturing method of the present embodiment, the conductive adhesive 7 and the insulating adhesive 8 are made of materials whose curing temperature P of the conductive adhesive 7 is lower than the curing temperature Q of the insulating adhesive 8. A case where a chip resistor is used as the mounting component 5 will be described.

このような条件に適合する導電性接着剤7として、例えば硬化温度P=115℃、硬化時間10分の特性を有する銀(Ag)系の導電性接着剤を用いる。この導電性接着剤は、導電性フィラーとして銀(Ag)微粒子を80重量%含み、樹脂成分はエポキシ系樹脂からなる。また、絶縁性接着剤8として、例えば硬化温度Q=125℃、硬化時間10分の特性を有するものを使用する。この絶縁性接着剤としては、粘度調整フィラーを含有し、樹脂成分がエポキシ系樹脂からなる。   As the conductive adhesive 7 that meets such conditions, for example, a silver (Ag) -based conductive adhesive having characteristics of a curing temperature P = 115 ° C. and a curing time of 10 minutes is used. This conductive adhesive contains 80% by weight of silver (Ag) fine particles as a conductive filler, and the resin component is made of an epoxy resin. Further, as the insulating adhesive 8, for example, an adhesive having a curing temperature Q = 125 ° C. and a curing time of 10 minutes is used. This insulating adhesive contains a viscosity adjusting filler, and the resin component is made of an epoxy resin.

図3に示すM点において加熱装置内に投入された実装部品5が仮固定された配線基板1は、周囲から加熱されて図に示す温度プロファイルに従って温度上昇する。導電性接着剤7の硬化温度Pである115℃まで加熱されると、配線基板1の端子部2と実装部品5の両端の電極端子6との間の導電性接着剤7が硬化収縮をはじめる。導電性接着剤7の硬化に伴って収縮することによって、実装部品5と配線基板1との間の絶縁性接着剤8は少し圧縮されるが、絶縁性接着剤8はこの時点ではまだ硬化しないので容易に圧縮されて少し広がる。この状態を図2(e)に示す。   The wiring board 1 on which the mounting component 5 placed in the heating device is temporarily fixed at the point M shown in FIG. 3 is heated from the surroundings and rises in temperature according to the temperature profile shown in the drawing. When the conductive adhesive 7 is heated to 115 ° C., which is the curing temperature P of the conductive adhesive 7, the conductive adhesive 7 between the terminal portion 2 of the wiring board 1 and the electrode terminals 6 at both ends of the mounting component 5 starts to cure and shrink. . By contracting as the conductive adhesive 7 is cured, the insulating adhesive 8 between the mounting component 5 and the wiring board 1 is slightly compressed, but the insulating adhesive 8 is not yet cured at this point. So it is easily compressed and spreads a little. This state is shown in FIG.

さらに、温度が上昇していき絶縁性接着剤8の硬化温度Qである125℃に達すると、実装部品5と配線基板1との間の絶縁性接着剤8が硬化収縮をはじめる。この時点では導電性接着剤7の硬化はまだ完了していないので、導電性接着剤7の硬化が完了する時間R1までは絶縁性接着剤8の硬化収縮による圧縮力を受けながら硬化する。   Further, when the temperature rises and reaches 125 ° C., which is the curing temperature Q of the insulating adhesive 8, the insulating adhesive 8 between the mounted component 5 and the wiring board 1 starts to cure and shrink. At this point, since the curing of the conductive adhesive 7 is not yet completed, the conductive adhesive 7 is cured while receiving a compressive force due to the curing shrinkage of the insulating adhesive 8 until the time R1 when the curing of the conductive adhesive 7 is completed.

配線基板1は硬化温度Qに保持されているので、絶縁性接着剤8の硬化収縮が続き、絶縁性接着剤8の硬化が完了する時間R2で硬化収縮を終了して完全に固化する。この後、徐々に冷却されてから加熱装置から取り出すと、実装部品5が導電性接着剤7と絶縁性接着剤8とで接続と接合された部品実装構造10が得られる。   Since the wiring substrate 1 is maintained at the curing temperature Q, the curing shrinkage of the insulating adhesive 8 continues, and the curing shrinkage is completed and completely solidified at time R2 when the curing of the insulating adhesive 8 is completed. Thereafter, when it is gradually cooled and then removed from the heating device, the component mounting structure 10 in which the mounting component 5 is connected and joined by the conductive adhesive 7 and the insulating adhesive 8 is obtained.

このように、導電性接着剤7の硬化が完了する時間R1までは、導電性接着剤7は絶縁性接着剤8の圧縮力を受けながら硬化し、さらに硬化が完了する時間R1を過ぎても絶縁性接着剤8はまだ硬化収縮するため導電性接着剤7は圧縮力を引き続き受ける。このような圧縮力を受けることで、導電性接着剤7中の導電性フィラー同士が密に接触することができるようになり、良好な導通パスが形成され、端子部2と電極端子6間の導電性接着剤7の接続抵抗値とそのバラツキを小さくでき、かつ実装部品5の接合強度も大きくできる。   Thus, until the time R1 when the curing of the conductive adhesive 7 is completed, the conductive adhesive 7 is cured while receiving the compressive force of the insulating adhesive 8, and even after the time R1 when the curing is completed is passed. Since the insulating adhesive 8 still cures and shrinks, the conductive adhesive 7 continues to receive a compressive force. By receiving such a compressive force, the conductive fillers in the conductive adhesive 7 can come into close contact with each other, a good conduction path is formed, and the terminal portion 2 and the electrode terminal 6 are connected. The connection resistance value and the variation of the conductive adhesive 7 can be reduced, and the bonding strength of the mounting component 5 can be increased.

上記の導電性接着剤7と絶縁性接着剤8とを用いて接合した部品実装構造10を50個作製して接続抵抗値とシェア強度とを測定した。その結果、一箇所あたりの接続抵抗値の平均値は120mΩで、そのバラツキ(3σ/平均値)は1.8が得られた。また、実装部品5であるチップ抵抗のシェア強度の平均値は164gであった。   Fifty component mounting structures 10 bonded using the conductive adhesive 7 and the insulating adhesive 8 were produced, and the connection resistance value and the shear strength were measured. As a result, the average value of the connection resistance value per location was 120 mΩ, and the variation (3σ / average value) was 1.8. Moreover, the average value of the shear strength of the chip resistor which is the mounting component 5 was 164 g.

(実施の形態2)
図4は、本発明の実施の形態2にかかる部品実装構造20の外観斜視図である。なお、図1と図2に示した実施の形態1と同じ要素については同じ符号を付している。
(Embodiment 2)
FIG. 4 is an external perspective view of the component mounting structure 20 according to the second embodiment of the present invention. In addition, the same code | symbol is attached | subjected about the same element as Embodiment 1 shown in FIG. 1 and FIG.

本実施の形態においては、実施の形態1と同様に配線基板1と実装部品5であるチップ抵抗を用い、導電性接着剤7と絶縁性接着剤8とにより接続と接合を行うが、仮固定時に実装部品5の側面部分まで絶縁性接着剤8がはみ出るようにしてサイドフィレット81を形成したことが実施の形態1の部品実装構造10とは異なる点である。なお、図4においては、端子部2に接続する配線パターン21も示している。   In the present embodiment, as in the first embodiment, the chip resistance which is the wiring substrate 1 and the mounting component 5 is used and the conductive adhesive 7 and the insulating adhesive 8 are used for connection and bonding. The difference from the component mounting structure 10 of the first embodiment is that the side fillet 81 is formed such that the insulating adhesive 8 sometimes protrudes to the side surface portion of the mounting component 5. In FIG. 4, a wiring pattern 21 connected to the terminal portion 2 is also shown.

このサイドフィレット81を形成する場合に、配線基板1上に絶縁性接着剤8を塗布するときの塗布量と塗布位置について、図5を用いて説明する。図5(a)は、配線基板1の2つの端子部2上に、例えばスクリーン印刷等により導電性接着剤7を形成し、端子部2の間に、例えばディスペンサーにより絶縁性接着剤8を形成した状態を示す平面図である。そして、図5(b)は、塗布された導電性接着剤7と絶縁性接着剤8の上に実装部品5がマウント機により仮固定されるとともに、導電性接着剤7と絶縁性接着剤8とがそれぞれ押し広げられた状態を示す平面図である。ただし、図5(b)では、塗布された導電性接着剤7と絶縁性接着剤8とが実装部品5により押し広げられた状態を説明しやすくするために、実装部品5を除去した構成としている。このため、実装部品5は点線で示している。   The application amount and application position when applying the insulating adhesive 8 on the wiring substrate 1 when forming the side fillet 81 will be described with reference to FIG. In FIG. 5A, a conductive adhesive 7 is formed on the two terminal portions 2 of the wiring board 1 by, for example, screen printing, and an insulating adhesive 8 is formed between the terminal portions 2 by, for example, a dispenser. It is a top view which shows the state which carried out. FIG. 5B shows that the mounting component 5 is temporarily fixed on the applied conductive adhesive 7 and the insulating adhesive 8 by a mounting machine, and the conductive adhesive 7 and the insulating adhesive 8. It is a top view which shows the state by which each was expanded. However, in FIG. 5B, the mounting component 5 is removed in order to facilitate explanation of the state where the applied conductive adhesive 7 and the insulating adhesive 8 are spread by the mounting component 5. Yes. For this reason, the mounting component 5 is indicated by a dotted line.

なお、本実施の形態では、実装部品5の幅と端子部2の幅とが同じ場合について示しているが、端子部2の幅と実装部品5の幅とは必ずしも同じである必要はない。また、導電性接着剤7は端子部2の表面積よりも小面積に形成し、絶縁性接着剤8は端子部2の間にのみ形成しているが、このような形成領域と形状に限定されない。実装部品5の形状に合せて後述するように塗布量を規定すれば、形状等は適宜設定することができる。   In the present embodiment, the case where the width of the mounting component 5 and the width of the terminal portion 2 are the same is shown, but the width of the terminal portion 2 and the width of the mounting component 5 are not necessarily the same. Moreover, although the conductive adhesive 7 is formed in a smaller area than the surface area of the terminal portion 2 and the insulating adhesive 8 is formed only between the terminal portions 2, it is not limited to such a formation region and shape. . If the application amount is defined as described later according to the shape of the mounting component 5, the shape and the like can be set as appropriate.

図5(b)において、マウンターにより実装部品5が配線基板1に配置されるとき、導電性接着剤7と絶縁性接着剤8ともにマウンターにより押し付け荷重が加わるが、導電性接着剤7は端子部2上に設けられているので、絶縁性接着剤8よりもやや先に押し広げられて端子部2の上から端子部2近傍の配線基板1上にまで一部がはみ出す。やや遅れて絶縁性接着剤8も押し広げられていき、はみ出た導電性接着剤7の領域まで広がった後、さらに実装部品5の側面部にまではみ出ていく。このような状態で、加熱硬化させると図4に示すサイドフィレット81を有する部品実装構造20が形成される。   In FIG. 5B, when the mounting component 5 is placed on the wiring board 1 by the mounter, both the conductive adhesive 7 and the insulating adhesive 8 are subjected to a pressing load by the mounter. 2, it is pushed slightly ahead of the insulating adhesive 8 and partly protrudes from the terminal portion 2 to the wiring substrate 1 in the vicinity of the terminal portion 2. Slightly later, the insulating adhesive 8 is also pushed and spreads to the area of the conductive adhesive 7 that protrudes, and further protrudes to the side surface of the mounting component 5. In this state, when heat-cured, the component mounting structure 20 having the side fillet 81 shown in FIG. 4 is formed.

このようなサイドフィレット81を形成するための絶縁性接着剤8の塗布量について検討した結果を(表1)に示す。   Table 1 shows the results of studying the coating amount of the insulating adhesive 8 for forming such a side fillet 81.

Figure 2005223182
Figure 2005223182

(表1)において、絶縁性接着剤8の塗布量Wは、以下に述べる容積Vを基準として規格化している。すなわち、容積Vは、配線基板1の端子部2と導電性接着剤7とを加えた厚さ、実装部品5の幅および端子部2の間隔により規定される。なお、導電性接着剤7は部分的に凹凸を有しているのが一般的であるので、その厚さは平均厚さとする。また、端子部2の間隔としては、導電性接着剤7が一部はみ出す長さ分を考慮した値としてもよい。このはみ出し量はマウンターにより実装部品5を実装するときの押し付け加重と導電性接着剤7の塗布量によりほぼ決まるので、あらかじめ設定することができる。   In Table 1, the coating amount W of the insulating adhesive 8 is standardized based on the volume V described below. That is, the volume V is defined by the thickness of the wiring board 1 including the terminal portion 2 and the conductive adhesive 7, the width of the mounting component 5, and the distance between the terminal portions 2. In addition, since it is common that the conductive adhesive 7 has an unevenness | corrugation partially, let the thickness be an average thickness. In addition, the distance between the terminal portions 2 may be a value that takes into account the length of the portion where the conductive adhesive 7 protrudes. The amount of protrusion is almost determined by the pressing load when the mounting component 5 is mounted by the mounter and the coating amount of the conductive adhesive 7, and can be set in advance.

この容積Vを基準とした絶縁性接着剤8の塗布量Wとサイドフィレット81の形成状態の観察結果を(表1)に示すが、W/V=1.0〜1.7の範囲とすることで良好なサイドフィレットが形成されることが判った。すなわち、W/V=0.9以下では、側面部への絶縁性接着剤の回り込みが少なくなり充分なサイドフィレットが形成されない。また、W/V=1.8以上では、導電性接着剤7の側方部にまで絶縁性接着剤8が広がり混合してしまうために、接続抵抗や接合強度が不安定になる。一方、W/V=1.0〜1.7の範囲の塗布量にすると、良好なサイドフィレットが形成され、かつ導電性接着剤7と絶縁性接着剤8との混合等も接続抵抗や接合強度に対して影響がない程度にしか生じない。この結果、接続抵抗を小さく、かつ接合強度を大きくできることが見出された。   The observation results of the coating amount W of the insulating adhesive 8 and the formation state of the side fillet 81 based on the volume V are shown in Table 1, and the range of W / V = 1.0 to 1.7 is shown. It was found that a good side fillet was formed. That is, when W / V = 0.9 or less, the insulating adhesive wraps around the side surface portion and a sufficient side fillet is not formed. Further, when W / V = 1.8 or more, the insulating adhesive 8 spreads and mixes to the side portion of the conductive adhesive 7, so that the connection resistance and the bonding strength become unstable. On the other hand, when the coating amount is in the range of W / V = 1.0 to 1.7, a good side fillet is formed, and the mixing of the conductive adhesive 7 and the insulating adhesive 8 is also caused by connection resistance and bonding. It occurs only to the extent that it does not affect the strength. As a result, it has been found that the connection resistance can be reduced and the bonding strength can be increased.

このようなサイドフィレット81を有する部品実装構造20について、接続抵抗値とシェア強度を求めた結果、接続抵抗値は実施の形態1の部品実装構造10とほとんど同じで、一箇所あたりの接続抵抗値の平均値は120mΩで、そのバラツキ(3σ/平均値)は1.8が得られた。また、実装部品5であるチップ抵抗のシェア強度の平均値は215gとなり、サイドフィレット81を設けることでシェア強度を大きくできることが確認できた。   As a result of obtaining the connection resistance value and the shear strength for the component mounting structure 20 having such a side fillet 81, the connection resistance value is almost the same as that of the component mounting structure 10 of the first embodiment, and the connection resistance value per place. The average value was 120 mΩ, and the variation (3σ / average value) was 1.8. Moreover, the average value of the shear strength of the chip resistor which is the mounted component 5 was 215 g, and it was confirmed that the shear strength can be increased by providing the side fillet 81.

つぎに、実施の形態1の部品実装構造10と実施の形態2の部品実装構造20とに対しての比較用として、導電性接着剤に比較して硬化温度が低く、硬化時間が短い絶縁性接着剤を使用する部品実装構造を作製した。すなわち、導電性接着剤として、硬化温度が115℃、硬化時間10分の特性を有する銀(Ag)系の導電性接着剤を用いる。この導電性接着剤は、導電性フィラーとして銀(Ag)微粒子を80重量%含み、樹脂成分はエポキシ系樹脂からなる。この導電性接着剤は実施の形態1と実施の形態2とで用いたものと同じであり、AgP80(味の素ファインテクノ(株)製)を用いた。また、絶縁性接着剤として、硬化温度が80℃、硬化時間1分の特性を有するものを使用する。この絶縁性接着剤としては、粘度調整フィラーを含有し、樹脂成分がエポキシ系樹脂からなるMR−8121K(パナソニックファクトリーソリューションズ社製)を用いた。   Next, for comparison with the component mounting structure 10 of the first embodiment and the component mounting structure 20 of the second embodiment, the insulating property is lower in curing temperature and shorter in curing time than the conductive adhesive. A component mounting structure using an adhesive was prepared. That is, as the conductive adhesive, a silver (Ag) -based conductive adhesive having a curing temperature of 115 ° C. and a curing time of 10 minutes is used. This conductive adhesive contains 80% by weight of silver (Ag) fine particles as a conductive filler, and the resin component is made of an epoxy resin. This conductive adhesive is the same as that used in the first and second embodiments, and AgP80 (manufactured by Ajinomoto Fine Techno Co., Ltd.) was used. Further, an insulating adhesive having a curing temperature of 80 ° C. and a curing time of 1 minute is used. As this insulating adhesive, MR-8121K (manufactured by Panasonic Factory Solutions) containing a viscosity adjusting filler and having a resin component made of an epoxy resin was used.

実施の形態1および実施の形態2とそれぞれ同様に配線基板上に、実装部品としてチップ抵抗を同様の条件で実装した。このようにして作製した比較用部品実装構造では、サイドフィレットありの場合もサイドフィレットなしの場合も同様に接続抵抗値の平均値は一箇所あたり320mΩで、そのバラツキ(3σ/平均値)は2.1であった。また、この比較用部品実装構造の場合のチップ抵抗のシェア強度は、サイドフィレットを設けない構成の場合には平均160gで、サイドフィレットを設けた構成の場合はW/V=1.0の条件で205gであった。   In the same manner as in the first and second embodiments, a chip resistor was mounted as a mounting component on the wiring board under the same conditions. In the comparative component mounting structure manufactured in this way, the average value of the connection resistance value is 320 mΩ per location with and without the side fillet, and the variation (3σ / average value) is 2 .1. In addition, in the case of this comparative component mounting structure, the shear strength of the chip resistance is 160 g on average in the configuration without the side fillet, and the condition of W / V = 1.0 in the configuration with the side fillet. It was 205g.

実施の形態1と実施の形態2の結果および比較用部品実装構造の結果とをまとめて(表2)に示す。   The results of the first embodiment and the second embodiment and the results of the comparative component mounting structure are shown together in Table 2.

Figure 2005223182
Figure 2005223182

これにより、本発明の実施の形態による部品実装構造10、20の方が、比較用部品実装構造よりも接続抵抗値が低く、かつそのバラツキが小さいことが確認された。さらに、実施の形態2の部品実装構造20の場合には、サイドフィレットの効果によりシェア強度も大幅に向上することも確認できた。   Thereby, it was confirmed that the component mounting structures 10 and 20 according to the embodiment of the present invention have lower connection resistance values and smaller variations than the comparative component mounting structures. Furthermore, in the case of the component mounting structure 20 of the second embodiment, it was also confirmed that the shear strength was greatly improved due to the effect of the side fillet.

なお、実施の形態1にかかる部品実装構造10と実施の形態2にかかる部品実装構造20とにおいては、導電性接着剤の硬化温度が絶縁性接着剤の硬化温度より低い材料の組合せとしたが、本発明はこれに限定されない。例えば、導電性接着剤の硬化温度と絶縁性接着剤の硬化温度とが同じであるが、導電性接着剤の硬化時間に対して絶縁性接着剤の硬化時間が長い材料の組合せとしてもよい。このような材料を用いて、実施の形態1の部品実装構造10または実施の形態2の部品実装構造20と同様な製造方法により作製してもよい。この材料の組合せを用いて仮固定した状態の実装部品が配置された配線基板を加熱装置内で加熱するときの温度プロファイルを図6に示す。   In the component mounting structure 10 according to the first embodiment and the component mounting structure 20 according to the second embodiment, a combination of materials in which the curing temperature of the conductive adhesive is lower than the curing temperature of the insulating adhesive is used. However, the present invention is not limited to this. For example, the curing temperature of the conductive adhesive and the curing temperature of the insulating adhesive may be the same, but a combination of materials in which the curing time of the insulating adhesive is longer than the curing time of the conductive adhesive may be used. Using such a material, it may be manufactured by the same manufacturing method as the component mounting structure 10 of the first embodiment or the component mounting structure 20 of the second embodiment. FIG. 6 shows a temperature profile when the wiring board on which the mounting component temporarily fixed using this combination of materials is arranged is heated in the heating device.

すなわち、図6に示すN点において加熱装置内に投入された配線基板は、導電性接着剤の硬化温度Rと絶縁性接着剤の硬化温度Sとが等しい温度であるので、加熱装置内において両方の硬化温度R、Sまで加熱されると、配線基板の端子部と実装部品の電極端子との間の導電性接着剤と、端子部間の絶縁性接着剤とはほぼ同時に硬化収縮を開始する。このため、導電性接着剤はそれ自身が硬化収縮すると同時に、絶縁性接着剤の硬化収縮による圧縮力も受ける。このため、導電フィラー同士が密に接触するようになり、導電パスが良好になり、接続抵抗を低減できる。導電性接着剤は硬化が完了する時間R3までは、絶縁性接着剤の硬化収縮による圧縮力を受けながら硬化するが、この時間R3においてはまだ絶縁性接着剤は硬化途中であり、この後も時間R4までは硬化収縮が続く。したがって、導電性接着剤は、その後も絶縁性接着剤の圧縮力を受けるので、さらに導電パスが良好になる。   That is, the wiring board put into the heating device at the point N shown in FIG. 6 has a temperature equal to the curing temperature R of the conductive adhesive and the curing temperature S of the insulating adhesive. When the curing temperature is heated to R and S, the conductive adhesive between the terminal portion of the wiring board and the electrode terminal of the mounted component and the insulating adhesive between the terminal portions start to cure and shrink almost simultaneously. . For this reason, the conductive adhesive itself undergoes curing shrinkage and at the same time receives a compressive force due to the curing shrinkage of the insulating adhesive. For this reason, the conductive fillers come into close contact with each other, the conductive path is improved, and the connection resistance can be reduced. The conductive adhesive is cured while receiving the compressive force due to the curing shrinkage of the insulating adhesive until the time R3 when the curing is completed. At this time R3, the insulating adhesive is still in the course of curing, and thereafter Curing shrinkage continues until time R4. Therefore, since the conductive adhesive is subsequently subjected to the compressive force of the insulating adhesive, the conductive path is further improved.

絶縁性接着剤の硬化が完了すると、配線基板は徐々に冷却された後、加熱装置から取り出せば製造プロセスは完了する。   When the curing of the insulating adhesive is completed, the wiring substrate is gradually cooled and then taken out of the heating device to complete the manufacturing process.

以上のように、導電性接着剤と絶縁性接着剤の硬化温度が同じであるが、硬化のための時間は絶縁性接着剤の方が長い材料の組合せとすれば、導電性接着剤は絶縁性接着剤による圧縮力を受けながら硬化収縮が生じるので導電パスが良好になり接続抵抗値とそのバラツキを小さくすることができる。   As described above, the conductive adhesive and the insulating adhesive have the same curing temperature. However, if the insulating adhesive is longer in curing time, the conductive adhesive is insulated. Since the curing shrinkage occurs while receiving the compressive force of the adhesive, the conductive path is improved, and the connection resistance value and its variation can be reduced.

また、実施の形態2の部品実装構造20と同様に実装部品の側面部分にサイドフィレットを形成する製造方法としてもよい。   Moreover, it is good also as a manufacturing method which forms a side fillet in the side part of a mounting component similarly to the component mounting structure 20 of Embodiment 2. FIG.

なお、導電性接着剤や絶縁性接着剤を含めた接着剤の一般的な特性および加熱装置の温度バラツキ等を考慮すると、導電性接着剤の硬化時間に対して絶縁性接着剤の硬化時間は5分以上長い材料の組合せとすることが望ましい。また、加熱装置は、絶縁性接着剤の硬化温度を少なくとも絶縁性接着剤の硬化が完了する時間だけ安定して維持するようにできることが望ましい。   In consideration of the general characteristics of adhesives including conductive adhesives and insulating adhesives, temperature variations of heating devices, etc., the curing time of insulating adhesives with respect to the curing time of conductive adhesives is It is desirable to use a combination of materials longer than 5 minutes. Further, it is desirable that the heating device can stably maintain the curing temperature of the insulating adhesive for at least the time when the curing of the insulating adhesive is completed.

なお、実施の形態1の部品実装構造10と実施の形態2の部品実装構造20においては、実装部品としてチップ抵抗を例として説明したが、本発明はこれに限定されない。すなわち、3つ以上の電極端子を有するチップ部品や多連チップ部品、あるいは端部に電極端子を有する半導体素子等の実装部品であっても同様の効果を得ることができる。   In the component mounting structure 10 of the first embodiment and the component mounting structure 20 of the second embodiment, the chip resistor has been described as an example of the mounted component, but the present invention is not limited to this. That is, the same effect can be obtained even with a chip component or a multiple chip component having three or more electrode terminals, or a mounting component such as a semiconductor element having an electrode terminal at an end.

本発明の部品実装構造およびその実装方法は、導電性接着剤と絶縁性接着を用いて実装部品を配線基板に実装することにより、接続抵抗値とそのバラツキが小さく、かつ接合強度を大きくできるので高信頼性の部品実装構造が得られる。したがって、種々の実装部品を配線基板上に実装してなる電子回路装置、特に耐熱性の比較的低い配線基板を利用する電子回路装置の分野に有用である。   In the component mounting structure and the mounting method of the present invention, since the mounting component is mounted on the wiring board using the conductive adhesive and the insulating adhesive, the connection resistance value and its variation are small, and the bonding strength can be increased. A highly reliable component mounting structure can be obtained. Therefore, the present invention is useful in the field of electronic circuit devices in which various mounting components are mounted on a wiring board, particularly electronic circuit devices that use a wiring board having relatively low heat resistance.

本発明の実施の形態1にかかる部品実装構造の部分断面図The fragmentary sectional view of the component mounting structure concerning Embodiment 1 of this invention 同実施の形態にかかる部品実装構造の部品実装方法を説明する主要工程の断面図Sectional drawing of the main process explaining the component mounting method of the component mounting structure concerning the embodiment 同実施の形態にかかる部品実装構造の部品実装方法において、加熱装置内での導電性接着剤と絶縁性接着剤との温度変化を示す図The figure which shows the temperature change of the conductive adhesive and insulating adhesive in a heating apparatus in the component mounting method of the component mounting structure concerning the embodiment 本発明の実施の形態2にかかる部品実装構造の外観斜視図External appearance perspective view of the component mounting structure concerning Embodiment 2 of this invention. 同実施の形態にかかる部品実装構造で、配線基板上に絶縁性接着剤を塗布するときの塗布量と塗布位置を説明するための図The figure for demonstrating the application quantity and application position when apply | coating an insulating adhesive agent on a wiring board with the component mounting structure concerning the embodiment 本発明の実施の形態1と実施の形態2とにかかる部品実装構造の実装方法の変形例で、導電性接着剤と絶縁性接着剤の硬化温度が同じであるが、硬化時間は絶縁性接着剤の方が長い材料の組合せの場合の配線基板を加熱するときの温度プロファイルを示す図In the modification of the mounting method of the component mounting structure according to the first embodiment and the second embodiment of the present invention, the curing temperature of the conductive adhesive and the insulating adhesive is the same, but the curing time is the insulating bonding The figure which shows the temperature profile when heating the wiring board in the case of a combination of materials with longer agents 従来の部品実装構造および実装方法を説明する主要工程の部分断面図Partial sectional view of the main process to explain the conventional component mounting structure and mounting method 同部品実装構造および実装方法において、配線基板を加熱装置で加熱するときの温度プロファイルを示す図The figure which shows the temperature profile when a wiring board is heated with a heating device in the same component mounting structure and mounting method

符号の説明Explanation of symbols

1,100 配線基板
2,200 端子部
5,500 実装部品
6,510 電極端子
7,300 導電性接着剤
8,400 絶縁性接着剤
10,20 部品実装構造
21 配線パターン
81 サイドフィレット
520 対向面
DESCRIPTION OF SYMBOLS 1,100 Wiring board 2,200 Terminal part 5,500 Mounting component 6,510 Electrode terminal 7,300 Conductive adhesive 8,400 Insulating adhesive 10,20 Component mounting structure 21 Wiring pattern 81 Side fillet 520 Opposite surface

Claims (9)

端子部を有する配線パターンが少なくとも表面に形成された配線基板と、
前記配線パターンの前記端子部と電気的に接続する電極端子を有する実装部品と、
前記実装部品の前記電極端子と前記配線基板の前記端子部とをそれぞれ接着固定するとともに導通接続する導電性接着剤と、
前記実装部品の前記電極端子間において前記実装部品と前記配線基板とを接着固定する絶縁性接着剤とを有し、
前記絶縁性接着剤の硬化温度が前記導電性接着剤の硬化温度以上または前記絶縁性接着剤の硬化時間が前記導電性接着剤の硬化時間以上の少なくとも一方の条件を有する材料の組合せとしたことを特徴とする部品実装構造。
A wiring board having a wiring pattern having terminal portions formed at least on the surface;
A mounting component having an electrode terminal electrically connected to the terminal portion of the wiring pattern;
A conductive adhesive that bonds and fixes the electrode terminal of the mounting component and the terminal portion of the wiring board, respectively;
An insulating adhesive for bonding and fixing the mounting component and the wiring board between the electrode terminals of the mounting component;
The curing temperature of the insulating adhesive is a combination of materials having at least one condition that the curing temperature of the conductive adhesive is equal to or higher than the curing temperature of the conductive adhesive or the curing time of the insulating adhesive is equal to or higher than the curing time of the conductive adhesive. Component mounting structure characterized by
前記導電性接着剤と前記絶縁性接着剤とは、前記導電性接着剤の硬化温度領域と前記絶縁性接着剤の硬化温度領域および前記導電性接着剤の硬化時間と前記絶縁性接着剤の硬化時間の少なくとも一方が一部重なる組合せの材料としたことを特徴とする請求項1に記載の部品実装構造。 The conductive adhesive and the insulating adhesive include a curing temperature region of the conductive adhesive, a curing temperature region of the insulating adhesive, a curing time of the conductive adhesive, and curing of the insulating adhesive. 2. The component mounting structure according to claim 1, wherein at least one part of the time is a combination material partially overlapping. 前記絶縁性接着剤が、前記実装部品の前記配線基板と対向する面上と側面部とに形成されてサイドフィレットを構成していることを特徴とする請求項1または請求項2に記載の部品実装構造。 3. The component according to claim 1, wherein the insulating adhesive is formed on a surface and a side surface portion of the mounting component facing the wiring substrate to form a side fillet. 4. Mounting structure. 前記絶縁性接着剤の塗布量が、前記電極端子と前記端子部とを電気的に接続する前記導電性接着剤の厚みおよび前記配線基板の前記端子部の厚みを加えた厚み、前記実装部品の前記配線基板に対向する面の幅、および前記端子部の間の長さで規定される空間領域部の容積の1.0〜1.7倍に相当する量であることを特徴とする請求項3に記載の部品実装構造。 The coating amount of the insulating adhesive is a thickness obtained by adding the thickness of the conductive adhesive that electrically connects the electrode terminal and the terminal portion and the thickness of the terminal portion of the wiring board. The amount corresponding to 1.0 to 1.7 times the volume of the space region defined by the width of the surface facing the wiring board and the length between the terminal portions. 3. The component mounting structure according to 3. 端子部を有する配線パターンが少なくとも表面に形成された配線基板の前記配線パターンの前記端子部上に導電性接着剤を塗布する工程と、
前記端子部間の前記配線基板面上に、前記導電性接着剤の硬化温度以上または硬化時間以上の少なくとも一方の条件を有する絶縁性接着剤を塗布する工程と、
前記導電性接着剤と実装部品の電極端子とが接触し、前記絶縁性接着剤と前記実装部品の前記電極端子間の前記配線基板と対向する面とが接触するように前記実装部品を前記配線基板上に配置する工程と、
前記実装部品が配置された前記配線基板を前記絶縁性接着剤の硬化温度まで加熱して、前記導電性接着剤の硬化に引き続いて前記絶縁性接着剤を硬化させる工程とを具備することを特徴とする部品実装方法。
Applying a conductive adhesive on the terminal part of the wiring pattern of the wiring board on which the wiring pattern having the terminal part is formed at least on the surface;
Applying an insulating adhesive having at least one condition of a curing temperature or a curing time or more of the conductive adhesive on the wiring board surface between the terminal parts;
Wiring the mounting component so that the conductive adhesive contacts the electrode terminal of the mounting component, and the insulating adhesive contacts the surface of the mounting component between the electrode terminals facing the wiring substrate. Placing on the substrate;
Heating the wiring board on which the mounting component is disposed to a curing temperature of the insulating adhesive, and curing the insulating adhesive following the curing of the conductive adhesive. Component mounting method.
前記導電性接着剤と前記絶縁性接着剤は、前記導電性接着剤の硬化温度領域と前記絶縁性接着剤の硬化温度領域および前記導電性接着剤の硬化時間と前記絶縁性接着剤の硬化時間の少なくとも一方が一部重なる特性を有する材料を用いることを特徴とする請求項5に記載の部品実装方法。 The conductive adhesive and the insulating adhesive include a curing temperature region of the conductive adhesive, a curing temperature region of the insulating adhesive, a curing time of the conductive adhesive, and a curing time of the insulating adhesive. The component mounting method according to claim 5, wherein a material having a characteristic that at least one of the components partially overlaps is used. 前記絶縁性接着剤の塗布工程において、前記絶縁性接着剤の塗布量が前記電極端子と前記端子部とを電気的に接続する前記導電性接着剤の厚みおよび前記配線基板の前記端子部の厚みを加えた厚み、前記実装部品の前記配線基板に対向する面の幅、および前記端子部の間の長さで規定される空間領域部の容積の1.0〜1.7倍に相当する量を塗布することを特徴とする請求項5または請求項6に記載の部品実装方法。 In the coating step of the insulating adhesive, the coating amount of the insulating adhesive is such that the thickness of the conductive adhesive that electrically connects the electrode terminal and the terminal portion and the thickness of the terminal portion of the wiring board. An amount corresponding to 1.0 to 1.7 times the volume of the space region defined by the thickness of the mounting component, the width of the surface of the mounting component facing the wiring board, and the length between the terminal portions The component mounting method according to claim 5, wherein the component mounting method is applied. 前記導電性接着剤と前記絶縁性接着剤とは、前記導電性接着剤の硬化温度が前記絶縁性接着剤の硬化温度より低く、かつ前記導電性接着剤の硬化時間が前記絶縁性接着剤の硬化時間以下である組合せの材料を用いることを特徴とする請求項5または請求項6に記載の部品実装方法。 The conductive adhesive and the insulating adhesive are such that the curing temperature of the conductive adhesive is lower than the curing temperature of the insulating adhesive, and the curing time of the conductive adhesive is that of the insulating adhesive. The component mounting method according to claim 5 or 6, wherein a combination of materials having a curing time or less is used. 前記導電性接着剤と前記絶縁性接着剤とは、硬化温度が同じで、かつ前記導電性接着剤に比べて前記絶縁性接着剤の硬化時間が長い組合せの材料を用いることを特徴とする請求項5または請求項6に記載の部品実装方法。 The conductive adhesive and the insulating adhesive use a combination of materials having the same curing temperature and a longer curing time of the insulating adhesive than the conductive adhesive. Item mounting method of Claim 5 or Claim 6.
JP2004030345A 2004-02-06 2004-02-06 Component mounting structure and component mounting method Expired - Fee Related JP4566573B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004030345A JP4566573B2 (en) 2004-02-06 2004-02-06 Component mounting structure and component mounting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004030345A JP4566573B2 (en) 2004-02-06 2004-02-06 Component mounting structure and component mounting method

Publications (2)

Publication Number Publication Date
JP2005223182A true JP2005223182A (en) 2005-08-18
JP4566573B2 JP4566573B2 (en) 2010-10-20

Family

ID=34998562

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004030345A Expired - Fee Related JP4566573B2 (en) 2004-02-06 2004-02-06 Component mounting structure and component mounting method

Country Status (1)

Country Link
JP (1) JP4566573B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015082637A (en) * 2013-10-24 2015-04-27 富士通株式会社 Method of manufacturing component assembly and positioning device
JP2016143805A (en) * 2015-02-03 2016-08-08 ファナック株式会社 Printed wiring board suppressing mounting failure of flow soldering surface mounting component

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015082637A (en) * 2013-10-24 2015-04-27 富士通株式会社 Method of manufacturing component assembly and positioning device
CN104551589A (en) * 2013-10-24 2015-04-29 富士通株式会社 Component assembly manufacturing method, positioning apparatus, and component assembly
JP2016143805A (en) * 2015-02-03 2016-08-08 ファナック株式会社 Printed wiring board suppressing mounting failure of flow soldering surface mounting component

Also Published As

Publication number Publication date
JP4566573B2 (en) 2010-10-20

Similar Documents

Publication Publication Date Title
WO2001086716A1 (en) Semiconductor device mounting circuit board, method of producing the same, and method of producing mounting structure using the same
KR100563890B1 (en) Electrical connecting device and electrical connecting method
JP2004363434A (en) Electronic circuit device and its manufacturing method
JP4228677B2 (en) Circuit board
JP4846633B2 (en) Manufacturing method of component-embedded substrate
JP2007335701A (en) Method of manufacturing multilayer substrate
JPWO2008047918A1 (en) Electronic device package structure and package manufacturing method
TWI461118B (en) Electronic-component-mounted wiring substrate and method of manufacturing the same
JP4939916B2 (en) Multilayer printed wiring board and manufacturing method thereof
JP2000195584A (en) Electrical connection device and electrical connection method
JP5036397B2 (en) Manufacturing method of chip embedded substrate
JPH1116949A (en) Acf-bonding structure
JP2002290028A (en) Connection structure and method for printed wiring board
JP2005026573A (en) Manufacturing method of module with built-in component
JP4566573B2 (en) Component mounting structure and component mounting method
WO2006098294A1 (en) Method for mounting electronic component, circuit board with electronic component mounted thereon, and electronic equipment with said circuit board mounted thereon
JP2002260444A (en) Conductive paste, printed wiring board, method of making the same, and semi-conductor device and method of making the same
JP2001217548A (en) Method of manufacturing wiring board
JPH05129759A (en) Manufacture of printed wiring board
TW201104819A (en) Ball grid array printed circuit board, packaging structure and fabricating methid thereof
JP3072602U (en) Flexible PCB connection structure
JP4026267B2 (en) Electronic component mounting structure and mounting method
JP2000174066A (en) Method of mounting semiconductor device
JP2002158446A (en) Flexible board element and multilayer flexible wiring board
JPH0543311B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20060314

Free format text: JAPANESE INTERMEDIATE CODE: A621

RD01 Notification of change of attorney

Effective date: 20060412

Free format text: JAPANESE INTERMEDIATE CODE: A7421

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071009

A521 Written amendment

Effective date: 20071210

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080115

A02 Decision of refusal

Effective date: 20080415

Free format text: JAPANESE INTERMEDIATE CODE: A02

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080616

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Effective date: 20080623

Free format text: JAPANESE INTERMEDIATE CODE: A911

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20080711

RD01 Notification of change of attorney

Effective date: 20091118

Free format text: JAPANESE INTERMEDIATE CODE: A7421

A521 Written amendment

Effective date: 20100609

Free format text: JAPANESE INTERMEDIATE CODE: A523

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100804

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20130813

LAPS Cancellation because of no payment of annual fees