Nothing Special   »   [go: up one dir, main page]

JP2005206750A - Organic semiconductive material, organic transistor, field-effect transistor, switching element, and five-membered heterocyclic compound - Google Patents

Organic semiconductive material, organic transistor, field-effect transistor, switching element, and five-membered heterocyclic compound Download PDF

Info

Publication number
JP2005206750A
JP2005206750A JP2004016906A JP2004016906A JP2005206750A JP 2005206750 A JP2005206750 A JP 2005206750A JP 2004016906 A JP2004016906 A JP 2004016906A JP 2004016906 A JP2004016906 A JP 2004016906A JP 2005206750 A JP2005206750 A JP 2005206750A
Authority
JP
Japan
Prior art keywords
group
organic
transistor
compound
general formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004016906A
Other languages
Japanese (ja)
Inventor
Tatsuo Tanaka
達夫 田中
Katsura Hirai
桂 平井
Chiyoko Takemura
千代子 竹村
Hiroshi Kita
弘志 北
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP2004016906A priority Critical patent/JP2005206750A/en
Publication of JP2005206750A publication Critical patent/JP2005206750A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Thin Film Transistor (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)
  • Nitrogen And Oxygen Or Sulfur-Condensed Heterocyclic Ring Systems (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an organic semiconductive material which has a high carrier mobility and an excellent shelf stability, and to provide an organic transistor, a field-effect transistor and a switching transistor each using this organic semiconductive material. <P>SOLUTION: The organic semiconductive material contains a compound having a partial structure expressed by general formula (1), (2) or (3), (wherein A<SP>1</SP>through A<SP>4</SP>are each a carbon atom, a nitrogen atom, a sulfur atom or an oxygen atom; A<SP>5</SP>through A<SP>16</SP>are each a carbon atom or a nitrogen atom), and the partial structure expressed by general formula (1), (2) or (3) may have a substituent, but a five-membered ring comprising A<SP>1</SP>and A<SP>2</SP>and a five-membered ring comprising A<SP>3</SP>and A<SP>4</SP>have the same structure with the relation of a point symmetry. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は有機半導体材料、それを用いた有機トランジスタ及び電界効果トランジスタ、及び該有機トランジスタまたは該電界効果トランジスタを用いるスイッチング素子に関する。   The present invention relates to an organic semiconductor material, an organic transistor and a field effect transistor using the material, and the organic transistor or a switching element using the field effect transistor.

情報端末の普及に伴い、コンピュータ用のディスプレイとしてフラットパネルディスプレイに対するニーズが高まっている。また、更に情報化の進展に伴い、従来紙媒体で提供されていた情報が電子化されて提供される機会が増え、薄くて軽い、手軽に持ち運びが可能なモバイル用表示媒体として、電子ペーパーあるいはデジタルペーパーへのニーズも高まりつつある。   With the widespread use of information terminals, there is an increasing need for flat panel displays as computer displays. In addition, with the progress of computerization, information that has been provided on paper media in the past has become more and more electronically provided. As a mobile display medium that is thin, light, and easy to carry, electronic paper or There is a growing need for digital paper.

一般に平板型のディスプレイ装置においては液晶、有機EL、電気泳動などを利用した素子を用いて表示媒体を形成している。またこうした表示媒体では画面輝度の均一性や画面書き換え速度などを確保するために、画像駆動素子としてアクティブ駆動素子(TFT素子)を用いる技術が主流になっている。例えば、通常のコンピュータディスプレイではガラス基板上にこれらTFT素子を形成し、液晶、有機EL素子等が封止されている。   In general, in a flat display device, a display medium is formed using an element utilizing liquid crystal, organic EL, electrophoresis, or the like. In such display media, a technique using an active drive element (TFT element) as an image drive element has become mainstream in order to ensure uniformity of screen brightness, screen rewrite speed, and the like. For example, in a normal computer display, these TFT elements are formed on a glass substrate, and liquid crystal, organic EL elements, etc. are sealed.

ここでTFT素子には主にa−Si(アモルファスシリコン)、p−Si(ポリシリコン)などの半導体を用いることができ、これらのSi半導体(必要に応じて金属膜も)を多層化し、ソース、ドレイン、ゲート電極を基板上に順次形成していくことでTFT素子が製造される。こうしたTFT素子の製造には通常、スパッタリング、その他の真空系の製造プロセスが必要とされる。   Here, semiconductors such as a-Si (amorphous silicon) and p-Si (polysilicon) can be mainly used for the TFT element, and these Si semiconductors (and metal films as necessary) are formed into a multilayer structure. The TFT element is manufactured by sequentially forming the drain and gate electrodes on the substrate. The manufacture of such a TFT element usually requires sputtering or other vacuum manufacturing processes.

しかしながら、このようなTFT素子の製造では真空チャンバーを含む真空系の製造プロセスを何度も繰り返して各層を形成せざるを得ず、装置コスト、ランニングコストが非常に膨大なものとなっていた。例えば、TFT素子では通常、それぞれの層の形成のために、真空蒸着、ドープ、フォトリソグラフ、現像等の工程を何度も繰り返す必要があり、何十もの工程を経て素子を基板上に形成している。スイッチング動作の要となる半導体部分に関してもp型、n型等、複数種類の半導体層を積層している。こうした従来のSi半導体による製造方法ではディスプレイ画面の大型化のニーズに対し、真空チャンバー等の製造装置の大幅な設計変更が必要とされるなど、設備の変更が容易ではない。   However, in the manufacture of such a TFT element, the vacuum system manufacturing process including the vacuum chamber must be repeated many times to form each layer, and the apparatus cost and running cost have become enormous. For example, in a TFT element, it is usually necessary to repeat processes such as vacuum deposition, dope, photolithography, development, etc. many times to form each layer, and the element is formed on a substrate through tens of steps. ing. A plurality of types of semiconductor layers, such as p-type and n-type, are also stacked on the semiconductor portion that is the key to the switching operation. In such a conventional manufacturing method using a Si semiconductor, it is not easy to change the equipment, for example, a design change of a manufacturing apparatus such as a vacuum chamber is required in response to the need for a large display screen.

また、このような従来からのSi材料を用いたTFT素子の形成には高い温度の工程が含まれるため、基板材料には工程温度に耐える材料であるという制限が加わることになる。このため実際上はガラスを用いざるをえず、先に述べた電子ペーパーあるいはデジタルペーパーといった薄型ディスプレイを、こうした従来知られたTFT素子を利用して構成した場合、そのディスプレイは重く、柔軟性に欠け、落下の衝撃で割れる可能性のある製品となってしまう。ガラス基板上にTFT素子を形成することに起因するこれらの特徴は、情報化の進展に伴う手軽な携行用薄型ディスプレイへのニーズを満たすにあたり望ましくないものである。   In addition, since the formation of such a conventional TFT element using a Si material includes a process at a high temperature, the substrate material is restricted to be a material that can withstand the process temperature. Therefore, in practice, glass must be used, and when the above-described thin display such as electronic paper or digital paper is configured using such a conventionally known TFT element, the display is heavy and flexible. Products that may break due to chipping or dropping impact. These characteristics resulting from the formation of TFT elements on a glass substrate are undesirable in satisfying the need for an easy-to-carry-type thin display accompanying the progress of computerization.

一方、近年において高い電荷輸送性を有する有機化合物として、有機半導体材料の研究が精力的に進められている。これらの化合物は有機EL素子用の電荷輸送性材料のほか、例えば非特許文献1等において論じられているような有機レーザー発振素子や、例えば非特許文献2等、多数の論文にて報告されている有機薄膜トランジスタへの応用が期待されている。これら有機半導体デバイスを実現できれば、比較的低い温度での真空ないし低圧蒸着による製造プロセスの簡易化や、更にはその分子構造を適切に改良することによって、溶液化できる半導体を得る可能性があると考えられ、有機半導体溶液をインク化することによりインクジェット方式を含む印刷法による製造も考えられる。これらの低温プロセスによる製造は、従来のSi系半導体材料については不可能と考えられてきたが、有機半導体を用いたデバイスにはその可能性があり、したがって前述の基板耐熱性に関する制限が緩和され、透明樹脂基板上にも例えばTFT素子を形成できる可能性がある。透明樹脂基板上にTFT素子を形成し、そのTFT素子により表示材料を駆動させることができれば、ディスプレイを従来のものよりも軽く、柔軟性に富み、落としても割れない(もしくは非常に割れにくい)ディスプレイとすることができるであろう。   On the other hand, in recent years, organic semiconductor materials have been energetically studied as organic compounds having high charge transport properties. These compounds have been reported in many papers such as organic laser oscillation elements as discussed in Non-Patent Document 1, etc., and Non-Patent Document 2, for example, in addition to charge transport materials for organic EL elements. Application to organic thin film transistors is expected. If these organic semiconductor devices can be realized, there is a possibility of obtaining a semiconductor that can be made into a solution by simplifying the manufacturing process by vacuum or low-pressure deposition at a relatively low temperature and further improving the molecular structure appropriately. It is conceivable that the organic semiconductor solution is made into an ink and manufactured by a printing method including an ink jet method. Manufacturing by these low-temperature processes has been considered impossible for conventional Si-based semiconductor materials, but there is a possibility for devices using organic semiconductors, so the above-mentioned restrictions on substrate heat resistance are relaxed. For example, a TFT element may be formed on the transparent resin substrate. If a TFT element is formed on a transparent resin substrate and the display material can be driven by the TFT element, the display is lighter and more flexible than conventional ones, and will not crack even if dropped (or very difficult to break) It could be a display.

しかしながら、こうしたTFT素子を実現するための有機半導体としてこれまでに検討されてきたのは、ペンタセンやテトラセンといったアセン類(例えば、特許文献1参照。)、鉛フタロシアニンを含むフタロシアニン類、ペリレンやそのテトラカルボン酸誘導体といった低分子化合物(例えば、特許文献2参照。)や、α−チエニールもしくはセクシチオフェンと呼ばれるチオフェン6量体を代表例とする芳香族オリゴマー(例えば、特許文献3参照。)、ナフタレン、アントラセンに5員の複素芳香環が対称に縮合した化合物(例えば、特許文献4参照。)、モノ、オリゴ及びポリジチエノピリジン(例えば、特許文献5参照。)、更にはポリチオフェン、ポリチエニレンビニレン、ポリ−p−フェニレンビニレンといった共役高分子など限られた種類の化合物(例えば、非特許文献1〜3参照。)でしかなく、高いキャリア移動度を示す新規な電荷輸送性材料を用いた半導体性組成物の開発が待望されていた。   However, organic semiconductors for realizing such TFT elements have been studied so far as acenes such as pentacene and tetracene (for example, see Patent Document 1), phthalocyanines including lead phthalocyanine, perylene and its tetra. Low molecular weight compounds such as carboxylic acid derivatives (for example, see Patent Document 2), aromatic oligomers typically represented by thiophene hexamers called α-thienyl or sexithiophene (for example, see Patent Document 3), naphthalene, Compounds in which a 5-membered heteroaromatic ring is condensed symmetrically on anthracene (for example, see Patent Document 4), mono, oligo and polydithienopyridines (for example, see Patent Document 5), polythiophene, polythienylene vinylene, poly -Conjugated polymers such as p-phenylene vinylene Etc. limited number of compounds (e.g., see Non-Patent Documents 1 to 3.) Have only in the development of the semiconductor composition using the novel charge-transporting material showing high carrier mobility has been awaited.

また、特開2003−292588号公報、米国特許出願公開第2003/136958号明細書、同2003/160230号明細書、同2003/164495号明細書では「マイクロエレクトロニクス用の集積回路論理素子にポリマーTFTを用いると、その機械的耐久性が大きく向上し、その使用可能寿命が長くなる。しかし半導体ポリチオフェン類の多くは、周囲の酸素によって酸化的にドープされ、導電率が増大してしまうため空気に触れると安定ではないと考えられる。この結果、これらの材料から製造したデバイスのオフ電流は大きくなり、そのため電流オン/オフ比は小さくなる。従ってこれらの材料の多くは、材料加工とデバイス製造の間に環境酸素を排除して酸化的ドーピングを起こさない、あるいは最小とするよう厳重に注意しなければならない。この予防措置は製造コストを押し上げるため、特に大面積デバイスのための、アモルファスシリコン技術に代わる経済的な技術としてのある種のポリマーTFTの魅力が削がれてしまう。これら及びその他の欠点は、本発明の実施の形態において回避され、あるいは最小となる。従って、酸素に対して強い対抗性を有し、比較的高い電流オン/オフ比を示すエレクトロニックデバイスが望まれている」との記載があり、その解決手段が提案されているが、改善のレベルは満足できるものではなく、更なる改良が望まれている。
特開平5−55568号公報 特開平5−190877号公報 特開平8−264805号公報 特開平11−195790号公報 特開2003−155289号公報 『サイエンス』(Science)誌289巻、599ページ(2000) 『ネイチャー』(Nature)誌403巻、521ページ(2000) 『アドバンスド・マテリアル』(Advanced Material)誌、2002年、第2号、99ページ
In addition, in Japanese Patent Application Laid-Open No. 2003-292588, US Patent Application Publication Nos. 2003/136958, 2003/160230, and 2003/164495, “integrated circuit logic element for microelectronics and polymer TFT However, many of the semiconductor polythiophenes are oxidatively doped with ambient oxygen, which increases the conductivity, and thus increases the electrical conductivity. As a result, devices made from these materials have higher off-currents, and therefore lower current on / off ratios, so many of these materials are used in material processing and device manufacturing. To eliminate or minimize oxidative doping by eliminating environmental oxygen in between This precautionary measure raises the cost of manufacturing, and the appeal of certain polymer TFTs as an economical alternative to amorphous silicon technology, especially for large area devices, is diminished. These and other disadvantages are avoided or minimized in embodiments of the present invention, so an electronic device with strong resistance to oxygen and a relatively high current on / off ratio is desired. However, the level of improvement is not satisfactory, and further improvement is desired.
JP-A-5-55568 Japanese Patent Laid-Open No. 5-190877 JP-A-8-264805 JP-A-11-195790 JP 2003-155289 A “Science” 289, 599 (2000) “Nature” 403, 521 (2000) Advanced Material, 2002, No. 2, page 99

本発明の目的は、キャリア移動度が高く、保存性の優れた有機半導体材料、これを用いた有機トランジスタ、電界効果トランジスタ及びスイッチング素子を提供することである。   An object of the present invention is to provide an organic semiconductor material having high carrier mobility and excellent storage stability, and an organic transistor, a field effect transistor and a switching element using the organic semiconductor material.

本発明の上記目的は、下記により達成される。   The above object of the present invention is achieved by the following.

(請求項1)
下記一般式(1)、(2)または(3)で示される部分構造を有する化合物を含有することを特徴とする有機半導体材料。
(Claim 1)
An organic semiconductor material comprising a compound having a partial structure represented by the following general formula (1), (2) or (3).

Figure 2005206750
Figure 2005206750

(式中、A1〜A4は炭素原子、窒素原子、硫黄原子または酸素原子を表し、A5〜A16は炭素原子または窒素原子を表し、一般式(1)、(2)または(3)で示される部分構造には置換基を有してもよい。但し、A1とA2により形成される5員環とA3とA4により形成される5員環は点対称の関係にある同一の構造である。)
(請求項2)
前記一般式(1)、(2)または(3)で示される部分構造を有する化合物がポリマーであることを特徴とする請求項1に記載の有機半導体材料。
(Wherein, A 1 to A 4 are carbon atoms, nitrogen atom, a sulfur atom or an oxygen atom, A 5 to A 16 represents a carbon atom or a nitrogen atom, the general formula (1), (2) or (3 ) May have a substituent, provided that the 5-membered ring formed by A 1 and A 2 and the 5-membered ring formed by A 3 and A 4 are in a point-symmetric relationship. It is a certain same structure.)
(Claim 2)
The organic semiconductor material according to claim 1, wherein the compound having a partial structure represented by the general formula (1), (2) or (3) is a polymer.

(請求項3)
請求項1または2に記載の有機半導体材料を活性層に用いることを特徴とする有機トランジスタ。
(Claim 3)
An organic transistor using the organic semiconductor material according to claim 1 for an active layer.

(請求項4)
有機電荷輸送性材料と該有機電荷輸送性材料に直接または間接に接するゲート電極から構成され、該ゲート電極及び該有機電荷輸送性材料間に電荷を印加することで、該有機電荷輸送性材料中の電流を制御する電界効果トランジスタにおいて、該有機電荷輸送性材料が請求項1または2に記載の有機半導体材料であることを特徴とする電界効果トランジスタ。
(Claim 4)
An organic charge transporting material and a gate electrode that is in direct contact with or indirectly in contact with the organic charge transporting material, and by applying a charge between the gate electrode and the organic charge transporting material, A field effect transistor for controlling the current of the organic charge transport material, wherein the organic charge transporting material is the organic semiconductor material according to claim 1.

(請求項5)
請求項3に記載の有機トランジスタまたは請求項4に記載の電界効果トランジスタを用いることを特徴とするスイッチング素子。
(Claim 5)
A switching element comprising the organic transistor according to claim 3 or the field effect transistor according to claim 4.

(請求項6)
請求項1に記載の一般式(1)、(2)または(3)で示される部分構造を有する化合物。
(Claim 6)
A compound having a partial structure represented by the general formula (1), (2) or (3) according to claim 1.

本発明により、キャリア移動度が高く、保存性の優れた有機半導体材料、これを用いた有機トランジスタ、電界効果トランジスタ及びスイッチング素子を提供することができた。また、本発明の有機トランジスタはゲート電圧を変化させた際の最大電流値と最小電流値の比、即ちON/OFF比を大きくすることができた。   According to the present invention, an organic semiconductor material having high carrier mobility and excellent storability, an organic transistor, a field effect transistor and a switching element using the organic semiconductor material can be provided. Further, the organic transistor of the present invention was able to increase the ratio between the maximum current value and the minimum current value when the gate voltage was changed, that is, the ON / OFF ratio.

以下、本発明について詳述する。   Hereinafter, the present invention will be described in detail.

一般式(1)、(2)または(3)で示される部分構造において、点線は単結合、または二重結合を表す。   In the partial structure represented by the general formula (1), (2) or (3), the dotted line represents a single bond or a double bond.

一般式(1)、(2)または(3)で示される部分構造には置換基を有してもよく、好ましい置換基の例としては、アルキル基(例えば、メチル基、エチル基、プロピル基、イソプロピル基、tert−ブチル基、ペンチル基、ヘキシル基、オクチル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基等)、シクロアルキル基(例えば、シクロペンチル基、シクロヘキシル基等)、アルケニル基(例えば、ビニル基、アリル基等)、アルキニル基(例えば、エチニル基、プロパルギル基等)、アリール基(例えば、フェニル基、ナフチル基等)、ヘテロアリール基(例えば、フリル基、チエニル基、ピリジル基、ピリダジル基、ピリミジル基、ピラジル基、トリアジル基、イミダゾリル基、ピラゾリル基、チアゾリル基、ベンゾイミダゾリル基、ベンゾオキサゾリル基、キナゾリル基、フタラジル基等)、ヘテロ環基(例えば、ピロリジル基、イミダゾリジル基、モルホリル基、オキサゾリジル基等)、アルコキシ基(例えば、メトキシ基、エトキシ基、プロピルオキシ基、ペンチルオキシ基、ヘキシルオキシ基、オクチルオキシ基、ドデシルオキシ基等)、シクロアルコキシ基(例えば、シクロペンチルオキシ基、シクロヘキシルオキシ基等)、アリールオキシ基(例えば、フェノキシ基、ナフチルオキシ基等)、アルキルチオ基(例えば、メチルチオ基、エチルチオ基、プロピルチオ基、ペンチルチオ基、ヘキシルチオ基、オクチルチオ基、ドデシルチオ基等)、シクロアルキルチオ基(例えば、シクロペンチルチオ基、シクロヘキシルチオ基等)、アリールチオ基(例えば、フェニルチオ基、ナフチルチオ基等)、アルコキシカルボニル基(例えば、メチルオキシカルボニル基、エチルオキシカルボニル基、ブチルオキシカルボニル基、オクチルオキシカルボニル基、ドデシルオキシカルボニル基等)、アリールオキシカルボニル基(例えば、フェニルオキシカルボニル基、ナフチルオキシカルボニル基等)、スルファモイル基(例えば、アミノスルホニル基、メチルアミノスルホニル基、ジメチルアミノスルホニル基、ブチルアミノスルホニル基、ヘキシルアミノスルホニル基、シクロヘキシルアミノスルホニル基、オクチルアミノスルホニル基、ドデシルアミノスルホニル基、フェニルアミノスルホニル基、ナフチルアミノスルホニル基、2−ピリジルアミノスルホニル基等)、アシル基(例えば、アセチル基、エチルカルボニル基、プロピルカルボニル基、ペンチルカルボニル基、シクロヘキシルカルボニル基、オクチルカルボニル基、2−エチルヘキシルカルボニル基、ドデシルカルボニル基、フェニルカルボニル基、ナフチルカルボニル基、ピリジルカルボニル基等)、アシルオキシ基(例えば、アセチルオキシ基、エチルカルボニルオキシ基、ブチルカルボニルオキシ基、オクチルカルボニルオキシ基、ドデシルカルボニルオキシ基、フェニルカルボニルオキシ基等)、アミド基(例えば、メチルカルボニルアミノ基、エチルカルボニルアミノ基、ジメチルカルボニルアミノ基、プロピルカルボニルアミノ基、ペンチルカルボニルアミノ基、シクロヘキシルカルボニルアミノ基、2−エチルヘキシルカルボニルアミノ基、オクチルカルボニルアミノ基、ドデシルカルボニルアミノ基、フェニルカルボニルアミノ基、ナフチルカルボニルアミノ基等)、カルバモイル基(例えば、アミノカルボニル基、メチルアミノカルボニル基、ジメチルアミノカルボニル基、プロピルアミノカルボニル基、ペンチルアミノカルボニル基、シクロヘキシルアミノカルボニル基、オクチルアミノカルボニル基、2−エチルヘキシルアミノカルボニル基、ドデシルアミノカルボニル基、フェニルアミノカルボニル基、ナフチルアミノカルボニル基、2−ピリジルアミノカルボニル基等)、ウレイド基(例えば、メチルウレイド基、エチルウレイド基、ペンチルウレイド基、シクロヘキシルウレイド基、オクチルウレイド基、ドデシルウレイド基、フェニルウレイド基、ナフチルウレイド基、2−ピリジルアミノウレイド基等)、スルフィニル基(例えば、メチルスルフィニル基、エチルスルフィニル基、ブチルスルフィニル基、シクロヘキシルスルフィニル基、2−エチルヘキシルスルフィニル基、ドデシルスルフィニル基、フェニルスルフィニル基、ナフチルスルフィニル基、2−ピリジルスルフィニル基等)、アルキルスルホニル基(例えば、メチルスルホニル基、エチルスルホニル基、ブチルスルホニル基、シクロヘキシルスルホニル基、2−エチルヘキシルスルホニル基、ドデシルスルホニル基等)、アリールスルホニル基(例えば、フェニルスルホニル基、ナフチルスルホニル基、2−ピリジルスルホニル基等)、アミノ基(例えば、アミノ基、エチルアミノ基、ジメチルアミノ基、ブチルアミノ基、シクロペンチルアミノ基、2−エチルヘキシルアミノ基、ドデシルアミノ基、アニリノ基、ナフチルアミノ基、2−ピリジルアミノ基等)、ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子等)、フッ化炭化水素基(例えば、フルオロメチル基、トリフルオロメチル基、ペンタフルオロエチル基、ペンタフルオロフェニル基等)、シアノ基、シリル基(例えば、トリメチルシリル基、トリイソプロピルシリル基、トリフェニルシリル基、フェニルジエチルシリル基等)等が挙げられ、これらの置換基は上記の置換基によって更に置換されていても、複数が互いに結合して環を形成していてもよい。   The partial structure represented by the general formula (1), (2) or (3) may have a substituent. Examples of preferable substituents include an alkyl group (for example, a methyl group, an ethyl group, a propyl group). , Isopropyl group, tert-butyl group, pentyl group, hexyl group, octyl group, dodecyl group, tridecyl group, tetradecyl group, pentadecyl group, etc.), cycloalkyl group (for example, cyclopentyl group, cyclohexyl group, etc.), alkenyl group (for example, Vinyl group, allyl group, etc.), alkynyl group (eg, ethynyl group, propargyl group, etc.), aryl group (eg, phenyl group, naphthyl group, etc.), heteroaryl group (eg, furyl group, thienyl group, pyridyl group, etc.) Pyridazyl group, pyrimidyl group, pyrazyl group, triazyl group, imidazolyl group, pyrazolyl group, thiazolyl group, ben Imidazolyl group, benzoxazolyl group, quinazolyl group, phthalazyl group, etc.), heterocyclic group (eg, pyrrolidyl group, imidazolidyl group, morpholyl group, oxazolidyl group, etc.), alkoxy group (eg, methoxy group, ethoxy group, propyloxy) Group, pentyloxy group, hexyloxy group, octyloxy group, dodecyloxy group, etc.), cycloalkoxy group (eg, cyclopentyloxy group, cyclohexyloxy group, etc.), aryloxy group (eg, phenoxy group, naphthyloxy group, etc.) Alkylthio groups (for example, methylthio group, ethylthio group, propylthio group, pentylthio group, hexylthio group, octylthio group, dodecylthio group, etc.), cycloalkylthio groups (for example, cyclopentylthio group, cyclohexylthio group, etc.), arylthio Group (for example, phenylthio group, naphthylthio group, etc.), alkoxycarbonyl group (for example, methyloxycarbonyl group, ethyloxycarbonyl group, butyloxycarbonyl group, octyloxycarbonyl group, dodecyloxycarbonyl group, etc.), aryloxycarbonyl group ( For example, phenyloxycarbonyl group, naphthyloxycarbonyl group, etc.), sulfamoyl group (for example, aminosulfonyl group, methylaminosulfonyl group, dimethylaminosulfonyl group, butylaminosulfonyl group, hexylaminosulfonyl group, cyclohexylaminosulfonyl group, octylamino) Sulfonyl group, dodecylaminosulfonyl group, phenylaminosulfonyl group, naphthylaminosulfonyl group, 2-pyridylaminosulfonyl group, etc.), acyl group (for example, Acetyl group, ethylcarbonyl group, propylcarbonyl group, pentylcarbonyl group, cyclohexylcarbonyl group, octylcarbonyl group, 2-ethylhexylcarbonyl group, dodecylcarbonyl group, phenylcarbonyl group, naphthylcarbonyl group, pyridylcarbonyl group, etc.), acyloxy group (For example, acetyloxy group, ethylcarbonyloxy group, butylcarbonyloxy group, octylcarbonyloxy group, dodecylcarbonyloxy group, phenylcarbonyloxy group, etc.), amide group (for example, methylcarbonylamino group, ethylcarbonylamino group, dimethyl group) Carbonylamino group, propylcarbonylamino group, pentylcarbonylamino group, cyclohexylcarbonylamino group, 2-ethylhexylcarbonylamino group, octyl Carbonylamino group, dodecylcarbonylamino group, phenylcarbonylamino group, naphthylcarbonylamino group, etc.), carbamoyl group (for example, aminocarbonyl group, methylaminocarbonyl group, dimethylaminocarbonyl group, propylaminocarbonyl group, pentylaminocarbonyl group, Cyclohexylaminocarbonyl group, octylaminocarbonyl group, 2-ethylhexylaminocarbonyl group, dodecylaminocarbonyl group, phenylaminocarbonyl group, naphthylaminocarbonyl group, 2-pyridylaminocarbonyl group, etc.), ureido group (for example, methylureido group, ethyl) Ureido group, pentylureido group, cyclohexylureido group, octylureido group, dodecylureido group, phenylureido group, naphthylureido group, -Pyridylaminoureido group, etc.), sulfinyl group (for example, methylsulfinyl group, ethylsulfinyl group, butylsulfinyl group, cyclohexylsulfinyl group, 2-ethylhexylsulfinyl group, dodecylsulfinyl group, phenylsulfinyl group, naphthylsulfinyl group, 2-pyridylsulfinyl group) Group), alkylsulfonyl group (for example, methylsulfonyl group, ethylsulfonyl group, butylsulfonyl group, cyclohexylsulfonyl group, 2-ethylhexylsulfonyl group, dodecylsulfonyl group, etc.), arylsulfonyl group (for example, phenylsulfonyl group, naphthylsulfonyl) Group, 2-pyridylsulfonyl group, etc.), amino group (for example, amino group, ethylamino group, dimethylamino group, butylamino group, cyclopentylamino) Group, 2-ethylhexylamino group, dodecylamino group, anilino group, naphthylamino group, 2-pyridylamino group, etc.), halogen atom (eg, fluorine atom, chlorine atom, bromine atom etc.), fluorinated hydrocarbon group (eg. , Fluoromethyl group, trifluoromethyl group, pentafluoroethyl group, pentafluorophenyl group, etc.), cyano group, silyl group (for example, trimethylsilyl group, triisopropylsilyl group, triphenylsilyl group, phenyldiethylsilyl group, etc.) These substituents may be further substituted with the above substituents, or a plurality thereof may be bonded to each other to form a ring.

好ましい置換基としてはアルキル基、シクロアルキル基、アルコキシ基、アルキルチオ基、アルコキシアルキル基、アルキル基で置換されたアミノ基、アルキルカルバモイル基、アルコキシカルボニル基が挙げられ、特に好ましくは炭素数5以上、20以下のアルキル基、もしくは同じ範囲の原子数を有する直鎖状アルコキシ基であり、更に好ましくは炭素数5以上、10以下の直鎖アルキル基である。   Preferred examples of the substituent include an alkyl group, a cycloalkyl group, an alkoxy group, an alkylthio group, an alkoxyalkyl group, an amino group substituted with an alkyl group, an alkylcarbamoyl group, and an alkoxycarbonyl group, and particularly preferably a carbon number of 5 or more. The alkyl group is 20 or less, or a linear alkoxy group having the same number of atoms, more preferably a linear alkyl group having 5 to 10 carbon atoms.

以下、一般式(1)、(2)または(3)で示される部分構造を有する化合物の具体的化合物を以下に例示するが、これらに限定されるものではない。   Hereinafter, although the specific compound of the compound which has a partial structure shown by General formula (1), (2) or (3) is illustrated below, it is not limited to these.

Figure 2005206750
Figure 2005206750

Figure 2005206750
Figure 2005206750

Figure 2005206750
Figure 2005206750

Figure 2005206750
Figure 2005206750

Figure 2005206750
Figure 2005206750

以下、具体的化合物例のいくつかについて合成例を示すが、他も同様に合成することができる。   Hereinafter, although synthesis examples are shown for some of the specific compound examples, others can be synthesized in the same manner.

合成例1(化合物(13)の合成)   Synthesis Example 1 (Synthesis of Compound (13))

Figure 2005206750
Figure 2005206750

(13)cの合成
窒素雰囲気下で200ml、3つ口フラスコに化合物(13)a(J.Org.Chem.,59,11,1994,3077−3081記載化合物)、4.4g(10mmol)のテトラヒドロフラン60mlを添加し、−70℃以下に冷却した。次にt−ブチルリチウム(1.5mol/Lペンタン溶液)7.3ml(11mmol)を滴下し、同温度で2時間撹拌した後、化合物(13)b(アルドリッチ試薬)4.1g(22mmol)のテトラヒドロフラン溶液10mlをすばやく添加し、更に同温度で2時間撹拌し、更に室温で12時間撹拌した。撹拌終了後、反応溶液を飽和食塩水で洗浄し、硫酸マグネシウムで乾燥した後、ロータリーエバポレーターで減圧濃縮した。残留物をエタノールで再結晶し、白色結晶3.0gを得た。1H−NMR及びmassスペクトルで目的物と矛盾しないことを確認した。
(13) Synthesis of c In a nitrogen atmosphere, 200 ml of a compound (13) a (compound described in J. Org. Chem., 59, 11, 1994, 3077-3081), 4.4 g (10 mmol) in a three-necked flask Tetrahydrofuran 60ml was added and it cooled to -70 degrees C or less. Next, 7.3 ml (11 mmol) of t-butyllithium (1.5 mol / L pentane solution) was added dropwise and stirred at the same temperature for 2 hours, and then 4.1 g (22 mmol) of Compound (13) b (Aldrich Reagent) was added. 10 ml of tetrahydrofuran solution was quickly added, and the mixture was further stirred at the same temperature for 2 hours, and further stirred at room temperature for 12 hours. After completion of stirring, the reaction solution was washed with saturated brine, dried over magnesium sulfate, and then concentrated under reduced pressure using a rotary evaporator. The residue was recrystallized with ethanol to obtain 3.0 g of white crystals. It was confirmed by 1H-NMR and mass spectrum that there was no contradiction with the target product.

(13)の合成
化合物(13)c、3.0g(6.8mmol)及び化合物(13)d(Chem.Europ.J.,8,13,2002,3027−3046記載化合物)、4.8g(6.8mmol)をトルエン(30ml)に溶解し、窒素下においてテトラキス(トリフェニルホスフィン)パラジウム0.15g(0.13mmol)、Aliqart336(アルドリッチ試薬)1.0gのトルエン溶液10ml、及び2mol/Lの炭酸ナトリウム水溶液(10ml)を加えた。この混合液を激しく撹拌し、48時間過熱還流した。粘稠な反応液をメタノール(500ml)に注ぎ沈殿物を得た。この沈殿物をろ過し、トルエンを用いたソックスレー抽出で精製し、メタノールから再沈殿させ、真空オーブンにて60℃で一晩乾燥させた。得られた沈殿物のGPC測定による分子量は32000であり、スペクトル特性は目的物の構造と矛盾しなかった。
Synthesis of (13) Compound (13) c, 3.0 g (6.8 mmol) and Compound (13) d (Chem. Europ. J., 8, 13, 2002, compounds described in 3027-3046), 4.8 g ( 6.8 mmol) in toluene (30 ml), and under nitrogen, tetrakis (triphenylphosphine) palladium 0.15 g (0.13 mmol), Aliqart 336 (Aldrich reagent) 1.0 g in toluene solution 10 ml, and 2 mol / L Aqueous sodium carbonate (10 ml) was added. The mixture was stirred vigorously and heated to reflux for 48 hours. The viscous reaction liquid was poured into methanol (500 ml) to obtain a precipitate. The precipitate was filtered, purified by Soxhlet extraction with toluene, reprecipitated from methanol, and dried in a vacuum oven at 60 ° C. overnight. The molecular weight of the obtained precipitate as measured by GPC was 32000, and the spectral characteristics were consistent with the structure of the target product.

合成例2(化合物(21)の合成)   Synthesis Example 2 (Synthesis of Compound (21))

Figure 2005206750
Figure 2005206750

(21)bの合成
100ml、3つ口フラスコに化合物(21)a(Chem.Ber.,119,10,1986,3198−3203記載化合物)、1.9g(10mmol)及びクロロホルム50mlを添加し、反応系を5℃以下まで冷却し、N−ブロモスクシンイミド1.8g(10mmol)を少量ずつ添加した。添加終了後、室温で1時間撹拌し、続いて飽和食塩水で洗浄し、硫酸マグネシウムで乾燥した後、ロータリーエバポレーターで減圧濃縮した。残留物をカラムクロマトグラフィーで精製し、白色固体2.2gを得た。1H−NMR及びmassスペクトルで目的物と矛盾しないことを確認した。
Synthesis of (21) b Compound (21) a (compound described in Chem. Ber., 119, 10, 1986, 3198-3203), 1.9 g (10 mmol) and 50 ml of chloroform were added to a 100 ml, three-necked flask. The reaction system was cooled to 5 ° C. or less, and 1.8 g (10 mmol) of N-bromosuccinimide was added little by little. After completion of the addition, the mixture was stirred at room temperature for 1 hour, washed with saturated brine, dried over magnesium sulfate, and then concentrated under reduced pressure using a rotary evaporator. The residue was purified by column chromatography to obtain 2.2 g of a white solid. It was confirmed by 1H-NMR and mass spectrum that there was no contradiction with the target product.

(21)cの合成
100ml、3つ口フラスコにマグネシウム0.10g(4.1mmol)を加え系内を窒素置換した。次にテトラヒドロフラン30mlを添加し、撹拌下、化合物(21)b、1.1g(4.1mmol)のテトラヒドロフラン溶液10mlをゆっくり滴下した。得られた混合物を室温で2時間撹拌し、次に30分間還流し、反応液Aを得た。
(21) Synthesis of c 100 ml, 0.10 g (4.1 mmol) of magnesium was added to a three-necked flask, and the inside of the system was purged with nitrogen. Next, 30 ml of tetrahydrofuran was added, and 10 ml of a tetrahydrofuran solution of compound (21) b, 1.1 g (4.1 mmol) was slowly added dropwise with stirring. The resulting mixture was stirred at room temperature for 2 hours and then refluxed for 30 minutes to obtain reaction solution A.

200ml三口フラスコに塩化〔1,3−ビス(ジフェニルホスフィノ)プロパン〕ニッケル(II)10mg、化合物(21)b、1.1g(4.1mmol)を添加し系内を窒素置換した。次にテトラヒドロフラン40mlを添加し、撹拌下、室温で、反応液Aをゆっくり滴下し、滴下終了後反応液を室温で12時間撹拌した。反応終了後、反応液を200mlの水に少量ずつ添加した。添加終了後、有機層を飽和食塩水で洗浄し、硫酸マグネシウムで硫酸マグネシウムで乾燥した後、ロータリーエバポレーターで減圧濃縮した。残留物をカラムクロマトグラフィーで精製し、黄色固体1.4gを得た。1H−NMR及びmassスペクトルで目的物と矛盾しないことを確認した。   To a 200 ml three-necked flask, 10 mg of [1,3-bis (diphenylphosphino) propane] nickel (II), compound (21) b, 1.1 g (4.1 mmol) was added, and the system was purged with nitrogen. Next, 40 ml of tetrahydrofuran was added, and the reaction solution A was slowly added dropwise at room temperature with stirring. After completion of the addition, the reaction solution was stirred at room temperature for 12 hours. After completion of the reaction, the reaction solution was added little by little to 200 ml of water. After completion of the addition, the organic layer was washed with saturated brine, dried over magnesium sulfate, and then concentrated under reduced pressure using a rotary evaporator. The residue was purified by column chromatography to obtain 1.4 g of a yellow solid. It was confirmed by 1H-NMR and mass spectrum that there was no contradiction with the target product.

(21)dの合成
100ml、3つ口フラスコに化合物(21)c、1.4g(3.7mmol)及びクロロホルム50mlを添加し、反応系を5℃以下まで冷却し、N−ブロモスクシンイミド1.4g(7.8mmol)を少量ずつ添加した。添加終了後、室温で1時間撹拌し、続いて飽和食塩水で洗浄し、硫酸マグネシウムで乾燥した後、ロータリーエバポレーターで減圧濃縮した。残留物をカラムクロマトグラフィーで精製し、黄色固体1.5gを得た。1H−NMR及びmassスペクトルで目的物と矛盾しないことを確認した。
(21) Synthesis of d 100 ml, Compound (21) c, 1.4 g (3.7 mmol) and 50 ml of chloroform were added to a three-necked flask, the reaction system was cooled to 5 ° C. or lower, and N-bromosuccinimide 1. 4 g (7.8 mmol) was added in small portions. After completion of the addition, the mixture was stirred at room temperature for 1 hour, washed with saturated brine, dried over magnesium sulfate, and then concentrated under reduced pressure using a rotary evaporator. The residue was purified by column chromatography to obtain 1.5 g of a yellow solid. It was confirmed by 1H-NMR and mass spectrum that there was no contradiction with the target product.

(21)の合成
200ml、3つ口フラスコにテトラキス(トリフェニルホスフィン)パラジウム(0)0.1g及び化合物(21)e(J.Chem.Soc.Perkin Trans.1,8,2000,1211−1216記載化合物)、2.5g(6.0mmol)を加え系内を窒素置換した。更にテトラヒドロフラン40mlを添加し、撹拌下、化合物(21)d、1.5g(2.8mmol)のテトラヒドロフラン溶液10ml及び2mol/Lの炭酸ナトリウム水溶液10mlを添加し10時間加熱還流した。反応終了後、室温にてケイソウ土ろ過を行い、ろ液を飽和食塩水で洗浄し、硫酸マグネシウムで乾燥した後、ロータリーエバポレーターで減圧濃縮した。残留物をカラムクロマトグラフィーで精製し、黄色結晶2.1gを得た。1H−NMR及びmassスペクトルで目的物と矛盾しないことを確認した。
Synthesis of (21) 200 ml, 0.1 g of tetrakis (triphenylphosphine) palladium (0) and compound (21) e (J. Chem. Soc. Perkin Trans. 1, 8, 2000, 1211-1216 in a three-necked flask The described compound) and 2.5 g (6.0 mmol) were added, and the inside of the system was purged with nitrogen. Further, 40 ml of tetrahydrofuran was added, and with stirring, 10 ml of a tetrahydrofuran solution of compound (21) d, 1.5 g (2.8 mmol) and 10 ml of a 2 mol / L aqueous sodium carbonate solution were added and heated to reflux for 10 hours. After completion of the reaction, diatomaceous earth filtration was performed at room temperature, and the filtrate was washed with saturated brine, dried over magnesium sulfate, and then concentrated under reduced pressure using a rotary evaporator. The residue was purified by column chromatography to obtain 2.1 g of yellow crystals. It was confirmed by 1H-NMR and mass spectrum that there was no contradiction with the target product.

本発明の有機半導体材料は有機薄膜トランジスタ素子の活性層に設置することにより、良好に駆動するトランジスタ装置を提供することができる。   The organic semiconductor material of the present invention can be provided in an active layer of an organic thin film transistor element to provide a transistor device that can be driven satisfactorily.

有機薄膜トランジスタは、支持体上に有機半導体チャネル(活性層)で連結されたソース電極とドレイン電極を有し、その上にゲート絶縁層を介してゲート電極を有するトップゲート型と、支持体上にまずゲート電極を有し、ゲート絶縁層を介して有機半導体チャネルで連結されたソース電極とドレイン電極を有するボトムゲート型に大別される。   The organic thin film transistor has a source electrode and a drain electrode connected by an organic semiconductor channel (active layer) on a support, a top gate type having a gate electrode on the support, and a gate electrode on the support. First, it is roughly classified into a bottom gate type having a gate electrode and having a source electrode and a drain electrode connected by an organic semiconductor channel through a gate insulating layer.

本発明の化合物を有機薄膜トランジスタ素子の活性層に設置するには、真空蒸着により基板上に設置することもできるが、適切な溶剤に溶解し必要に応じ添加剤を加えて調製した溶液をキャストコート、スピンコート、印刷、インクジェット法、アブレーション法等によって基板上に設置するのが好ましい。この場合、本発明の有機半導体を溶解する溶剤は、該有機半導体を溶解して適切な濃度の溶液が調製できるものであれば格別の制限はないが、具体的にはジエチルエーテルやジイソプロピルエーテル等の鎖状エーテル系溶媒、テトラヒドロフランやジオキサンなどの環状エーテル系溶媒、アセトンやメチルエチルケトン等のケトン系溶媒、クロロホルムや1,2−ジクロロエタン等のハロゲン化アルキル系溶媒、トルエン、o−ジクロロベンゼン、ニトロベンゼン、m−クレゾール等の芳香族系溶媒、N−メチルピロリドン、2硫化炭素等を挙げることができる。   In order to install the compound of the present invention in the active layer of the organic thin film transistor device, it can be installed on the substrate by vacuum deposition, but a solution prepared by dissolving in an appropriate solvent and adding additives as necessary is cast coated. It is preferably installed on the substrate by spin coating, printing, ink jet method, ablation method or the like. In this case, the solvent for dissolving the organic semiconductor of the present invention is not particularly limited as long as the organic semiconductor can be dissolved to prepare a solution having an appropriate concentration. Specifically, diethyl ether, diisopropyl ether, etc. Chain ether solvents, cyclic ether solvents such as tetrahydrofuran and dioxane, ketone solvents such as acetone and methyl ethyl ketone, alkyl halide solvents such as chloroform and 1,2-dichloroethane, toluene, o-dichlorobenzene, nitrobenzene, Aromatic solvents such as m-cresol, N-methylpyrrolidone, carbon disulfide and the like can be mentioned.

本発明おいて、ソース電極、ドレイン電極及びゲート電極を形成する材料は導電性材料であれば特に限定されず、白金、金、銀、ニッケル、クロム、銅、鉄、錫、アンチモン鉛、タンタル、インジウム、パラジウム、テルル、レニウム、イリジウム、アルミニウム、ルテニウム、ゲルマニウム、モリブデン、タングステン、酸化スズ・アンチモン、酸化インジウム・スズ(ITO)、フッ素ドープ酸化亜鉛、亜鉛、炭素、グラファイト、グラッシーカーボン、銀ペーストおよびカーボンペースト、リチウム、ベリリウム、ナトリウム、マグネシウム、カリウム、カルシウム、スカンジウム、チタン、マンガン、ジルコニウム、ガリウム、ニオブ、ナトリウム、ナトリウム−カリウム合金、マグネシウム、リチウム、アルミニウム、マグネシウム/銅混合物、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム混合物、リチウム/アルミニウム混合物等が用いられるが、特に、白金、金、銀、銅、アルミニウム、インジウム、ITOおよび炭素が好ましい。あるいはドーピング等で導電率を向上させた公知の導電性ポリマー、例えば、導電性ポリアニリン、導電性ポリピロール、導電性ポリチオフェン、ポリエチレンジオキシチオフェンとポリスチレンスルホン酸の錯体なども好適に用いられる。中でも半導体層との接触面において電気抵抗が少ないものが好ましい。   In the present invention, the material for forming the source electrode, the drain electrode, and the gate electrode is not particularly limited as long as it is a conductive material. Platinum, gold, silver, nickel, chromium, copper, iron, tin, antimony lead, tantalum, Indium, palladium, tellurium, rhenium, iridium, aluminum, ruthenium, germanium, molybdenum, tungsten, tin oxide / antimony, indium tin oxide (ITO), fluorine doped zinc oxide, zinc, carbon, graphite, glassy carbon, silver paste and Carbon paste, lithium, beryllium, sodium, magnesium, potassium, calcium, scandium, titanium, manganese, zirconium, gallium, niobium, sodium, sodium-potassium alloy, magnesium, lithium, aluminum, magnesium / Copper mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, aluminum / aluminum oxide mixture, lithium / aluminum mixture, etc., especially platinum, gold, silver, copper, aluminum, indium, ITO And carbon are preferred. Alternatively, known conductive polymers whose conductivity is improved by doping or the like, for example, conductive polyaniline, conductive polypyrrole, conductive polythiophene, a complex of polyethylenedioxythiophene and polystyrenesulfonic acid, and the like are also preferably used. Among them, those having low electrical resistance at the contact surface with the semiconductor layer are preferable.

電極の形成方法としては、上記を原料として蒸着やスパッタリング等の方法を用いて形成した導電性薄膜を、公知のフォトリソグラフ法やリフトオフ法を用いて電極形成する方法、アルミニウムや銅などの金属箔上に熱転写、インクジェット等によるレジストを用いてエッチングする方法がある。また導電性ポリマーの溶液あるいは分散液、導電性微粒子分散液を直接インクジェットによりパターニングしてもよいし、塗工膜からリソグラフやレーザーアブレーションなどにより形成してもよい。更に導電性ポリマーや導電性微粒子を含むインク、導電性ペーストなどを凸版、凹版、平版、スクリーン印刷などの印刷法でパターニングする方法も用いることができる。   As a method for forming an electrode, a method for forming an electrode using a known photolithographic method or a lift-off method, using a conductive thin film formed by a method such as vapor deposition or sputtering using the above as a raw material, or a metal foil such as aluminum or copper There is a method of etching using a resist by thermal transfer, ink jet or the like. Alternatively, a conductive polymer solution or dispersion, or a conductive fine particle dispersion may be directly patterned by ink jetting, or may be formed from a coating film by lithography or laser ablation. Furthermore, a method of patterning an ink containing a conductive polymer or conductive fine particles, a conductive paste, or the like by a printing method such as relief printing, intaglio printing, planographic printing, or screen printing can also be used.

ゲート絶縁層としては種々の絶縁膜を用いることができるが、特に比誘電率の高い無機酸化物皮膜が好ましい。無機酸化物としては、酸化ケイ素、酸化アルミニウム、酸化タンタル、酸化チタン、酸化スズ、酸化バナジウム、チタン酸バリウムストロンチウム、ジルコニウム酸チタン酸バリウム、ジルコニウム酸チタン酸鉛、チタン酸鉛ランタン、チタン酸ストロンチウム、チタン酸バリウム、フッ化バリウムマグネシウム、チタン酸ビスマス、チタン酸ストロンチウムビスマス、タンタル酸ストロンチウムビスマス、タンタル酸ニオブ酸ビスマス、トリオキサイドイットリウムなどが挙げられる。それらのうち好ましいのは酸化ケイ素、酸化アルミニウム、酸化タンタル、酸化チタンである。窒化ケイ素、窒化アルミニウム等の無機窒化物も好適に用いることができる。   Various insulating films can be used as the gate insulating layer, and an inorganic oxide film having a high relative dielectric constant is particularly preferable. Inorganic oxides include silicon oxide, aluminum oxide, tantalum oxide, titanium oxide, tin oxide, vanadium oxide, barium strontium titanate, barium zirconate titanate, lead zirconate titanate, lead lanthanum titanate, strontium titanate, Examples thereof include barium titanate, barium magnesium fluoride, bismuth titanate, strontium bismuth titanate, strontium bismuth tantalate, bismuth tantalate niobate, and yttrium trioxide. Of these, silicon oxide, aluminum oxide, tantalum oxide, and titanium oxide are preferable. Inorganic nitrides such as silicon nitride and aluminum nitride can also be suitably used.

上記皮膜の形成方法としては、真空蒸着法、分子線エピタキシャル成長法、イオンクラスタービーム法、低エネルギーイオンビーム法、イオンプレーティング法、CVD法、スパッタリング法、大気圧プラズマ法などのドライプロセスや、スプレーコート法、スピンコート法、ブレードコート法、デイップコート法、キャスト法、ロールコート法、バーコート法、ダイコート法などの塗布による方法、印刷やインクジェットなどのパターニングによる方法などのウェットプロセスが挙げられ、材料に応じて使用できる。   Examples of the method for forming the film include a vacuum process, a molecular beam epitaxial growth method, an ion cluster beam method, a low energy ion beam method, an ion plating method, a CVD method, a sputtering method, an atmospheric pressure plasma method, and a spray process. Wet processes such as coating methods, spin coating methods, blade coating methods, dip coating methods, casting methods, roll coating methods, bar coating methods, die coating methods, and other wet processes such as printing and ink jet patterning methods, etc. Can be used depending on the material.

ウェットプロセスは、無機酸化物の微粒子を、任意の有機溶剤あるいは水に必要に応じて界面活性剤などの分散補助剤を用いて分散した液を塗布、乾燥する方法や、酸化物前駆体、例えば、アルコキシド体の溶液を塗布、乾燥する、いわゆるゾルゲル法が用いられる。これらのうち好ましいのは、大気圧プラズマ法とゾルゲル法である。   The wet process is a method of applying and drying a liquid in which fine particles of inorganic oxide are dispersed in an arbitrary organic solvent or water using a dispersion aid such as a surfactant as required, or an oxide precursor, for example, A so-called sol-gel method in which a solution of an alkoxide body is applied and dried is used. Among these, the atmospheric pressure plasma method and the sol-gel method are preferable.

大気圧下でのプラズマ製膜処理による絶縁膜の形成方法は、大気圧または大気圧近傍の圧力下で放電し、反応性ガスをプラズマ励起し、基材上に薄膜を形成する処理で、その方法については特開平11−61406号、同11−133205号、特開2000−121804号、同2000−147209号、同2000−185362号の各公報等に記載されている(以下、大気圧プラズマ法とも称する)。これによって高機能性の薄膜を、生産性高く形成することができる。   The method for forming an insulating film by plasma film formation under atmospheric pressure is a process in which a reactive gas is discharged under atmospheric pressure or a pressure near atmospheric pressure to excite reactive gas to form a thin film on a substrate. The method is described in JP-A-11-61406, JP-A-11-133205, JP-A-2000-121804, JP-A-2000-147209, and JP-A-2000-185362 (hereinafter referred to as atmospheric pressure plasma method). Also called). Accordingly, a highly functional thin film can be formed with high productivity.

また有機化合物皮膜としては、ポリイミド、ポリアミド、ポリエステル、ポリアクリレート、光ラジカル重合系、光カチオン重合系の光硬化性樹脂、あるいはアクリロニトリル成分を含有する共重合体、ポリビニルフェノール、ポリビニルアルコール、ノボラック樹脂、およびシアノエチルプルラン等を用いることもできる。有機化合物皮膜の形成法としては、前記ウェットプロセスが好ましい。無機酸化物皮膜と有機酸化物皮膜は積層して併用することができる。またこれら絶縁膜の膜厚としては、一般に50nm〜3μm、好ましくは100nm〜1μmである。   In addition, as the organic compound film, polyimide, polyamide, polyester, polyacrylate, photo radical polymerization type, photo cation polymerization type photo curable resin, or a copolymer containing an acrylonitrile component, polyvinyl phenol, polyvinyl alcohol, novolac resin, Also, cyanoethyl pullulan or the like can be used. As the method for forming the organic compound film, the wet process is preferable. An inorganic oxide film and an organic oxide film can be laminated and used together. The thickness of these insulating films is generally 50 nm to 3 μm, preferably 100 nm to 1 μm.

また支持体はガラスやフレキシブルな樹脂製シートで構成され、例えば、プラスチックフィルムをシートとして用いることができる。前記プラスチックフィルムとしては、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリエーテルスルホン(PES)、ポリエーテルイミド、ポリエーテルエーテルケトン、ポリフェニレンスルフィド、ポリアリレート、ポリイミド、ボリカーボネート(PC)、セルローストリアセテート(TAC)、セルロースアセテートプロピオネート(CAP)等からなるフィルム等が挙げられる。このように、プラスチックフィルムを用いることで、ガラス基板を用いる場合に比べて軽量化を図ることができ、可搬性を高めることができるとともに、衝撃に対する耐性を向上できる。   Moreover, a support body is comprised with glass or a flexible resin-made sheet | seat, for example, a plastic film can be used as a sheet | seat. Examples of the plastic film include polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyethersulfone (PES), polyetherimide, polyetheretherketone, polyphenylene sulfide, polyarylate, polyimide, polycarbonate (PC). And a film made of cellulose triacetate (TAC), cellulose acetate propionate (CAP), or the like. Thus, by using a plastic film, the weight can be reduced as compared with the case of using a glass substrate, the portability can be improved, and the resistance to impact can be improved.

以下に、本発明の有機半導体材料からなる有機薄膜を用いた電界効果トランジスタについて説明する。   Below, the field effect transistor using the organic thin film which consists of an organic-semiconductor material of this invention is demonstrated.

図1は、本発明の有機半導体材料を用いた電界効果トランジスタの概略構成例を示す。同図(a)は、支持体6上に金属箔等によりソース電極2、ドレイン電極3を形成し、両電極間に本発明の有機半導体材料からなる有機半導体層1を形成し、その上に絶縁層5を形成し、更にその上にゲート電極4を形成して電界効果トランジスタを形成したものである。同図(b)は、有機半導体層1を、(a)では電極間に形成したものを、コート法等を用いて電極及び支持体表面全体を覆うように形成したものを表す。(c)は、支持体6上に先ずコート法等を用いて、有機半導体層1を形成し、その後ソース電極2、ドレイン電極3、絶縁層5、ゲート電極4を形成したものを表す。   FIG. 1 shows a schematic configuration example of a field effect transistor using the organic semiconductor material of the present invention. In FIG. 2A, a source electrode 2 and a drain electrode 3 are formed on a support 6 by a metal foil or the like, an organic semiconductor layer 1 made of the organic semiconductor material of the present invention is formed between the two electrodes, and a substrate is formed thereon. An insulating layer 5 is formed, and a gate electrode 4 is further formed thereon to form a field effect transistor. FIG. 2B shows the organic semiconductor layer 1 formed between the electrodes in FIG. 1A so as to cover the entire surface of the electrode and the support using a coating method or the like. (C) shows that the organic semiconductor layer 1 is first formed on the support 6 by using a coating method or the like, and then the source electrode 2, the drain electrode 3, the insulating layer 5, and the gate electrode 4 are formed.

同図(d)は、支持体6上にゲート電極4を金属箔等で形成した後、絶縁層5を形成し、その上に金属箔等で、ソース電極2及びドレイン電極3を形成し、該電極間に本発明の有機半導体材料により形成された有機半導体層1を形成する。その他同図(e)、(f)に示すような構成を取ることもできる。   In FIG. 4D, after forming the gate electrode 4 on the support 6 with a metal foil or the like, the insulating layer 5 is formed, and the source electrode 2 and the drain electrode 3 are formed on the metal foil or the like on the insulating layer 5. An organic semiconductor layer 1 made of the organic semiconductor material of the present invention is formed between the electrodes. In addition, the configuration as shown in FIGS.

以下、実施例により本発明を説明するが、本発明の実施態様はこれらに限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention, the embodiment of this invention is not limited to these.

実施例1
ゲート電極としての抵抗率0.01Ω・cmのSiウェハーに、厚さ2000Åの熱酸化膜を形成してゲート絶縁層とした後、オクタデシルトリクロロシランによる表面処理を行った。比較化合物(1)(ポリ(3−ヘキシルチオフェン)(regioregular、アルドリッチ社製、平均分子量89000、PHT))のクロロホルム溶液をアプリケーターを用いて塗布し、自然乾燥することによりキャスト膜(厚さ50nm)を形成して、窒素雰囲気下で50℃、30分間の熱処理を施した。更に、この膜の表面にマスクを用いて金を蒸着してソースおよびドレイン電極を形成した。ソースおよびドレイン電極は幅100μm、厚さ200nmで、チャネル幅W=3mm、チャネル長L=20μmの有機薄膜トランジスタ素子1を作製した。
Example 1
A silicon oxide having a resistivity of 0.01 Ω · cm as a gate electrode was formed with a thermal oxide film having a thickness of 2000 mm to form a gate insulating layer, and then surface treatment with octadecyltrichlorosilane was performed. A chloroform solution of comparative compound (1) (poly (3-hexylthiophene) (regioregular, Aldrich, average molecular weight 89000, PHT)) was applied using an applicator and dried naturally to give a cast film (thickness 50 nm) And was heat-treated at 50 ° C. for 30 minutes in a nitrogen atmosphere. Furthermore, gold was deposited on the surface of this film using a mask to form source and drain electrodes. An organic thin film transistor element 1 having a width of 100 μm, a thickness of 200 nm, a channel width W = 3 mm, and a channel length L = 20 μm was prepared.

比較化合物(1)を比較化合物(2)(米国特許出願公開第2003/164495号明細書、例示化合物(3))に代えた他は、有機薄膜トランジスタ素子1と同様の方法で、有機薄膜トランジスタ素子2を作製した。   The organic thin film transistor element 2 is the same as the organic thin film transistor element 1 except that the comparative compound (1) is replaced with the comparative compound (2) (US Patent Application Publication No. 2003/164495, Exemplified Compound (3)). Was made.

更に、比較化合物(1)を表1に示した本発明の例示化合物に代えた他は、有機薄膜トランジスタ素子1と同様の方法で、有機薄膜トランジスタ素子3〜6を作製した。   Further, organic thin film transistor elements 3 to 6 were produced in the same manner as the organic thin film transistor element 1 except that the comparative compound (1) was replaced with the exemplary compounds of the present invention shown in Table 1.

以上のように作製した有機薄膜トランジスタ素子2〜6は、pチャネルのエンハンスメント型FETの良好な動作特性を示した。更に、有機薄膜トランジスタ素子2〜6について、I−V特性の飽和領域からキャリア移動度を求め、更にON/OFF比(ドレインバイアス−50Vとし、ゲートバイアス−50Vおよび0Vにしたときのドレイン電流値の比率)を求めた。また、得られた素子を大気中で1ヶ月放置し、再度キャリア移動度とON/OFF比を求めた。結果を表1に示す。   The organic thin film transistor elements 2 to 6 fabricated as described above showed good operating characteristics of a p-channel enhancement type FET. Further, with respect to the organic thin film transistor elements 2 to 6, the carrier mobility is obtained from the saturation region of the IV characteristic, and further the ON / OFF ratio (the drain bias is −50V and the drain current value when the gate bias is −50V and 0V). Ratio). The obtained element was left in the atmosphere for one month, and the carrier mobility and the ON / OFF ratio were obtained again. The results are shown in Table 1.

Figure 2005206750
Figure 2005206750

表1の結果より、本発明の有機薄膜トランジスタ素子はトランジスタとしての特性が良好であり、更に経時劣化が抑えられていることが分かった。   From the results of Table 1, it was found that the organic thin film transistor element of the present invention has good characteristics as a transistor and further suppressed deterioration over time.

実施例2
実施例1の比較化合物(1)を比較化合物(3)(ペンタセン、アルドリッチ社製市販試薬を昇華精製して用いた)に代えた他は、有機薄膜トランジスタ素子1と同様の方法で、有機薄膜トランジスタ素子11を作製した。
Example 2
The organic thin film transistor element was the same as the organic thin film transistor element 1 except that the comparative compound (1) in Example 1 was replaced with the comparative compound (3) (pentacene, a commercially available reagent manufactured by Aldrich). 11 was produced.

更に、比較化合物(1)を表2に示した本発明の例示化合物に代えた他は、有機薄膜トランジスタ素子1と同様の方法で、有機薄膜トランジスタ素子12〜15を作製した。   Furthermore, organic thin-film transistor elements 12-15 were produced by the same method as the organic thin-film transistor element 1, except that the comparative compound (1) was replaced with the exemplary compounds of the present invention shown in Table 2.

以上のように作製した有機薄膜トランジスタ素子1及び12〜15は、pチャネルのエンハンスメント型FETの良好な動作特性を示した。更に、有機薄膜トランジスタ素子11〜15について、I−V特性の飽和領域から、キャリア移動度とON/OFF比(ドレインバイアス−50Vとし、ゲートバイアス−50Vおよび0Vにしたときのドレイン電流値の比率)を求めた。また、得られた素子を大気中で1ヶ月放置し、再度キャリア移動度とON/OFF比を求めた。結果を表2に示す。   The organic thin film transistor elements 1 and 12 to 15 manufactured as described above exhibited good operating characteristics of p-channel enhancement type FETs. Further, for the organic thin film transistor elements 11 to 15, from the saturation region of the IV characteristic, the carrier mobility and the ON / OFF ratio (the drain bias value ratio when the drain bias is −50 V and the gate bias is −50 V and 0 V) Asked. The obtained element was left in the atmosphere for one month, and the carrier mobility and the ON / OFF ratio were obtained again. The results are shown in Table 2.

Figure 2005206750
Figure 2005206750

Figure 2005206750
Figure 2005206750

表2の結果より、本発明の有機薄膜トランジスタ素子はトランジスタとしての特性が良好であり、更に経時劣化が抑えられていることが分かった。また、比較化合物(3)を用いた有機トランジスタ素子11の結果は、塗布による薄膜形成によっては活性層として機能するペンタセン薄膜を得がたいことが明確に示されているが、本発明の有機薄膜トランジスタ素子は、塗布による薄膜形成で良好なトランジスタとしての特性を示すことがわかった。   From the results of Table 2, it was found that the organic thin film transistor element of the present invention has good characteristics as a transistor and further suppressed deterioration with time. Moreover, although the result of the organic transistor element 11 using the comparative compound (3) clearly shows that it is difficult to obtain a pentacene thin film functioning as an active layer by forming a thin film by coating, the organic thin film transistor element of the present invention is As a result, it was found that the thin film formation by coating showed good characteristics as a transistor.

有機半導体材料を用いた電解効果トランジスタの概略構成例を示す図である。It is a figure which shows the schematic structural example of the field effect transistor using organic-semiconductor material.

符号の説明Explanation of symbols

1 有機半導体層
2 ソース電極
3 ドレイン電極
4 ゲート電極
5 絶縁層
6 支持体
DESCRIPTION OF SYMBOLS 1 Organic-semiconductor layer 2 Source electrode 3 Drain electrode 4 Gate electrode 5 Insulating layer 6 Support body

Claims (6)

下記一般式(1)、(2)または(3)で示される部分構造を有する化合物を含有することを特徴とする有機半導体材料。
Figure 2005206750
(式中、A1〜A4は炭素原子、窒素原子、硫黄原子または酸素原子を表し、A5〜A16は炭素原子または窒素原子を表し、一般式(1)、(2)または(3)で示される部分構造には置換基を有してもよい。但し、A1とA2により形成される5員環とA3とA4により形成される5員環は点対称の関係にある同一の構造である。)
An organic semiconductor material comprising a compound having a partial structure represented by the following general formula (1), (2) or (3).
Figure 2005206750
(Wherein, A 1 to A 4 are carbon atoms, nitrogen atom, a sulfur atom or an oxygen atom, A 5 to A 16 represents a carbon atom or a nitrogen atom, the general formula (1), (2) or (3 ) May have a substituent, provided that the 5-membered ring formed by A 1 and A 2 and the 5-membered ring formed by A 3 and A 4 are in a point-symmetric relationship. It is a certain same structure.)
前記一般式(1)、(2)または(3)で示される部分構造を有する化合物がポリマーであることを特徴とする請求項1に記載の有機半導体材料。 The organic semiconductor material according to claim 1, wherein the compound having a partial structure represented by the general formula (1), (2) or (3) is a polymer. 請求項1または2に記載の有機半導体材料を活性層に用いることを特徴とする有機トランジスタ。 An organic transistor using the organic semiconductor material according to claim 1 for an active layer. 有機電荷輸送性材料と該有機電荷輸送性材料に直接または間接に接するゲート電極から構成され、該ゲート電極及び該有機電荷輸送性材料間に電荷を印加することで、該有機電荷輸送性材料中の電流を制御する電界効果トランジスタにおいて、該有機電荷輸送性材料が請求項1または2に記載の有機半導体材料であることを特徴とする電界効果トランジスタ。 An organic charge transporting material and a gate electrode that is in direct contact with or indirectly in contact with the organic charge transporting material, and by applying a charge between the gate electrode and the organic charge transporting material, A field effect transistor for controlling the current of the organic charge transport material, wherein the organic charge transporting material is the organic semiconductor material according to claim 1. 請求項3に記載の有機トランジスタまたは請求項4に記載の電界効果トランジスタを用いることを特徴とするスイッチング素子。 A switching element comprising the organic transistor according to claim 3 or the field effect transistor according to claim 4. 請求項1に記載の一般式(1)、(2)または(3)で示される部分構造を有する化合物。 A compound having a partial structure represented by the general formula (1), (2) or (3) according to claim 1.
JP2004016906A 2004-01-26 2004-01-26 Organic semiconductive material, organic transistor, field-effect transistor, switching element, and five-membered heterocyclic compound Pending JP2005206750A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004016906A JP2005206750A (en) 2004-01-26 2004-01-26 Organic semiconductive material, organic transistor, field-effect transistor, switching element, and five-membered heterocyclic compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004016906A JP2005206750A (en) 2004-01-26 2004-01-26 Organic semiconductive material, organic transistor, field-effect transistor, switching element, and five-membered heterocyclic compound

Publications (1)

Publication Number Publication Date
JP2005206750A true JP2005206750A (en) 2005-08-04

Family

ID=34901908

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004016906A Pending JP2005206750A (en) 2004-01-26 2004-01-26 Organic semiconductive material, organic transistor, field-effect transistor, switching element, and five-membered heterocyclic compound

Country Status (1)

Country Link
JP (1) JP2005206750A (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007067263A (en) * 2005-09-01 2007-03-15 Konica Minolta Holdings Inc Organic semiconductor material, organic semiconductor film, organic semiconductor device and organic semiconductor thin-film transistor
JP2007110105A (en) * 2005-09-20 2007-04-26 Seiko Epson Corp Semiconductor film having discrete region of organic semiconductor, and method for manufacturing same
JP2007277552A (en) * 2006-04-06 2007-10-25 Xerox Corp Semiconductor and electronic device produced therefrom
JP2008109135A (en) * 2006-10-25 2008-05-08 Xerox Corp Electronic device
US7372071B2 (en) * 2006-04-06 2008-05-13 Xerox Corporation Functionalized heteroacenes and electronic devices generated therefrom
JP2009135422A (en) * 2007-09-06 2009-06-18 Xerox Corp Thin-film transistor and method of forming the same
JP2009141338A (en) * 2007-11-12 2009-06-25 Mitsui Chemicals Inc Organic transistor
US7557370B2 (en) * 2006-04-06 2009-07-07 Xerox Corporation Heteroacene polymers and electronic devices generated therefrom
EP2085401A1 (en) 2008-01-22 2009-08-05 Ricoh Company, Ltd. Benzobisthiazole compound, benzobisthiazole polymer, organic film including the compound or polymer and transistor including the organic film
WO2010058692A1 (en) * 2008-11-21 2010-05-27 国立大学法人広島大学 Novel compound, process for producing the compound, organic semiconductor material, and organic semiconductor device
JP2010205982A (en) * 2009-03-04 2010-09-16 Mitsui Chemicals Inc Organic transistor
WO2011039505A1 (en) * 2009-09-30 2011-04-07 Lomox Limited Electroluminescent thiophene derivatives
US20110315224A1 (en) * 2010-06-24 2011-12-29 Samsung Electronics Co., Ltd. Electron Donating Polymer And Organic Solar Cell Including The Same
JP2012527784A (en) * 2009-05-21 2012-11-08 ポリエラ コーポレイション Conjugated polymers and their use in optoelectronic devices
US20120279568A1 (en) * 2011-05-04 2012-11-08 Samsung Electronics Co., Ltd. Electron Donating Polymers And Organic Solar Cells Including The Same
JP2012233098A (en) * 2011-05-02 2012-11-29 Konica Minolta Holdings Inc Conjugated polymer and organic photoelectric conversion element using the same
US8367798B2 (en) * 2008-09-29 2013-02-05 The Regents Of The University Of California Active materials for photoelectric devices and devices that use the materials
US8372945B2 (en) 2009-07-24 2013-02-12 Solarmer Energy, Inc. Conjugated polymers with carbonyl substituted thieno[3,4-B]thiophene units for polymer solar cell active layer materials
US8558013B2 (en) 2008-01-07 2013-10-15 Lomox Limited Electroluminescent materials
US8871884B2 (en) 2009-10-28 2014-10-28 University Of Washington Copolymer semiconductors comprising thiazolothiazole or benzobisthiazole, or benzobisoxazole electron acceptor subunits, and electron donor subunits, and their uses in transistors and solar cells
JP2015180621A (en) * 2009-10-29 2015-10-15 住友化学株式会社 compound
KR101564406B1 (en) * 2014-03-12 2015-10-30 한국화학연구원 Novel Conjugated Polymer and Organo-Electronic Device Using the Same
US9508942B2 (en) 2008-02-18 2016-11-29 Lomox Limited Liquid crystal photoalignment materials
KR101790677B1 (en) * 2010-06-24 2017-10-27 삼성전자주식회사 Electron donating polymer and organic solar cell including the same
KR101807870B1 (en) * 2015-01-20 2017-12-12 한국화학연구원 Novel organic semiconductor compound and organic electronic device using them

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007067263A (en) * 2005-09-01 2007-03-15 Konica Minolta Holdings Inc Organic semiconductor material, organic semiconductor film, organic semiconductor device and organic semiconductor thin-film transistor
JP2007110105A (en) * 2005-09-20 2007-04-26 Seiko Epson Corp Semiconductor film having discrete region of organic semiconductor, and method for manufacturing same
US7557370B2 (en) * 2006-04-06 2009-07-07 Xerox Corporation Heteroacene polymers and electronic devices generated therefrom
JP2007277552A (en) * 2006-04-06 2007-10-25 Xerox Corp Semiconductor and electronic device produced therefrom
US7372071B2 (en) * 2006-04-06 2008-05-13 Xerox Corporation Functionalized heteroacenes and electronic devices generated therefrom
KR101390243B1 (en) 2006-04-06 2014-04-30 제록스 코포레이션 Semiconductors and electronic devices generated therefrom
JP2008109135A (en) * 2006-10-25 2008-05-08 Xerox Corp Electronic device
KR101397662B1 (en) 2006-10-25 2014-06-27 삼성전자주식회사 Electronic devices
JP2009135422A (en) * 2007-09-06 2009-06-18 Xerox Corp Thin-film transistor and method of forming the same
JP2009141338A (en) * 2007-11-12 2009-06-25 Mitsui Chemicals Inc Organic transistor
US8558013B2 (en) 2008-01-07 2013-10-15 Lomox Limited Electroluminescent materials
US9029537B2 (en) 2008-01-07 2015-05-12 Lomox Limited Electroluminescent materials
EP2085401A1 (en) 2008-01-22 2009-08-05 Ricoh Company, Ltd. Benzobisthiazole compound, benzobisthiazole polymer, organic film including the compound or polymer and transistor including the organic film
US8193304B2 (en) 2008-01-22 2012-06-05 Ricoh Company Limited Benzobisthiazole compound, benzobisthiazole polymer, organic film including the compound or polymer and transistor including the organic film
KR101071323B1 (en) 2008-01-22 2011-10-07 가부시키가이샤 리코 Benzobisthiazole compound, benzobisthiazole polymer, organic film including the compound or polymer and transistor including the organic film
US10707426B2 (en) 2008-02-18 2020-07-07 Lomox Limited Liquid crystal photoalignment materials
US9508942B2 (en) 2008-02-18 2016-11-29 Lomox Limited Liquid crystal photoalignment materials
US8367798B2 (en) * 2008-09-29 2013-02-05 The Regents Of The University Of California Active materials for photoelectric devices and devices that use the materials
US8816100B2 (en) 2008-11-21 2014-08-26 Hiroshima University Compound, method of producing the compound, organic semiconductor material and organic semiconductor device
KR101399770B1 (en) 2008-11-21 2014-05-27 고쿠리츠다이가쿠호진 히로시마다이가쿠 Novel compound, process for producing the compound, organic semiconductor material, and organic semiconductor device
JP2010150229A (en) * 2008-11-21 2010-07-08 Hiroshima Univ New compound, method for producing the same, organic semiconductor material, and organic semiconductor device
WO2010058692A1 (en) * 2008-11-21 2010-05-27 国立大学法人広島大学 Novel compound, process for producing the compound, organic semiconductor material, and organic semiconductor device
JP2010205982A (en) * 2009-03-04 2010-09-16 Mitsui Chemicals Inc Organic transistor
JP2012527784A (en) * 2009-05-21 2012-11-08 ポリエラ コーポレイション Conjugated polymers and their use in optoelectronic devices
US8372945B2 (en) 2009-07-24 2013-02-12 Solarmer Energy, Inc. Conjugated polymers with carbonyl substituted thieno[3,4-B]thiophene units for polymer solar cell active layer materials
US8697833B2 (en) 2009-07-24 2014-04-15 Solarmer Energy, Inc. Conjugated polymers with carbonyl-substituted thieno [3,4-B] thiophene units for polymer solar cell active layer materials
WO2011039505A1 (en) * 2009-09-30 2011-04-07 Lomox Limited Electroluminescent thiophene derivatives
US9006435B2 (en) 2009-09-30 2015-04-14 Lomox Limited Electroluminescent thiophene derivatives
KR101879880B1 (en) * 2009-09-30 2018-07-18 로목스 리미티드 Electroluminescent thiophene derivatives
US8871884B2 (en) 2009-10-28 2014-10-28 University Of Washington Copolymer semiconductors comprising thiazolothiazole or benzobisthiazole, or benzobisoxazole electron acceptor subunits, and electron donor subunits, and their uses in transistors and solar cells
JP2015180621A (en) * 2009-10-29 2015-10-15 住友化学株式会社 compound
US20110315224A1 (en) * 2010-06-24 2011-12-29 Samsung Electronics Co., Ltd. Electron Donating Polymer And Organic Solar Cell Including The Same
US9112155B2 (en) * 2010-06-24 2015-08-18 Samsung Electronics Co., Ltd. Electron donating polymer and organic solar cell including the same
KR101790677B1 (en) * 2010-06-24 2017-10-27 삼성전자주식회사 Electron donating polymer and organic solar cell including the same
JP2012233098A (en) * 2011-05-02 2012-11-29 Konica Minolta Holdings Inc Conjugated polymer and organic photoelectric conversion element using the same
US9112156B2 (en) * 2011-05-04 2015-08-18 Samsung Electronics Co., Ltd. Electron donating polymers and organic solar cells including the same
KR101777325B1 (en) 2011-05-04 2017-09-12 삼성전자주식회사 Electron donating polymer and organic solar cell including the same
US20120279568A1 (en) * 2011-05-04 2012-11-08 Samsung Electronics Co., Ltd. Electron Donating Polymers And Organic Solar Cells Including The Same
KR101564406B1 (en) * 2014-03-12 2015-10-30 한국화학연구원 Novel Conjugated Polymer and Organo-Electronic Device Using the Same
KR101807870B1 (en) * 2015-01-20 2017-12-12 한국화학연구원 Novel organic semiconductor compound and organic electronic device using them

Similar Documents

Publication Publication Date Title
JP2007019294A (en) Organic semiconductor material, organic semiconductor film, organic semiconductor element, and organic thin film transistor
JP2005206750A (en) Organic semiconductive material, organic transistor, field-effect transistor, switching element, and five-membered heterocyclic compound
JPWO2006059486A1 (en) Organic thin film transistor material, organic thin film transistor, field effect transistor, switching element, organic semiconductor material, and organic semiconductor film
JP2007067263A (en) Organic semiconductor material, organic semiconductor film, organic semiconductor device and organic semiconductor thin-film transistor
JPWO2005070994A1 (en) Organic semiconductor materials, organic transistors, field effect transistors, switching elements, and thiazole compounds
JP2006216814A (en) Organic semiconductor material, organic semiconductor thin film, organic thin film transistor, field effect transistor and switching element
JP2007067262A (en) Organic semiconductor material, organic semiconductor film, organic semiconductor device and organic semiconductor thin-film transistor
JP2006339577A (en) Organic semiconductor thin film and organic thin film transistor
JP2007088224A (en) Organic semiconductor material and organic semiconductor film using same, organic semiconductor device, and organic thin-film transistor
JP5228907B2 (en) Organic semiconductor material, organic semiconductor film, organic semiconductor device, and organic thin film transistor
JPWO2006038459A1 (en) Organic thin film transistor material, organic thin film transistor, field effect transistor and switching element
JP2005260212A (en) Organic semiconductor material and organic thin film transistor using the same, field effect organic thin film transistor and switching device using them
JP2007311609A (en) Material, film, and device for organic semiconductor and organic thin-film transistor
JP2006222251A (en) Organic semiconductor material, organic thin-film transistor, field effect transistor, and switching element
JP2007317984A (en) Organic semiconductor material, organic semiconductor film, organic semiconductor device, and organic thin film transistor
JP2006140180A (en) Organic thin film transistor material, organic thin film transistor, field effect transistor, and switching element
JP2006339576A (en) Organic semiconductor film, organic thin film transistor and their fabrication process
JP2006060116A (en) Organic thin film transistor, material therefor, field effect transistor and switching device
JP2005236096A (en) Organic semiconductor material, organic thin-film transistor using the same, field effect organic thin-film transistor, and switching element using both
JPWO2006098121A1 (en) Organic semiconductor material, organic semiconductor film, organic semiconductor device, organic thin film transistor, and method for forming organic thin film transistor
JP2007059682A (en) Organic semiconductor material, organic semiconductor film, organic semiconductor device and organic thin-film transistor
JP2005223238A (en) Organic semiconductor material and organic thin film transistor employing it, field effect organic thin film transistor and switching element employing them
JP2007059780A (en) Organic semiconductor material, organic semiconductor film, organic semiconductor device and organic thin-film transistor
JP2006028054A (en) Organic thin film transistor material, organic thin film transistor, field effect transistor and swichintg device
JP2006128601A (en) Material, film and device of organic semiconductor and organic thin film transistor