Nothing Special   »   [go: up one dir, main page]

JP2005202229A - 光モジュール - Google Patents

光モジュール Download PDF

Info

Publication number
JP2005202229A
JP2005202229A JP2004009413A JP2004009413A JP2005202229A JP 2005202229 A JP2005202229 A JP 2005202229A JP 2004009413 A JP2004009413 A JP 2004009413A JP 2004009413 A JP2004009413 A JP 2004009413A JP 2005202229 A JP2005202229 A JP 2005202229A
Authority
JP
Japan
Prior art keywords
optical waveguide
optical
core
housing
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004009413A
Other languages
English (en)
Inventor
Kazutoshi Tanida
和敏 谷田
Takashi Shimizu
敬司 清水
Shigemi Otsu
茂実 大津
Hidekazu Akutsu
英一 圷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd filed Critical Fuji Xerox Co Ltd
Priority to JP2004009413A priority Critical patent/JP2005202229A/ja
Publication of JP2005202229A publication Critical patent/JP2005202229A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Led Device Packages (AREA)
  • Light Receiving Elements (AREA)
  • Mechanical Coupling Of Light Guides (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

【課題】 複数の光ファイバ(光導波路)で構成された多芯光導波路ファイバをハウジング(基板)に接続する際、光素子に対して簡単に位置決めでき、接続点の変更を容易にすることを課題とする。
【解決手段】 ハウジング70には凸部73、75が形成されており、この凸部73、75には、光導波路50に形成された凹部72、74が係合されるようになっている。また、ハウジング70には、位置決め部84が形成されており、この位置決め部84によって発光素子86が、凸部73に対して位置決めされるようになっている。これにより、発光素子86を位置決め部84に位置決めして取り付け、光導波路50の凹部72をハウジング70の凸部73、75に係合させて接続するだけで、発光素子86の光軸を、光導波路50の光導波路コア66の光軸と同芯とすることができる。
【選択図】 図5

Description

本発明は、光導波路と受光素子又は発光素子が接続された光モジュールに関する。
近年、インターネットをはじめとする情報伝達手段の普及・発展により、大容量かつ高速なデータ伝送の要求が高まっている。大容量のデータを高速に伝送するために、膨大な情報をより遠くまで少ない伝送損失で光信号を送受信することができる光ファイバが知られている。
この光ファイバを光素子(発光ダイオードや受光ダイオード等)と共に基板上に実装した光モジュールにおいて、光ファイバと光素子を調芯して同芯とする必要がある。この調芯方法として、例えば、基板上に光素子を実装した後で、光素子を駆動させながら光ファイバに最も強い光が入射するように光ファイバを移動させることで、光素子に対して光ファイバを移動させて位置調整するアクティブアライメントがある。
しかし、このアクティブアライメントでの調芯作業は手作業で行われるため、コストが高くついてしまう。コストを下げるためには、調芯作業を簡略化するか、もしくは無調芯で製造できることが求められている。
そこで、光ファイバを実装する基板に光ファイバを位置決めするための凹形状を形成し、この凹形状にそれぞれ光ファイバを係合して固定させ、光ファイバのコアの高さと光素子の受発光点高さを一致させて光接続することで、調芯作業を簡素化する技術が開示されている(特許文献1〜3参照)。
しかし、これらは実装する基板に光ファイバのコアを位置決めする凹形状を形成するので、束の光ファイバの場合には、光ファイバの数だけ基板上に凹形状を形成する必要がある。これによって、基板の製造コストが高くなってしまい、全体としてコストアップする一因となる。
また、これらは実装する基板に光ファイバを固定してしまうため、接続点を変更する際には、光ファイバを基板からはがさなければならない。これにより、接続点の変更は困難であり、接続点を変更する機会が多い場合には、非常に扱いづらいものとなる。
特開平7−38124号公報(第3項、第2図) 特開平8−313746号公報(第4項、第1図) 特開平11−287926号公報(第19項、第2図)
本発明は上記事実を考慮し、複数の光ファイバ(光導波路)で構成された多芯光導波路ファイバをハウジング(基板)に接続する際、光素子に対して簡単に位置決めでき、接続点の変更を容易にすることを目的とする。
請求項1に記載の発明は、光信号を送信する発光素子又は光信号を受信する受光素子と、前記発光素子又は前記受光素子を搭載し、コネクタが接続されるハウジングと、前記ハウジングに取り付けられ、前記発光素子の光信号を伝達又は前記受光素子へ光信号を伝達する光導波路コアを備え、光導波路コアがコネクタの光導波路コアとの間に光信号を送受信する光導波路と、で構成された光モジュールにおいて、前記ハウジングには、前記光導波路に形成された凹部と係合する凸部と、前記発光素子又は前記受光素子を前記凸部に対して位置決めし、前記光導波路コアの光軸と前記発光素子又は前記受光素子の光軸を同芯とする位置決め部と、が形成されたことを特徴としている。
請求項1に記載の発明によれば、ハウジングには凸部が形成されており、この凸部には、光導波路に形成された凹部が係合されるようになっている。また、ハウジングには、位置決め部が形成されており、この位置決め部によって発光素子又は受光素子が、凸部に対して位置決めされるようになっている。
これにより、発光素子又は受光素子を位置決め部に位置決めして取り付け、光導波路の凹部をハウジングの凸部に係合させて接続するだけで、発光素子又は受光素子の光軸を、光導波路の光導波路コアの光軸と同芯とすることができる。従って、光導波路コアの光軸と発光素子又は受光素子の光軸を一致させる調芯作業が不要となり、光モジュールの製造コストを低く抑えることができる。
また、ハウジングに発光素子又は受光素子と光導波路が設けられた光モジュールに、コネクタを接続することで、コネクタの光導波路コアからの光が、光モジュールの光導波路コアに入射するようになっている。これによって、接続点を変更する際、コネクタを光モジュールから外すだけで良いので、容易に接続点を変更することができる。
請求項2に記載の発明は、前記位置決め部は、前記発光素子又は前記受光素子を3点で支持することを特徴としている。
請求項2に記載の発明によれば、発光素子又は受光素子は、位置決め部によって3点で支持されることで、発光素子又は受光素子をハウジングの凸部に対して位置決めされている。このように、発光素子又は受光素子を3点で支持することで、発光素子又は受光素子を凸部に対して高い精度で位置決めできる。
請求項3に記載の発明は、前記凹部は、前記光導波路コアの延伸方向と平行に形成されたことを特徴としている。
請求項3に記載の発明によれば、光導波路コアの延伸方向と平行に凹部を形成することで、凹部と係合するハウジングの凸部も、光導波路コアの延伸方向に形成される。すなわち、凸部はハウジングに光導波路コアを挿入する方向に沿って形成される。これにより、光導波路コアが挿入される挿入口を形成する金型に、凸部を形成するための形状を作成して、挿入口を形成する方向と同じ方向で抜けばよく、2方向抜きの金型で成形できる。従って、ハウジングの製造コストを低く抑えることができる。
請求項4に記載の発明は、前記凹部は、前記光導波路コアの延伸方向と直交する方向に形成されたことを特徴としている。
請求項4に記載の発明によれば、光導波路コアの延伸方向と直交する方向に凹部を形成することで、凹部をハウジングの凸部に係合させたとき、光導波路コアはハウジングに対して光導波路コアの延伸方向に位置決めがされる。これにより、コネクタとハウジングを接続するとき、光導波路コアの端面をコネクタの光導波路コアの端面に突き当てて位置合わせをする必要がないので、光導波路コアの端面に傷がついて光接続損失が増大する心配がない。
請求項5に記載の発明は、前記凹部は、前記光導波路コアの延伸方向と平行する方向と、前記光導波路コアの延伸方向と直交する方向と、に少なくとも2本形成されたことを特徴としている。
請求項5に記載の発明によれば、光導波路コアの延伸方向と、光導波路コアの延伸方向と直交する方向に、少なくとも2本の凹部を形成することで、凹部をハウジングの凸部に係合させたとき、光導波路コアは光導波路コアの延伸方向、及び光導波路コアの延伸方向と直交する方向に位置決めがされる。これにより、光ファイバをコネクタに接続するだけで、光導波路コアの光軸とコネクタの光導波路コアの光軸が一致するため、調芯作業が不要となる。このため、接続作業が複雑にならず、コストを低く抑えることができる。
また、光ファイバにコネクタを接続するとき、光ファイバの光導波路コアの端面をコネクタの光導波路コアの端面に突き当てて位置合わせをする必要がないので、光ファイバの光導波路コアの端面に傷がついて光接続損失が増大する心配がない。
請求項6に記載の発明は、複数の光導波路コアが前記光導波路の幅方向に設けられた光導波路において、前記凹部は、前記光導波路の上下方向の面の少なくともどちらか一方に形成されたことを特徴としている。
請求項6に記載の発明によれば、光導波路コアが光導波路の幅方向に沿って複数形成された光導波路では、光導波路の上下面の少なくともどちらか一方の面に凹部を形成することで、光導波路の面積の広い面でハウジングと係合されることになる。従って、光導波路コアをハウジングに安定した状態で係合できる。
請求項7に記載の発明は、前記凹部は、断面の形状が矩形状とされたことを特徴としている。
請求項7に記載の発明によれば、凹部の断面の形状を矩形状とすることで、凹部を形成する金型の加工が容易となる。これにより、製造コストの削減に繋がる。
請求項8に記載の発明は、前記凹部は、断面の形状が略V字状とされたことを特徴としている。
請求項8に記載の発明によれば、凹部の断面形状を略V字状とすることで、光導波路の凹部をハウジングのV字状の凸部に係合させるとき、凹部は凸部に2面で支持されることになるので、位置合わせの精度が出し易い。
また、矩形状の凹部に比べて略V字状の凹部の場合、凹部を形成する金型に抜きテーパをつける必要がない。これにより、型構造が簡単になり、また、離形不良などの成形不良の発生率を低くすることができるので、製造コストの削減に繋がる。
請求項9に記載の発明は、前記光導波路は、光信号を伝達する光導波路コアと、前記光導波路コアを取り囲む板状のクラッド部と、で構成され、前記光導波路コアと前記クラッド部との少なくとも一方が、高分子化合物で形成されたことを特徴としている。
請求項9に記載の発明によれば、光信号を伝達する光導波路コアと前記光導波路コアを取り囲む板状のクラッド部で構成された光導波路において、光導波路コアとクラッド部の少なくともどちらか一方を、シリコン基板やガラス基板等で形成せずに高分子化合物で形成することで、材料費を低く抑えることができ、製造コスト削減に繋がる。また、高分子化合物、例えばプラスチック材を用いることで、光導波路コア及びクラッド部を成形するにあたって、任意の形状を得ることが容易となる。
本発明は上記構成としたので、複数の光ファイバ(光導波路)で構成された多芯光導波路ファイバをハウジングに接続する際、ハウジングに対して簡単に位置決めでき、接続点の変更を容易にできる。
最初に、図1を用いて本発明の光導波路の製造工程について、工程順に説明する。
1)鋳型形成用硬化性樹脂の硬化樹脂層から形成され、コア凸部に対応する凹部を有する鋳型を準備する工程
鋳型の作製は、光導波路コア(以下「コア」とする)に対応する凸部を形成した原盤を用いて行うのが好ましいが、これに限定されるものではない。以下では、原盤を用いる方法について説明する。
<原盤の作製>
コアに対応する凸部12を形成した原盤10(図1(A)に示す)の作製には、従来の方法、たとえばフォトリソグラフィー法やRIE法を特に制限なく用いることができる。また、本出願人が先に出願した電着法又は光電着法により光導波路を作製する方法(特願2002−10240号)も、原盤10を作製するのに適用できる。
原盤10に形成されるコアに対応する凸部12の大きさは、一般的に5〜500μm角程度、好ましくは40〜200μm角程度であり、光導波路の用途等に応じて適宜決められる。例えばシングルモード用の光導波路の場合には、10μm角程度のコアを、マルチモード用の光導波路の場合には、50〜100μm角程度のコアが一般的に用いられるが、用途によっては数百μm角程度と更に大きなコアを持つ光導波路も利用される。
<鋳型の作製>
次に、鋳型20の作製の工程について説明する。
上記のようにして作製した原盤10のコアに対応する凸部12が形成された面に、図1(B)に示すように、鋳型形成用硬化性樹脂を塗布又は注型して硬化性樹脂層20aを形成し、必要に応じ乾燥処理をして硬化性樹脂層20aを硬化させる。そして、この硬化した硬化性樹脂層20aを原盤10から剥離することで、凸部12に対応する凹部22が形成された鋳型20が作製される。
次に、図1(C)に示すように、鋳型20に、凹部22にコア形成用硬化性樹脂を充填するための進入口26、及び凹部22から樹脂を排出させるための排出口28を、打ち抜きによって形成する。
なお、進入口26及び排出口28は、鋳型20に打ち抜きによって予め設ける構成以外にも、種々の方法を用いることができる。その他の方法として、例えば、原盤に鋳型形成用硬化性樹脂の硬化樹脂層を形成した後、硬化性樹脂層を原盤から剥離して鋳型を作製し、その後、鋳型の両端を凹部が露出するように切断することにより進入口及び排出口を形成する方法が挙げられる。このように、進入口26及び排出口28の形成方法は特に制限されない。
鋳型20の凹部22に連通する進入口26及び排出口28を、凹部22の両端に設けることによって、進入口26は液(樹脂)溜まりとして利用でき、排出口28は減圧吸引管をその中に挿入して凹部22内部を減圧吸引装置に接続することができる。また、進入口26をコア形成用硬化性樹脂の注入管に連結して、進入口26から樹脂を凹部22に加圧注入することも可能である。排出口28は、凹部22が複数ある場合には、各凹部22に対応してそれぞれ設けてもよく、また、各凹部22に共通に連通する1つの孔を設けてもよい。
硬化樹脂層の厚さは、鋳型20の取り扱い性を考慮して適宜決められるが、一般的に0.1〜50mm程度が適切である。また、原盤10にはあらかじめ離型剤塗布などの離型処理を行うことで、硬化性樹脂層22aが原盤10から剥離しやすくなり、原盤10と鋳型20の剥離が促進される。
鋳型形成用硬化性樹脂としては、その硬化物が原盤10から容易に剥離できること、鋳型20(繰り返し用いる)として一定以上の機械的強度・寸法安定性を有すること、凹部の22形状を維持する硬さ(硬度)を有すること、後述するクラッド用基材30との密着性が良好であることが好ましい。鋳型形成用硬化性樹脂には、必要に応じて各種添加剤を加えることができる。
鋳型形成用硬化性樹脂は、原盤10の表面に塗布や注型等することが可能で、また、原盤10に形成された個々のコアに対応する凸部12を正確に転写しなければならない。従って、ある限度以下の粘度、たとえば、500〜7000mPa・s程度を有することが好ましい。(なお、本発明において用いる「鋳型形成用硬化性樹脂」の中には、硬化後、弾性を有するゴム状体となるものも含まれる。)また、粘度調節のために溶剤を、溶剤の悪影響が出ない程度に鋳型形成用硬化性樹脂に加えることができる。
鋳型形成用硬化性樹脂としては、剥離性、機械強度・寸法安定性、硬度、クラッド用基材との密着性の点から、硬化後、シリコーンゴム(シリコーンエラストマー)又はシリコーン樹脂となる硬化性オルガノポリシロキサンが好ましく用いられる。硬化性オルガノポリシロキサンは、分子中にメチルシロキサン基、エチルシロキサン基、フェニルシロキサン基を含むものが好ましい。また、硬化性オルガノポリシロキサンは、一液型のものでも硬化剤と組み合わせて用いる二液型のものでもよく、また、熱硬化型のものでも室温硬化型(例えば空気中の水分で硬化するもの)のものでもよく、更に他の硬化(紫外線硬化等)を利用するものであってもよい。
硬化性オルガノポリシロキサンとしては、硬化後シリコーンゴムとなるものが好ましい。硬化後シリコーンゴムとなるものには、通常液状シリコーンゴム(「液状」の中にはペースト状のように粘度の高いものも含まれる)と称されているものが用いられている。液状シリコーンゴムは、硬化剤と組み合わせて用いる二液型のものが好ましい。中でも付加型の液状シリコーンゴムは、表面と内部が均一にかつ短時間に硬化し、またその際、副生成物が無く、あるいは少なく、かつ離型性に優れ収縮率も小さいので好ましく用いられる。
液状シリコーンゴムの中でも特に液状ジメチルシロキサンゴムが密着性、剥離性、強度及び硬度の制御性の点から好ましい。また、液状ジメチルシロキサンゴムの硬化物は、一般に屈折率が1.43程度と低いため、これを用いて形成された鋳型は、クラッド用基材から剥離させずに、そのままクラッド層として利用することができる。この場合には、鋳型と、充填したコア形成用樹脂及びクラッド用基材とが剥がれないような工夫が必要になる。
液状シリコーンゴムの粘度は、コアに対応する凸部12を正確に転写し、かつ気泡の混入を少なくして脱泡し易くする観点と、数ミリの厚さの鋳型を形成する点から、500〜7000mPa・s程度のものが好ましく、さらには、2000〜5000mPa・s程度のものがより好ましい。
さらに、鋳型20の表面エネルギーは、10dyn/cm〜30dyn/cm、特に、15dyn/cm〜24dyn/cmの範囲にあることが、基材フィルムとの密着性とコア形成用硬化性樹脂の浸透速度の点からみて好ましい。
鋳型20のシェア(Share)ゴム硬度は、15〜80であればよく、特に20〜60であることが、型取り性能、凹部形状の維持、剥離性の点からみて好ましい。
鋳型20の表面粗さ(二乗平均粗さ(RMS))は、0.5μm以下、好ましくは0.1μm以下、より好ましくは0.05μm以下にすることで、形成されたコアの光導波特性において光損失を大幅に低減できる。表面粗さは、使用する光の波長の2分の1以下が好ましく、10分の1以下になるとその光のコア表面粗さによる導波損失は殆ど無視できるレベルになる。
また、鋳型20は、紫外領域及び/又は可視領域において光透過性であることが好ましい。鋳型20が可視領域において光透過性であることによって、後述する2)の工程において鋳型20をクラッド用基材30(図1(D)参照)に密着させる際、位置決めが容易に行える。また、後述する3)の工程においてコア形成用硬化性樹脂が鋳型20の凹部22に充填される様子が観察でき、充填完了等が容易に確認することができる。
さらに、鋳型20が紫外領域において光透過性であることが好ましいのは、コア形成用硬化性樹脂として紫外線硬化性樹脂を用いる場合に、鋳型20を透して紫外線硬化を行うためである。従って、鋳型20の、紫外領域(300nm〜400nm)における透過率が80%以上であることが好ましい。
硬化性オルガノポリシロキサン、中でも硬化後シリコーンゴムとなる液状シリコーンゴムは、クラッド用基材30との密着性と剥離性という相反した特性に優れ、ナノ構造を転写する能力を持ち、シリコーンゴムとクラッド用基材30とを密着させたとき、液体の進入さえ防ぐことができる。このようなシリコーンゴムを用いた鋳型20は高精度に原盤10の形状を転写し、クラッド用基材30にしっかりと密着する。このため、鋳型20とクラッド用基材30の間の凹部22のみに、コア形成用樹脂を効率良く充填することが可能となる。また、クラッド用基材30と鋳型20の剥離も容易である。従って、この鋳型20からは高精度に形状を維持した光導波路を、極めて簡便に作製することができる。
さらに、硬化樹脂層、とりわけ硬化樹脂層がゴム弾性を有する場合、硬化樹脂層の一部すなわち原盤10の凸部12を転写する部分以外の部分を他の剛性材料に置き換えることができ、この場合、鋳型20のハンドリング性が向上する。
2)鋳型20にクラッド用基材30を密着させる工程
鋳型20にクラッド用基材30を密着させる。クラッド用基材30としては、ガラス基材、セラミック基材、プラスチック基材等のものが制限なく用いられる。クラッド用基材30にプラスチック基材等の高分子化合物を用いることで、クラッド部を成形するにあたって、任意の形状を得ることが容易となる。
また、屈折率制御のためにこれらの基材に樹脂コートしたものも用いられる。クラッド用基材30の屈折率は、1.55より小さく、1.50より小さいものがより好ましい。特に、コア32(図1(F)参照)の屈折率より0.01以上小さい必要がある。また、クラッド用基材30としては、平坦で、鋳型20との密着性に優れ、両者を密着させた場合、鋳型20の凹部22以外に空隙が生じないものが好ましい。
プラスチック基材の中でも、フレキシブルなフィルム基材を用いた光導波路は、カプラー、ボード間の光配線や光分波器等としても使用できる。フィルム基材は、作製される光導波路の用途に応じて、その屈折率、光透過性等の光学的特性、機械的強度、耐熱性、鋳型との密着性、フレキシビリティー(可撓性)等を考慮して選択される。
フィルム基材の材料としては、アクリル系樹脂(ポリメチルメタクリレート等)、脂環式アクリル樹脂、スチレン系樹脂(ポリスチレン、アクリロニトリル・スチレン共重合体等)、オレフィン系樹脂(ポリエチレン、ポリプロピレン、エチレン・プロピレン共重合体等)、脂環式オレフィン樹脂、塩化ビニル系樹脂、塩化ビニリデン系樹脂、ビニルアルコール系樹脂、ビニルブチラール系樹脂、アリレート系樹脂、含フッ素樹脂、ポリエステル系樹脂(ポリエチレンテレフタレート、ポリエチレンナフタレート等)、ポリカーボネート系樹脂、二又は三酢酸セルロース、アミド系樹脂(脂肪族、芳香族ポリアミド等)、イミド系樹脂、スルホン系樹脂、ポリエーテルスルホン系樹脂、ポリエーテルエーテルケトン系樹脂、ポリフェニレンスルフィド系樹脂、ポリオキシメチレン系樹脂、または樹脂の混合物等が挙げられる。
フィルム基材が、鋳型20やコア32との密着性があまり良好でない場合には、オゾン雰囲気による処理、波長300nm以下の紫外線照射処理を行い、鋳型20及びコア32との密着を改善することが望ましい。
また、脂環式オレフィン樹脂としては、主鎖にノルボルネン構造を有するもの、及び主鎖にノルボルネン構造を有しかつ側鎖にアルキルオキシカルボニル基(アルキル基としては炭素数1から6のものやシクロアルキル基)等の極性基をもつものが挙げられる。中でも主鎖にノルボルネン構造を有しかつ側鎖にアルキルオキシカルボニル基等の極性基をもつ脂環式オレフィン樹脂は、低屈折率(屈折率が1.50近辺であり、コア32、クラッド用基材30の屈折率の差を確保できる)及び高い光透過性等の優れた光学的特性を有し、鋳型20との密着性に優れ、さらに耐熱性に優れている。
フィルム基材の屈折率は、コア32との屈折率差を確保するため、1.55より小さく、好ましくは1.53より小さくすることが望ましい。
また、フィルム基材の厚さはフレキシビリティーと剛性や取り扱いの容易さ等を考慮して適切に選ばれ、一般的には0.1mm〜0.5mm程度が好ましい。
3)クラッド用基材30を密着させた鋳型20の凹部22にコア形成用硬化性樹脂を充填する工程
図1(D)に示すように、凹部22の一端に形成された進入口26にコア形成用硬化性樹脂を注入し、凹部22の他端に形成された排出口28から減圧吸引して、凹部22にコア形成用硬化性樹脂を充填する。
なお、凹部22にコア形成用硬化性樹脂を充填する方法は、上記方法に限定されない。例えば、進入口26にコア形成用硬化性樹脂を少量垂らし毛細管現象を利用して充填したり、進入口26から凹部22にコア形成用硬化性樹脂を加圧充填したり、排出口28から凹部22内を減圧吸引したり、あるいは加圧充填と減圧吸引の両方を行うなどにより、凹部22にコア形成用硬化性樹脂を充填する方法がある。加圧充填と減圧吸引を併用する場合はこれらを同期して行うことが好ましい。これにより、鋳型20が安定して固定された状態で、加圧充填において圧力を段階的に増加させ、減圧吸引において圧力を段階的に減少させることで、コア形成用硬化性樹脂をより高速に注入する相反則を両立させることができる。また、毛細管現象を利用して、凹部22にコア形成用硬化性樹脂を充填する場合には、充填を促進するために凹部22内を0.1〜100kPa程度に減圧することが好ましい。さらに、充填を促進するために、凹部22内の減圧に加えて、鋳型20の進入口26から充填するコア形成用硬化性樹脂を加熱することで、より低粘度化することも有効な手段である。
コア形成用硬化性樹脂としては、紫外線硬化性、放射線硬化性、電子線硬化性、熱硬化性等の樹脂を用いることができ、中でも紫外線硬化性樹脂及び熱硬化性樹脂が好ましく用いられる。コア形成用の紫外線硬化性樹脂又は熱硬化性樹脂としては、紫外線硬化性又は熱硬化性のモノマー、オリゴマー若しくはモノマーとオリゴマーの混合物が好ましく用いられる。また、紫外線硬化性樹脂としてエポキシ系、ポリイミド系、アクリル系紫外線硬化性樹脂が好ましく用いられる。このように、コアをシリコン基板やガラス基板等で形成せずに高分子化合物で形成することで、材料費を低く抑えることができ、製造コスト削減に繋がる。また、コアを紫外線硬化性、放射線硬化性、電子線硬化性、熱硬化性等の樹脂などの高分子化合物で成形することで、任意の形状を得ることが容易となる。
コア形成用硬化性樹脂は、鋳型20とクラッド用基材30との間に形成された空隙(凹部22)に充填させるため、低粘度であることが必要である。硬化性樹脂の粘度は、10〜2000mPa・s好ましくは100〜1000mPa・s、更に好ましくは300〜700mPa・sにすることで、充填速度が速くなり、精度の良い形状のコアが得られ、光損失を少なくすることができる。
このほかに、原盤10に形成されたコアに対応する凸部12が有する元の形状を高精度に再現するため、硬化性樹脂の硬化前後の体積変化が小さいことが必要である。例えば、体積が減少すると導波損失の原因になる。従って、硬化性樹脂は、体積変化ができるだけ小さいものが望ましく、体積変化が10%以下のものが用いられる。好ましくは体積変化が0.01〜4%の範囲にあるものが用いられる。溶剤を用いて硬化性樹脂を低粘度化することは、硬化前後の体積変化が大きいのでできれば避ける方が好ましい。体積収縮が0.01%以下の材料や体積膨張する材料では、鋳型20からの剥離効率が下がり、鋳型20からの剥離時に表面の破断等の表面劣化が生じるため、形成されるコア32の表面の平滑性が低下して光導波損失が上昇するので好ましくない。
コア形成用硬化性樹脂の硬化後の体積変化(収縮)を小さくするため、樹脂にポリマーを添加することができる。ポリマーはコア形成用硬化性樹脂との相溶性を有し、かつ樹脂の屈折率、弾性率、透過特性に悪影響を及ぼさないものが好ましい。またポリマーを添加することにより体積変化を小さくする他、粘度や硬化樹脂のガラス転移点を高度に制御できる。ポリマーとしては例えばアクリル系、メタクリル酸系、エポキシ系のものが用いられるが、これらに限定されるものではない。
コア形成用硬化性樹脂の硬化物の屈折率は1.2から1.6の範囲、より好ましくは1.4から1.6の範囲が好ましく、硬化物の屈折率が範囲内に入る2種類以上の屈折率の異なる樹脂が用いられる。
コア形成用硬化性樹脂の硬化物の屈折率は、クラッド用基材30となるフィルム基材(以下の5)の工程におけるクラッド層を含む)より大きいことが必要である。コアとクラッド(クラッド用基材及びクラッド層)との屈折率の差は、0.01以上、好ましくは0.05以上である。
4)充填したコア形成用硬化性樹脂を硬化させる工程
前記3)の工程において、凹部22に充填したコア形成用硬化性樹脂を、硬化させる。紫外線硬化性樹脂を硬化させるには、紫外線ランプ、紫外線LED、UV照射装置等が用いられる。また、熱硬化性樹脂を硬化させるには、オーブン中での加熱等が用いられる。
5)鋳型20をクラッド用基材30から剥離する工程
前記4)の工程の後、鋳型20をクラッド用基材30から剥離する。図1(E)に示すように、剥離したクラッド用基材30の上には、コア32と進入口26及び排出口28内において硬化した樹脂部分が形成される。そして、図1(F)に示すように、進入口26及び排出口28内において硬化した樹脂部分を、研削等によって除去する。これにより、コア32(光導波路コア)とする。なお、コア32の端面は、鏡面平滑性を有している。
また、前記1)〜4)の工程で用いる鋳型20は、屈折率等の条件を満たせばそのままクラッド層に用いることも可能で、この場合は、鋳型を剥離する必要はなくそのままクラッド層として利用する。この場合、鋳型とコア材料の接着性を向上させるために鋳型をオゾン処理することが好ましい。
6)コア32が形成されたクラッド用基材30の上にクラッド層を形成する工程
図1(G)に示すように、コア32が形成されたクラッド用基材30の上にクラッド層34を形成する。クラッド層34としては、フィルム(たとえば前記2)の工程で用いたようなクラッド用基材が同様に用いられる)や、クラッド用硬化性樹脂を塗布して硬化させた層、高分子材料の溶剤溶液を塗布して乾燥して得られる高分子膜等が挙げられる。クラッド用硬化性樹脂としては紫外線硬化性樹脂や熱硬化性樹脂が好ましく用いられ、例えば、紫外線硬化性又は熱硬化性のモノマー、オリゴマー若しくはモノマーとオリゴマーの混合物が用いられる。
クラッド形成用硬化性樹脂の硬化後の体積変化(収縮)を小さくするために、樹脂と相溶性を有し、また樹脂の屈折率、弾性率、透過特性に悪影響を及ぼさないポリマー(例えばメタクリル酸系、エポキシ系)を、クラッド用硬化性樹脂(紫外線硬化性樹脂や熱硬化性樹脂)に添加することができる。
クラッド層34としてフィルムを用いる場合は、接着剤を用いて貼り合わされるが、その際、接着剤の屈折率がフィルムの屈折率と近いことが望ましい。用いる接着剤は紫外線硬化性樹脂又は熱硬化性樹脂が好ましく用いられ、例えば、紫外線硬化性又は熱硬化性のモノマー、オリゴマー若しくはモノマーとオリゴマーの混合物が用いられる。また、このフィルムにも、紫外線硬化性樹脂又は熱硬化性樹脂の硬化後の体積変化(収縮)を小さくするために、クラッド層34に添加するポリマーと同様のポリマーを添加することができる。
クラッド用基材30とクラッド層34との屈折率の差は小さい方が好ましく、その差は光の閉じ込めの点から、0.1以内、好ましくは0.05以内、更に好ましくは0.001以内、最も好ましくは差をなくするのがよい。
7)クラッド層34を硬化させる工程
前記6)の工程のクラッド層34である、クラッド用硬化性樹脂を塗布して硬化させた層と高分子材料の溶剤溶液を塗布して乾燥して得られる高分子膜を、クラッド用基材フィルムを貼り合わせる接着剤等(紫外線硬化性樹脂又は熱硬化性樹脂)を用いて貼り合わせ、硬化させる。紫外線硬化性樹脂を硬化させるには、紫外線ランプ、紫外線LED、UV照射装置等が用いられる。また、熱硬化性樹脂を硬化させるには、オーブン中での加熱等が行われる。
以上の工程によって、光導波路38が形成される。
8)光導波路38に位置決め用凹部36を形成する工程
図1(H)に示すように、上記工程によって形成された光導波路38のクラッド用基材30に、位置決め用凹部36を研磨等の機械加工によって形成する。
なお、位置決め用凹部36の形成方法は、機械加工に限定されない。例えば、クラッド用基材30の成形時に凹形状を形成しておいてもよい。この場合、クラッド用基材30に位置決め用凹部36を形成する方法として、前記1)工程等と同様に、凸形状を設けた鋳型を形成し、その上面にクラッド用基材の材料をスピンコート法により塗布し、その後硬化させ剥離して得る方法がある。また、圧延ロールに凸形状を設けて、クラッド用基材を圧延ロールで押圧して凸形状を形成する方法もある。
<光モジュールの作製>
次に、光モジュールの作製方法について説明する。
図2に示すように、光モジュール39は、光導波路38及び発光素子48を載置するハウジング40を有する。ハウジング40は、射出成形、トランスファ成形、インジェクション成形などによって形成され、光導波路38を接続するための開口部44が形成されている。
図3に示すように、開口部44の奥側には段部47が形成されている。段部47には、コア32と同ピッチで発光素子48が取り付けられている。発光素子48は、段部47に設けられた複数の位置決め部材49にそれぞれ突き当てられることによって、後述するハウジング40の凸部46に対して位置決めされるようになっている。
なお、ここでは、位置決め部材49は円柱状、円錐状、角錐状又はL字状等のものが用いられる。しかし、位置決め部材49の形状はこれらに限定されない。また、位置決め部材49を1個の発光素子48に対して2辺を支持するようにして3個設ける。これにより、発光素子48は、発光素子48を凸部46に対して高精度で位置決めできるが、3個の位置決め部材49で発光素子48の3辺を支持してもよい。
この段部47に発光素子48を取り付けて、段部47と発光素子48の間に接着剤を流し込んで接着する。そして、発光素子48を、発光素子48を駆動させる駆動装置(図示省略)に電気接続する。
また、図2に示すように、開口部44には、光導波路38に形成された凹部36と係合する精度の高い凸部46が形成されている。凸部46は、RIE法、面精度の高い機械加工法、フォトリソグラフィ法等を用いて形成される。また、ハウジング40に使用される材料は、エポキシ樹脂、ポリフェニレンサルファイド等が用いられる。石英等の無機ガラス粉末等をこれらの材料に添加すると、機械強度や形状精度が高められる。
この凸部46に光導波路38の凹部36を係合させて、光導波路38をハウジング40に対して位置決めする。そして、ハウジング40の側面と光導波路38の側面の間に接着剤を流し込み、光導波路38をハウジング40に固定する。接着剤は、体積変化(収縮)により光導波路38とハウジング40の相対位置を変化させようとする撓みや歪みといった力が加わらないようなものを使用することが好ましく、クラッド用基材30(図1(G)参照)の貼り合わせに用いられた接着剤が好適に用いられる。
このように、光導波路38をハウジング40に対して位置決めすることで、ハウジング40の凸部46に対して位置決めされた発光素子48の光軸と、光導波路38のコア32の光軸が一致する。
一方、ハウジング40の接続面にはピン孔42が形成されており、このピン孔42にピン45の一端を挿入し、接続するコネクタ41のピン孔43にピン45の他端を挿入する。これにより、ハウジング40はコネクタ41に位置決めされて接続され、ハウジング40に位置決めされた光導波路38のコア32の光軸が、コネクタ41の光導波路67の光軸と一致する。
そして、ハウジング40とコネクタ41を図示しないばねクランプを用いて固定する。
なお、本実施形態では、光素子部材に発光素子48を用いたが、これ以外にも、受光素子等を用いてもよい。
以下に実施例を示し本発明をさらに具体的に説明するが、本発明はこれらの実施例により限定されるものではない。
<原盤の作製>
シリコン基板52に厚膜レジスト(マイクロケミカル(株)製、SU−8)をスピンコート法で塗布した後、80℃でプリベークし、フォトマスクを通して露光し、現像する。これにより、図4(A)に示すように、断面が正方形の8本のコア用の凸部54(幅:50μm、高さ:50μm、長さ:150mm、近接幅250μm)が形成される。これを120℃でポストベークして、コア作製用の原盤56を作製する。
<鋳型の作製>
次に、原盤56に離形材を塗布した後、図4(B)に示すように、鋳型の材料として熱硬化性液状ジメチルシロキサンゴム(ダウコーニングアジア社製:SYLGARD184、粘度5000mPa・s)及びその硬化剤を混合したもの(鋳型材58)を流し込み、120℃で30分間加熱して硬化させる。そして、原盤56から鋳型材58を剥離して、図4(C)に示すように、コア用の凹部62が形成された鋳型60(型の厚さ3mm)を作製する。次に、コア用の凹部62の両端が露出するように、紫外線硬化性樹脂を充填するための進入口(図1(C)参照)及び、この樹脂(紫外線硬化性樹脂)を排出させるための排出口を形成した。
鋳型60は、表面エネルギーが22dyn/cm、シェアゴム硬度が60、表面粗さが10nm以下、紫外線透過率が80%以上で、透明で下のものが良く観察できた。
<クラッド用基材及び光導波路コアの作成>
図4(D)に示すように、鋳型60より一回り大きい厚膜188μmのクラッド用基材64(JSR(株)社製、アートンフィルム、屈折率1.510)を、鋳型60に密着させる。
次に、鋳型60の一端にある進入口に、粘度1300mPa・sの紫外線硬化樹脂(JSR(株)社製、PJ3001)を数滴垂らし、毛細管現象により、図4(E)に示すように、凹部62に紫外線硬化製樹脂を充填する。そして、50mW/cm2のUV光を鋳型60を通して5分間照射し、紫外線硬化性樹脂を硬化させ、鋳型60をクラッド用基材64から剥離する。
これにより、図4(F)に示すように、クラッド用基材64上に原盤56の凸部54と同じ形状のコア66が形成される。なお、本実施例において、コア66の屈折率は1.591となる。
<クラッド層の作成>
次に、図4(G)に示すように、クラッド用基材64のコア66が形成された面に、クラッド層68を貼り合わせる。クラッド層68は、硬化後の屈折率がクラッド用基材64と同じ1.510となる紫外線硬化性接着剤(JSR(株)社製)が用いられる。そして、50mW/cm2のUV光を、鋳型60を通して5分間照射して、クラッド用基材64にクラッド層68を接着する。このようにして、光導波路50が形成される。
<位置決め用凹部の作製>
次に、ダイシングソー((株)ディスコ社製、DAD321、ブレード幅0.10mm)を用いて、図4(H)に示すように、最外郭のコア66からそれぞれ100μmの位置で、光導波路50をコア66の延伸方向と平行に研削し、コア66の延伸方向と直交する方向(幅方向)の寸法を2mmにする。また、コア66の延伸方向の寸法は10mmとなるように研削する。
そして、図4(I)及び図5(A)に示すように、光導波路50の下面50Aに、幅方向の中心、すなわち、幅方向の端部から1mmの位置を中心として、幅0.1mm、深さ0.1mmの矩形状の凹部72をコア66の延伸方向に形成する。
また、図5(A)に示すように、光導波路50の一方の端面から1mmの位置に、コア66の延伸方向と直交する方向に、幅0.1mm、深さ0.1mmの矩形状の凹部74を形成する。これらの凹部72、74は、後述するハウジング70に形成された凸部73、75に係合して、ハウジング70と光導波路50の位置決めをするものである。
<光モジュールの作成>
光モジュール80に用いられるハウジング70は、石英ガラス粉末を添加したエポキシ樹脂を用いてトランスファ成形法で形成される。ハウジング70には開口部77が形成されており、一方向から見て略コ字状となっている。
図5(C)に示すように、開口部77の奥側には段部82が形成されている。段部82には、コア66と同ピッチで発光素子86が取り付けられている。また、段部82には、1個の発光素子86に対して3個ずつ、高さ0.1mm、Φ0.1mmの円柱形状の位置決め部材84が設けられており、発光素子86は、2辺が3個の位置決め部材84に突き当てられることで、ハウジング70の凸部73に対して位置決めされるようになっている。
そして、ダイボンダー(WEST・BOND、Inc社製7200CR)を用いて発光素子86をハウジング70に接着し、ワイヤーボンダー(WEST・BOND、Inc社製7700E)を用いて、発光素子86を駆動させる駆動装置(図示省略)に電気接続する。
一方、開口部77には光導波路50が嵌合されるようになっている。開口部77の底面77Aの開口部77の幅方向の中心には、光導波路50のコア66の延伸方向に沿って幅0.1mm、高さ0.1mmで断面形状が矩形状の凸部73が形成されている。また、ハウジング70の一方の端面から1mmの位置には、開口部77の長手方向と直交する方向に、幅0.1mm、高さ0.1mmの断面形状が矩形状の凸部75が形成されている。
光導波路50の凹部72をハウジング70の凸部73に、光導波路50の凹部74をハウジング70の凸部75に、それぞれ係合する。そして、開口部77の側面と光導波路50の側面との間に紫外線硬化性接着剤(JSR(株)社製)を垂らし、50mW/cm2のUV光を5分間照射して紫外線硬化性接着剤を硬化させ、光導波路50をハウジング70に固定する。このように、光導波路50をハウジング70に対して位置決めすることで、光導波路50のコア66の光軸と、発光素子86の光軸が一致する。
また、ハウジング70の接続面にはピン孔42が形成されており、このピン孔42にピン45の一端を挿入し、接続するコネクタ41のピン孔43にピン45の他端を挿入する。これにより、ハウジング70はコネクタ41に位置決めされて接続され、ハウジング70のコア66の光軸が、コネクタ41の光導波路67の光軸と一致する。
そして、ハウジング70とコネクタ41を図示しないばねクランプを用いて固定する。
この製造方法によって作製された光モジュール80において、位置決め用の凹部72、74及び凸部73、75を、コア66の延伸方向と、延伸方向と直交する方向とに設けることで、ハウジング70に光導波路50を接続する際、光導波路50の凹部72、74をハウジング70の凸部73、75に係合させれば、光導波路50はハウジング70に対してコア66の延伸方向、及びコア66の延伸方向と直交する方向に位置決めがされる。また、発光素子86をハウジング70に取り付ける際、ハウジング70の段部82に形成された位置決め部材84に突き当てることで、発光素子86もハウジング70に対して位置決めされるようになっている。
これにより、発光素子86を位置決め部84に位置決めして取り付け、光導波路50の凹部72、74をハウジング70の凸部73、75に係合させて接続するだけで、発光素子86の光軸を光導波路50の光導波路コア66の光軸と同芯とすることができる。従って、光導波路コア66の光軸と発光素子86の光軸を一致させる調芯作業が不要となり、光モジュール80の製造コストを低く抑えることができる。
また、ハウジング70にコネクタ41を接続することで、コネクタ41の光導波路67からの光が、ハウジング70に接続した光導波路コア66に入射するようになっている。これによって、接続点を変更する際、コネクタ41をハウジング70から外して変更先の接続点の光ファイバコネクタと接続すれば良いので、容易に接続点を変更することができる。
なお、本実施例においては、凹部72、74及び凸部73、75の断面形状を矩形状としたが、これらの断面形状の先端形状がV字状となるように形成してもよい。これにより、光導波路78の凹部をハウジング70の凸部に係合させるとき、凹部は凸部に2面で支持されることになるので、位置合わせの精度が出し易い。また、断面形状が矩形状の凹部に比べて、断面形状が略V字状の凹部の場合、位置決め用の凹部を形成する金型に抜きテーパをつける必要がないので、型構造が簡単になり、離形不良などの成形不良の発生率を低く抑えることができる。
まず、実施例1と同様に、光導波路150を作製する。
<位置決め用凹部の作製>
実施例1と同様に、ダイシングソー((株)ディスコ社製、DAD321、ブレード幅0.10mm)を用いて、最外郭のコア66からそれぞれ100μmの位置で、光導波路150をコア66の延伸方向と平行に研削し、コア66の延伸方向と直交する方向(幅方向)の寸法を2mmにする。また、コア66の延伸方向の寸法が10mmとなるように研削する。
そして、図6(A)に示すように、光導波路150の上面150Aに、幅方向の中心、すなわち、幅方向の端部から1mmの位置、及び、光導波路150の一方の端面から4mmの位置を中心として、先端形状がV字状(先端角度90°)のブレードを用いて、幅0.1mm、深さ0.1mm、先端角90°の断面がV字形状の凹部152、154をそれぞれ形成する。
<光モジュールの作製>
図6(A)に示すように、光モジュール180に用いられるハウジング156は、石英ガラス粉末を添加したエポキシ樹脂を用いてインジェクション成形法により、一方向から見て略ロ字状となるように開口部158を形成する。開口部158の大きさは、光導波路150を嵌合できる大きさとなっている。
また、開口部158の上面158Aには、開口部158の長手方向に沿って幅0.1mm、高さ0.1mm、先端角が90°の凸部160が形成されている。開口部158に光導波路150を挿入するとき、開口部158に形成した凸部160に光導波路150の凹部152が係合されるようになっている。これによって、光導波路150はハウジング156に対して幅方向に位置決めされる。
さらに、図6(B)に示すように、開口部158の奥側には段部162が形成されている。段部162には、コア66と同ピッチで発光素子166が取り付けられている。また、段部162には、1個の発光素子166に対して3個ずつ、高さ0.1mm、Φ0.1mmの円柱形状の位置決め部材164が設けられており、発光素子166は、2辺が3個の位置決め部材164に突き当てられることで、ハウジング156の凸部160に対して位置決めされるようになっている。
ハウジング156の上面156Aの略中央部分には、略T字状の凹部168が、開口部158に貫通するようにして形成されている。凹部168には、略T字状のブロック170が嵌合するようになっている。ブロック170の下面170Aには、コア66の延伸方向と直交する方向にV字状の凸部172が形成されており、ハウジング156の開口部158に光導波路150を挿入し、凹部168にブロック170を嵌合させたとき、凸部172は光導波路150の上面150Aに、コア66の延伸方向と直交する方向に形成された凹部154に係合するようになっている。これにより、光導波路150は、ハウジング156に対してコア66の延伸方向と直交する方向にも位置決めされる。
凹部168からハウジング156とブロック170の間に紫外線硬化性接着剤(JSR(株)社製)を注入する。そして、50mW/cm2のUV光を5分間照射して紫外線硬化させ、ハウジング156に光導波路150を固定する。
この製造方法によって作製された光導波路150及びハウジング156において、ハウジング156の開口部158を略ロ字状とすることで、開口部158の強度が高くなり、ばねクランプ等でハウジング156を挟み込んでも撓みが生じ難い。これにより、開口部158に挿入される光導波路150が撓むこともないので、光接続損失を低く抑えることができる。
また、ハウジング156と光導波路150はコア66の延伸方向と直交する方向にのみ位置決めし、ブロック170をハウジング156の凹部168から嵌合させることで、ハウジング156に対して光導波路150のコア66の延伸方向の位置決めを行う構成としている。これによって、ハウジング156の開口部158にはコア66の延伸方向と平行な方向にのみ凸部160を形成すればよい。これにより、開口部158を形成する金型に凸部160を形成するための形状を作成して、一方向から抜けば開口部158と凸部160が成形できる。従って、2方向抜きの金型で成形できるので、製造コストを低く抑えることができる。
<光導波路の作成>
実施例1と同様に、光導波路190を作製する。
そして、図7に示すように、光導波路190の片方の端部を、ダイシングソーのブレードを用いて、コア66の長手方向に対して45°になるように切断する。
光導波路190の下面190Aには、実施例1と同様に凹部192、194が形成されている。この凹部192、194を、ハウジング70の凸部73、75に係合させることで、光導波路190をハウジング70に対して位置決めする。
<光モジュールの作成>
光モジュール198に用いられるハウジング70は、実施例1と同様にして形成される。そして、図8(B)に示すように、開口部77の奥側には段部82が形成されている。この段部82には、光素子部材182が取り付けられるようになっている。光素子部材182は、段部82に取り付け可能なサイズのシリコン基板184を有し、シリコン基板184の上には面発光型レーザー186と受光素子188が、コア66と同ピッチでアレイ状に設置されている。
また、段部82には、高さ0.1mm、一辺の長さが0.14mmの正三角柱の位置決め部材196が3個形成されており、シリコン基板184は2辺を位置決め部材196に突き当てられている。これにより、面発光型レーザー186及び受光素子188は、ハウジング70の凸部73(図7参照)に対して位置決めされるようになっている。
そして、ダイボンダー(WEST・BOND、Inc社製7200CR)を用いて光素子部材182をハウジング70に接着し、ワイヤーボンダー(WEST・BOND、Inc社製7700E)を用いて、面発光型レーザー186及び受光素子188を駆動させる駆動装置(図示省略)に電気接続する。
その後、ハウジング70の凸部73、75に光導波路190の凹部192、194を係合させ、ハウジング70に光導波路190を接続する。そして、開口部77の側面と光導波路190の側面との間に紫外線硬化性接着剤(JSR(株)社製)を垂らし、50mW/cm2のUV光を5分間照射して紫外線硬化性接着剤を硬化させ、光導波路190をハウジング70に固定する。
このように、面発光型レーザー186及び受光素子188が設置されたシリコン基板184を、位置決め部196に位置決めして取り付け、光導波路190の凹部192、194をハウジングの凸部73、75に係合させて接続するだけで、面発光型レーザー186及び受光素子188の光軸を、光導波路190の光導波路コア66の光軸と同芯とすることができる。
光素子部材182の面発光型レーザー186からの光は垂直方向へ発光し、光導波路190の45°の傾斜がついた端面190Bで屈折して、コア66に入射する。また、コア66からの光は、光導波路190の端面190Bで屈折して受光素子188へ入射する。
なお、本実施形態においては、ハウジングに光素子(発光素子、受光素子)と光導波路を配設する構成としたが、光素子と光導波路を実装基板に配設し、この実装基板に位置決め用の凹部を形成して、ハウジングに形成された凸部に係合させることで、光素子と光導波路をハウジングに対して位置決めする構成としてもよい。このとき、実装基板に光素子を位置決めする凸部を形成することで、光素子は実装基板に形成された凸部に位置決めされる構成となる。
本発明の実施形態に係る光導波路の製造工程を示す斜視図である。 本発明の実施形態に係る光モジュールの製造工程を示す斜視図である。 本発明の実施形態に係る光モジュールを示す図であり、(A)正面図であり、(B)側面断面図である。 本発明の第1実施例に係る光導波路の製造工程を示す概念図である。 本発明の第1実施例に係る光モジュールの製造工程を示す斜視図である。 本発明の第2実施例に係る光モジュールの製造工程を示す斜視図である。 本発明の第3実施例に係る光モジュールの製造工程を示す斜視図である。 本発明の第3実施例に係る光モジュールを示す図であり、(A)正面図であり、(B)側面断面図である。
符号の説明
38 光導波路
40 ハウジング
41 コネクタ
44 開口部
46 凸部
48 発光素子
49 位置決め部材
50 光導波路
66 コア(光導波路コア)
68 クラッド層(クラッド部)
70 ハウジング
72 凹部
73 凸部
74 凹部
75 凸部
77 開口部
78 光導波路
80 光モジュール
84 位置決め部材
86 発光素子
150 光導波路
152 凹部
154 凹部
156 ハウジング
158 開口部
160 凸部
164 位置決め部材
166 発光素子
168 凹部
180 光モジュール
182 光素子部材(発光素子、受光素子)
190 光導波路
192 凹部
196 位置決め部材
198 光モジュール

Claims (9)

  1. 光信号を送信する発光素子又は光信号を受信する受光素子と、
    前記発光素子又は前記受光素子を搭載し、コネクタが接続されるハウジングと、
    前記ハウジングに取り付けられ、前記発光素子の光信号を伝達又は前記受光素子へ光信号を伝達する光導波路コアを備え、光導波路コアがコネクタの光導波路コアとの間に光信号を送受信する光導波路と、
    で構成された光モジュールにおいて、
    前記ハウジングには、前記光導波路に形成された凹部と係合する凸部と、前記発光素子又は前記受光素子を前記凸部に対して位置決めし、前記光導波路コアの光軸と前記発光素子又は前記受光素子の光軸を同芯とする位置決め部と、が形成されたことを特徴とする光モジュール。
  2. 前記位置決め部は、前記発光素子又は前記受光素子を3点で支持することを特徴とする請求項1に記載の光モジュール。
  3. 前記凹部は、前記光導波路コアの延伸方向と平行に形成されたことを特徴とする請求項1又は請求項2に記載の光モジュール。
  4. 前記凹部は、前記光導波路コアの延伸方向と直交する方向に形成されたことを特徴とする請求項1又は請求項2のいずれか1項に記載の光モジュール。
  5. 前記凹部は、前記光導波路コアの延伸方向と平行する方向と、前記光導波路コアの延伸方向と直交する方向と、に少なくとも2本形成されたことを特徴とする請求項1又は請求項2に記載の光モジュール。
  6. 複数の光導波路コアが前記光導波路の幅方向に設けられた光導波路において、前記凹部は、前記光導波路の上下方向の面の少なくともどちらか一方に形成されたことを特徴とする請求項1〜請求項5のいずれか1項に記載の光モジュール。
  7. 前記凹部は、断面の形状が矩形状とされたことを特徴とする請求項1〜請求項6のいずれか1項に記載の光モジュール。
  8. 前記凹部は、断面の形状が略V字状とされたことを特徴とする請求項1〜請求項6のいずれか1項に記載の光モジュール。
  9. 前記光導波路は、光信号を伝達する光導波路コアと、前記光導波路コアを取り囲む板状のクラッド部と、で構成され、前記光導波路コアと前記クラッド部との少なくとも一方が、高分子化合物で形成されたことを特徴とする請求項6〜請求項8のいずれか1項に記載の光モジュール。
JP2004009413A 2004-01-16 2004-01-16 光モジュール Pending JP2005202229A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004009413A JP2005202229A (ja) 2004-01-16 2004-01-16 光モジュール

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004009413A JP2005202229A (ja) 2004-01-16 2004-01-16 光モジュール

Publications (1)

Publication Number Publication Date
JP2005202229A true JP2005202229A (ja) 2005-07-28

Family

ID=34822464

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004009413A Pending JP2005202229A (ja) 2004-01-16 2004-01-16 光モジュール

Country Status (1)

Country Link
JP (1) JP2005202229A (ja)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006080105A1 (ja) * 2005-01-31 2006-08-03 Matsushita Electric Works, Ltd. 光ファイバ用の光電変換コネクタ
JP2007241211A (ja) * 2006-02-09 2007-09-20 Matsushita Electric Works Ltd 光電気変換装置及びその製造方法並びに外部導波路
JP2007271831A (ja) * 2006-03-30 2007-10-18 Kyocera Corp 光接続構造およびそれを用いた光電気モジュール、並びに光導波路ユニット
KR100817964B1 (ko) * 2005-01-31 2008-03-31 마츠시다 덴코 가부시키가이샤 광파이버용 광전변환커넥터
JP2009122197A (ja) * 2007-11-12 2009-06-04 Fujikura Ltd 光コネクタの位置決め構造
JP2010243946A (ja) * 2009-04-09 2010-10-28 Sumitomo Bakelite Co Ltd コネクタ
JP2011017928A (ja) * 2009-07-09 2011-01-27 Fujikura Ltd 光コネクタ及びその製造方法
JP2011028306A (ja) * 2010-11-12 2011-02-10 Kyocera Corp 光接続構造およびそれを用いた光電気モジュール、並びに光導波路ユニット
JP2012108559A (ja) * 2012-03-07 2012-06-07 Kyocera Corp 光接続構造体およびそれを用いた光電気モジュール、並びに光導波路ユニット
JP2014102395A (ja) * 2012-11-20 2014-06-05 Olympus Corp 光素子モジュール、光伝送モジュール、および光伝送モジュールの製造方法
US9547142B1 (en) 2015-09-16 2017-01-17 Sae Magnetics (H.K.) Ltd. Optical transmitter module
JP2018530013A (ja) * 2015-10-12 2018-10-11 スリーエム イノベイティブ プロパティズ カンパニー 導波路アクセス不可能スペースを有する光フェルール
JP2019110236A (ja) * 2017-12-19 2019-07-04 京セラ株式会社 光学装置
US20230228953A1 (en) * 2021-11-21 2023-07-20 Poet Technologies, Inc. Self-Aligned Fanout Waveguide Structure on Interposer with Linear Multicore Optical Fiber

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006080105A1 (ja) * 2005-01-31 2006-08-03 Matsushita Electric Works, Ltd. 光ファイバ用の光電変換コネクタ
KR100817964B1 (ko) * 2005-01-31 2008-03-31 마츠시다 덴코 가부시키가이샤 광파이버용 광전변환커넥터
US7513697B2 (en) 2005-01-31 2009-04-07 Panasonic Electric Works Co., Ltd Photoelectric transforming connector for optical fibers
JP2007241211A (ja) * 2006-02-09 2007-09-20 Matsushita Electric Works Ltd 光電気変換装置及びその製造方法並びに外部導波路
JP2007271831A (ja) * 2006-03-30 2007-10-18 Kyocera Corp 光接続構造およびそれを用いた光電気モジュール、並びに光導波路ユニット
JP2009122197A (ja) * 2007-11-12 2009-06-04 Fujikura Ltd 光コネクタの位置決め構造
JP2010243946A (ja) * 2009-04-09 2010-10-28 Sumitomo Bakelite Co Ltd コネクタ
JP2011017928A (ja) * 2009-07-09 2011-01-27 Fujikura Ltd 光コネクタ及びその製造方法
JP2011028306A (ja) * 2010-11-12 2011-02-10 Kyocera Corp 光接続構造およびそれを用いた光電気モジュール、並びに光導波路ユニット
JP2012108559A (ja) * 2012-03-07 2012-06-07 Kyocera Corp 光接続構造体およびそれを用いた光電気モジュール、並びに光導波路ユニット
JP2014102395A (ja) * 2012-11-20 2014-06-05 Olympus Corp 光素子モジュール、光伝送モジュール、および光伝送モジュールの製造方法
US9547142B1 (en) 2015-09-16 2017-01-17 Sae Magnetics (H.K.) Ltd. Optical transmitter module
JP2018530013A (ja) * 2015-10-12 2018-10-11 スリーエム イノベイティブ プロパティズ カンパニー 導波路アクセス不可能スペースを有する光フェルール
US11307362B2 (en) 2015-10-12 2022-04-19 3M Innovative Properties Company Optical ferrules with waveguide inaccessible space
US11880072B2 (en) 2015-10-12 2024-01-23 3M Innovative Properties Company Optical ferrules with waveguide inaccessible space
JP2019110236A (ja) * 2017-12-19 2019-07-04 京セラ株式会社 光学装置
JP7055010B2 (ja) 2017-12-19 2022-04-15 京セラ株式会社 光学装置
US20230228953A1 (en) * 2021-11-21 2023-07-20 Poet Technologies, Inc. Self-Aligned Fanout Waveguide Structure on Interposer with Linear Multicore Optical Fiber

Similar Documents

Publication Publication Date Title
JP4678155B2 (ja) 光導波路、光導波路用フェルール、及び光コネクタ
US7174057B2 (en) Optical waveguide module, optical waveguide film and manufacturing method thereof
JP2006011210A (ja) 発光素子及びモニター用受光素子付き高分子光導波路モジュール
JP4144468B2 (ja) 積層型高分子光導波路およびその製造方法
JP2006126568A (ja) 高分子光導波路デバイスの製造方法
JP2007033698A (ja) 光学部品実装用サブマウント、及び光送受信モジュール
JP2007033688A (ja) 光導波路フィルム、及び光送受信モジュール
JP2005202229A (ja) 光モジュール
JP2006023385A (ja) 積層型光導波路フィルム及びその製造方法、並びに導波路型光モジュール
JP2005181662A (ja) 高分子光導波路の製造方法
JP2007279515A (ja) レンズ内蔵光導波路及びその製造方法
JP4265293B2 (ja) 鋳型及びコネクタ一体型高分子光導波路の製造方法
JP4581328B2 (ja) 高分子光導波路及び光学素子の製造方法
JP2005202228A (ja) 光導波路、光導波路コネクタ及び光接続構造
JP2007027398A (ja) 光学部品実装用サブマウント、及び光送受信モジュール
JP2005321560A (ja) 受発光素子付き高分子光導波路モジュール
JP2007233303A (ja) 高分子光導波路モジュールの製造方法
JP4214862B2 (ja) ピッチ変換導波路アレイ
JP4747526B2 (ja) 光コネクタ
JP4380463B2 (ja) 光導波路、光導波路用フェルール、及び光コネクタ
JP4140475B2 (ja) 高分子光導波路作製用原盤及び高分子光導波路の製造方法
JP4544083B2 (ja) フレキシブル光導波路
JP2006259590A (ja) 光送受信モジュール
JP2006208794A (ja) 導波路型光モジュール、光導波路フィルム及びその製造方法
JP4517704B2 (ja) 高分子光導波路の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080229

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080707

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080729

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081125