Nothing Special   »   [go: up one dir, main page]

JP2005269818A - Control unit of polyphase ac current - Google Patents

Control unit of polyphase ac current Download PDF

Info

Publication number
JP2005269818A
JP2005269818A JP2004081016A JP2004081016A JP2005269818A JP 2005269818 A JP2005269818 A JP 2005269818A JP 2004081016 A JP2004081016 A JP 2004081016A JP 2004081016 A JP2004081016 A JP 2004081016A JP 2005269818 A JP2005269818 A JP 2005269818A
Authority
JP
Japan
Prior art keywords
current
phase
adjusting means
axis
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004081016A
Other languages
Japanese (ja)
Inventor
Hiroshi Osawa
博 大沢
Hisafumi Nomura
尚史 野村
Koko Ryu
江桁 劉
Koichi Okamura
幸一 岡村
Masahide Koshiba
昌英 小柴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Systems Co Ltd filed Critical Fuji Electric Systems Co Ltd
Priority to JP2004081016A priority Critical patent/JP2005269818A/en
Publication of JP2005269818A publication Critical patent/JP2005269818A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Control Of Ac Motors In General (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To allow the actual current value of each phase of polyphase AC current having the number of phases exceeding three phases follow the current instruction value of respective phase without phase delay. <P>SOLUTION: In order to PWM-control a 5-phase motor 2, for example, through an inverter 1, there are provided a coordinate converter 7 which converts, for coordinate transformation, phase currents i1-i5 to the current component on an orthogonal rotation coordinate and calculates at least two current components id and iq being AC current in a normal state, current controllers 8 and 9 to feedback-control the acquired current components, and a current controller 13 for direct feedback controlling of the current of respective phase. The inverter 1 is controlled using a synthetic value of the voltage command from the current controllers 8 and 9 and that from the current controller 13. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

この発明は、電力変換装置を用いて3相を超す多相交流電流を制御する制御装置に関する。   The present invention relates to a control device that controls a multiphase alternating current exceeding three phases by using a power converter.

交流電動機のベクトル制御では、直流電動機と同等な高性能トルク制御特性や速度制御特性が得られることが知られている。しかし、その実現のためには電動機の3相交流電流が目標値に対して位相遅れなく、かつ3相平衡して制御されることが必要となる。このため、一般には次のような電流制御系を構成して対処している。
図3はインバータを用いて永久磁石同期電動機の速度制御を行なう従来例で、例えば特許文献1に開示されている。
In vector control of an AC motor, it is known that high-performance torque control characteristics and speed control characteristics equivalent to those of a DC motor can be obtained. However, in order to realize this, it is necessary that the three-phase alternating current of the motor is controlled in a three-phase balanced manner with no phase delay with respect to the target value. For this reason, generally, the following current control system is configured to cope with this.
FIG. 3 shows a conventional example in which the speed control of a permanent magnet synchronous motor is performed using an inverter.

図3について、以下に説明する。
インバータ1は、直流電源を3相交流電源に電力変換する。その出力は2組の電流検出器3を経て電動機2に接続されており、電動機2には位置検出器4が接続されている。位置検出器4で検出された回転子位置θを速度演算器5で微分することにより、電動機の速度ωが求められる。速度調節器6は、速度指令値ω*と速度ωとの偏差を増幅する。
FIG. 3 will be described below.
The inverter 1 converts power from a DC power source to a three-phase AC power source. The output is connected to the electric motor 2 through two sets of current detectors 3, and the position detector 4 is connected to the electric motor 2. The speed ω of the motor is obtained by differentiating the rotor position θ detected by the position detector 4 with the speed calculator 5. The speed regulator 6 amplifies the deviation between the speed command value ω * and the speed ω.

永久磁石同期電動機の電流は、永久磁石の作る磁束と同一方向の磁束を作る電流成分と、それに直交してトルク発生に寄与する電流成分とに分解できることが知られている。前者の電流成分は直軸電流またはd軸電流と呼ばれ、後者の電流成分は横軸電流またはq軸電流と呼ばれる。上記速度調節器6の出力をq軸電流の指令iq*とし、d軸電流の指令をid*とすると、id*は例えばゼロに設定される。また、d軸電流idとq軸電流iqは電流検出器3で検出された電動機の2相電流ia,ibから、座標変換器7において次の数1に示す(1)式のような演算を行なうことで、算出される。 It is known that the current of a permanent magnet synchronous motor can be decomposed into a current component that produces a magnetic flux in the same direction as the magnetic flux produced by the permanent magnet, and a current component that contributes to torque generation orthogonal to the current component. The former current component is called a direct-axis current or d-axis current, and the latter current component is called a horizontal-axis current or q-axis current. If the output of the speed regulator 6 is a q-axis current command iq * and the d-axis current command is id * , id * is set to zero, for example. The d-axis current id and the q-axis current iq are calculated from the two-phase currents ia and ib of the motor detected by the current detector 3 in the coordinate converter 7 as shown in the following equation (1). It is calculated by doing.

Figure 2005269818
Figure 2005269818

q軸電流指令iq*とq軸電流iqとの偏差は電流調節器8で増幅され、q軸電圧指令vq*が得られる。同様に、d軸電流指令id*とd軸電流idとの偏差は電流調節器9で増幅され、d軸電圧指令vd*が得られる。座標変換器10はvd*とvq*および回転子位置θから、次の数2に示す(2)式のような演算をすることで、3相の電圧指令va*,vb*,vc*を求める。求められた3相電圧指令からPWM(パルス幅変調)回路11でPWM信号を生成し、そのPWM信号によりインバータ1の制御が行なわれる。 The deviation between the q-axis current command iq * and the q-axis current iq is amplified by the current regulator 8 to obtain the q-axis voltage command vq * . Similarly, the deviation between the d-axis current command id * and the d-axis current id is amplified by the current regulator 9, and the d-axis voltage command vd * is obtained. The coordinate converter 10 calculates the three-phase voltage commands va * , vb * , and vc * from vd * and vq * and the rotor position θ by performing an operation as shown in the following equation (2). Ask. A PWM (pulse width modulation) circuit 11 generates a PWM signal from the obtained three-phase voltage command, and the inverter 1 is controlled by the PWM signal.

Figure 2005269818
Figure 2005269818

以上の制御で特徴的なことは、3相交流電流が直接的に制御されるのではなく、一旦d軸電流とq軸電流に座標変換されて、この両電流が目標とする電流に制御されることである。もし、交流電流を直接的に制御すると、電流指令値に対して電流実際値には少なからず位相遅れが生じ、また電流の実効値も指令値に対して誤差を生じる。すなわち、電流の定常偏差が生じる。しかるに、3相交流電流を直交回転座標系であるd−q軸座標系に座標変換すると、座標変換されたd軸電流とq軸電流は定常的には直流となるため、d軸電流とq軸電流を制御することによって、定常偏差なく電流を制御することができる。このことにより、高性能な電流制御が達成でき、電動機の高性能な速度制御を行なうことが可能となる。   What is characteristic of the above control is that the three-phase alternating current is not directly controlled, but is once transformed into d-axis current and q-axis current, and both currents are controlled to the target current. Is Rukoto. If the alternating current is directly controlled, the actual current value is not less than a phase delay with respect to the current command value, and the effective current value also causes an error with respect to the command value. That is, a steady current deviation occurs. However, when the three-phase alternating current is coordinate-converted into the dq axis coordinate system, which is an orthogonal rotation coordinate system, the coordinate-converted d-axis current and q-axis current are continually DC, so the d-axis current and q By controlling the shaft current, the current can be controlled without a steady deviation. As a result, high-performance current control can be achieved, and high-performance speed control of the motor can be performed.

特公昭59−049797号公報(第2,6頁、図2,10)Japanese Examined Patent Publication No. 59-049797 (pages 2, 6 and 2, 10)

一般産業用の電動機では、通常3相電動機が用いられる。しかし、いろいろな目的から、3相を超す多相電動機が用いられる場合もある。例えば、製作が容易な中小容量の電力変換装置を複数用いて、大容量の多相電動機を駆動する場合がある。また、インバータなどの電力変換装置で駆動される電動機には高調波電流が流れ、この高調波電流に起因したトルクリプルが問題になる場合があるが、多相電動機では多相の高調波電流によるトルクリプルが相殺されるため、トルクリプルを低減する目的で3相を超す多相電動機を適用する場合もある。   In general industrial motors, a three-phase motor is usually used. However, for various purposes, a multi-phase motor exceeding three phases may be used. For example, a large-capacity multi-phase motor may be driven using a plurality of small and medium capacity power converters that are easy to manufacture. In addition, harmonic current flows in an electric motor driven by a power conversion device such as an inverter, and torque ripple caused by this harmonic current may be a problem, but in multi-phase motors, torque ripple caused by multi-phase harmonic current may occur. Therefore, a multiphase motor exceeding three phases may be applied for the purpose of reducing torque ripple.

ところで、多相の電流を制御する場合は、電流の独立変数(または自由度)の数に注意する必要がある。従来例としての図3の例では、2相の電流値が決まると残りの相の電流値も決まるため、電流の独立変数の数は2である。一方、座標変換後の電流もd軸電流とq軸電流であり、独立変数の数は2である。このように、座標変換前後で独立変数の数が同じだと、d軸電流とq軸電流を目標とする指令値に制御することで、間接的に各相の電流を目標値に制御することができる。   By the way, when controlling a multiphase current, it is necessary to pay attention to the number of independent variables (or degrees of freedom) of the current. In the example of FIG. 3 as the conventional example, when the current values of the two phases are determined, the current values of the remaining phases are also determined, and therefore the number of independent variables of the current is two. On the other hand, the current after coordinate conversion is also a d-axis current and a q-axis current, and the number of independent variables is two. As described above, when the number of independent variables is the same before and after coordinate conversion, the current of each phase is controlled to the target value indirectly by controlling the d-axis current and the q-axis current to the target command values. Can do.

しかるに、3相を超える多相電動機の場合は、上記のような関係にはならない。例えば、5組の単相インバータで駆動される5相電動機の場合を考える。この場合、電流の独立変数は5であるが、座標変換してd軸電流とq軸電流に変換したときの電流の独立変数は2である。このことは、d軸電流とq軸電流を目標値に制御しても、各相の電流は目標とする電流になるとは限らないことを示している。   However, in the case of a multiphase motor having more than three phases, the above relationship does not occur. For example, consider the case of a five-phase motor driven by five sets of single-phase inverters. In this case, the independent variable of the current is 5, but the independent variable of the current is 2 when the coordinates are converted into the d-axis current and the q-axis current. This indicates that even if the d-axis current and the q-axis current are controlled to the target values, the current of each phase does not always become the target current.

例えば、各巻線のインピーダンスや誘起電圧の不平衡により、特定の相電流が過大になったり、その逆に特定相の電流が異常に小さくなったりする。この場合、インバータや電動機の利用率が悪くなり目標とする出力が得られなかったり、最悪の場合は機器を損傷する事故に至るおそれもある。
したがって、この発明の課題は、3相を超える多相負荷の各相の電流を位相遅れなく制御できるようにすることにある。
For example, the specific phase current becomes excessive due to the imbalance of the impedance and induced voltage of each winding, and conversely, the current of the specific phase becomes abnormally small. In this case, the utilization rate of the inverter and the electric motor may be deteriorated, and a target output may not be obtained, or in the worst case, an accident may be caused to damage the device.
Therefore, an object of the present invention is to be able to control the current of each phase of a multiphase load exceeding three phases without phase delay.

このような課題を解決するため、請求項1の発明では、電力変換装置を用いて3相を超える相数の多相交流電流を制御する制御装置において、
多相の交流電流を直交回転座標上の電流成分に座標変換し、定常状態では直流電流となる少なくとも2つの電流成分を演算する座標変換手段と、この座標変換手段から得られる各電流成分をそれぞれフィードバック制御する複数の第1電流調節手段と、各相の電流を直接的にそれぞれフィードバック制御する複数の第2電流調節手段とを設け、前記第1電流調節手段から得られる電圧指令と前記第2電流調節手段から得られる電圧指令との合成値に基づき、前記電力変換装置を制御することを特徴とする。
In order to solve such problems, in the invention of claim 1, in a control device that controls a multiphase alternating current having a number of phases exceeding three phases using a power converter,
Coordinate conversion means for converting multiphase AC current into current components on orthogonal rotation coordinates and calculating at least two current components that are DC current in a steady state, and each current component obtained from the coordinate conversion means A plurality of first current adjusting means for feedback control and a plurality of second current adjusting means for directly feedback controlling the current of each phase are provided, and a voltage command obtained from the first current adjusting means and the second The power converter is controlled based on a combined value with a voltage command obtained from a current adjusting means.

上記請求項1の発明においては、前記第1電流調節手段は、少なくとも積分要素を有することができ(請求項2の発明)、または、前記第1電流調節手段を積分器とし、前記第2電流調節手段を比例増幅器とすることができる(請求項3の発明)。   In the first aspect of the present invention, the first current adjusting means can have at least an integration element (invention of the second aspect), or the first current adjusting means is an integrator, and the second current is adjusted. The adjusting means may be a proportional amplifier (invention of claim 3).

この発明によれば、第1の電流調整手段により位相遅れのない電流制御が達成でき、第2の電流調整手段により各相の電流を平衡して制御できるので、高性能な多相交流電流の制御を行なうことができる。
また、d軸電流とq軸電流の調節器に積分要素を持たせることで、定常偏差を理論的にゼロにできる。
さらに、d軸電流とq軸電流の調節器を積分器とし、第2の電流調整手段を比例増幅器とすることで、制御系の構成を簡単にすることが可能となる。
According to the present invention, current control without phase delay can be achieved by the first current adjusting means, and current of each phase can be balanced and controlled by the second current adjusting means. Control can be performed.
Further, by providing the d-axis current and q-axis current regulators with integral elements, the steady-state deviation can be theoretically made zero.
Furthermore, the configuration of the control system can be simplified by using the d-axis current and q-axis current regulator as an integrator and the second current adjustment means as a proportional amplifier.

図1はこの発明の実施の形態を示すブロック図である。
従来例と同じ部分の説明は省略し、主として相違点について説明する。
図示のインバータは、例えば5組の単相インバータで構成されており、その出力は5個の電流検出器3を経由して、5相電動機2に接続されている。5相電動機2には、位置検出器4が接続されている。座被変換器7は、位置検出器4で検出された回転子位置θと、5相の電流i1〜i5とから、次の数3に示す(3)式のような演算を行なうことにより、d軸電流idとq軸電流iqを算出する。
FIG. 1 is a block diagram showing an embodiment of the present invention.
The description of the same part as the conventional example is omitted, and different points will be mainly described.
The illustrated inverter includes, for example, five sets of single-phase inverters, and the output thereof is connected to the five-phase motor 2 via five current detectors 3. A position detector 4 is connected to the five-phase motor 2. The seat converter 7 performs an operation such as the following expression (3) from the rotor position θ detected by the position detector 4 and the five-phase currents i1 to i5, The d-axis current id and the q-axis current iq are calculated.

Figure 2005269818
Figure 2005269818

q軸電流指令iq*とq軸電流iqとの偏差は電流調節器8で増幅され、q軸電圧指令vq1*が得られる。同様に、d軸電流指令id*とd軸電流idとの偏差は電流調節器9で増幅され、d軸電圧指令vd1*が得られる。座標変換器10はvd1*とvq1*および回転子位置θから、次の数4に示す(4)式のような演算をすることで、5相の電圧指令v10*〜v50*を算出する。 The deviation between the q-axis current command iq * and the q-axis current iq is amplified by the current regulator 8 to obtain the q-axis voltage command vq1 * . Similarly, the deviation between the d-axis current command id * and the d-axis current id is amplified by the current regulator 9 to obtain the d-axis voltage command vd1 * . The coordinate converter 10 calculates the five-phase voltage commands v10 * to v50 * from vd1 * and vq1 * and the rotor position θ by performing an operation as shown in the following equation (4).

Figure 2005269818
Figure 2005269818

一方、座標変換器12は、d軸電流指令id*,q軸電流指令iq*および回転子位置θから、次の数5に示す(5)式のような演算をすることにより、各相の電流指令i1*〜i5*を求める。 On the other hand, the coordinate converter 12 performs an operation such as the following equation (5) from the d-axis current command id * , the q-axis current command iq * and the rotor position θ, thereby calculating each phase. The current commands i1 * to i5 * are obtained.

Figure 2005269818
Figure 2005269818

各相の電流指令i1*〜i5*と各相電流i1〜i5のそれぞれの偏差は、5組の交流電流調節器13で増幅され、交流電流調節器13の各出力は加算器14において上記のv10*〜v50*と加算され、各相の電圧指令v1*〜v5*が求められる。この電圧指令からPWM(パルス幅変調)回路11でPWM信号を生成し、そのPWM信号によりインバータ1を制御する。 The deviations of the current commands i1 * to i5 * of each phase and the phase currents i1 to i5 are amplified by five sets of alternating current regulators 13, and the outputs of the alternating current regulators 13 are The voltage commands v1 * to v5 * for each phase are obtained by adding v10 * to v50 * . From this voltage command, a PWM (pulse width modulation) circuit 11 generates a PWM signal, and the inverter 1 is controlled by the PWM signal.

以上では多相電動機の例を説明したが、この発明は例えば複数のリアクトルに多相交流電流を給電するような場合にも適用できる。図2は3組を超える多相リアクトルに対し、多相交流電流を給電する場合の例を示す。
ここでは、電流指令が電流の大きさと周波数に分離して与えられ、電流の大きさはd軸電流指令id*およびq軸電流指令iq*として設定され、周波数指令は発信器4Aに設定される。すなわち、図1の電動機2がリアクトル2Aに、位置検出器4が発信器4Aに置き換わった構成となっているが、その他の電流制御に関する部分は図1と同じである。従って、その詳細説明は省略する。
Although the example of the multiphase motor has been described above, the present invention can also be applied to a case where a multiphase AC current is supplied to a plurality of reactors, for example. FIG. 2 shows an example in which a multiphase AC current is supplied to more than three sets of multiphase reactors.
Here, the current command is given separately as the current magnitude and the frequency, the current magnitude is set as the d-axis current command id * and the q-axis current command iq * , and the frequency command is set in the transmitter 4A. . That is, the electric motor 2 in FIG. 1 is replaced with the reactor 2A and the position detector 4 is replaced with the transmitter 4A, but the other parts relating to current control are the same as in FIG. Therefore, detailed description thereof is omitted.

なお、上記座標変換器7ではd軸電流とq軸電流を演算しているが、さらに零相電流などの演算を追加し、この零相電流を所望値に制御する機能を付加するようにしても良い。
また、図1と図2の構成において、q軸電流を制御する電流調節器8と、d軸電流を制御する電流調節器9は少なくとも積分要素を持った調節器とすることで、定常偏差を理論的にゼロとすることができる。
さらに、図1と図2の構成において、q軸電流を制御する電流調節器8とd軸電流を制御する電流調節器9は積分器とし、各相の電流を制御する交流電流調節器13は比例増幅器とすることで、制御系の構成を簡単化することが可能となる。
The coordinate converter 7 calculates the d-axis current and the q-axis current, but further adds a calculation such as a zero-phase current and adds a function for controlling the zero-phase current to a desired value. Also good.
1 and 2, the current regulator 8 that controls the q-axis current and the current regulator 9 that controls the d-axis current are regulators having at least an integral element, thereby reducing the steady-state deviation. It can theoretically be zero.
1 and 2, the current regulator 8 that controls the q-axis current and the current regulator 9 that controls the d-axis current are integrators, and the AC current regulator 13 that controls the current of each phase is By using a proportional amplifier, the configuration of the control system can be simplified.

この発明の実施の形態を示すブロック図Block diagram showing an embodiment of the present invention 図1の変形例を示すブロック図The block diagram which shows the modification of FIG. 従来例を示すブロック図Block diagram showing a conventional example

符号の説明Explanation of symbols

1…インバータ、2…電動機、2A…リアクトル、3…電流検出器、4…位置検出器、4A…発信器(OSC)、5…速度演算器、6…速度調節器、7,10,12…座標変換器、8,9…電流調節器、11…PWM(パルス幅変調)回路。


DESCRIPTION OF SYMBOLS 1 ... Inverter, 2 ... Electric motor, 2A ... Reactor, 3 ... Current detector, 4 ... Position detector, 4A ... Transmitter (OSC), 5 ... Speed calculator, 6 ... Speed regulator, 7, 10, 12 ... Coordinate converter, 8, 9 ... current regulator, 11 ... PWM (pulse width modulation) circuit.


Claims (3)

電力変換装置を用いて3相を超える相数の多相交流電流を制御する制御装置において、
多相の交流電流を直交回転座標上の電流成分に座標変換し、定常状態では直流電流となる少なくとも2つの電流成分を演算する座標変換手段と、この座標変換手段から得られる各電流成分をそれぞれフィードバック制御する複数の第1電流調節手段と、各相の電流を直接的にそれぞれフィードバック制御する複数の第2電流調節手段とを設け、前記第1電流調節手段から得られる電圧指令と前記第2電流調節手段から得られる電圧指令との合成値に基づき、前記電力変換装置を制御することを特徴とする多相交流電流の制御装置。
In a control device that controls a multiphase alternating current having a number of phases exceeding three phases using a power conversion device,
Coordinate conversion means for converting multiphase AC current into current components on orthogonal rotation coordinates and calculating at least two current components that are DC current in a steady state, and each current component obtained from the coordinate conversion means A plurality of first current adjusting means for feedback control and a plurality of second current adjusting means for directly feedback controlling the current of each phase are provided, and a voltage command obtained from the first current adjusting means and the second A control apparatus for a multiphase alternating current, wherein the power converter is controlled based on a combined value with a voltage command obtained from a current adjusting means.
前記第1電流調節手段は、少なくとも積分要素を有することを特徴とする請求項1に記載の多相交流電流の制御装置。   The control apparatus for a multiphase alternating current according to claim 1, wherein the first current adjusting means includes at least an integration element. 前記第1電流調節手段を積分器とし、前記第2電流調節手段を比例増幅器とすることを特徴とする請求項1に記載の多相交流電流の制御装置。

2. The control apparatus for a multiphase alternating current according to claim 1, wherein the first current adjusting means is an integrator, and the second current adjusting means is a proportional amplifier.

JP2004081016A 2004-03-19 2004-03-19 Control unit of polyphase ac current Pending JP2005269818A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004081016A JP2005269818A (en) 2004-03-19 2004-03-19 Control unit of polyphase ac current

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004081016A JP2005269818A (en) 2004-03-19 2004-03-19 Control unit of polyphase ac current

Publications (1)

Publication Number Publication Date
JP2005269818A true JP2005269818A (en) 2005-09-29

Family

ID=35093770

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004081016A Pending JP2005269818A (en) 2004-03-19 2004-03-19 Control unit of polyphase ac current

Country Status (1)

Country Link
JP (1) JP2005269818A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005295642A (en) * 2004-03-31 2005-10-20 Mitsubishi Heavy Ind Ltd Controller for polyphase motor
CN108075691A (en) * 2016-11-07 2018-05-25 英飞凌科技股份有限公司 The controller and method and self-synchronous system of control multi-phase brushless DC motor
US10847334B2 (en) 2017-03-28 2020-11-24 Lsis Co., Ltd. Apparatus and method for controlling current

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005295642A (en) * 2004-03-31 2005-10-20 Mitsubishi Heavy Ind Ltd Controller for polyphase motor
JP4551104B2 (en) * 2004-03-31 2010-09-22 三菱重工業株式会社 Multi-phase motor controller
CN108075691A (en) * 2016-11-07 2018-05-25 英飞凌科技股份有限公司 The controller and method and self-synchronous system of control multi-phase brushless DC motor
US10847334B2 (en) 2017-03-28 2020-11-24 Lsis Co., Ltd. Apparatus and method for controlling current

Similar Documents

Publication Publication Date Title
JP3611492B2 (en) Inverter control method and apparatus
US9143081B2 (en) Motor control system having bandwidth compensation
CN103051277B (en) Parameter estimating apparatus for permanent magnet synchronous motor driving system
JP5257365B2 (en) Motor control device and control method thereof
US9136785B2 (en) Motor control system to compensate for torque ripple
US7095209B2 (en) Method and apparatus to regulate torque provided to loads
EP2327148B1 (en) A method and a controlling arrangement for controlling an ac generator
CN107623479B (en) Fault-tolerant fault control method and device for motor
JP7270391B2 (en) Power converter control device and motor drive system
Peter et al. A simplified DTC-SVPWM scheme for induction motor drives using a single PI controller
WO2015056541A1 (en) Drive device for electric motor
CN108418485B (en) A kind of hidden pole type mixed excitation electric machine invariable power loss model forecast Control Algorithm
JP3586078B2 (en) Power converter
CN107947669A (en) A kind of hybrid exciting synchronous motor Nonlinear backstepping tracking and controlling method
Prabhu et al. Critical review on torque ripple sources and mitigation control strategies of BLDC motors in electric vehicle applications
Sarma et al. Implementation of a conventional DFIG stator flux oriented control scheme using industrial converters
JP4596906B2 (en) Electric motor control device
JP6113651B2 (en) Multi-phase motor drive
JP4996847B2 (en) Servo motor current control method, current control program, recording medium, servo motor
JP2005269818A (en) Control unit of polyphase ac current
Ammar et al. Implementation of sliding mode based-direct flux and torque control for induction motor drive with efficiency optimization
JP2009284598A (en) Controller for alternating-current motors
JP4219362B2 (en) Rotating machine control device
EP3474438A1 (en) Motor control device and control method
JP3933348B2 (en) Control device for embedded magnet type synchronous motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060315

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080424

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080821