Nothing Special   »   [go: up one dir, main page]

JP2005268450A - Organic semiconductor thin film, its manufacturing method, and organic semiconductor element - Google Patents

Organic semiconductor thin film, its manufacturing method, and organic semiconductor element Download PDF

Info

Publication number
JP2005268450A
JP2005268450A JP2004077030A JP2004077030A JP2005268450A JP 2005268450 A JP2005268450 A JP 2005268450A JP 2004077030 A JP2004077030 A JP 2004077030A JP 2004077030 A JP2004077030 A JP 2004077030A JP 2005268450 A JP2005268450 A JP 2005268450A
Authority
JP
Japan
Prior art keywords
thin film
group
organic semiconductor
aromatic compound
polycyclic aromatic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004077030A
Other languages
Japanese (ja)
Inventor
Minoru Natsume
穣 夏目
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp filed Critical Asahi Kasei Corp
Priority to JP2004077030A priority Critical patent/JP2005268450A/en
Publication of JP2005268450A publication Critical patent/JP2005268450A/en
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
  • Thin Film Transistor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an organic semiconductor thin film that reveals high mobility, and to provide a method of manufacturing the thin film and an organic semiconductor element having excellent electronic characteristics. <P>SOLUTION: A laminate composed of 2,3,9,10-tetramethylpentacene powder is formed by spreading a dispersion prepared by dispersing the 2,3,9,10-tetramethylpentacene powder in chloroform on a silicon substrate and evaporating the chloroform. Then a thin film is formed by melting the 2,3,9,10-tetramethylpentacene powder on the surface of the silicon substrate, by heating the silicon substrate to a temperature higher than the melting point of the 2,3,9,10-tetramethylpentacene. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、有機半導体薄膜及びその製造方法、並びに有機半導体素子に関する。   The present invention relates to an organic semiconductor thin film, a manufacturing method thereof, and an organic semiconductor element.

有機半導体を用いたデバイスは、従来の無機半導体デバイスに比べて成膜条件がマイルドであり、各種基板上に半導体薄膜を形成したり、常温で成膜したりすることが可能であるため、低コスト化や、ポリマーフィルム等に薄膜を形成することによるフレキシブル化が期待されている。
有機半導体材料としては、ポリチオフェン,ポリチエニレンビニレン,ポリピロール等のポリマー系材料と、ポリアセン化合物(テトラセン,ペンタセン等),チオフェンオリゴマー等の低分子系材料とがあり、電界効果トランジスタ,太陽電池,レーザー等への応用が検討されている(非特許文献1を参照)。特に、前述の有機半導体を電界効果トランジスタとして用いる場合は、ペンタセンを始めとするポリアセン化合物が最も有望な材料である。
Devices using organic semiconductors have milder film formation conditions than conventional inorganic semiconductor devices, and it is possible to form semiconductor thin films on various substrates or to form films at room temperature. Costs and flexibility by forming a thin film on a polymer film or the like are expected.
Organic semiconductor materials include polymer materials such as polythiophene, polythienylene vinylene, and polypyrrole, and low molecular weight materials such as polyacene compounds (tetracene, pentacene, etc.) and thiophene oligomers. Field effect transistors, solar cells, lasers (See Non-patent Document 1). In particular, when the above-described organic semiconductor is used as a field effect transistor, a polyacene compound such as pentacene is the most promising material.

電界効果トランジスタの性能に関わる重要な要素としてキャリア移動度があげられ、キャリア移動度は薄膜構造に大きな影響を受けることが知られている。さらに、その薄膜構造は薄膜の作製方法に大きく依存する。一般に有機半導体薄膜の作製方法としては、蒸着法,塗布法,前駆体加熱法等が代表的であるが、塗布法等の溶液から成膜する方法の方がより簡便且つ安価であり、しかも印刷法,インクジェット法等の大面積及び大量生産に適した製法への展開が可能となるため、工業的生産に適している。
ジミトラコポウラスら,「ジャーナル・オブ・アプライド・フィジクス」,1996年,第80巻,p.2501 ブラウンら,「シンセティック・メタルズ」,1997年,第88巻,p.37
An important factor related to the performance of a field effect transistor is carrier mobility, and it is known that carrier mobility is greatly influenced by a thin film structure. Further, the thin film structure greatly depends on the method of manufacturing the thin film. In general, vapor deposition, coating, and precursor heating are typical methods for producing organic semiconductor thin films, but methods such as coating are more convenient and less expensive, and printing. This method is suitable for industrial production because it can be applied to manufacturing methods suitable for mass production and mass production, such as the method and inkjet method.
Jimitrakopouras et al., "Journal of Applied Physics", 1996, Vol. 80, p. 2501 Brown et al., “Synthetic Metals”, 1997, Vol. 88, p. 37

しかしながら、ペンタセン等のポリアセン化合物系の有機半導体はそのままでは溶媒に難溶であるため、専ら蒸着法による成膜が行われてきた。
蒸着法以外の方法でポリアセン化合物の薄膜を形成する方法としては、ポリアセン化合物の一種であるペンタセンの環架橋した前駆体の溶液を基板上に塗布し、加熱処理することによって前駆体をペンタセンに変換する方法が報告されている(非特許文献2を参照)。しかしながら、この方法によって得られた薄膜の移動度は、蒸着法により得られた薄膜の移動度よりも低いという問題があった。
However, since a polyacene compound-based organic semiconductor such as pentacene is hardly soluble in a solvent as it is, film formation has been performed exclusively by an evaporation method.
As a method of forming a polyacene compound thin film by a method other than vapor deposition, a solution of a pentacene ring-crosslinked precursor of a polyacene compound is applied onto a substrate, and the precursor is converted to pentacene by heat treatment. Has been reported (see Non-Patent Document 2). However, the mobility of the thin film obtained by this method has a problem that it is lower than the mobility of the thin film obtained by the vapor deposition method.

一方、ポリマー系の有機半導体については、溶解性が高いため塗布法による成膜が可能であるが、薄膜構造は蒸着法により得られた薄膜よりも結晶性が低く、移動度もポリアセン化合物等の低分子系有機半導体よりも劣っていることが知られていた。そのため、さらなる移動度の向上を図るためには、より結晶性の高い薄膜が求められていた。
そこで、本発明は、前述のような従来技術が有する問題点を解決し、高い移動度を発現する有機半導体薄膜及びその製造方法を提供することを課題とする。また、電子特性の優れた有機半導体素子を提供することを併せて課題とする。
On the other hand, polymer-based organic semiconductors can be formed by a coating method because of their high solubility, but the thin film structure is lower in crystallinity than the thin film obtained by the vapor deposition method, and the mobility is such as polyacene compounds. It was known to be inferior to low molecular organic semiconductors. Therefore, in order to further improve the mobility, a thin film having higher crystallinity has been demanded.
Therefore, an object of the present invention is to solve the problems of the conventional techniques as described above, and to provide an organic semiconductor thin film that exhibits high mobility and a method for manufacturing the same. Another object is to provide an organic semiconductor element having excellent electronic characteristics.

前記課題を解決するため、本発明は次のような構成からなる。すなわち、本発明に係る請求項1の有機半導体薄膜の製造方法は、2個以上15個以下のベンゼン環が縮合した多環構造を有する縮合多環芳香族化合物からなる有機半導体薄膜の製造方法であって、前記縮合多環芳香族化合物を分散媒に分散させた分散物をベース上に配し、前記縮合多環芳香族化合物の融点以上の温度に加熱して、前記分散媒を気化させるとともに前記縮合多環芳香族化合物を融解させることを特徴とする。
また、本発明に係る請求項2の有機半導体薄膜の製造方法は、請求項1に記載の有機半導体薄膜の製造方法において、前記縮合多環芳香族化合物が下記の化学式(I)で表されるような構造を有することを特徴とする。
In order to solve the above problems, the present invention has the following configuration. That is, the method for producing an organic semiconductor thin film according to claim 1 of the present invention is a method for producing an organic semiconductor thin film comprising a condensed polycyclic aromatic compound having a polycyclic structure in which 2 or more and 15 or less benzene rings are condensed. A dispersion in which the condensed polycyclic aromatic compound is dispersed in a dispersion medium is disposed on a base and heated to a temperature equal to or higher than the melting point of the condensed polycyclic aromatic compound to vaporize the dispersion medium. The condensed polycyclic aromatic compound is melted.
Moreover, the manufacturing method of the organic-semiconductor thin film of Claim 2 which concerns on this invention is a manufacturing method of the organic-semiconductor thin film of Claim 1, The said condensed polycyclic aromatic compound is represented by following Chemical formula (I). It has the following structure.

Figure 2005268450
(I)
Figure 2005268450
(I)

ただし、化学式(I)中の官能基R1 ,R2 ,R3 ,R4 のうち少なくとも一部は、アルキル基,アルケニル基,アルキニル基等の炭化水素基、アルコキシル基、エーテル基、ハロゲン基、ホルミル基、アシル基、エステル基、メルカプト基、チオアルキル基、スルフィド基、ジスルフィド基、スルホニル基、又はこれらのうちの2以上の基を含む官能基であり、他部は水素原子である。また、化学式(I)中の官能基X,Yの少なくとも一方は水素原子又はハロゲン基であり、nは2以上7以下の整数である。
さらに、本発明に係る請求項3の有機半導体薄膜は、請求項1又は請求項2に記載の有機半導体薄膜の製造方法により製造されたものである。
さらに、本発明に係る請求項4の有機半導体素子は、請求項3に記載の有機半導体薄膜で少なくとも一部を構成したことを特徴とする。
However, at least a part of the functional groups R 1 , R 2 , R 3 and R 4 in the chemical formula (I) is a hydrocarbon group such as an alkyl group, an alkenyl group or an alkynyl group, an alkoxyl group, an ether group or a halogen group. , A formyl group, an acyl group, an ester group, a mercapto group, a thioalkyl group, a sulfide group, a disulfide group, a sulfonyl group, or a functional group containing two or more of them, and the other part is a hydrogen atom. In addition, at least one of the functional groups X and Y in the chemical formula (I) is a hydrogen atom or a halogen group, and n is an integer of 2 or more and 7 or less.
Furthermore, the organic semiconductor thin film of Claim 3 which concerns on this invention is manufactured by the manufacturing method of the organic semiconductor thin film of Claim 1 or Claim 2.
Furthermore, an organic semiconductor element according to a fourth aspect of the present invention is characterized in that at least a part of the organic semiconductor thin film according to the third aspect is formed.

本発明の有機半導体薄膜の製造方法によれば、一般的な溶媒に対する溶解性が低い縮合多環芳香族化合物の薄膜を、ウェットプロセスによって比較的低温で形成することができる。また、本発明の有機半導体薄膜は高い移動度を有している。さらに、本発明の有機半導体素子は優れた電子特性を有している。   According to the method for producing an organic semiconductor thin film of the present invention, a thin film of a condensed polycyclic aromatic compound having low solubility in a general solvent can be formed at a relatively low temperature by a wet process. The organic semiconductor thin film of the present invention has high mobility. Furthermore, the organic semiconductor element of the present invention has excellent electronic properties.

本発明の有機半導体薄膜は、2個以上15個以下のベンゼン環が縮合した多環構造を有する縮合多環芳香族化合物からなる薄膜であり、下記のようなウェットプロセスによって製造される。すなわち、縮合多環芳香族化合物を分散媒に分散させた分散物をベース上に配し、縮合多環芳香族化合物の融点以上の温度に加熱して、分散媒を気化させるとともに縮合多環芳香族化合物を融解させ、冷却固化することによって製造される。   The organic semiconductor thin film of the present invention is a thin film made of a condensed polycyclic aromatic compound having a polycyclic structure in which 2 or more and 15 or less benzene rings are condensed, and is manufactured by the following wet process. That is, a dispersion in which a condensed polycyclic aromatic compound is dispersed in a dispersion medium is placed on a base, and heated to a temperature equal to or higher than the melting point of the condensed polycyclic aromatic compound to vaporize the dispersion medium and to form the condensed polycyclic aromatic. It is produced by melting a group compound and solidifying by cooling.

以下に、縮合多環芳香族化合物及びその薄膜の製造方法について、詳細に説明する。本発明においては、昇華せず融解する性質を有する縮合多環芳香族化合物を用いる必要がある。従来使用されていた低分子系の有機半導体材料であるポリアセン化合物(テトラセン,ペンタセン等)は、一般に固相状態から液相状態を経ることなく直接気相状態に変化する昇華性を有しており、その昇華温度は200〜450℃の温度領域である。ポリアセン化合物は一般的な溶媒に対する溶解性が極めて低く、ウェットプロセスによって薄膜を製造することが困難であったため、上記のような昇華性を利用して、例えば真空蒸着法,分子線エピタキシ(MBE)法,スパッタリング法,レーザー蒸着法,気相輸送成長法等のドライプロセスによって薄膜を製造していた。しかしながら、このようなドライプロセスにおいては、成膜に高温を必要とする上、操作も煩雑であった。   Below, the manufacturing method of a condensed polycyclic aromatic compound and its thin film is demonstrated in detail. In the present invention, it is necessary to use a condensed polycyclic aromatic compound having a property of melting without sublimation. Conventionally used polyacene compounds (tetracene, pentacene, etc.), which are low molecular organic semiconductor materials, generally have sublimation properties that change directly from the solid phase to the gas phase without passing through the liquid phase. The sublimation temperature is in the temperature range of 200 to 450 ° C. Polyacene compounds have extremely low solubility in common solvents, and it has been difficult to produce a thin film by a wet process. For example, vacuum deposition, molecular beam epitaxy (MBE) is utilized by utilizing the above-described sublimation properties. Thin films were manufactured by dry processes such as sputtering, sputtering, laser deposition, and vapor transport growth. However, in such a dry process, a high temperature is required for film formation and the operation is complicated.

そこで、昇華せず融解する性質を有する縮合多環芳香族化合物を用いれば、前述のように分散物を縮合多環芳香族化合物の融点以上の温度に加熱して、縮合多環芳香族化合物を融解させることにより、容易に縮合多環芳香族化合物薄膜を形成することができる。このような方法は、蒸着法のような従来のドライプロセスと比較して低温且つ簡易な操作で薄膜を製造することができる。   Therefore, if a condensed polycyclic aromatic compound having a property of melting without sublimation is used, the dispersion is heated to a temperature equal to or higher than the melting point of the condensed polycyclic aromatic compound as described above, and the condensed polycyclic aromatic compound is heated. By melting, a condensed polycyclic aromatic compound thin film can be easily formed. Such a method can produce a thin film at a low temperature and with a simple operation as compared with a conventional dry process such as a vapor deposition method.

上記のような性質を有する縮合多環芳香族化合物としては、例えばテトラセン,ペンタセン,オバレン,ジベンゾコロネン,ジコロニレン,ヘキサベンゾコロネン(この中ではペンタセン,オバレン,ジコロニレンがより好ましく、ペンタセンが特に好ましい)等の基本骨格を有し、そのベンゼン環に結合する水素原子の一部が官能基で置換された分子構造を有する化合物があげられる。すなわち、前述した化学式(I)で表されるような構造を有する縮合多環芳香族化合物である。   Examples of the condensed polycyclic aromatic compound having the above-described properties include, for example, tetracene, pentacene, obalene, dibenzocoronene, dicolonylene, hexabenzocoronene (among these, pentacene, ovalene, dicolonylene are more preferred, and pentacene is particularly preferred). And a compound having a molecular structure in which a part of hydrogen atoms bonded to the benzene ring is substituted with a functional group. That is, it is a condensed polycyclic aromatic compound having a structure represented by the aforementioned chemical formula (I).

官能基が導入された縮合多環芳香族化合物は、昇華性を示すことなく融解する(融点が存在する)こととなる。すなわち、無置換の縮合多環芳香族化合物に官能基を導入すると、昇華性が抑制され(昇華温度が高くなり)、さらに無置換の縮合多環芳香族化合物の昇華温度よりも低い温度領域に、融点を有することとなる。そうすると、無置換の縮合多環芳香族化合物と類似の化学構造を有する官能基が導入された縮合多環芳香族化合物の薄膜を、無置換の縮合多環芳香族化合物の薄膜をドライプロセスにより製造する場合と比較して、より低温で且つより容易に製造することが可能となる。   The condensed polycyclic aromatic compound into which the functional group has been introduced melts without showing sublimation properties (there is a melting point). That is, when a functional group is introduced into an unsubstituted condensed polycyclic aromatic compound, sublimation is suppressed (the sublimation temperature is increased), and further in a temperature range lower than the sublimation temperature of the unsubstituted condensed polycyclic aromatic compound. Have a melting point. Then, a thin film of a condensed polycyclic aromatic compound into which a functional group having a chemical structure similar to that of an unsubstituted condensed polycyclic aromatic compound is introduced, and a thin film of an unsubstituted condensed polycyclic aromatic compound are produced by a dry process. Compared with the case where it does, it becomes possible to manufacture more easily at low temperature.

好ましい官能基(化学式(I)における官能基R1 ,R2 ,R3 ,R4 )としては、アルキル基,アルケニル基,アルキニル基等の炭化水素基、アルコキシル基、エーテル基、ハロゲン基、ホルミル基、アシル基、エステル基、メルカプト基、チオアルキル基、スルフィド基、ジスルフィド基、スルホニル基があげられ、これらの中ではアルキル基,アルケニル基,アルキニル基,ハロゲン基,チオアルキル基が特に好ましい。 Preferred functional groups (functional groups R 1 , R 2 , R 3 , R 4 in chemical formula (I)) include hydrocarbon groups such as alkyl groups, alkenyl groups, alkynyl groups, alkoxyl groups, ether groups, halogen groups, formyl Groups, acyl groups, ester groups, mercapto groups, thioalkyl groups, sulfide groups, disulfide groups, and sulfonyl groups. Among these, alkyl groups, alkenyl groups, alkynyl groups, halogen groups, and thioalkyl groups are particularly preferable.

なお、縮合多環芳香族化合物が有するベンゼン環の個数が、2個以上15個以下である必要がある理由は、以下の通りである。有機半導体素子において良好な導電性又は移動度を実現させるためには、電気伝導を担うキャリアが正孔であるp型トランジスタの場合は、各々の分子について、最高被占分子軌道(HOMO)におけるπ電子軌道が分子全体に広がっていることが望ましく、一般に分子構造におけるベンゼン環の数が増大するほど前述の傾向が強く現れる。そして、このことにより有機半導体薄膜全体をキャリアが移動しやすくなる。   The reason why the number of benzene rings contained in the condensed polycyclic aromatic compound needs to be 2 or more and 15 or less is as follows. In order to achieve good conductivity or mobility in an organic semiconductor element, in the case of a p-type transistor in which the carrier responsible for electrical conduction is a hole, for each molecule, π in the highest occupied molecular orbital (HOMO) It is desirable that the electron orbit extends over the entire molecule. Generally, the above-mentioned tendency becomes stronger as the number of benzene rings in the molecular structure increases. This makes it easier for carriers to move through the entire organic semiconductor thin film.

また、電気伝導を担うキャリアが電子であるn型トランジスタの場合も、p型トランジスタと同様の原理により、分子の最低空軌道(LUMO)におけるπ電子軌道が分子全体に広がっていることが望ましい。本発明においては、複数のベンゼン環がどのように連結して縮合多環芳香族化合物を構成しているかによって、分子の電子物性は大きく異なるが、一般的にはベンゼン環の個数は多い方が好ましい傾向があり、5個以上15個以下が特に好ましい。   Also, in the case of an n-type transistor in which the carrier responsible for electrical conduction is an electron, it is desirable that the π-electron orbit in the lowest vacant orbit (LUMO) of the molecule spreads throughout the molecule based on the same principle as that of the p-type transistor. In the present invention, the electronic physical properties of the molecule vary greatly depending on how a plurality of benzene rings are connected to form a condensed polycyclic aromatic compound, but in general, the larger the number of benzene rings, There exists a preferable tendency and 5 or more and 15 or less are especially preferable.

次に、縮合多環芳香族化合物の薄膜を製造する際に使用される分散媒について説明する。本発明において用いられる分散媒は、縮合多環芳香族化合物の融点以上の温度で気化する必要がある。例えば、水,アルコール類,エステル類,エーテル類,カーボネート類,アミド類,脂肪族化合物,芳香族化合物等が好ましく、これらのうち縮合多環芳香族化合物の分散性が良好なトリクロロベンゼン,ジクロロベンゼン,クロロホルム等が特に好ましい。なお、これらの分散媒は2種以上を混合して用いてもよい。また、分散媒に界面活性剤や安定化剤等の添加剤を添加してもよい。   Next, the dispersion medium used when manufacturing the thin film of a condensed polycyclic aromatic compound is demonstrated. The dispersion medium used in the present invention needs to be vaporized at a temperature equal to or higher than the melting point of the condensed polycyclic aromatic compound. For example, water, alcohols, esters, ethers, carbonates, amides, aliphatic compounds, aromatic compounds, and the like are preferable. Among these, trichlorobenzene and dichlorobenzene, which have good dispersibility of condensed polycyclic aromatic compounds, are preferable. , Chloroform and the like are particularly preferable. In addition, you may use these dispersion media in mixture of 2 or more types. Moreover, you may add additives, such as surfactant and a stabilizer, to a dispersion medium.

このような分散媒に前述の縮合多環芳香族化合物を分散させた分散物を、基板等のベース上に配し、縮合多環芳香族化合物の融点以上の温度に加熱する。そうすると、分散媒が気化して分散物から除去されるとともに、縮合多環芳香族化合物が融解する。これを融点未満に冷却すると、融解した縮合多環芳香族化合物が固化して薄膜が形成される。分散物の調整,分散物のベース上へ供給,加熱等の薄膜製造のための操作は、空気中で行うことも可能であるが、窒素等の不活性ガス雰囲気下で行うことが好ましい。   A dispersion in which the above-mentioned condensed polycyclic aromatic compound is dispersed in such a dispersion medium is placed on a base such as a substrate and heated to a temperature equal to or higher than the melting point of the condensed polycyclic aromatic compound. Then, the dispersion medium is vaporized and removed from the dispersion, and the condensed polycyclic aromatic compound is melted. When this is cooled below the melting point, the fused condensed polycyclic aromatic compound is solidified to form a thin film. Operations for thin film production, such as preparation of the dispersion, supply onto the base of the dispersion, and heating, can be performed in air, but are preferably performed in an inert gas atmosphere such as nitrogen.

分散物中の縮合多環芳香族化合物の含有量は0.02質量%以上10質量%以下であることが好ましい。0.02質量%未満であると、形成される薄膜に欠陥部分が発生しやすくなるという不都合があり、10質量%超過であると、均一な膜厚を有する薄膜を形成することが難しいという不都合がある。このような不都合がより生じにくくするためには、分散物中の縮合多環芳香族化合物の含有量は0.03質量%以上5質量%以下であることがより好ましく、0.05質量%以上3質量%以下であることがさらに好ましい。
また、縮合多環芳香族化合物の分散物を基板等のベース上に配する方法としては、塗布,噴霧の他、ベースを分散物に接触させる方法等があげられる。具体的には、スピンコート,ディップコート,スクリーン印刷,インクジェット印刷,ブレード塗布,印刷(平版印刷,凹版印刷,凸版印刷等)等の公知の方法があげられる。
The content of the condensed polycyclic aromatic compound in the dispersion is preferably 0.02% by mass or more and 10% by mass or less. If it is less than 0.02% by mass, a defect portion tends to occur in the formed thin film, and if it exceeds 10% by mass, it is difficult to form a thin film having a uniform film thickness. There is. In order to make such inconvenience less likely to occur, the content of the condensed polycyclic aromatic compound in the dispersion is more preferably 0.03% by mass or more and 5% by mass or less, and 0.05% by mass or more. More preferably, it is 3 mass% or less.
Examples of the method of disposing the dispersion of the condensed polycyclic aromatic compound on the base such as a substrate include a method of bringing the base into contact with the dispersion in addition to coating and spraying. Specific examples include known methods such as spin coating, dip coating, screen printing, ink jet printing, blade coating, printing (lithographic printing, intaglio printing, letterpress printing, etc.).

また、有機半導体薄膜を形成するためのベースの素材には、各種材料が利用可能である。例えば、ガラス,石英,酸化アルミニウム,酸化マグネシウム,シリコン,ガリウム砒素,インジウム・スズ酸化物(ITO),酸化亜鉛,マイカ等のセラミックスや、アルミニウム,金,ステンレス鋼,鉄,銀等の金属があげられる。また、ポリエステル(ポリエチレンテレフタレート,ポリブチレンテレフタレート,ポリエチレンナフタレート等),ポリカーボネート,ノルボルネン系樹脂,ポリエーテルスルフォン,ポリイミド,ポリアミド,セルロース,シリコーン樹脂,エポキシ樹脂等の樹脂や、炭素や、紙等があげられる。あるいは、これらの複合体でもよい。ただし、ベースが分散媒によって膨潤や溶解を起こし、不都合が生じる場合には、分散媒がベースに拡散することを抑制するためバリア層を設けることが好ましい。   Various materials can be used as a base material for forming the organic semiconductor thin film. Examples include ceramics such as glass, quartz, aluminum oxide, magnesium oxide, silicon, gallium arsenide, indium tin oxide (ITO), zinc oxide, mica, and metals such as aluminum, gold, stainless steel, iron, and silver. It is done. Polyester (polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, etc.), polycarbonate, norbornene resin, polyether sulfone, polyimide, polyamide, cellulose, silicone resin, epoxy resin, carbon, paper, etc. It is done. Or these composite_body | complexes may be sufficient. However, when the base is swollen or dissolved by the dispersion medium and inconvenience occurs, it is preferable to provide a barrier layer in order to prevent the dispersion medium from diffusing into the base.

また、ベースの形状は特に限定されるものではないが、通常はフィルム状のベースや板状のベース(基板)が用いられる。さらに、線状体や繊維構造体をベースとして用いることもできる。
このように、本発明の有機半導体薄膜は、ウェットプロセスで製造することが可能である。よって、従来のドライプロセスと比較して低温,簡便,且つ短時間に薄膜を製造できるので、生産性が高く低コストである。本発明によれば、これまで不溶又は難溶とされていた縮合多環芳香族化合物の薄膜をウェットプロセスで製造することができるので、薄膜化可能な材料の数を増加させることができる。
The shape of the base is not particularly limited, but a film-like base or a plate-like base (substrate) is usually used. Furthermore, a linear body or a fiber structure can also be used as a base.
Thus, the organic semiconductor thin film of the present invention can be manufactured by a wet process. Therefore, since the thin film can be manufactured at a low temperature, simply and in a short time as compared with the conventional dry process, the productivity is high and the cost is low. According to the present invention, since a thin film of a condensed polycyclic aromatic compound that has been previously insoluble or hardly soluble can be produced by a wet process, the number of materials that can be thinned can be increased.

このようにして製造された有機半導体薄膜は、高い結晶性及び高いキャリア移動度を有している。本発明の有機半導体薄膜を広角X線回折法によって解析すると、縮合多環芳香族化合物の共役面がベースの表面に対して垂直方向に配列した(00n)面の回折ピークが観測される(nは整数)。ただし、観測された面間距離から推測すると、縮合多環芳香族化合物の共役面とベースの表面とは必ずしも垂直であるわけではなく、5〜20°傾いた構造を取ることもある。(00n)面の回折ピークのうち、回折角2θの値が5〜10°の範囲にあるものについて、半価幅を比較することにより結晶性を評価することができる。一般に、蒸着法による有機半導体薄膜の回折ピークの半価幅は0.1〜0.3°程度であるが、本発明に係る製造法によって得られた有機半導体薄膜の回折ピークの半価幅は0.1〜0.4°であり、蒸着法と同等の結晶性を有している。   The organic semiconductor thin film thus produced has high crystallinity and high carrier mobility. When the organic semiconductor thin film of the present invention is analyzed by the wide angle X-ray diffraction method, a diffraction peak of (00n) plane in which the conjugate planes of the condensed polycyclic aromatic compound are arranged in the direction perpendicular to the base surface is observed (n Is an integer). However, when estimated from the observed inter-plane distance, the conjugated surface of the condensed polycyclic aromatic compound and the surface of the base are not necessarily perpendicular, and may have a structure inclined by 5 to 20 °. Of the diffraction peaks on the (00n) plane, those having a diffraction angle 2θ in the range of 5 to 10 ° can be evaluated for crystallinity by comparing the half widths. Generally, the half width of the diffraction peak of the organic semiconductor thin film by the vapor deposition method is about 0.1 to 0.3 °, but the half width of the diffraction peak of the organic semiconductor thin film obtained by the manufacturing method according to the present invention is It is 0.1-0.4 degree and has the crystallinity equivalent to a vapor deposition method.

このような有機半導体薄膜を用いることにより、エレクトロニクス,フォトニクス,バイオエレクトロニクス等の分野において有益な半導体素子を製造することができる。このような半導体素子の例としては、ダイオード,トランジスタ,薄膜トランジスタ,メモリ,フォトダイオード,発光ダイオード,発光トランジスタ,センサ等があげられる。
トランジスタ及び薄膜トランジスタは、ディスプレイに利用することが可能であり、液晶ディスプレイ(例えばアクティブマトリックス液晶表示装置),分散型液晶ディスプレイ,電気泳動型ディスプレイ,粒子回転型表示素子,エレクトロクロミックディスプレイ,有機発光ディスプレイ,電子ペーパー等の種々の表示素子に利用可能である。トランジスタ及び薄膜トランジスタは、これらの表示素子において表示画素のスイッチング用トランジスタ,信号ドライバー回路素子,メモリ回路素子,信号処理回路素子等に利用される。例えばアクティブマトリックス液晶表示装置に本発明の有機半導体薄膜を使用すれば、該装置の高画質化,低消費電力化,省スペース化が図られるとともに、フレキシブル化及び軽量化を実現することができる。
By using such an organic semiconductor thin film, a semiconductor element useful in fields such as electronics, photonics, and bioelectronics can be manufactured. Examples of such semiconductor elements include diodes, transistors, thin film transistors, memories, photodiodes, light emitting diodes, light emitting transistors, sensors, and the like.
Transistors and thin film transistors can be used in displays, such as liquid crystal displays (for example, active matrix liquid crystal display devices), dispersive liquid crystal displays, electrophoretic displays, particle rotating display elements, electrochromic displays, organic light emitting displays, It can be used for various display elements such as electronic paper. Transistors and thin film transistors are used in these display elements as display pixel switching transistors, signal driver circuit elements, memory circuit elements, signal processing circuit elements, and the like. For example, when the organic semiconductor thin film of the present invention is used in an active matrix liquid crystal display device, the device can be improved in image quality, power consumption and space saving, and can be made flexible and lightweight.

半導体素子がトランジスタである場合には、その素子構造としては、例えば、基板/ゲート電極/絶縁体層(誘電体層)/ソース電極・ドレイン電極/半導体層という構造、基板/半導体層/ソース電極・ドレイン電極/絶縁体層(誘電体層)/ゲート電極という構造、基板/ソース電極(又はドレイン電極)/半導体層+絶縁体層(誘電体層)+ゲート電極/ドレイン電極(又はソース電極)という構造等があげられる。このとき、ソース電極,ドレイン電極,ゲート電極は、それぞれ複数設けてもよい。また、複数の半導体層を同一平面内に設けてもよいし、積層して設けてもよい。   When the semiconductor element is a transistor, the element structure includes, for example, a structure of substrate / gate electrode / insulator layer (dielectric layer) / source electrode / drain electrode / semiconductor layer, substrate / semiconductor layer / source electrode. -Structure of drain electrode / insulator layer (dielectric layer) / gate electrode, substrate / source electrode (or drain electrode) / semiconductor layer + insulator layer (dielectric layer) + gate electrode / drain electrode (or source electrode) The structure etc. are mention | raise | lifted. At this time, a plurality of source electrodes, drain electrodes, and gate electrodes may be provided. Further, a plurality of semiconductor layers may be provided in the same plane or may be provided in a stacked manner.

トランジスタの構成としては、MOS(メタル−酸化物(絶縁体層)−半導体)型及びバイポーラ型のいずれでも採用可能である。縮合多環芳香族化合物は、通常はp型半導体であるので、ドナードーピングしてn型半導体とした縮合多環芳香族化合物と組み合わせたり、縮合多環芳香族化合物以外のn型半導体と組み合わせたりすることにより、素子を構成することができる。   As the structure of the transistor, either a MOS (metal-oxide (insulator layer) -semiconductor) type or a bipolar type can be employed. Since the condensed polycyclic aromatic compound is usually a p-type semiconductor, it may be combined with a condensed polycyclic aromatic compound that has been donor-doped to form an n-type semiconductor, or may be combined with an n-type semiconductor other than the condensed polycyclic aromatic compound. By doing so, an element can be constituted.

また、半導体素子がダイオードである場合には、その素子構造としては、例えば、電極/n型半導体層/p型半導体層/電極という構造があげられる。そして、p型半導体層に本発明の有機半導体薄膜が使用され、n型半導体層に前述のn型半導体が使用される。
半導体素子における有機半導体薄膜内部又は有機半導体薄膜表面と電極との接合面の少なくとも一部は、ショットキー接合及び/又はトンネル接合とすることができる。このような接合構造を有する有機半導体素子は、単純な構成でダイオードやトランジスタを作製することができるので好ましい。さらに、このような接合構造を有する有機半導体素子を複数接合して、インバータ,オスシレータ,メモリ,センサ等の素子を形成することもできる。
When the semiconductor element is a diode, the element structure includes, for example, a structure of electrode / n-type semiconductor layer / p-type semiconductor layer / electrode. And the organic-semiconductor thin film of this invention is used for a p-type semiconductor layer, and the above-mentioned n-type semiconductor is used for an n-type semiconductor layer.
At least a part of the interface between the organic semiconductor thin film in the semiconductor element or the surface of the organic semiconductor thin film and the electrode can be a Schottky junction and / or a tunnel junction. An organic semiconductor element having such a junction structure is preferable because a diode or a transistor can be manufactured with a simple structure. Furthermore, a plurality of organic semiconductor elements having such a junction structure can be joined to form elements such as an inverter, an oscillator, a memory, and a sensor.

さらに、本発明の有機半導体素子を表示素子として用いる場合は、表示素子の各画素に配置され各画素の表示をスイッチングするトランジスタ素子(ディスプレイTFT)として利用できる。このようなアクティブ駆動表示素子は、対向する導電性基板のパターニングが不要なため、回路構成によっては、画素をスイッチングするトランジスタを持たないパッシブ駆動表示素子と比べて画素配線を簡略化できる。通常は、1画素当たり1個から数個のスイッチング用トランジスタが配置される。このような表示素子は、基板面に二次元的に形成したデータラインとゲートラインとを交差した構造を有し、データラインやゲートラインがトランジスタのゲート電極,ソース電極,ドレイン電極にそれぞれ接合されている。なお、データラインとゲートラインとを分割することや、電流供給ライン,信号ラインを追加することも可能である。   Further, when the organic semiconductor element of the present invention is used as a display element, it can be used as a transistor element (display TFT) that is arranged in each pixel of the display element and switches display of each pixel. Since such an active drive display element does not require patterning of an opposing conductive substrate, depending on the circuit configuration, pixel wiring can be simplified compared to a passive drive display element that does not have a transistor for switching pixels. Usually, one to several switching transistors are arranged per pixel. Such a display element has a structure in which a data line and a gate line which are two-dimensionally formed on a substrate surface cross each other, and the data line and the gate line are respectively joined to the gate electrode, the source electrode and the drain electrode of the transistor. ing. It is possible to divide the data line and the gate line, and to add a current supply line and a signal line.

また、表示素子の画素に、画素配線,トランジスタに加えてキャパシタを併設して、信号を記録する機能を付与することもできる。さらに、表示素子が形成された基板に、データライン及びゲートラインのドライバ,画素信号のメモリ,パルスジェネレータ,信号分割器,コントローラ等を搭載することもできる。
また、本発明の有機半導体素子は、ICカード,スマートカード,及び電子タグにおける演算素子,記憶素子としても利用することができる。その場合、これらが接触型であっても非接触型であっても、問題なく適用可能である。このICカード,スマートカード,及び電子タグは、メモリ,パルスジェネレータ,信号分割器,コントローラ,キャパシタ等で構成されており、さらにアンテナ,バッテリを備えていてもよい。
In addition to the pixel wiring and the transistor, a capacitor can be provided in addition to the pixel of the display element to provide a signal recording function. Furthermore, a data line and gate line driver, a pixel signal memory, a pulse generator, a signal divider, a controller, and the like can be mounted on the substrate on which the display element is formed.
The organic semiconductor element of the present invention can also be used as an arithmetic element and a storage element in an IC card, a smart card, and an electronic tag. In that case, even if these are a contact type or a non-contact type, they can be applied without any problem. The IC card, smart card, and electronic tag are composed of a memory, a pulse generator, a signal divider, a controller, a capacitor, and the like, and may further include an antenna and a battery.

さらに、本発明の有機半導体素子でダイオード,ショットキー接合構造を有する素子,トンネル接合構造を有する素子を構成すれば、その素子は光電変換素子,太陽電池,赤外線センサ等の受光素子,フォトダイオードとして利用することもできるし、発光素子として利用することもできる。また、本発明の有機半導体素子でトランジスタを構成すれば、そのトランジスタは発光トランジスタとして利用することができる。これらの発光素子の発光層には、公知の有機材料や無機材料を使用することができる。   Furthermore, if the organic semiconductor element of the present invention is configured as a diode, an element having a Schottky junction structure, or an element having a tunnel junction structure, the element can be used as a light receiving element such as a photoelectric conversion element, a solar cell, an infrared sensor, or a photodiode. It can be used as a light emitting element. In addition, when a transistor is constituted by the organic semiconductor element of the present invention, the transistor can be used as a light emitting transistor. A known organic material or inorganic material can be used for the light emitting layer of these light emitting elements.

さらに、本発明の有機半導体素子はセンサとして利用することができ、ガスセンサ,バイオセンサ,血液センサ,免疫センサ,人工網膜,味覚センサ等、種々のセンサに応用することができる。通常は、有機半導体素子を構成する有機半導体薄膜に測定対象物を接触又は隣接させた際に生じる有機半導体薄膜の抵抗値の変化によって、測定対象物の分析を行うことができる。   Furthermore, the organic semiconductor element of the present invention can be used as a sensor, and can be applied to various sensors such as a gas sensor, a biosensor, a blood sensor, an immune sensor, an artificial retina, and a taste sensor. Usually, the measurement object can be analyzed by a change in the resistance value of the organic semiconductor thin film that occurs when the measurement object is brought into contact with or adjacent to the organic semiconductor thin film constituting the organic semiconductor element.

以下に、実施例を示して、本発明をさらに具体的に説明する。
〔実施例1〕
2,3,9,10−テトラメチルペンタセン粉末10mgとクロロホルム1mlとを混合し、2,3,9,10−テトラメチルペンタセン粉末が均一に分散した分散液(本発明の構成要件である分散物に相当する)を調整した。表面に酸化膜を備えるシリコン基板上にこの分散液を展開し、クロロホルムを蒸発させて2,3,9,10−テトラメチルペンタセン粉末の積層体を形成した。このシリコン基板を窒素雰囲気下において280℃に10分間保持すると、シリコン基板表面の2,3,9,10−テトラメチルペンタセン粉末が融解し、均一な薄膜が形成された。
Hereinafter, the present invention will be described more specifically with reference to examples.
[Example 1]
A dispersion in which 2,3,9,10-tetramethylpentacene powder (10 mg) and chloroform (1 ml) are mixed and 2,3,9,10-tetramethylpentacene powder is uniformly dispersed (dispersion which is a constituent of the present invention) Corresponding to). This dispersion was spread on a silicon substrate having an oxide film on the surface, and chloroform was evaporated to form a laminate of 2,3,9,10-tetramethylpentacene powder. When this silicon substrate was held at 280 ° C. for 10 minutes under a nitrogen atmosphere, the 2,3,9,10-tetramethylpentacene powder on the surface of the silicon substrate was melted to form a uniform thin film.

この薄膜の構造を広角X線回折法で解析したところ、面間距離16.8nmに対応する(00n)面(nは1〜3の整数)の回折ピークが観測された。そして、この回折ピークの半価幅は0.2°で、薄膜が高結晶性であることが確認された。
次に、n型シリコンで構成され、その表面に厚さ200nmの酸化膜を備えているシリコン基板を用意し、その表面に金電極のパターンをフォトリソグラフィーにて形成した。このような電極パターンが形成されたシリコン基板上に、上記と同様にして2,3,9,10−テトラメチルペンタセン粉末の積層体を形成し、上記と同様に加熱処理して有機半導体薄膜を形成し、電界効果トランジスタを作製した。この電界効果トランジスタのシリコン基板をゲート電極、表面の金電極をソース・ドレイン電極として、電界効果トランジスタ特性を評価した。その結果、電界効果移動度は1.2cm2 /V・sで、on/off電流比は1×104 であった。
When the structure of this thin film was analyzed by the wide-angle X-ray diffraction method, a diffraction peak on the (00n) plane (n is an integer of 1 to 3) corresponding to the inter-plane distance of 16.8 nm was observed. And the half-value width of this diffraction peak was 0.2 degree, and it was confirmed that a thin film is highly crystalline.
Next, a silicon substrate made of n-type silicon and provided with an oxide film having a thickness of 200 nm on its surface was prepared, and a gold electrode pattern was formed on the surface by photolithography. A laminated body of 2,3,9,10-tetramethylpentacene powder is formed on the silicon substrate on which such an electrode pattern is formed in the same manner as described above, and heat treatment is performed in the same manner as described above to form an organic semiconductor thin film. Then, a field effect transistor was manufactured. The field effect transistor characteristics were evaluated using the silicon substrate of the field effect transistor as the gate electrode and the gold electrode on the surface as the source / drain electrodes. As a result, the field effect mobility was 1.2 cm 2 / V · s, and the on / off current ratio was 1 × 10 4 .

〔実施例2〕
ヘキサドデシルヘキサベンゾコロネン粉末10mgとイソプロピルアルコール1mlとを混合し、ヘキサドデシルヘキサベンゾコロネン粉末が均一に分散した分散液を調整した。表面に酸化膜を備えるシリコン基板上にこの分散液を展開し、イソプロピルアルコールを蒸発させてヘキサドデシルヘキサベンゾコロネン粉末の積層体を形成した。このシリコン基板を窒素雰囲気下において150℃に10分間保持すると、シリコン基板表面のヘキサドデシルヘキサベンゾコロネン粉末が融解し、均一な薄膜が形成された。
この薄膜の構造を広角X線回折法で解析したところ、面間距離20.8nmに対応する(00n)面(nは1〜3の整数)の回折ピークが観測された。そして、この回折ピークの半価幅は0.24°で、薄膜が高結晶性であることが確認された。
[Example 2]
10 mg of hexadodecyl hexabenzocoronene powder and 1 ml of isopropyl alcohol were mixed to prepare a dispersion in which the hexadodecyl hexabenzocoronene powder was uniformly dispersed. This dispersion was developed on a silicon substrate having an oxide film on the surface, and isopropyl alcohol was evaporated to form a laminate of hexadodecyl hexabenzocoronene powder. When this silicon substrate was held at 150 ° C. for 10 minutes in a nitrogen atmosphere, the hexadodecyl hexabenzocoronene powder on the surface of the silicon substrate was melted to form a uniform thin film.
When the structure of this thin film was analyzed by the wide-angle X-ray diffraction method, a diffraction peak on the (00n) plane (n is an integer of 1 to 3) corresponding to the inter-plane distance of 20.8 nm was observed. And the half width of this diffraction peak was 0.24 °, and it was confirmed that the thin film was highly crystalline.

次に、n型シリコンで構成され、その表面に厚さ200nmの酸化膜を備えているシリコン基板を用意し、その表面に金電極のパターンをフォトリソグラフィーにて形成した。このような電極パターンが形成されたシリコン基板上に、上記と同様にしてヘキサドデシルヘキサベンゾコロネン粉末の積層体を形成し、上記と同様に加熱処理して有機半導体薄膜を形成し、電界効果トランジスタを作製した。この電界効果トランジスタのシリコン基板をゲート電極、表面の金電極をソース・ドレイン電極として、電界効果トランジスタ特性を評価した。その結果、電界効果移動度は0.05cm2 /V・sで、on/off電流比は1×104 であった。 Next, a silicon substrate made of n-type silicon and provided with an oxide film having a thickness of 200 nm on its surface was prepared, and a gold electrode pattern was formed on the surface by photolithography. On the silicon substrate on which such an electrode pattern is formed, a laminate of hexadodecyl hexabenzocoronene powder is formed in the same manner as described above, and an organic semiconductor thin film is formed by heat treatment in the same manner as described above. Was made. The field effect transistor characteristics were evaluated using the silicon substrate of the field effect transistor as the gate electrode and the gold electrode on the surface as the source / drain electrodes. As a result, the field effect mobility was 0.05 cm 2 / V · s, and the on / off current ratio was 1 × 10 4 .

〔実施例3〕
テトラドデシルヘキサベンゾコロネン粉末を用いたこと以外は実施例2と同様にして、テトラドデシルヘキサベンゾコロネン粉末の積層体をシリコン基板上に形成した。このシリコン基板を窒素雰囲気下において190℃に10分間保持すると、シリコン基板表面のテトラドデシルヘキサベンゾコロネン粉末が融解し、均一な薄膜が形成された。
得られた薄膜の構造を広角X線回折法で解析したところ、面間距離39.4nmに対応する(00n)面(nは1〜4の整数)の回折ピークが観測された。そして、この回折ピークの半価幅は0.10°で、薄膜が高結晶性であることが確認された。
次に、実施例2と同様に作製した電界効果トランジスタの特性を評価した。その結果、電界効果移動度は0.08cm2 /V・sで、on/off電流比は1×105 であった。
Example 3
A laminate of tetradodecylhexabenzocoronene powder was formed on a silicon substrate in the same manner as in Example 2 except that tetradodecylhexabenzocoronene powder was used. When this silicon substrate was held at 190 ° C. for 10 minutes in a nitrogen atmosphere, the tetradodecylhexabenzocoronene powder on the surface of the silicon substrate was melted to form a uniform thin film.
When the structure of the obtained thin film was analyzed by the wide-angle X-ray diffraction method, a diffraction peak of (00n) plane (n is an integer of 1 to 4) corresponding to the inter-plane distance of 39.4 nm was observed. The half width of this diffraction peak was 0.10 °, and it was confirmed that the thin film was highly crystalline.
Next, the characteristics of the field effect transistor produced in the same manner as in Example 2 were evaluated. As a result, the field effect mobility was 0.08 cm 2 / V · s, and the on / off current ratio was 1 × 10 5 .

〔実施例4〕
2,3,9,10−テトラプロピルペンタセン粉末25mgとメシチレン3mlとを混合し、2,3,9,10−テトラプロピルペンタセン粉末が均一に分散した分散液を調整した。表面に酸化膜を備えるシリコン基板上にこの分散液を展開し、メシチレンを蒸発させて2,3,9,10−テトラプロピルペンタセン粉末の積層体を形成した。このシリコン基板を窒素雰囲気下において220℃に10分間保持すると、シリコン基板表面の2,3,9,10−テトラプロピルペンタセン粉末が融解し、均一な薄膜が形成された。
この薄膜の構造を広角X線回折法で解析したところ、面間距離18.0nmに対応する(00n)面(nは1〜4の整数)の回折ピークが観測され、薄膜が高結晶性であることが確認された。
Example 4
25 mg of 2,3,9,10-tetrapropylpentacene powder and 3 ml of mesitylene were mixed to prepare a dispersion in which 2,3,9,10-tetrapropylpentacene powder was uniformly dispersed. This dispersion was spread on a silicon substrate having an oxide film on the surface, and mesitylene was evaporated to form a laminate of 2,3,9,10-tetrapropylpentacene powder. When this silicon substrate was held at 220 ° C. for 10 minutes under a nitrogen atmosphere, the 2,3,9,10-tetrapropylpentacene powder on the surface of the silicon substrate was melted to form a uniform thin film.
When the structure of this thin film was analyzed by the wide-angle X-ray diffraction method, a diffraction peak on the (00n) plane (n is an integer of 1 to 4) corresponding to an interplane distance of 18.0 nm was observed, and the thin film was highly crystalline. It was confirmed that there was.

次に、n型シリコンで構成され、その表面に厚さ200nmの酸化膜を備えているシリコン基板を用意し、その表面に金電極のパターンをフォトリソグラフィーにて形成した。このような電極パターンが形成されたシリコン基板上に、上記と同様にして2,3,9,10−テトラプロピルペンタセン粉末の積層体を形成し、上記と同様に加熱処理して有機半導体薄膜を形成し、電界効果トランジスタを作製した。この電界効果トランジスタのシリコン基板をゲート電極、表面の金電極をソース・ドレイン電極として、電界効果トランジスタ特性を評価した。その結果、電界効果移動度は0.85cm2 /V・sで、on/off電流比は1×104 であった。 Next, a silicon substrate made of n-type silicon and provided with an oxide film having a thickness of 200 nm on its surface was prepared, and a gold electrode pattern was formed on the surface by photolithography. A laminated body of 2,3,9,10-tetrapropylpentacene powder is formed on the silicon substrate on which such an electrode pattern is formed in the same manner as described above, and heat treatment is performed in the same manner as described above to form an organic semiconductor thin film. Then, a field effect transistor was manufactured. The field effect transistor characteristics were evaluated using the silicon substrate of the field effect transistor as the gate electrode and the gold electrode on the surface as the source / drain electrodes. As a result, the field effect mobility was 0.85 cm 2 / V · s, and the on / off current ratio was 1 × 10 4 .

〔比較例〕
無置換のヘキサベンゾコロネン粉末を用いたこと以外は実施例2と同様にして、ヘキサベンゾコロネン粉末の積層体をシリコン基板上に形成した。このシリコン基板を窒素雰囲気下において300℃に30分間保持したが、シリコン基板表面のヘキサベンゾコロネン粉末は粉末形態が保持されたまま融解せず、薄膜は形成されなかった。そこで、シリコン基板を窒素雰囲気下において400℃に30分間保持したところ、シリコン基板表面のヘキサベンゾコロネン粉末が昇華し、シリコン基板上から消失した。
[Comparative example]
A laminate of hexabenzocoronene powder was formed on a silicon substrate in the same manner as in Example 2 except that unsubstituted hexabenzocoronene powder was used. This silicon substrate was held at 300 ° C. for 30 minutes under a nitrogen atmosphere, but the hexabenzocoronene powder on the surface of the silicon substrate did not melt while the powder form was maintained, and a thin film was not formed. Therefore, when the silicon substrate was held at 400 ° C. for 30 minutes in a nitrogen atmosphere, the hexabenzocoronene powder on the silicon substrate surface sublimated and disappeared from the silicon substrate.

次に、n型シリコンで構成され、その表面に厚さ200nmの酸化膜を備えているシリコン基板を用意し、その表面に金電極のパターンをフォトリソグラフィーにて形成した。このような電極パターンが形成されたシリコン基板上に、上記と同様にしてヘキサベンゾコロネン粉末の積層体を形成し、窒素雰囲気下において300℃に30分間保持した。この積層体の電界効果トランジスタ動作を調査したが、ゲート電圧変化によるソース・ドレイン間の電流変調は認められなかった。また、ソース・ドレイン間の抵抗も極めて高く、電極間のコンタクトが不良であることが分かった。   Next, a silicon substrate made of n-type silicon and provided with an oxide film having a thickness of 200 nm on its surface was prepared, and a gold electrode pattern was formed on the surface by photolithography. On the silicon substrate on which such an electrode pattern was formed, a hexabenzocoronene powder laminate was formed in the same manner as described above, and held at 300 ° C. for 30 minutes in a nitrogen atmosphere. The field effect transistor operation of this laminate was investigated, but no current modulation between the source and drain due to a change in gate voltage was observed. Further, the resistance between the source and the drain was extremely high, and it was found that the contact between the electrodes was poor.

本発明は、エレクトロニクス,フォトニクス,バイオエレクトロニクス等において好適である。   The present invention is suitable for electronics, photonics, bioelectronics and the like.

Claims (4)

2個以上15個以下のベンゼン環が縮合した多環構造を有する縮合多環芳香族化合物からなる有機半導体薄膜の製造方法であって、
前記縮合多環芳香族化合物を分散媒に分散させた分散物をベース上に配し、前記縮合多環芳香族化合物の融点以上の温度に加熱して、前記分散媒を気化させるとともに前記縮合多環芳香族化合物を融解させることを特徴とする有機半導体薄膜の製造方法。
A method for producing an organic semiconductor thin film comprising a condensed polycyclic aromatic compound having a polycyclic structure in which 2 or more and 15 or less benzene rings are condensed,
A dispersion in which the condensed polycyclic aromatic compound is dispersed in a dispersion medium is disposed on a base, and heated to a temperature equal to or higher than the melting point of the condensed polycyclic aromatic compound to vaporize the dispersion medium and the condensed polycyclic aromatic compound. A method for producing an organic semiconductor thin film, comprising melting a ring aromatic compound.
前記縮合多環芳香族化合物が下記の化学式(I)で表されるような構造を有することを特徴とする請求項1に記載の有機半導体薄膜の製造方法。
Figure 2005268450
(I)
ただし、化学式(I)中の官能基R1 ,R2 ,R3 ,R4 のうち少なくとも一部は、アルキル基,アルケニル基,アルキニル基等の炭化水素基、アルコキシル基、エーテル基、ハロゲン基、ホルミル基、アシル基、エステル基、メルカプト基、チオアルキル基、スルフィド基、ジスルフィド基、スルホニル基、又はこれらのうちの2以上の基を含む官能基であり、他部は水素原子である。また、化学式(I)中の官能基X,Yの少なくとも一方は水素原子又はハロゲン基であり、nは2以上7以下の整数である。
The method for producing an organic semiconductor thin film according to claim 1, wherein the condensed polycyclic aromatic compound has a structure represented by the following chemical formula (I).
Figure 2005268450
(I)
However, at least a part of the functional groups R 1 , R 2 , R 3 and R 4 in the chemical formula (I) is a hydrocarbon group such as an alkyl group, an alkenyl group or an alkynyl group, an alkoxyl group, an ether group or a halogen group. , A formyl group, an acyl group, an ester group, a mercapto group, a thioalkyl group, a sulfide group, a disulfide group, a sulfonyl group, or a functional group containing two or more of them, and the other part is a hydrogen atom. In addition, at least one of the functional groups X and Y in the chemical formula (I) is a hydrogen atom or a halogen group, and n is an integer of 2 or more and 7 or less.
請求項1又は請求項2に記載の有機半導体薄膜の製造方法により製造された有機半導体薄膜。   An organic semiconductor thin film manufactured by the method for manufacturing an organic semiconductor thin film according to claim 1. 請求項3に記載の有機半導体薄膜で少なくとも一部を構成したことを特徴とする有機半導体素子。   An organic semiconductor element comprising at least a part of the organic semiconductor thin film according to claim 3.
JP2004077030A 2004-03-17 2004-03-17 Organic semiconductor thin film, its manufacturing method, and organic semiconductor element Pending JP2005268450A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004077030A JP2005268450A (en) 2004-03-17 2004-03-17 Organic semiconductor thin film, its manufacturing method, and organic semiconductor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004077030A JP2005268450A (en) 2004-03-17 2004-03-17 Organic semiconductor thin film, its manufacturing method, and organic semiconductor element

Publications (1)

Publication Number Publication Date
JP2005268450A true JP2005268450A (en) 2005-09-29

Family

ID=35092698

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004077030A Pending JP2005268450A (en) 2004-03-17 2004-03-17 Organic semiconductor thin film, its manufacturing method, and organic semiconductor element

Country Status (1)

Country Link
JP (1) JP2005268450A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100730186B1 (en) * 2005-12-15 2007-06-19 삼성에스디아이 주식회사 Method of manufacturing organic thin film transistor
US8178397B2 (en) 2004-11-11 2012-05-15 Mitsubishi Chemical Corporation Field effect transistor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0431486A (en) * 1990-05-25 1992-02-03 Asahi Chem Ind Co Ltd Oriented conductive organic thin film
WO2003016599A1 (en) * 2001-08-09 2003-02-27 Asahi Kasei Kabushiki Kaisha Organic semiconductor element
JP2003060267A (en) * 2001-08-21 2003-02-28 Matsushita Electric Ind Co Ltd Solid-state photoelectric device using organic semiconductor compound, and manufacturing method therefor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0431486A (en) * 1990-05-25 1992-02-03 Asahi Chem Ind Co Ltd Oriented conductive organic thin film
WO2003016599A1 (en) * 2001-08-09 2003-02-27 Asahi Kasei Kabushiki Kaisha Organic semiconductor element
JP2003060267A (en) * 2001-08-21 2003-02-28 Matsushita Electric Ind Co Ltd Solid-state photoelectric device using organic semiconductor compound, and manufacturing method therefor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8178397B2 (en) 2004-11-11 2012-05-15 Mitsubishi Chemical Corporation Field effect transistor
KR100730186B1 (en) * 2005-12-15 2007-06-19 삼성에스디아이 주식회사 Method of manufacturing organic thin film transistor

Similar Documents

Publication Publication Date Title
JP2005272460A (en) Polyacene compound and organic semiconductor thin film
JP6170488B2 (en) Novel condensed polycyclic aromatic compounds and uses thereof
KR20040029402A (en) Organic semiconductor element
JPWO2007125671A1 (en) Field effect transistor
JP4783282B2 (en) Fused polycyclic aromatic compound thin film and method for producing condensed polycyclic aromatic compound thin film
JP4481028B2 (en) Manufacturing method of organic semiconductor thin film
JP6558777B2 (en) Organic compounds and their uses
JP2004095850A (en) Organic transistor
JP6592758B2 (en) Novel condensed polycyclic aromatic compounds and uses thereof
JP2011003852A (en) Organic semiconductor thin film with sheet-like crystal of condensed polycyclic aromatic compound containing sulfur atom laminated on substrate, and method of manufacturing the same
JP5576611B2 (en) Method for producing novel organic semiconductor thin film comprising laminating sheet-like crystals of condensed polycyclic aromatic compound on substrate, and liquid dispersion
WO2014133100A1 (en) Novel condensed polycyclic aromatic compound and use thereof
JP5291303B2 (en) Polyacene compounds and organic semiconductor thin films
JP2005232136A (en) Polyacene precursor and method for synthesizing polyacene compound
JP4961660B2 (en) Field effect transistor using copper porphyrin compound
JP2005294737A (en) Manufacturing method of condensed polycyclic aromatic compound thin film
JP4500082B2 (en) Method for producing condensed polycyclic aromatic compound fine particles, and method for producing condensed polycyclic aromatic compound thin film
JP2005268450A (en) Organic semiconductor thin film, its manufacturing method, and organic semiconductor element
JP2006344895A (en) Mixture containing condensed polycyclic aromatic compound, film of condensed polycyclic aromatic compound, and its manufacturing method
JP4506228B2 (en) Organic field effect transistor, display element and electronic paper
JP6497560B2 (en) Novel condensed polycyclic aromatic compounds and uses thereof
JP2005268449A (en) Method of reforming condensation polycyclic aromatic compound thin film, the compound thin film, and organic semiconductor device
JP5948765B2 (en) Ink composition for electronic device using π-electron conjugated compound precursor, method for producing organic film, and method for producing field effect transistor
Fu et al. Organic single crystals or crystalline micro/nanostructures: Preparation and field-effect transistor applications
JP4934972B2 (en) Field effect transistor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110118

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110705