JP2005247353A - Sloshing preventive structure of large tank - Google Patents
Sloshing preventive structure of large tank Download PDFInfo
- Publication number
- JP2005247353A JP2005247353A JP2004058998A JP2004058998A JP2005247353A JP 2005247353 A JP2005247353 A JP 2005247353A JP 2004058998 A JP2004058998 A JP 2004058998A JP 2004058998 A JP2004058998 A JP 2004058998A JP 2005247353 A JP2005247353 A JP 2005247353A
- Authority
- JP
- Japan
- Prior art keywords
- tank
- partition plate
- sloshing
- view
- depth
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Abstract
Description
本発明は、石油タンク等の大型タンクが長周波地震動等により損傷するのを防止するスロッシング防止構造に関する。 The present invention relates to an anti-sloshing structure for preventing a large tank such as an oil tank from being damaged by a long-frequency earthquake motion or the like.
石油タンク等の大型タンクが長周波成分を多く含む地震動により振動すると、内蔵された原油などの液体が共振を起こし、長周波の大きな波を発生する。このような現象をスロッシングという。大型タンクでは、スロッシングによる波の大きさは3mを越える場合があり、その長周波の大きな波により原油の一部がタンク側壁を越えることが起きたり、大きな波の衝撃力によりタンク側壁が破損したりして、原油がタンクの外に漏れることがある。また、原油の上に浮かべて設置される浮き屋根がタンク側壁にぶつかって火花が発生し、火災が起きるなど防災上の大きな問題となっている。 When a large tank such as an oil tank vibrates due to an earthquake motion containing a lot of long frequency components, a liquid such as a built-in crude oil resonates, and a large long frequency wave is generated. Such a phenomenon is called sloshing. In large tanks, the magnitude of waves due to sloshing may exceed 3 m, and some of the crude oil may cross the tank side wall due to the large long-frequency waves, or the tank side wall may be damaged due to the impact force of the large waves. The crude oil may leak out of the tank. In addition, the floating roof that is installed above the crude oil collides with the side wall of the tank, causing sparks and a major problem for disaster prevention.
従来、直径が40mを越えるような大型タンクは、下記の理由から地震に強い構造物と考えられていた。
(1)直径40mを越えるような大型タンクはスロッシング周期が6秒を超えているため、このような長周波成分を多く含む地震動はないと考えられていた。
(2)地震動の継続時間は長くても60秒程度であり、仮にスロッシング周期に一致するような長周波成分が地震動に含まれていても、スロッシングによる大きな波動が発生するほど継続時間の長い地震動は発生しないと考えられていた。
Conventionally, large tanks with a diameter exceeding 40 m have been considered as earthquake-resistant structures for the following reasons.
(1) Large tanks with a diameter of more than 40 m have a sloshing cycle exceeding 6 seconds, so it was thought that there was no seismic motion containing many such long frequency components.
(2) The duration of the earthquake motion is about 60 seconds at the longest, and even if a long-frequency component that matches the sloshing period is included in the earthquake motion, the earthquake motion has a long duration so that a large wave is generated by the sloshing Was thought not to occur.
しかし、最近の観測や研究の結果、敷地の地層条件によっては、長周波成分を多く含み、継続時間が240秒を超える地震動が発生することが判ってきた。そして、大地震による大型タンク火災の原因は、そのような長周期で継続時間の長い地震動と考えられている。 However, as a result of recent observations and researches, it has been found that, depending on the geological conditions of the site, seismic motion that includes many long-frequency components and has a duration exceeding 240 seconds occurs. The cause of a large tank fire due to a large earthquake is thought to be a long-period seismic motion with a long period.
そこで、大型タンクでは周期の長いスロッシング現象が起きないようにする必要がある。スロッシングの周期は、タンク直径(あるいは幅)に比例し、一般に、0.1×√(D) (D:タンク直径あるいは幅) により精度良く算定されることが知られている。このことから、長周期で大きなスロッシング波動を無くすには、タンク内に仕切り板を配置し、小さなタンクの集まりとすれば良いと考えられる。そして、仕切り板をタンクの深さ全面に配置した構造がある(例えば特許文献1参照)。
しかし、例えば直径40m以上で高さ30m以上などの大型タンクにおいて、その深さ全面に仕切り板を配置すると、仕切り板の設置量が大量となり、コスト・工期が大きすぎて実用的ではない。また、仕切り板をタンクに溶接により接合する必要があり、その溶接量が大きいため、タンクには溶接熱による大きな変形が発生し、その補修が難しい問題もある。 However, for example, in a large tank having a diameter of 40 m or more and a height of 30 m or more, if a partition plate is arranged over the entire depth thereof, the installation amount of the partition plate becomes large, and the cost and construction period are too large to be practical. Moreover, it is necessary to join the partition plate to the tank by welding, and since the welding amount is large, the tank is greatly deformed by welding heat, and there is a problem that it is difficult to repair the tank.
本発明の課題は、大型タンクにおいて、必要十分な仕切り板により長周波で大きなスロッシング波動を短周期で小さなスロッシング波動に替えられるようにして、コスト・工期を抑えることである。 An object of the present invention is to reduce cost and construction time in a large tank so that a large sloshing wave at a long frequency can be replaced with a small sloshing wave at a short period by a necessary and sufficient partition plate.
一般に、タンクが振動を受けると、タンク内の液体は、例えば図1に示すように、タンク上部にスロッシングを起こす自由水の層、タンク下部にタンク本体と同一の動きをする固定水の層に分かれる。ここで、自由水の層は、液体上面より0.3×D (D:タンク直径あるいは幅) であることが知られている。
このことから、仕切り板は、液体上面より0.3×D以上の深さにある固定水の中に達する深さがあれば、それ以深の液体は、タンクの振動に対してはタンク本体と一体となって振動し、スロッシングに影響しない点、すなわち、タンクの深さ全面に仕切り板を配置した場合と同等の効果を発揮できることを知見したものである。
In general, when the tank is vibrated, the liquid in the tank is divided into a layer of free water that causes sloshing at the top of the tank and a layer of fixed water that moves in the same manner as the tank body at the bottom of the tank, as shown in FIG. Divided. Here, it is known that the free water layer is 0.3 × D (D: tank diameter or width) from the upper surface of the liquid.
Therefore, if the partition plate has a depth that reaches the fixed water at a depth of 0.3 × D or more from the upper surface of the liquid, the liquid deeper than that is It has been found that it can vibrate integrally and does not affect sloshing, that is, it can exhibit the same effect as the case where a partition plate is arranged over the entire depth of the tank.
前述した課題を解決するため、請求項1に記載の発明は、例えば図2に示すように、液体を貯留する大型タンクの内部に、タンク内を平面視で分割し、且つ最高液面よりタンク直径あるいはタンク幅の0.3倍以上の深さでタンク底板1には達しない仕切り板3を備えることを特徴とする。
In order to solve the above-described problem, the invention described in
請求項1に記載の発明によれば、タンク内を例えば平面視で3分割し、且つ最高液面よりタンク直径あるいはタンク幅の0.3倍以上の深さでタンク底板には達しない仕切り板を配置すると、仕切り板のない場合に比較し、スロッシング周期は1/√3に短く、自由水の量は1/3に小さくなり、スロッシング波動の衝撃力を格段に小さくできる。
つまり、大型タンクに適当枚数の仕切り板を設置すれば、スロッシングの周期を短く、波動を小さくできるのであるが、本発明の仕切り板を用いれば、同じ効果を少ない仕切り板の量で実現できる。これにより、仕切り板を大型タンクに追加設置する費用と工期を大幅に少なくすることができ、その実用上の効果は非常に大きいものとなる。
According to the first aspect of the present invention, the partition plate is divided into, for example, three parts in plan view, and does not reach the tank bottom plate at a depth of 0.3 times the tank diameter or the tank width from the highest liquid level. When the is placed, the sloshing period is shortened to 1 / √3, the amount of free water is reduced to 1/3, and the impact force of the sloshing wave can be remarkably reduced as compared with the case without the partition plate.
That is, if an appropriate number of partition plates are installed in a large tank, the sloshing cycle can be shortened and the wave motion can be reduced. However, if the partition plate of the present invention is used, the same effect can be realized with a small amount of partition plates. As a result, the cost and construction period for additionally installing the partition plate in the large tank can be greatly reduced, and the practical effect is very large.
請求項2に記載の発明は、請求項1に記載の大型タンクのスロッシング防止構造であって、例えば図3に示すように、前記仕切り板3により仕切られた部分をさらに平面視で分割し、且つ最高液面より仕切り板3により仕切られた部分の間隔の0.3倍以上の深さでタンク底板1には達しない小仕切り板4を備えることを特徴とする。
The invention according to
請求項2に記載の発明によれば、仕切り板により仕切られた部分を例えばさらに平面視で2分割し、且つ最高液面より仕切り板により仕切られた部分の間隔の0.3倍以上の深さでタンク底板には達しない小仕切り板を追加すると、仕切り板のない場合に比較し、スロッシング周期は1/√(3×2)=1/√6に短く、自由水の量は1/6に小さくなり、スロッシング波動の衝撃力をより小さくできる。 According to the second aspect of the present invention, the portion partitioned by the partition plate is further divided into, for example, two parts in plan view, and the depth is 0.3 times or more the interval between the portions partitioned by the partition plate from the highest liquid level. If a small partition plate that does not reach the tank bottom plate is added, the sloshing cycle is shorter to 1 / √ (3 × 2) = 1 / √6 and the amount of free water is 1 / √6 compared to the case without the partition plate. The impact force of the sloshing wave can be further reduced.
本発明によれば、以下の効果が得られる。
(1)タンクの深さ全面を仕切る仕切り板と同等に、スロッシング周期を短く、また、スロッシング波動を小さくすることができ、地震時の安全性を大幅に高めることができる。
(2)仕切り板の設置量は、従来の仕切り板の設置量の半分以下とすることができ、設置コスト・工期を大幅に低減することができる。
(3)仕切り板は、従来の仕切り板よりその深さが大幅に短く、タンク底板と接合しないため、タンクとの溶接量は従来と比較して1/2程度と格段に少なくできる。これによりタンクへの溶接熱の流入が少なくなるため、タンクの溶接熱による変形が大幅に少なくなり、既存タンクの補修費用を大幅に少なくすることができる。
According to the present invention, the following effects can be obtained.
(1) The sloshing cycle can be shortened and the sloshing wave can be reduced, as in the case of the partition plate that partitions the entire depth of the tank, and the safety during an earthquake can be greatly improved.
(2) The installation amount of the partition plate can be reduced to half or less of the installation amount of the conventional partition plate, and the installation cost and construction period can be significantly reduced.
(3) Since the partition plate is significantly shorter in depth than the conventional partition plate and is not joined to the tank bottom plate, the welding amount with the tank can be remarkably reduced to about ½ compared to the conventional case. As a result, the flow of welding heat into the tank is reduced, so that deformation due to the welding heat of the tank is greatly reduced, and the repair cost of the existing tank can be greatly reduced.
以下、図を参照して本発明を実施するための最良の形態を詳細に説明する。
本発明においては、大型タンク内に、固定水に達する深さ以上の適当な枚数の仕切り板を配置することにより、大型タンクの長周期で大きなスロッシング波動を短周期で小さなスロッシング波動に替えることを意図している。その実現のため、仕切り板の深さを、タンクに内蔵される液体の最高液面より0.3D(D:タンク直径あるいは幅)以上の深さにある固定水中に達し、且つタンク底面に達しない深さとしている。なお、実用的には、安全を見て、仕切り板を深さ0.4D以上とすることを推奨する。
Hereinafter, the best mode for carrying out the present invention will be described in detail with reference to the drawings.
In the present invention, by disposing an appropriate number of partition plates in the large tank at a depth that reaches the fixed water, a large sloshing wave in the long cycle of the large tank is replaced with a small sloshing wave in the short cycle. Intended. To achieve this, the depth of the partition plate reaches fixed water at a depth of 0.3D (D: tank diameter or width) or more from the maximum liquid level of the liquid contained in the tank, and reaches the bottom of the tank. Do not have depth. In practice, it is recommended that the partition plate has a depth of 0.4D or more in view of safety.
図1はタンク内の液体の振動に対する性状の違う自由水と固定水の説明図である。図1(a)及び図1(b)において、1はタンク底板、2はタンク外板、W1は固定水、W2は自由水、D1はタンク直径または幅である。
図示したように、自由水W2の深さは、最高液面より0.3D1となる。
FIG. 1 is an explanatory view of free water and fixed water having different properties with respect to the vibration of the liquid in the tank. 1A and 1B, 1 is a tank bottom plate, 2 is a tank outer plate, W1 is fixed water, W2 is free water, and D1 is a tank diameter or width.
As illustrated, the depth of the free water W2 is 0.3D1 from the highest liquid level.
図2は図1のタンク内を平面視で縦横方向に3分割するように仕切り板を配置した場合の自由水量の変化の説明図である。図2(a)及び図2(b)において、3は仕切り板、W3は自由水減少分、D2は仕切り板3の間隔である。
図示したように、仕切り板3は、最高液面より深さ0.3D1以上でタンク底板1には達しないように、タンク内を平面視で縦横方向に3分割してタンク外板2に接続することにより設置する。
こうして仕切り板3で囲まれたことにより、自由水W2の量は、図1よりW3減少して仕切り板のない図1の場合の1/3以下(0.3D2)、スロッシング周期は1/√3となる。従って、スロッシング波動の衝撃力を格段に小さくできる。
FIG. 2 is an explanatory view of a change in the amount of free water when the partition plate is arranged so that the inside of the tank of FIG. 2 (a) and 2 (b), 3 is a partition plate, W3 is an amount of free water reduction, and D2 is an interval between the
As shown in the figure, the
As a result of being surrounded by the
図3は図2の仕切り板の間をさらに平面視で縦横方向に2分割するよう追加の仕切り板を設置した場合の自由水量の変化の説明図である。図3(a)及び図3(b)において、3は大仕切り板、4は小仕切り板、W4は自由水減少分、D3は小仕切り板4の間隔である。
図2のように、最高液面より深さ0.3D1以上でタンク底板1には達しないようにしてタンク内を平面視で縦横方向に3分割した大仕切り板3に加えて、図3に示したように、その大仕切り板3により仕切られた部分を、最高液面より深さ0.3D2以上の小仕切り板4により、さらに平面視で縦横方向に2分割している。この小仕切り板4は、タンク外板2及び大仕切り板3に接続することにより設置する。
こうして大仕切り板3及び小仕切り板4で囲まれたことにより、自由水W2の量は、図2よりW4減少して仕切り板のない図1の場合の1/6以下(0.3D3)、スロッシング周期は1/√6となる。従って、スロッシング波動の衝撃力をより小さくできる。
FIG. 3 is an explanatory view of a change in the amount of free water when an additional partition plate is installed so as to further divide the partition plate of FIG. 3 (a) and 3 (b), 3 is a large partition plate, 4 is a small partition plate, W4 is a decrease in free water, and D3 is an interval between the
As shown in FIG. 2, in addition to the
Thus, by being surrounded by the
〔第1実施形態〕
図4は本発明を適用したタンクの第1実施形態の構成を示す縦断側面図(a)及び横断平面図(b)である。なお、図4(a)の矢印A−A線に沿った断面を図4(b)に示し、図4(b)の矢印B−B線に沿った断面を図4(a)に示している。
すなわち、第1実施形態は、既存の大型タンクにおいて、最高液面より深さ0.5D(D:タンク直径あるいは幅)の大仕切り板3により、タンク内を平面視で縦横方向に3分割した上で、その大仕切り板3により仕切られた部分を、最高液面より深さ0.5Dの小仕切り板4により、さらに平面視で縦横方向に2分割したものである。
そして、大仕切り板3の交差部を、タンク底板1から垂直に立てたパイプ状の支柱5により支持するとともに、小仕切り板4により囲まれた液面上には、フロート状の浮き屋根6をそれぞれ設けている。
ここで、仕切り板3・4の最高液面よりの深さを0.5Dとしたのは、内蔵液量の変動に対応することを考慮したためである。なお、支柱5はH形鋼でも良い。
[First Embodiment]
FIG. 4 is a longitudinal sectional side view (a) and a transverse plan view (b) showing the configuration of the first embodiment of the tank to which the present invention is applied. FIG. 4B shows a cross section taken along the line AA in FIG. 4A, and FIG. 4A shows a cross section taken along the line BB in FIG. 4B. Yes.
That is, in the first embodiment, in the existing large tank, the inside of the tank is divided into three in the vertical and horizontal directions in plan view by the
The intersection of the
Here, the reason why the depth from the highest liquid level of the
〔第2実施形態〕
図5は本発明を適用したタンクの第2実施形態の構成を示す縦断側面図(a)及び横断平面図(b)である。なお、図5(a)の矢印A−A線に沿った断面を図5(b)に示し、図5(b)の矢印B−B線に沿った断面を図5(a)に示している。
すなわち、第2実施形態は、既存の大型タンクにおいて、最高液面より深さ0.5D(D:タンク直径あるいは幅)の大仕切り板3により、タンク内を平面視で縦横方向に3分割した上で、その大仕切り板3により仕切られた部分を、最高液面より深さ0.5D2(D2:大仕切り板3の間隔)の小仕切り板4により、さらに平面視で縦横方向に2分割したものである。
そして、前述した第1実施形態と同様に、大仕切り板3の交差部をパイプ状の支柱5により支持するとともに、小仕切り板4により囲まれた液面上にフロート状の浮き屋根6をそれぞれ設けている。
このように、小仕切り板4の深さを0.5D2(D2:大仕切り板3の間隔)として、第1実施形態に較べコストダウンを図っている。
ここで、小仕切り板4の最高液面よりの深さを0.5D2としたのは、第1実施形態と同様に、内蔵液量の変動に対応することを考慮したためである。また、第1実施形態と同様、支柱5はH形鋼でも良い。
[Second Embodiment]
FIG. 5 is a longitudinal side view (a) and a transverse plan view (b) showing the configuration of a second embodiment of the tank to which the present invention is applied. 5A shows a cross section taken along the line AA in FIG. 5A, and FIG. 5A shows a cross section taken along the line BB in FIG. 5B. Yes.
That is, in the second embodiment, in the existing large tank, the inside of the tank is divided into three in the vertical and horizontal directions in plan view by the
And like 1st Embodiment mentioned above, while supporting the crossing part of the
As described above, the depth of the
Here, the reason why the depth from the highest liquid surface of the
〔第3実施形態〕
図6は本発明を適用したタンクの第3実施形態の構成を示す縦断側面図(a)及び横断平面図(b)である。なお、図6(a)の矢印A−A線に沿った断面を図6(b)に示し、図6(b)の矢印B−B線に沿った断面を図6(a)に示している。
すなわち、第3実施形態は、既存の大型タンクにおいて、前述した第2実施形態とほぼ同様の大仕切り板3、小仕切り板4及び浮き屋根6を備える構成とした上で、その上方に吊りビーム7を備えるとともに、周囲にスライドガイドレール8を備えたものである。
吊りビーム7は、大仕切り板3及び小仕切り板4の間に沿って平行に配置され、大仕切り板3及び小仕切り板4が接合ヒンジ71を介して吊りビーム7に吊り下げられている。この吊りビーム7は浮き屋根6により接合ヒンジ72を介して支えられている。なお、図6(b)では浮き屋根6が省略されている。
そして、スライドガイドレール8は、大仕切り板3及び小仕切り板4の端部を上下移動可能に支持するもので、タンク外板2の内周に固定して放射状に設けられている。
このようにして、大仕切り板3、小仕切り板4は、吊りビーム7により浮き屋根6と一体のユニット化するとともに、内蔵液量の増減に合わせスライドガイドレール8に沿って上下移動可能としている。
[Third Embodiment]
FIG. 6 is a longitudinal sectional side view (a) and a transverse plan view (b) showing a configuration of a third embodiment of a tank to which the present invention is applied. 6A. FIG. 6B shows a cross section taken along the line AA in FIG. 6A, and FIG. 6A shows a cross section taken along the line BB in FIG. 6B. Yes.
That is, in the third embodiment, an existing large tank is configured to include a
The
The
In this manner, the
〔第4実施形態〕
図7は本発明を適用したタンクの第4実施形態の構成を示す縦断側面図(a)及び横断平面図(b)である。なお、図7(a)の矢印A−A線に沿った断面を図7(b)に示し、図7(b)の矢印B−B線に沿った断面を図7(a)に示している。
すなわち、第4実施形態は、既存の大型タンクにおいて、最高液面より深さ0.5D(D:タンク直径あるいは幅)の大仕切り板3により、タンク内を平面視で縦横方向に3分割した上で、その大仕切り板3により仕切られた部分のうち必要な部分を、最高液面より深さ0.5D2(D2:大仕切り板3の間隔)の小仕切り板4により2分割している。
そして、以上の大仕切り板3及び小仕切り板4の上方に大きな浮き屋根11を備えるとともに、周囲に曲面形状の大仕切り板13を備えて、その下端にアンカープレート15を備えたものである。
浮き屋根11は、タンク外板2の内側に隙間を開けて位置する大きな円盤フロート状で、内蔵液量の変動に対応するために、上下方向に貫通する多数の空気抜き孔12を有している。この浮き屋根11の下面には、大仕切り板3・13及び小仕切り板4の上端が接合されている。
曲面形状の大仕切り板13は、大仕切り板3により仕切られた部分の外側に接合されていて、全体としてタンク外板2の内方に位置する円筒形をなしている。
アンカープレート15は、円筒形をなす大仕切り板13の下端に接合されていて、全体として円環状をなしている。このアンカープレート15は、液中で抵抗を受けて浮き屋根11の上下動を少なくするためのものである。
このようにして、大仕切り板3・13、小仕切り板4は、浮き屋根11及びアンカープレート15と一体のユニット化するとともに、内蔵液量の増減に合わせて上下移動可能としている。
[Fourth Embodiment]
FIG. 7 is a longitudinal sectional side view (a) and a transverse plan view (b) showing a configuration of a fourth embodiment of a tank to which the present invention is applied. FIG. 7B shows a cross section taken along the line AA in FIG. 7A, and FIG. 7A shows a cross section taken along the line BB in FIG. 7B. Yes.
That is, in the fourth embodiment, in the existing large tank, the inside of the tank is divided into three in the vertical and horizontal directions in plan view by the
Then, a large floating
The floating
The curved
The
In this way, the
なお、本発明は以上の実施形態に限定されるものではなく、タンク形状や仕切り板の具体的な細部構造等について適宜に変更可能であり、新設タンクや既存タンクの何れにも適用し得るものであることは勿論である。 The present invention is not limited to the above embodiment, and the tank shape and the specific detailed structure of the partition plate can be changed as appropriate, and can be applied to either a new tank or an existing tank. Of course.
1 タンク底板
2 タンク外板
3 大仕切り板
4 小仕切り板
5 支柱
6 浮き屋根
7 吊りビーム
71・72 接合ヒンジ
8 スライドガイドレール
11 浮き屋根
12 空気抜き孔
13 大仕切り板
15 アンカープレート
DESCRIPTION OF
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004058998A JP2005247353A (en) | 2004-03-03 | 2004-03-03 | Sloshing preventive structure of large tank |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004058998A JP2005247353A (en) | 2004-03-03 | 2004-03-03 | Sloshing preventive structure of large tank |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2005247353A true JP2005247353A (en) | 2005-09-15 |
Family
ID=35028230
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004058998A Pending JP2005247353A (en) | 2004-03-03 | 2004-03-03 | Sloshing preventive structure of large tank |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2005247353A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007176595A (en) * | 2005-12-28 | 2007-07-12 | Meiji Univ | Liquid reservoir |
JP2011189994A (en) * | 2011-07-08 | 2011-09-29 | Meiji Univ | Liquid storage container for suppressing seismic vibration |
KR101653140B1 (en) * | 2016-03-17 | 2016-09-01 | 주식회사 문창 | water tank for horizontality shock reduction of water |
CN106939965A (en) * | 2017-04-10 | 2017-07-11 | 广州大学 | A kind of storage tank anti-shake damping device |
KR20180001237U (en) * | 2016-10-24 | 2018-05-03 | 주식회사 휴팩 | Water reserbe tank to prevent sloshing |
CN109505897A (en) * | 2018-11-06 | 2019-03-22 | 陕西法士特齿轮有限责任公司 | A kind of container preventing liquid fluctuating |
CN113277208A (en) * | 2021-05-24 | 2021-08-20 | 巢湖云海镁业有限公司 | Pressure guide type transfer device for inert atmosphere protection magnesium liquid |
-
2004
- 2004-03-03 JP JP2004058998A patent/JP2005247353A/en active Pending
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007176595A (en) * | 2005-12-28 | 2007-07-12 | Meiji Univ | Liquid reservoir |
JP2011189994A (en) * | 2011-07-08 | 2011-09-29 | Meiji Univ | Liquid storage container for suppressing seismic vibration |
KR101653140B1 (en) * | 2016-03-17 | 2016-09-01 | 주식회사 문창 | water tank for horizontality shock reduction of water |
KR20180001237U (en) * | 2016-10-24 | 2018-05-03 | 주식회사 휴팩 | Water reserbe tank to prevent sloshing |
KR200487050Y1 (en) | 2016-10-24 | 2018-07-30 | 주식회사 휴팩 | Water reserbe tank to prevent sloshing |
CN106939965A (en) * | 2017-04-10 | 2017-07-11 | 广州大学 | A kind of storage tank anti-shake damping device |
CN109505897A (en) * | 2018-11-06 | 2019-03-22 | 陕西法士特齿轮有限责任公司 | A kind of container preventing liquid fluctuating |
CN109505897B (en) * | 2018-11-06 | 2024-01-02 | 陕西法士特齿轮有限责任公司 | Container capable of preventing liquid level from fluctuating |
CN113277208A (en) * | 2021-05-24 | 2021-08-20 | 巢湖云海镁业有限公司 | Pressure guide type transfer device for inert atmosphere protection magnesium liquid |
CN113277208B (en) * | 2021-05-24 | 2023-10-24 | 巢湖云海镁业有限公司 | Pressure guide type transfer device for protecting magnesium liquid in inert atmosphere |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4922671A (en) | Method for effectively restraining response of a structure to outside disturbances and apparatus therefor | |
JP6388647B2 (en) | Viscous wall-connected damper for use in outrigger building construction | |
KR101832706B1 (en) | The seismic dry type pad for up and down control for water tank | |
JP2005247353A (en) | Sloshing preventive structure of large tank | |
KR102143582B1 (en) | Seismic reinforced metal panel | |
JP2008213886A (en) | Floating roof type liquid storage tank | |
JP3184182U (en) | Spherical tank support structure and cross brace | |
KR101627926B1 (en) | Floating structure for reducing shake | |
JP2019073887A (en) | Vibration displacement suppressing structure of elevated rigid-frame bridge | |
JP4355302B2 (en) | Floating floor vibration control structure | |
KR102188355B1 (en) | An earthquake-resistant vibration absorber installed under a column | |
JP4787690B2 (en) | Sloshing damping device | |
CN102041902A (en) | Seismic strengthening device for beam column node area | |
JP4676801B2 (en) | Anti-sloshing damper | |
JP2019094643A (en) | Subsurface structure of new building | |
JP2011169026A (en) | Floor structure | |
JP2000027485A (en) | Quake damping wall, method for mounting quake damping wall, and quake damping structure using quake damping wall | |
JP4163101B2 (en) | Anti-sloshing damper | |
JP2018059300A (en) | Construction method of tank | |
JP6179298B2 (en) | Gas holder reinforcement method and gas holder | |
JP5271385B2 (en) | How to upgrade existing tanks | |
JP2019100040A (en) | Base-isolated building and construction method for base-isolated structure | |
JP2008254804A (en) | Vibration suppressing device for floating roof | |
JP2002115416A (en) | Multistory building | |
JP6126789B2 (en) | Tank support structure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070126 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070206 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20070605 |