Nothing Special   »   [go: up one dir, main page]

JP2005243293A - Solid polymer electrolyte membrane for fuel cell - Google Patents

Solid polymer electrolyte membrane for fuel cell Download PDF

Info

Publication number
JP2005243293A
JP2005243293A JP2004048312A JP2004048312A JP2005243293A JP 2005243293 A JP2005243293 A JP 2005243293A JP 2004048312 A JP2004048312 A JP 2004048312A JP 2004048312 A JP2004048312 A JP 2004048312A JP 2005243293 A JP2005243293 A JP 2005243293A
Authority
JP
Japan
Prior art keywords
electrolyte membrane
polymer electrolyte
solid polymer
fuel cell
main body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004048312A
Other languages
Japanese (ja)
Inventor
Takeharu Kuramochi
竹晴 倉持
Masahiko Katsu
雅彦 勝
Kaoru Eguchi
薫 江口
Yoshiki Muto
宜樹 武藤
Masahiro Komata
正博 小又
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2004048312A priority Critical patent/JP2005243293A/en
Publication of JP2005243293A publication Critical patent/JP2005243293A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a solid polymer electrolyte membrane for a fuel cell capable of simplifying fabrication of the fuel cell by improving its handleability as a simple body and through it. <P>SOLUTION: This solid polymer electrolyte membrane 20 for a fuel cell is used in manufacturing the fuel cell while being sequentially paid out from a state wound in rolled form. The solid polymer electrolyte membrane includes swollen parts 23 respectively formed on a pair of edge sides 20a nearly parallel with the paying-out direction (X-direction), and each having a thickness larger than that of a body part 22 forming an area interlaid between a pair of electrodes. The swollen parts provide the body part with shape holding force for preventing the body part from curling up in the paying-out direction by curling tendency. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、燃料電池の製造に際してロール状に巻回した状態から順次繰り出されながら使用に供される燃料電池用の固体高分子電解質膜に関する。   The present invention relates to a solid polymer electrolyte membrane for a fuel cell that is used while being sequentially drawn out from a state of being wound into a roll during the production of the fuel cell.

例えば、固体高分子型燃料電池の単セルは、陽イオン交換膜としての固体高分子電解質膜を一対の電極により挟み込み、さらにその外側を一対のセパレータにより挟持して構成されている(例えば、特許文献1参照。)。固体高分子電解質膜は、その抵抗による電圧降下を抑制するため、薄膜に形成されている。薄膜である固体高分子電解質膜は、形状を保持する力がほとんどないため、ハンドリング性が悪い。   For example, a single cell of a polymer electrolyte fuel cell is configured such that a solid polymer electrolyte membrane as a cation exchange membrane is sandwiched between a pair of electrodes, and the outside is sandwiched between a pair of separators (for example, patents). Reference 1). The solid polymer electrolyte membrane is formed in a thin film in order to suppress a voltage drop due to its resistance. A solid polymer electrolyte membrane, which is a thin film, has poor handling properties because it has little force to retain its shape.

特許文献1では、固体高分子電解質膜を一対の電極で挟み込んだものを多孔質の補強部材でさらに囲繞し、一体化電極を構成している。複数の部品からなる全体によって、固体高分子電解質膜のハンドリング性を改善している。   In Patent Document 1, a solid polymer electrolyte membrane sandwiched between a pair of electrodes is further surrounded by a porous reinforcing member to constitute an integrated electrode. The whole of the plurality of parts improves the handling property of the solid polymer electrolyte membrane.

しかしながら、特許文献1では、固体高分子電解質膜単体でのハンドリング性については考慮されておらず、固体高分子電解質膜単体での変形を十分に抑制することはできない。
特開2003−142127号公報
However, in Patent Document 1, the handling property of the solid polymer electrolyte membrane alone is not considered, and the deformation of the solid polymer electrolyte membrane alone cannot be sufficiently suppressed.
JP 2003-142127 A

本発明は、上記従来技術に伴う課題を解決するためになされたものであり、単体でのハンドリング性を良好なものとし、これを通して、燃料電池の製造の簡素化を図り得る燃料電池用の固体高分子電解質膜を提供することを目的とする。   The present invention has been made in order to solve the problems associated with the above-described prior art, and has excellent handling properties as a single unit. Through this, the solid for a fuel cell can simplify the production of the fuel cell. An object is to provide a polymer electrolyte membrane.

上記目的を達成するための本発明は、燃料電池の製造に際してロール状に巻回した状態から順次繰り出されながら使用に供される燃料電池用の固体高分子電解質膜において、
前記繰り出し方向と略平行をなす一対の縁辺の各々に設けられ、かつ、一対の電極の間に介装される領域をなす本体部の肉厚寸法よりも大きい寸法を有する膨出部を含み、
前記膨出部は、巻き癖によって前記本体部が前記繰り出し方向に丸まることを防止する形状保持力を前記本体部に付与することを特徴とする燃料電池用の固体高分子電解質膜である。
In order to achieve the above object, the present invention provides a solid polymer electrolyte membrane for a fuel cell that is used while being fed out from a state wound in a roll shape in the production of a fuel cell.
Including a bulging portion that is provided on each of a pair of edges substantially parallel to the feed-out direction and has a size larger than a thickness of a main body portion that forms an area interposed between the pair of electrodes;
The bulging portion is a solid polymer electrolyte membrane for a fuel cell, which imparts a shape retention force to the main body portion to prevent the main body portion from being rounded in the feed-out direction due to a curl.

本発明によれば、本体部は、膨出部から付与される形状保持力により、繰り出し方向に丸まることが防止されているため、固体高分子電解質膜は、本来の形状である平坦形状を保持し、単体でのハンドリング性が良好なものとなる。これを通して、燃料電池の製造の簡素化を図ることができる。   According to the present invention, since the main body portion is prevented from being rounded in the feeding direction by the shape holding force applied from the bulging portion, the solid polymer electrolyte membrane holds the flat shape which is the original shape. In addition, the handling property by itself becomes good. Through this, the manufacture of the fuel cell can be simplified.

以下、図面を参照しつつ、本発明の実施の形態を詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1は、本発明の実施形態の係る燃料電池用の固体高分子電解質膜20を適用した固体高分子型燃料電池の単セル10を示す断面図である。図2(A)は、ロール状に巻回した状態の固体高分子電解質膜20が、燃料電池の製造に際して繰り出されている状態を示す斜視図、図2(B)は、図2(A)の2B−2B線に沿う断面図である。なお、図2(A)に付したX軸は、ロール状に巻回した状態から繰り出される固体高分子電解質膜20の繰り出し方向を示し、Y軸は、繰り出し方向(X方向)と直交する方向を示している。   FIG. 1 is a cross-sectional view showing a single cell 10 of a solid polymer fuel cell to which a solid polymer electrolyte membrane 20 for a fuel cell according to an embodiment of the present invention is applied. FIG. 2A is a perspective view showing a state in which the solid polymer electrolyte membrane 20 wound in a roll shape is unwound in the production of a fuel cell, and FIG. 2B is a view in FIG. It is sectional drawing which follows the 2B-2B line. 2A indicates the feeding direction of the solid polymer electrolyte membrane 20 fed out from the rolled state, and the Y axis indicates a direction orthogonal to the feeding direction (X direction). Is shown.

燃料電池は、単セル10を多数積層して燃料電池スタックの形態で、例えば、自動車の駆動源として使用される。   A fuel cell is used in the form of a fuel cell stack in which a large number of single cells 10 are stacked, for example, as a driving source for an automobile.

単セル10は、水の電気分解の逆の原理を利用し、水素と酸素とを反応させて水を得る過程で電気を得ることができる電池である。単セル10は、陽イオン交換膜としての固体高分子電解質膜20と、触媒層が形成された一対の電極31、32と、一対のセパレータ41、42と、を有する。単セル10は、固体高分子電解質膜20を一対の電極31、32により挟み込み、さらにその外側を一対のセパレータ41、42により挟持して構成されている。電極31側のセパレータ41には、冷却水を流通させるための流路溝43と、燃料ガス(水素)を流通させるための流路溝44とが形成されている。電極32側のセパレータ42には、冷却水を流通させるための流路溝45と、酸化剤ガス(空気)を流通させるための流路溝46とが形成されている。流路溝43〜46の形状および配置は、ガスの拡散性、圧力損失、生成水の排出性、冷却性能等を考慮する必要があり、微細で複雑な構成を有している。   The single cell 10 is a battery that can obtain electricity in the process of obtaining water by reacting hydrogen and oxygen by utilizing the reverse principle of electrolysis of water. The single cell 10 includes a solid polymer electrolyte membrane 20 as a cation exchange membrane, a pair of electrodes 31 and 32 on which a catalyst layer is formed, and a pair of separators 41 and 42. The single cell 10 is configured such that the solid polymer electrolyte membrane 20 is sandwiched between a pair of electrodes 31 and 32 and the outside is sandwiched between a pair of separators 41 and 42. The separator 41 on the electrode 31 side is formed with a channel groove 43 for circulating cooling water and a channel groove 44 for circulating fuel gas (hydrogen). In the separator 42 on the electrode 32 side, a channel groove 45 for circulating cooling water and a channel groove 46 for circulating oxidant gas (air) are formed. The shape and arrangement of the channel grooves 43 to 46 need to consider gas diffusibility, pressure loss, discharge of generated water, cooling performance, and the like, and have a fine and complicated configuration.

固体高分子電解質膜20は、水素イオンを移動させる機能を有する高分子膜である。固体高分子電解質膜20は、その抵抗による電圧降下を抑制するため、薄膜(例えば、数十μm〜100μm程度)に形成されている。   The solid polymer electrolyte membrane 20 is a polymer membrane having a function of moving hydrogen ions. The solid polymer electrolyte membrane 20 is formed in a thin film (for example, about several tens of μm to 100 μm) in order to suppress a voltage drop due to its resistance.

図2(A)に示すように、成形された固体高分子電解質膜20は芯材21にロール状に巻回した状態で保存ないし保管され、燃料電池の製造に際しては、順次繰り出されながら使用に供されている。   As shown in FIG. 2 (A), the formed solid polymer electrolyte membrane 20 is stored or stored in a state of being wound around a core material 21 in a roll shape, and is used while being fed out sequentially when manufacturing a fuel cell. It is provided.

図2(B)にも示すように、固体高分子電解質膜20は、繰り出し方向(X方向)と略平行をなす一対の縁辺20aの各々に設けられ、かつ、一対の電極31、32の間に介装される領域をなす本体部22の肉厚寸法よりも大きい寸法を有する膨出部23を含んでいる。図示例の膨出部23は、縁辺20aの端部に設けられ、断面円形状を有している。単セル10を組み立てる際には、本体部22は、一対の電極31、32に挟み込まれ、膨出部23は、電極31、32からはみ出して一対のセパレータ41、42の間に配置されることになる(図1を参照)。本体部22表面からの膨出部23の高さhは、各電極31、32の厚さよりも大きく設定されている。後述するが、膨出部23にガスシール機能を発揮させるためである。   As shown in FIG. 2B, the solid polymer electrolyte membrane 20 is provided on each of the pair of edges 20a substantially parallel to the feeding direction (X direction), and between the pair of electrodes 31 and 32. The bulging part 23 which has a dimension larger than the thickness dimension of the main-body part 22 which makes | forms the area | region interposed in is included. The bulging part 23 of the example of illustration is provided in the edge part of the edge 20a, and has cross-sectional circular shape. When assembling the unit cell 10, the main body portion 22 is sandwiched between the pair of electrodes 31 and 32, and the bulging portion 23 protrudes from the electrodes 31 and 32 and is disposed between the pair of separators 41 and 42. (See FIG. 1). The height h of the bulging portion 23 from the surface of the main body portion 22 is set to be larger than the thickness of each electrode 31, 32. Although it mentions later, it is for making the bulging part 23 exhibit a gas seal function.

膨出部23は、巻き癖によって本体部22が繰り出し方向(X方向)に丸まることを防止する形状保持力を本体部22に付与する。すなわち、固体高分子電解質膜20をロール状に巻回した状態で保存している間に、本体部22は、巻き癖が付き易い。このため、固体高分子電解質膜20を繰り出したとき、巻き癖によって、本体部22には繰り出し方向(X方向)に丸まろうとする力が作用する。一方、膨出部23は、本体部22の肉厚寸法よりも大きい寸法を有しているので、本体部22に比べると巻き癖が付き難く、本来の形状である平坦形状を保持しようとする力つまり形状保持力が強い。固体高分子電解質膜20を繰り出したとき、膨出部23が形状保持力を本体部22に付与する。この結果、本体部22は、当該本体部22に作用する丸まろうとする力に抗して、繰り出し方向(X方向)に丸まることが防止される。   The bulging portion 23 imparts to the main body portion 22 a shape retention force that prevents the main body portion 22 from being rounded in the feeding direction (X direction) due to the curl. That is, while the solid polymer electrolyte membrane 20 is stored in a state of being wound in a roll shape, the main body portion 22 is likely to be curled. For this reason, when the solid polymer electrolyte membrane 20 is unwound, a force that tends to round in the unwinding direction (X direction) acts on the main body portion 22 due to the curl. On the other hand, since the bulging portion 23 has a size larger than the thickness of the main body portion 22, the bulging portion 23 is less likely to be curled compared to the main body portion 22 and tries to maintain a flat shape that is the original shape. Strong force, that is, shape retention. When the solid polymer electrolyte membrane 20 is drawn out, the bulging portion 23 imparts a shape retention force to the main body portion 22. As a result, the main body 22 is prevented from curling in the feed-out direction (X direction) against the curving force acting on the main body 22.

図3は、膨出部23を備える固体高分子電解質膜20を成形する成形装置50を示す図である。   FIG. 3 is a view showing a forming apparatus 50 for forming the solid polymer electrolyte membrane 20 having the bulging portion 23.

膨出部23は、本体部22を構成する材料と同一材料から、本体部22と一体的に形成することが好ましい。膨出部23を備える固体高分子電解質膜20の成形を容易に行い得るからである。   The bulging portion 23 is preferably formed integrally with the main body portion 22 from the same material as that constituting the main body portion 22. This is because the solid polymer electrolyte membrane 20 including the bulging portion 23 can be easily formed.

成形装置50は、上ローラ51と、下ローラ52とを有し、各ローラ51、52には、本体部22を成形するための小径部51a、52aと、膨出部23を形成するための断面半円弧形状をなす環状溝部51b、52bとが形成されている。固体高分子電解質膜20の素材を、矢印で示すように相互に押圧された上下のローラ51、52の間を通過させることにより、本体部22と膨出部23とが同一材料から一体的に形成された固体高分子電解質膜20が成形される。   The forming apparatus 50 includes an upper roller 51 and a lower roller 52, and small diameter portions 51 a and 52 a for forming the main body portion 22 and a bulging portion 23 are formed in each of the rollers 51 and 52. Annular grooves 51b and 52b having a semicircular cross section are formed. By passing the material of the solid polymer electrolyte membrane 20 between the upper and lower rollers 51 and 52 pressed against each other as indicated by arrows, the main body portion 22 and the bulging portion 23 are integrally formed from the same material. The formed solid polymer electrolyte membrane 20 is molded.

図4(A)〜(E)は、膨出部23を備える固体高分子電解質膜20に補強部24をさらに成形する手順の説明に供する概念図である。なお、図4においては、理解の容易のため、膨出部23および補強部24を縁辺20a、20bから離して示してある。   FIGS. 4A to 4E are conceptual diagrams for explaining a procedure for further forming the reinforcing portion 24 on the solid polymer electrolyte membrane 20 including the bulging portion 23. In FIG. 4, the bulging portion 23 and the reinforcing portion 24 are shown separated from the edges 20 a and 20 b for easy understanding.

固体高分子電解質膜20は、繰り出し方向(X方向)に直交する方向(Y方向)と略平行をなす一対の縁辺20bの各々に設けられ、かつ、本体部22の肉厚寸法よりも大きい寸法を有する補強部24をさらに含んでいる。図示例の補強部24は、縁辺20bの両面に設けられ、断面半円形状を有している(図4(C)を参照)。単セル10を組み立てる際には、補強部24は、膨出部23と同様に、電極31、32からはみ出して一対のセパレータ41、42の間に配置されることになる。本体部22表面からの補強部24の高さhは、各電極31、32の厚さよりも大きく設定されている。後述するが、補強部24にガスシール機能を発揮させるためである。   The solid polymer electrolyte membrane 20 is provided on each of the pair of edges 20b substantially parallel to the direction (Y direction) orthogonal to the feeding direction (X direction) and is larger than the wall thickness of the main body 22. Further including a reinforcing portion 24 having The reinforcing portion 24 in the illustrated example is provided on both surfaces of the edge 20b and has a semicircular cross section (see FIG. 4C). When assembling the unit cell 10, the reinforcing portion 24 protrudes from the electrodes 31 and 32 and is disposed between the pair of separators 41 and 42, similarly to the bulging portion 23. The height h of the reinforcing portion 24 from the surface of the main body portion 22 is set to be larger than the thickness of each of the electrodes 31 and 32. Although mentioned later, it is for making the reinforcement part 24 exhibit a gas seal function.

補強部24は、本体部22が繰り出し方向(X方向)と略直交する方向(Y方向)に丸まることを防止する形状保持力を本体部22に付与する。すなわち、薄肉の本体部22は、形状を保持する力がほとんどないため、繰り出し方向(X方向)に直交する方向(Y方向)に丸まる虞がある。一方、補強部24は、本体部22の肉厚寸法よりも大きい寸法を有しているので、本体部22に比べると、本来の形状である平坦形状を保持しようとする力つまり形状保持力が強い。固体高分子電解質膜20を繰り出したとき、補強部24が形状保持力を本体部22に付与する。この結果、本体部22は、繰り出し方向(X方向)と略直交する方向(Y方向)に丸まることが防止される。   The reinforcing portion 24 imparts a shape holding force to the main body portion 22 that prevents the main body portion 22 from curling in a direction (Y direction) substantially orthogonal to the feeding direction (X direction). That is, since the thin main body portion 22 has almost no force for holding the shape, the thin body portion 22 may be rounded in a direction (Y direction) perpendicular to the feeding direction (X direction). On the other hand, since the reinforcing portion 24 has a size larger than the thickness of the main body portion 22, compared with the main body portion 22, the force for holding the flat shape, which is the original shape, that is, the shape holding force. strong. When the solid polymer electrolyte membrane 20 is unwound, the reinforcing portion 24 imparts a shape retention force to the main body portion 22. As a result, the main body 22 is prevented from being rounded in a direction (Y direction) substantially orthogonal to the feeding direction (X direction).

補強部24は、本体部22を構成する材料とは異なる材料から形成されている。補強部24の機能に適した材料、補強部24の成形方法に適した材料を自由に選択できるようにするためである。補強部24の形成材料は特に限定されないが、例えば、射出成形することができ、さらに弾性変形が可能なシリコンゴムを好適に使用できる。   The reinforcing portion 24 is formed from a material different from the material constituting the main body portion 22. This is because a material suitable for the function of the reinforcing portion 24 and a material suitable for the molding method of the reinforcing portion 24 can be freely selected. The material for forming the reinforcing portion 24 is not particularly limited, and for example, silicon rubber that can be injection-molded and can be elastically deformed can be suitably used.

図4を参照して、補強部24を成形する成形装置は、補強部24の素材を射出成形する成形金型55と、固体高分子電解質膜20を所定の長さで切断するカッタ56とを有する。成形金型55内で、Y方向と略平行をなす一対の縁辺20bの各々に補強部24が射出成形される。   Referring to FIG. 4, a molding apparatus for molding reinforcing portion 24 includes a molding die 55 for injection molding the material of reinforcing portion 24, and a cutter 56 for cutting solid polymer electrolyte membrane 20 to a predetermined length. Have. In the molding die 55, the reinforcing portion 24 is injection-molded on each of the pair of edges 20b substantially parallel to the Y direction.

補強部24を成形する際には、まず、繰り出された固体高分子電解質膜20を成形金型55内に搬入する(図4(A))。本体部22は、膨出部23から付与される形状保持力により、繰り出し方向(X方向)に丸まることが防止されている。このため、繰り出した固体高分子電解質膜20を成形金型55内に容易に搬入できる。次いで、補強部24の素材を射出成形して補強部24を成形する(図4(B)(C))。そして、カッタ56により、固体高分子電解質膜20を所定の長さで切断する(図4(D))。   When molding the reinforcing portion 24, first, the fed solid polymer electrolyte membrane 20 is carried into the molding die 55 (FIG. 4A). The main body portion 22 is prevented from being rounded in the feeding direction (X direction) by the shape holding force applied from the bulging portion 23. For this reason, the fed solid polymer electrolyte membrane 20 can be easily carried into the molding die 55. Next, the reinforcing portion 24 is formed by injection molding the material of the reinforcing portion 24 (FIGS. 4B and 4C). And the solid polymer electrolyte membrane 20 is cut | disconnected by predetermined length with the cutter 56 (FIG.4 (D)).

矩形形状をなす切断片25には、X方向と略平行をなす一対の縁辺20aの各々に膨出部23が設けられ、Y方向と略平行をなす一対の縁辺20bの各々に補強部24が設けられている(図4(E))。切断片25は、膨出部23が付与する形状保持力によりX方向に丸まることが防止され、補強部24が付与する形状保持力によりY方向に丸まることが防止され、本来の形状である平坦形状を保持している。したがって、固体高分子電解質膜20単体でのハンドリング性が良好となり、この後に実施される、電極31、32との接合作業や、セパレータ41、42との組み付け作業を行い易くなる。   The rectangular cut piece 25 is provided with a bulging portion 23 on each of a pair of edges 20a substantially parallel to the X direction, and a reinforcing portion 24 is provided on each of the pair of edges 20b substantially parallel to the Y direction. (FIG. 4E). The cut piece 25 is prevented from being rounded in the X direction by the shape holding force applied by the bulging portion 23, and is prevented from being rounded in the Y direction by the shape holding force provided by the reinforcing portion 24. Holds the shape. Therefore, the handleability of the solid polymer electrolyte membrane 20 alone becomes good, and it becomes easy to perform the joining operation with the electrodes 31 and 32 and the assembling operation with the separators 41 and 42 performed thereafter.

図1を参照して、本実施形態の固体高分子電解質膜20にあっては、膨出部23は、セパレータ41、42との間でシール手段26を構成している。膨出部23は、電極31、32からはみ出した部分において一対のセパレータ41、42が圧接し、弾性変形している。同様に、本実施形態の固体高分子電解質膜20にあっては、補強部24も、セパレータ41、42との間でシール手段を構成している。補強部24は、電極31、32からはみ出した部分において一対のセパレータ41、42が圧接し、弾性変形している。   With reference to FIG. 1, in the solid polymer electrolyte membrane 20 of the present embodiment, the bulging portion 23 constitutes a sealing means 26 between the separators 41 and 42. The bulging portion 23 is elastically deformed by a pair of separators 41 and 42 being pressed against each other at portions protruding from the electrodes 31 and 32. Similarly, in the solid polymer electrolyte membrane 20 of the present embodiment, the reinforcing portion 24 also constitutes a sealing means between the separators 41 and 42. In the reinforcing portion 24, the pair of separators 41 and 42 are pressed against each other at the portions protruding from the electrodes 31 and 32, and are elastically deformed.

膨出部23および補強部24がセパレータ41、42に圧接することにより、ガスシールが行われる。固体高分子電解質膜20単体でのハンドリング性を高める部材(膨出部23および補強部24)が、同時に、流路溝44、46を流れるガスをシールする機能を発揮することから、シールするためだけの部材を別途設ける形態に比較して、部品点数の削減、製造工程の簡素化を図ることができる。   Gas sealing is performed when the bulging portion 23 and the reinforcing portion 24 are in pressure contact with the separators 41 and 42. In order to seal the solid polymer electrolyte membrane 20 since the members (the bulging portion 23 and the reinforcing portion 24) that enhance the handling performance of the single polymer electrolyte membrane simultaneously function to seal the gas flowing through the flow channel grooves 44 and 46. Compared with a mode in which only the members are separately provided, the number of parts can be reduced and the manufacturing process can be simplified.

以上のように、本実施形態によれば、燃料電池の製造に際してロール状に巻回した状態から順次繰り出されながら使用に供される燃料電池用の固体高分子電解質膜20において、繰り出し方向(X方向)と略平行をなす一対の縁辺20aの各々に設けられ、かつ、一対の電極31、32の間に介装される領域をなす本体部22の肉厚寸法よりも大きい寸法を有する膨出部23を含み、膨出部23は、巻き癖によって本体部22が繰り出し方向(X方向)に丸まることを防止する形状保持力を本体部22に付与するので、固体高分子電解質膜20は、本来の形状である平坦形状を保持し、単体でのハンドリング性が良好なものとなる。これを通して、燃料電池の製造の簡素化を図ることができる。   As described above, according to the present embodiment, in the solid polymer electrolyte membrane 20 for a fuel cell that is used while being sequentially fed out from a state wound in a roll during the production of the fuel cell, the feeding direction (X And a bulge having a dimension larger than the wall thickness of the main body 22 that is provided on each of the pair of edges 20a substantially parallel to the direction) and that is interposed between the pair of electrodes 31 and 32. The bulging portion 23 includes a portion 23, and the bulging portion 23 imparts a shape holding force to the main body portion 22 to prevent the main body portion 22 from being rounded in the feeding direction (X direction) due to the curl so that the solid polymer electrolyte membrane 20 is The flat shape, which is the original shape, is maintained, and the handling property by itself is good. Through this, the manufacture of the fuel cell can be simplified.

繰り出し方向(X方向)に直交する方向(Y方向)と略平行をなす一対の縁辺20bの各々に設けられ、かつ、本体部22の肉厚寸法よりも大きい寸法を有する補強部24をさらに含み、補強部24は、本体部22が繰り出し方向(X方向)と略直交する方向(Y方向)に丸まることを防止する形状保持力を本体部22に付与するので、固体高分子電解質膜20は、本来の形状である平坦形状をさらに保持し、単体でのハンドリング性がさらに良好なものとなる。これを通して、燃料電池の製造の簡素化を図ることができる。   It further includes a reinforcing portion 24 provided on each of the pair of edges 20b substantially parallel to the direction (Y direction) orthogonal to the feeding direction (X direction) and having a size larger than the thickness of the main body portion 22. The reinforcing portion 24 gives the main body portion 22 a shape holding force that prevents the main body portion 22 from curling in a direction (Y direction) substantially orthogonal to the feeding direction (X direction). Further, the flat shape, which is the original shape, is further maintained, and the handling property as a single unit is further improved. Through this, the manufacture of the fuel cell can be simplified.

膨出部23は、本体部22を構成する材料と同一材料から、本体部22と一体的に形成されているので、膨出部23を備える固体高分子電解質膜20の成形を容易に行い得る。   Since the bulging portion 23 is formed integrally with the main body portion 22 from the same material as that constituting the main body portion 22, the solid polymer electrolyte membrane 20 including the bulging portion 23 can be easily formed. .

補強部24は、本体部22を構成する材料とは異なる材料から形成されているので、補強部24の機能に適した材料、補強部24の成形方法に適した材料を自由に選択できる。   Since the reinforcing part 24 is formed of a material different from the material constituting the main body part 22, a material suitable for the function of the reinforcing part 24 and a material suitable for the molding method of the reinforcing part 24 can be freely selected.

膨出部23は、セパレータ41、42との間でシール手段26を構成し、補強部24は、セパレータ41、42との間でシール手段を構成しているので、固体高分子電解質膜20単体でのハンドリング性を高める部材(膨出部23および補強部24)が、同時に、ガスをシールする機能を発揮することから、シールするためだけの部材を別途設ける形態に比較して、部品点数の削減、製造工程の簡素化を図ることができる。   Since the bulging part 23 constitutes a sealing means 26 between the separators 41 and 42 and the reinforcing part 24 constitutes a sealing means between the separators 41 and 42, the solid polymer electrolyte membrane 20 alone Since the members (the bulging portion 23 and the reinforcing portion 24) that improve the handleability at the same time exert the function of sealing the gas, the number of parts can be reduced compared to a configuration in which a member only for sealing is separately provided. Reduction and simplification of the manufacturing process can be achieved.

(変形例)
図5(A)〜(C)は、膨出部23の形状の変形例を示す図である。
(Modification)
FIGS. 5A to 5C are diagrams showing a modification of the shape of the bulging portion 23.

膨出部23は、本体部22の丸まり防止機能やガスシール機能を考慮して適宜の形状を採用することができる。例えば、若干の隙間を隔てて膨出部23を2重に形成する形態(図5(A))、断面矩形形状の膨出部23を形成する形態(図5(B))、2個の膨出部23を連接してなるダブルクリップを形成する形態(図5(C))などを例示できる。補強部24に関しても同様に、本体部22の丸まり防止機能やガスシール機能を考慮して適宜の形状を採用することができる。   The bulging part 23 can adopt an appropriate shape in consideration of the rounding prevention function and the gas sealing function of the main body part 22. For example, a form in which the bulging part 23 is formed in a double manner with a slight gap (FIG. 5A), a form in which the bulging part 23 having a rectangular cross section is formed (FIG. 5B), two pieces The form (FIG.5 (C)) etc. which form the double clip formed by connecting the bulging part 23 can be illustrated. Similarly, an appropriate shape can be adopted for the reinforcing portion 24 in consideration of the rounding prevention function and the gas sealing function of the main body portion 22.

電極31、32からはみ出す固体高分子電解質膜20におけるはみ出し部は一対のセパレータ41、42の間の略中央部分に位置する。このため、ガスシール機能を兼ね備える膨出部23や補強部24を形成する場合には、膨出部23や補強部24の断面形状は、本体部22を中心にして対称形状であることが好ましい。各セパレータ41、42との間で均一な押し付け力を確保するためである。電極31、32の厚さ寸法が異なる場合には、均一な押し付け力を確保するために、膨出部23や補強部24の断面形状を、本体部22を中心にして非対称形状にしても良い。   The protruding portion of the solid polymer electrolyte membrane 20 that protrudes from the electrodes 31 and 32 is located at a substantially central portion between the pair of separators 41 and 42. For this reason, when forming the bulging part 23 and the reinforcement part 24 which also have a gas seal function, it is preferable that the cross-sectional shape of the bulging part 23 and the reinforcement part 24 is a symmetrical shape centering | focusing on the main-body part 22. FIG. . This is for ensuring a uniform pressing force between the separators 41 and 42. When the thickness dimensions of the electrodes 31 and 32 are different, the cross-sectional shapes of the bulging portion 23 and the reinforcing portion 24 may be asymmetrical about the main body portion 22 in order to ensure a uniform pressing force. .

なお、ガスシール機能を備える膨出部23や補強部24について説明したが、本体部22の丸まり防止機能のみを備える膨出部23や補強部24としても良い。この場合には、本体部22の表面または裏面のいずれか一方にのみ、膨出部23や補強部24を形成することもできる。   In addition, although the bulging part 23 and the reinforcement part 24 provided with a gas seal function were demonstrated, it is good also as the bulging part 23 and the reinforcement part 24 provided only with the curling prevention function of the main-body part 22. FIG. In this case, the bulging portion 23 and the reinforcing portion 24 can be formed only on either the front surface or the back surface of the main body portion 22.

本発明は、燃料電池用の固体高分子電解質膜を製造する用途に適用できる。   The present invention can be applied to uses for producing a solid polymer electrolyte membrane for a fuel cell.

図1は、本発明の実施形態の係る燃料電池用の固体高分子電解質膜を適用した固体高分子型燃料電池の単セルを示す断面図である。FIG. 1 is a cross-sectional view showing a single cell of a polymer electrolyte fuel cell to which a solid polymer electrolyte membrane for a fuel cell according to an embodiment of the present invention is applied. 図2(A)は、ロール状に巻回した状態の固体高分子電解質膜が、燃料電池の製造に際して繰り出されている状態を示す斜視図、図2(B)は、図2(A)の2B−2B線に沿う断面図である。FIG. 2 (A) is a perspective view showing a state in which the solid polymer electrolyte membrane wound in a roll shape is drawn out during the production of a fuel cell, and FIG. 2 (B) is a diagram of FIG. 2 (A). It is sectional drawing which follows the 2B-2B line. 膨出部を備える固体高分子電解質膜を成形する成形装置を示す図である。It is a figure which shows the shaping | molding apparatus which shape | molds a solid polymer electrolyte membrane provided with a swelling part. 図4(A)〜(E)は、膨出部を備える固体高分子電解質膜に補強部をさらに成形する手順の説明に供する概念図である。FIGS. 4A to 4E are conceptual diagrams for explaining a procedure for further forming a reinforcing portion on a solid polymer electrolyte membrane having a bulging portion. 図5(A)〜(C)は、膨出部の形状の変形例を示す図である。FIGS. 5A to 5C are diagrams showing a modification of the shape of the bulging portion.

符号の説明Explanation of symbols

10 単セル、
20 固体高分子電解質膜、
20a 繰り出し方向と略平行をなす一対の縁辺、
20b 繰り出し方向に直交する方向と略平行をなす一対の縁辺、
21 芯材、
22 本体部、
23 膨出部、
24 補強部、
25 切断片、
26 シール手段、
31、32 電極、
41、42 セパレータ、
50 成形装置、
51 上ローラ、
51a、52a 小径部、
51b、52b 環状溝部、
52 下ローラ、
55 成形金型、
56 カッタ、
X 固体高分子電解質膜の繰り出し方向、
Y 繰り出し方向(X方向)と直交する方向。
10 single cell,
20 solid polymer electrolyte membrane,
20a A pair of edges substantially parallel to the feeding direction,
20b A pair of edges substantially parallel to the direction orthogonal to the feeding direction,
21 Core material,
22 body part,
23 bulges,
24 reinforcements,
25 cut pieces,
26 sealing means,
31, 32 electrodes,
41, 42 separator,
50 molding equipment,
51 Upper roller,
51a, 52a small diameter part,
51b, 52b annular groove,
52 Lower roller,
55 Mold,
56 cutters,
X The feeding direction of the solid polymer electrolyte membrane,
Y A direction perpendicular to the feeding direction (X direction).

Claims (6)

燃料電池の製造に際してロール状に巻回した状態から順次繰り出されながら使用に供される燃料電池用の固体高分子電解質膜において、
前記繰り出し方向と略平行をなす一対の縁辺の各々に設けられ、かつ、一対の電極の間に介装される領域をなす本体部の肉厚寸法よりも大きい寸法を有する膨出部を含み、
前記膨出部は、巻き癖によって前記本体部が前記繰り出し方向に丸まることを防止する形状保持力を前記本体部に付与することを特徴とする燃料電池用の固体高分子電解質膜。
In the solid polymer electrolyte membrane for a fuel cell to be used while being sequentially drawn out from a state wound in a roll during the production of the fuel cell,
Including a bulging portion that is provided on each of a pair of edges substantially parallel to the feed-out direction and has a size larger than a thickness of a main body portion that forms an area interposed between the pair of electrodes;
A solid polymer electrolyte membrane for a fuel cell, wherein the bulging portion imparts a shape holding force to the main body portion to prevent the main body portion from being rounded in the feeding direction due to a curl.
前記繰り出し方向に直交する方向と略平行をなす一対の縁辺の各々に設けられ、かつ、前記本体部の肉厚寸法よりも大きい寸法を有する補強部をさらに含み、
前記補強部は、前記本体部が前記繰り出し方向と略直交する方向に丸まることを防止する形状保持力を前記本体部に付与することを特徴とする請求項1に記載の燃料電池用の固体高分子電解質膜。
A reinforcing portion provided on each of a pair of edges substantially parallel to the direction orthogonal to the feeding direction, and having a size larger than the thickness of the main body portion;
2. The solid height for a fuel cell according to claim 1, wherein the reinforcing portion imparts a shape holding force to the main body portion to prevent the main body portion from being rounded in a direction substantially orthogonal to the feeding direction. Molecular electrolyte membrane.
前記膨出部は、前記本体部を構成する材料と同一材料から、前記本体部と一体的に形成されていることを特徴とする請求項1に記載の燃料電池用の固体高分子電解質膜。   2. The solid polymer electrolyte membrane for a fuel cell according to claim 1, wherein the bulging portion is formed integrally with the main body portion from the same material as that constituting the main body portion. 前記補強部は、前記本体部を構成する材料とは異なる材料から形成されていることを特徴とする請求項2に記載の燃料電池用の固体高分子電解質膜。   3. The solid polymer electrolyte membrane for a fuel cell according to claim 2, wherein the reinforcing portion is made of a material different from a material constituting the main body portion. 前記膨出部は、セパレータとの間でシール手段を構成することを特徴とする請求項1に記載の燃料電池用の固体高分子電解質膜。   2. The solid polymer electrolyte membrane for a fuel cell according to claim 1, wherein the bulging portion constitutes a sealing means between the separator and the separator. 前記補強部は、セパレータとの間でシール手段を構成することを特徴とする請求項2に記載の燃料電池用の固体高分子電解質膜。   3. The solid polymer electrolyte membrane for a fuel cell according to claim 2, wherein the reinforcing portion constitutes a sealing means between the separator and the separator.
JP2004048312A 2004-02-24 2004-02-24 Solid polymer electrolyte membrane for fuel cell Pending JP2005243293A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004048312A JP2005243293A (en) 2004-02-24 2004-02-24 Solid polymer electrolyte membrane for fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004048312A JP2005243293A (en) 2004-02-24 2004-02-24 Solid polymer electrolyte membrane for fuel cell

Publications (1)

Publication Number Publication Date
JP2005243293A true JP2005243293A (en) 2005-09-08

Family

ID=35024816

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004048312A Pending JP2005243293A (en) 2004-02-24 2004-02-24 Solid polymer electrolyte membrane for fuel cell

Country Status (1)

Country Link
JP (1) JP2005243293A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010100906A1 (en) * 2009-03-04 2010-09-10 パナソニック株式会社 Polymer electrolyte type fuel cell gasket
WO2011158286A1 (en) * 2010-06-15 2011-12-22 トヨタ自動車株式会社 Fuel cell and method for manufacturing fuel cell
US8273498B2 (en) 2006-08-31 2012-09-25 Toyota Jidosha Kabushiki Kaisha Solid polymer fuel cell-purpose electrolyte membrane, production method therefor, and membrane-electrode assembly

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8273498B2 (en) 2006-08-31 2012-09-25 Toyota Jidosha Kabushiki Kaisha Solid polymer fuel cell-purpose electrolyte membrane, production method therefor, and membrane-electrode assembly
WO2010100906A1 (en) * 2009-03-04 2010-09-10 パナソニック株式会社 Polymer electrolyte type fuel cell gasket
JP4800443B2 (en) * 2009-03-04 2011-10-26 パナソニック株式会社 Gasket for polymer electrolyte fuel cell
JPWO2010100906A1 (en) * 2009-03-04 2012-09-06 パナソニック株式会社 Gasket for polymer electrolyte fuel cell
US8962212B2 (en) 2009-03-04 2015-02-24 Panasonic Intellectual Property Management Co., Ltd. Unit cell module and gasket for polymer electrolyte fuel cell
WO2011158286A1 (en) * 2010-06-15 2011-12-22 トヨタ自動車株式会社 Fuel cell and method for manufacturing fuel cell

Similar Documents

Publication Publication Date Title
KR102478090B1 (en) Cell frame for fuel cell and fuel cell stack using the same
WO2011027539A1 (en) Membrane electrode assembly, production method for same, and fuel cell
US10665883B2 (en) Separator for fuel cell and unit cell of fuel cell
JP5157047B2 (en) Method for producing electrolyte membrane for use in solid polymer electrolyte fuel cell
KR101291063B1 (en) Stacking system and method for Secondary Battery
JP2006120562A (en) Fuel cell stack
WO2005081343A1 (en) Solid polymer electrolyte membrane and separator both for fuel cell
JP5720806B2 (en) Fuel cell
KR101737174B1 (en) Irregular secondary battery and method for manufacturing the same
JP2007250297A (en) Fuel cell
JP2009181936A (en) Separator for fuel cell and fuel cell
JP6280531B2 (en) Fuel cell
JP4700393B2 (en) Multi-stage roll forming equipment
JP2007220632A (en) Tube type fuel cell module
JP4928067B2 (en) Fuel cell and metal separator for fuel cell
US20090113697A1 (en) Manufacturing method for battery including electrode assembly formed by winding
KR101860613B1 (en) Flat member for fuel cell and method for manufacturing flat member
US10826097B2 (en) Fuel cell
JP2005243293A (en) Solid polymer electrolyte membrane for fuel cell
JP2009123596A (en) Fuel cell
WO2015009029A1 (en) Redox flow battery stack comprising tubes for electrolyte
JP2017041402A (en) Gas passage formation plate for fuel battery and fuel battery stack
CN212461774U (en) Parallel type winding core structure of cylindrical battery
JP4639744B2 (en) Fuel cell
CN112072162A (en) Cylindrical battery parallel type roll core structure and manufacturing process thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090623

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091027