Nothing Special   »   [go: up one dir, main page]

JP2005241482A - Optical deflector, and detector and method for detecting resonance frequency of deflection means in optical deflector - Google Patents

Optical deflector, and detector and method for detecting resonance frequency of deflection means in optical deflector Download PDF

Info

Publication number
JP2005241482A
JP2005241482A JP2004052580A JP2004052580A JP2005241482A JP 2005241482 A JP2005241482 A JP 2005241482A JP 2004052580 A JP2004052580 A JP 2004052580A JP 2004052580 A JP2004052580 A JP 2004052580A JP 2005241482 A JP2005241482 A JP 2005241482A
Authority
JP
Japan
Prior art keywords
light
light receiving
receiving element
frequency
optical deflector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004052580A
Other languages
Japanese (ja)
Inventor
Atsushi Katori
篤史 香取
Masao Majima
正男 真島
Kazunari Fujii
一成 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2004052580A priority Critical patent/JP2005241482A/en
Publication of JP2005241482A publication Critical patent/JP2005241482A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Laser Beam Printer (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)
  • Mechanical Optical Scanning Systems (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a detecting method for observing an operation of a deflection means by providing a detecting means separately from the actuator (deflection means). <P>SOLUTION: This method detects a resonance frequency of the deflection means 202, in an optical deflector having the deflection means 202 for reciprocation-deflecting light 203 from a light source 201, and for scanning polarized light therein. A reflection position of the scanning polarized light is measured on a light receiving element 101 or on the vicinity thereof, in every of different frequencies in an impressed driving signal to the deflection means 202, and the resonance frequency of the deflection means 202 is detected based on the different frequencies and measured information of the reflection position. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、光偏向器における光を偏向させる偏向手段の共振周波数を検出する検出装置ないし方法、これを利用した光偏向器等に関する。 The present invention relates to a detection apparatus or method for detecting a resonance frequency of a deflecting means for deflecting light in an optical deflector, an optical deflector using the same, and the like.

従来の光偏向器の一例として、図11に示すガルバノミラーがある(特許文献1参照)。これは、電磁力で可動部を駆動するガルバノミラーである。可動部上にミラーを配置し、その可動部は、軸を中心に揺動するようにトーションバーにより本体部から支持される構成になっている。図11中、符号50はシリコン基板、符号51は上側ガラス基板、符号52は下側ガラス基板を示す。また、符号53は可動板、符号54はトーションバー、符号55は平面コイル、符号56は全反射ミラー、符号57は電極端子、符号60〜63は永久磁石である。この光偏向器は、平面コイル55に駆動電流を流し、永久磁石60〜63とのロ−レンツ力を利用して駆動する電磁型である。しかし、特許文献1の例は、可動板53の共振周期が温度などによりドリフトするという点には何ら着目していない。 As an example of a conventional optical deflector, there is a galvanometer mirror shown in FIG. 11 (see Patent Document 1). This is a galvanometer mirror that drives a movable part with electromagnetic force. A mirror is disposed on the movable portion, and the movable portion is configured to be supported from the main body portion by the torsion bar so as to swing around the axis. In FIG. 11, reference numeral 50 denotes a silicon substrate, reference numeral 51 denotes an upper glass substrate, and reference numeral 52 denotes a lower glass substrate. Reference numeral 53 is a movable plate, reference numeral 54 is a torsion bar, reference numeral 55 is a planar coil, reference numeral 56 is a total reflection mirror, reference numeral 57 is an electrode terminal, and reference numerals 60 to 63 are permanent magnets. This optical deflector is of an electromagnetic type that is driven using a Lorentz force with the permanent magnets 60 to 63 by passing a driving current through the planar coil 55. However, the example of Patent Document 1 does not pay attention to the point that the resonance period of the movable plate 53 drifts due to temperature or the like.

他方、この点に着目した電磁アクチュエータがある(特許文献2参照)。電磁アクチュエータ(可動部)の共振周期は温度的又は経年的にドリフトしていくのが通例であり、予め設定した共振周波数の電流を平面コイルに供給し続けるのでは、温度変化や時間経過に従って可動部の振れ角が一定に制御されないという問題が生じることに、特許文献2の例は注目している。これは、電磁力によって可動部が揺動する意味で、上記特許文献1の例と同じであり、また、特許文献2の例の電磁アクチュエータも、可動部に全反射ミラーを有している。この特許文献2の例は、別段の検出手段を設けることなく電磁アクチュエータを共振周期で往復駆動できたり、その振れ角を制御できたりする電磁アクチュエータ等を提供するとしている。その解決手段として、コイルを可動部の励振用として利用すると共に検出用としても利用している。この検出には、コイルに生じる誘導起電圧又は誘導起電流を用いている。
特開平07−175005号公報(第3−4頁、図1) 特開2001−305471号公報(第3−4頁、第1図)
On the other hand, there is an electromagnetic actuator that focuses on this point (see Patent Document 2). The resonance cycle of an electromagnetic actuator (movable part) usually drifts with temperature or with age. If a current with a preset resonance frequency is continuously supplied to a planar coil, it can move according to temperature changes and time. The example of Patent Document 2 pays attention to the problem that the deflection angle of the part is not controlled to be constant. This means that the movable part swings due to electromagnetic force, and is the same as the example of Patent Document 1 described above. The electromagnetic actuator of the example of Patent Document 2 also has a total reflection mirror in the movable part. The example of Patent Document 2 provides an electromagnetic actuator or the like that can reciprocally drive an electromagnetic actuator at a resonance period and can control the deflection angle without providing a separate detection means. As a solution to this problem, the coil is used not only for exciting the movable part but also for detecting. For this detection, an induced electromotive voltage or induced electromotive current generated in the coil is used.
JP 07-175005 (page 3-4, FIG. 1) JP 2001-305471 A (page 3-4, FIG. 1)

しかし、特許文献2の例では、検出手段であるコイルは常に励起用として用いられている。 However, in the example of Patent Document 2, the coil that is the detection means is always used for excitation.

上記課題に鑑み、本発明の検出装置は、光源からの光を往復偏向させ該偏向光を走査する偏向手段を有する光偏向器における偏向手段の共振周波数を検出する検出装置であって、偏向手段への印加駆動信号の異なる周波数毎について、受光素子またはその近傍上での偏向走査光の折り返し位置を測定する測定手段と、該異なる周波数と該折り返し位置の測定情報から偏向手段の共振周波数を検知する検知手段を有することを特徴とする。 In view of the above problems, a detection apparatus according to the present invention is a detection apparatus that detects a resonance frequency of a deflection means in an optical deflector having a deflection means that reciprocally deflects light from a light source and scans the deflection light. Measuring means for measuring the return position of the deflected scanning light on the light receiving element or its vicinity, and detecting the resonance frequency of the deflecting means from the measurement information of the different frequency and the return position for each different frequency of the drive signal applied to It has the detection means to do.

また、上記課題に鑑み、本発明の光偏向器は、上記の検出装置、前記検知手段の検知結果を用いて、印加駆動信号の周波数と共振周波数を近づけるように制御する制御手段を有することを特徴とする。制御手段は、偏向手段が所望の共振状態に保持されるように制御したり、印加駆動信号の周波数と共振周波数との周波数差を一定に保つように制御したりする。 Further, in view of the above problem, the optical deflector of the present invention has a control unit that controls the frequency of the applied drive signal and the resonance frequency to be close to each other using the detection result of the detection device and the detection unit. Features. The control unit controls the deflection unit to be held in a desired resonance state, or controls the frequency difference between the frequency of the applied drive signal and the resonance frequency to be constant.

また、上記課題に鑑み、本発明の1次元または2次元画像形成装置は、上記の光偏向器を備え、非画像形成期間に前記制御手段による制御を行うことを特徴とする。また、本発明の2次元画像形成装置は、上記の光偏向器を備え、該光偏向器は、受光素子を備え有効表示領域以外への偏向走査光を遮蔽する遮蔽面を有し、非画像形成時に(非画像形成領域において)光源から連続点灯光を出射して前記制御手段による制御を行うことを特徴とする。 In view of the above problems, a one-dimensional or two-dimensional image forming apparatus of the present invention includes the above-described optical deflector, and performs control by the control unit during a non-image forming period. The two-dimensional image forming apparatus of the present invention includes the above-described optical deflector, and the optical deflector includes a light receiving element and has a shielding surface that shields the deflected scanning light to the area other than the effective display area, and is a non-image. During the formation (in the non-image forming region), continuous lighting light is emitted from the light source, and control by the control means is performed.

また、上記課題に鑑み、本発明の検出方法は、光源からの光を往復偏向させ該偏向光を走査する偏向手段を有する光偏向器における偏向手段の共振周波数を検出する検出方法であって、偏向手段への印加駆動信号の異なる周波数毎について、受光素子またはその近傍上での走査光の折り返し位置を測定し、該異なる周波数と該折り返し位置の測定情報から偏向手段の共振周波数を検知することを特徴とする。こうした検出方法は、例えば、光源からの光を往復偏向させ該偏向光を走査する偏向手段を有する光偏向器の測定手段や検知手段に、上記手順を実行するためのプログラムを実装することでソフト的に実現できる。 Further, in view of the above problems, the detection method of the present invention is a detection method for detecting the resonance frequency of the deflecting means in the optical deflector having the deflecting means for reciprocally deflecting the light from the light source and scanning the deflected light, Measuring the return position of the scanning light on the light receiving element or its vicinity for each different frequency of the drive signal applied to the deflection means, and detecting the resonance frequency of the deflection means from the measurement information of the different frequency and the return position. It is characterized by. Such a detection method is implemented by, for example, installing a program for executing the above procedure in a measuring unit or a detecting unit of an optical deflector having a deflecting unit that reciprocally deflects light from a light source and scans the deflected light. Can be realized.

上述したような本発明によれば、特許文献2とは異なる着想をして、検出手段をアクチュエータ(偏向手段)とは別体にして、環境温度等の変化があっても、それとは無縁に偏向手段の動作を観察できる。この検知結果に基づいて、例えば、偏向手段の動作を所望に制御することができる。こうして、温度変化などに影響されずに偏向手段の動作を所望に制御できる光偏向器を実現できる。 According to the present invention as described above, the concept is different from that of Patent Document 2, and the detection means is separated from the actuator (deflection means), so that even if there is a change in environmental temperature or the like, it is not related to it. The operation of the deflection means can be observed. Based on the detection result, for example, the operation of the deflecting unit can be controlled as desired. In this way, it is possible to realize an optical deflector that can control the operation of the deflecting means as desired without being affected by temperature changes.

(発明の実施の形態)
本発明は、偏向手段の共振周波数を検出して、例えば、偏向手段を制御するにあたり、上述したように、偏向手段の往復運動(揺動運動)により偏向手段で偏向され往復走査される偏向光を利用することに着目した。本実施の形態では、具体的には、偏向手段への印加駆動信号の異なる周波数毎について、測定手段を構成する受光素子またはその近傍上での走査光の折り返し位置を測定し、該異なる周波数と該折り返し位置との関係から偏向手段の共振周波数を検知手段で算出し、印加周波数と共振周波数がほぼ一致するように制御手段を介して偏向手段を制御する。
(Embodiment of the Invention)
In the present invention, when detecting the resonance frequency of the deflecting means and controlling the deflecting means, for example, as described above, the deflected light deflected by the deflecting means by the reciprocating motion (oscillating motion) of the deflecting means and reciprocally scanned. Focused on using. In the present embodiment, specifically, the folding position of the scanning light on the light receiving element constituting the measuring means or the vicinity thereof is measured for each different frequency of the drive signal applied to the deflecting means, and the different frequencies The resonance frequency of the deflection means is calculated by the detection means from the relationship with the folding position, and the deflection means is controlled via the control means so that the applied frequency and the resonance frequency substantially coincide.

先ず、本実施の形態の光偏向器の配置を説明する。図1は、本発明の実施の形態に係わる光偏向器の、偏向手段で偏向された偏向光を含む平面における断面図である。図1において、201は光源、202は偏向手段、203は光源201から出射された光線、204、205は偏向手段202により偏向される最大偏向角での光線、206は偏向手段202の光偏向中心軸、207は偏向手段202からLの距離にある平面P(光偏向中心軸206と垂直な関係にある平面)での偏向光の走査軌跡である。光源201から出射された光線203は、偏向手段202に入射し、ここで偏向されて平面P上を往復走査される。光源201としては、半導体レーザのような変調可能な光源を用いる。 First, the arrangement of the optical deflector according to the present embodiment will be described. FIG. 1 is a cross-sectional view of the optical deflector according to the embodiment of the present invention in a plane including deflected light deflected by deflecting means. In FIG. 1, 201 is a light source, 202 is a deflecting means, 203 is a light beam emitted from the light source 201, 204 and 205 are light beams at a maximum deflection angle deflected by the deflecting means 202, and 206 is a light deflection center of the deflecting means 202. An axis 207 is a scanning locus of the deflected light on a plane P (a plane perpendicular to the optical deflection center axis 206) at a distance L from the deflecting means 202. The light beam 203 emitted from the light source 201 is incident on the deflecting unit 202, where it is deflected and reciprocally scanned on the plane P. As the light source 201, a light source that can be modulated such as a semiconductor laser is used.

偏向手段202は、反射面が設けられた共振型のガルバノミラーであり(図11の構成を参照)、偏向手段202が往復揺動することで、光線203は、最大偏向角での光線204と205の範囲で偏向させられる。この最大偏向角の大きさをθとする。以下、説明のため、偏向手段202が揺動していない状態(中立状態)での反射光線は、光偏向中心軸206と一致するとする。回転軸を中心として回転往復運動をする偏向手段202の駆動手段には、周期的な駆動波形が印加される。 The deflecting unit 202 is a resonant galvanometer mirror provided with a reflecting surface (see the configuration of FIG. 11), and when the deflecting unit 202 reciprocally swings, the light beam 203 is combined with the light beam 204 at the maximum deflection angle. It is deflected in the range of 205. The magnitude of this maximum deflection angle is θ. Hereinafter, for the sake of explanation, it is assumed that the reflected light beam when the deflecting means 202 is not oscillated (neutral state) coincides with the optical deflection central axis 206. A periodic drive waveform is applied to the drive means of the deflecting means 202 that reciprocates around the rotation axis.

本発明では、上記異なる周波数と偏向走査光の折り返し位置との関係から偏向手段の共振周波数を算出する訳であるが、先ず、折り返し位置の測定方法を説明して、こうした関係から共振周波数を算出できる理由を説明する。 In the present invention, the resonance frequency of the deflecting means is calculated from the relationship between the different frequency and the return position of the deflected scanning light. First, a method for measuring the return position will be described, and the resonance frequency will be calculated from the relationship. Explain why you can.

偏向手段が或る状態で揺動(偏向)されている時の折り返し位置の測定方法を以下に説明する。図2と図3は、本発明の実施の形態に係る光偏向器の偏向手段から偏向(反射)された偏向光が受光素子上を往復する様子を、その軌跡とともに表す模式図である。ここでは、偏向光は、常に点灯している光(連続光)とする。また、偏向手段が持つ反射面を揺動することにより、光源からの出射光の反射角度が周期的に変化することを偏向と呼び、受光素子を含む平面上を偏向光が移動することを走査と呼ぶ。図2と図3において、101は受光素子(ラインセンサ)、102は複数の受光領域、103は偏向光が走査される領域、104は偏向光が受光素子101上を走査される軌跡を含む軸である。 A method for measuring the return position when the deflecting means is swung (deflected) in a certain state will be described below. FIG. 2 and FIG. 3 are schematic diagrams showing, along with the trajectory, how the deflected light deflected (reflected) from the deflecting means of the optical deflector according to the embodiment of the present invention reciprocates on the light receiving element. Here, the deflected light is assumed to be light that is always lit (continuous light). In addition, the fact that the reflection angle of the light emitted from the light source changes periodically by oscillating the reflecting surface of the deflecting means is called deflection, and scanning is performed when the deflected light moves on the plane including the light receiving element. Call it. 2 and 3, reference numeral 101 denotes a light receiving element (line sensor), 102 denotes a plurality of light receiving areas, 103 denotes an area in which the deflected light is scanned, and 104 denotes an axis including a trajectory in which the deflected light is scanned on the light receiving element 101. It is.

受光素子101を含む平面上での偏向光が、図2の左方向から右方向(矢印Aの方向)に走査されている状態から説明を始める。偏向光が左方向から右方向に走査されていくにつれ、偏向手段202の揺動(偏向)角は大きくなる。揺動角が大きくなるにつれて、走査光の移動速度は低下していく。その偏向手段202の揺動角が最大になった時(最大偏向角のとき)に走査が一時停止する。その後、逆の方向(右方向から左方向、矢印Bの方向)に走査され始める。受光素子101上で、この偏向手段202が最大揺動(偏向)角となり走査方向が反転する位置を、偏向光の折り返し位置と呼び、その時の偏向角を最大偏向角と呼ぶ。ここで、揺動角と偏向角は、定義の仕方により係数は変化するが、比例関係となるため、ほぼ同義として用いる。また、偏向光は或る大きさを持っているため、偏向光が走査される領域103は図2と図3のように或る太さを持つ。 The description starts from a state in which the deflected light on the plane including the light receiving element 101 is scanned from the left direction to the right direction (the direction of arrow A) in FIG. As the deflected light is scanned from the left to the right, the swinging (deflection) angle of the deflecting means 202 increases. As the swing angle increases, the moving speed of the scanning light decreases. The scanning is temporarily stopped when the swing angle of the deflecting means 202 is maximized (at the maximum deflection angle). Thereafter, scanning starts in the opposite direction (from right to left, in the direction of arrow B). On the light receiving element 101, the position where the deflecting means 202 becomes the maximum swing (deflection) angle and the scanning direction is reversed is called the deflection light return position, and the deflection angle at that time is called the maximum deflection angle. Here, the swing angle and the deflection angle are used in a substantially synonymous manner because they have a proportional relationship, although the coefficient varies depending on how they are defined. Further, since the deflected light has a certain size, the region 103 where the deflected light is scanned has a certain thickness as shown in FIGS.

受光素子101は、複数の受光領域102に分かれており、図2と図3のように一番左側の受光領域を“1”とし、右方向に順に“N”まで番号がついているとする。図2(a)、(b)及び図3(a)、(b)では、偏向手段202の最大偏向角が異なる場合の受光素子101上の偏向光走査領域103の様子を表している。ここで、光源201と偏向手段202と受光素子101の位置関係は固定されているとする。 The light receiving element 101 is divided into a plurality of light receiving regions 102. As shown in FIGS. 2 and 3, the leftmost light receiving region is assumed to be “1”, and numbers are assigned to “N” in order in the right direction. 2A, 2B, 3A, and 3B show the state of the deflected light scanning region 103 on the light receiving element 101 when the maximum deflection angle of the deflecting means 202 is different. Here, it is assumed that the positional relationship among the light source 201, the deflecting unit 202, and the light receiving element 101 is fixed.

図2(a)の最大偏向角では、折り返し位置が一番左の受光領域(ここでは、偏向光走査領域103の最右端を折り返し位置としている)にあるので、折り返し位置は「1」と検出される。図2(b)では、折り返し位置が左側からp番目にあるとすると、「p」と検出される。図3(a)のように、折り返し位置が受光素子101を通り過ぎてしまっている場合(受光素子101の右側に位置している場合)には、折り返し位置は「N+1」とする。逆に、折り返し位置が、受光素子101に到達していない場合(図3(b)の様に受光素子101の左側に位置している場合)には、折り返し位置は「0」とする。これにより、受光素子101ないしその近傍上での折り返し位置を検出することにより、偏向手段202の偏向状態(最大偏向角の変化)を検出できる。 At the maximum deflection angle in FIG. 2A, the folding position is in the leftmost light receiving area (here, the rightmost end of the deflected light scanning area 103 is the folding position), so the folding position is detected as “1”. Is done. In FIG. 2B, if the folding position is the p-th position from the left side, “p” is detected. As shown in FIG. 3A, when the folding position passes the light receiving element 101 (when it is located on the right side of the light receiving element 101), the folding position is set to “N + 1”. On the contrary, when the folding position does not reach the light receiving element 101 (when it is located on the left side of the light receiving element 101 as shown in FIG. 3B), the folding position is set to “0”. Thereby, the deflection state (change in the maximum deflection angle) of the deflecting means 202 can be detected by detecting the folding position on the light receiving element 101 or its vicinity.

上述したように、本発明は、偏向手段202の印加駆動信号の周波数による駆動特性を利用している。そのため、ここで本実施の形態に用いる偏向手段について説明する。本実施の形態に用いられる偏向手段は、共振振動を行う偏向器である。偏向手段202は、一方向においてトーションバー(ねじれ軸)によって軸支された構成であり、光反射面を有する外に、例えば磁石を有している。偏向手段の近くに離間して配置されている不図示の電磁力発生手段(コイル)が発する電磁力の極性を反転させることで、磁束を偏向手段に作用させ、偏向手段をねじれ軸を中心に往復運動させる。この偏向手段は、偏向器固有の共振振動により駆動する。即ち、共振周波数において、電磁力発生手段から発する電磁力によりその揺動角(ねじり角)が最大になり共振振動する。共振振動は、少ない印加エネルギーで大きな揺動角が得られることが特徴である。共振振動を行う偏向手段を共振型偏向器と呼ぶ。 As described above, the present invention uses the drive characteristics of the deflecting means 202 depending on the frequency of the applied drive signal. Therefore, the deflecting means used in this embodiment will be described here. The deflecting means used in the present embodiment is a deflector that performs resonance vibration. The deflecting unit 202 is supported by a torsion bar (twisted shaft) in one direction, and has, for example, a magnet in addition to the light reflecting surface. By reversing the polarity of the electromagnetic force generated by the electromagnetic force generating means (coil) (not shown) that is arranged apart from the deflecting means, the magnetic flux acts on the deflecting means, and the deflecting means is centered on the torsion axis. Reciprocate. This deflecting means is driven by resonance vibration inherent to the deflector. That is, at the resonance frequency, the oscillation force (torsion angle) is maximized by the electromagnetic force generated from the electromagnetic force generating means, and resonance oscillation occurs. The resonance vibration is characterized in that a large swing angle can be obtained with a small applied energy. A deflecting means that performs resonant vibration is called a resonant deflector.

図4に、共振型偏向器の周波数特性の一例を示す。横軸は、偏向手段を揺動させるための周波数(偏向手段を揺動させるための印加駆動信号の周波数)を表し、図4(a)の縦軸は偏向手段の最大の傾き(最大揺動角)、図4(b)の縦軸は印加駆動信号の同期信号に対する偏向手段の偏向角変化の位相差を示す。図4(a)のように、印加信号の周波数により、偏向手段の最大の揺動角は変化する。本明細書では、最大の揺動角になる印加信号の周波数を、共振型偏向器の共振周波数fcと呼ぶ。図4(a)のように、この例では、最大の揺動角は、共振周波数fcを中心として、ほぼ線対称(左右対称)の特性となる。本実施の形態では、この線対称の特性に注目し、これを利用して、異なる周波数と偏向走査光の折り返し位置(最大の揺動角に対応する)との関係から共振周波数の算出を行うのである。 FIG. 4 shows an example of frequency characteristics of the resonant deflector. The horizontal axis represents the frequency for oscillating the deflection means (frequency of the applied drive signal for oscillating the deflection means), and the vertical axis in FIG. 4A represents the maximum inclination (maximum oscillation) of the deflection means. Angle), the vertical axis of FIG. 4B shows the phase difference of the deflection angle change of the deflection means with respect to the synchronization signal of the applied drive signal. As shown in FIG. 4A, the maximum swing angle of the deflecting unit varies depending on the frequency of the applied signal. In the present specification, the frequency of the applied signal that provides the maximum swing angle is referred to as the resonance frequency fc of the resonance deflector. As shown in FIG. 4A, in this example, the maximum swing angle has a substantially line-symmetric (left-right symmetric) characteristic around the resonance frequency fc. In this embodiment, paying attention to this line-symmetric characteristic, the resonance frequency is calculated from the relationship between the different frequencies and the return position of the deflected scanning light (corresponding to the maximum swing angle). It is.

また、図4(b)のように、印加信号の周波数と共振周波数の関係が変化すると、偏向手段の揺動(偏向)のタイミングが大きく変化する。つまり、最大の揺動(偏向)角となるタイミングが容易に変化してしまう。これは、走査光の通過タイミングを検出する光学的なセンサにより、最大の揺動角を検出する場合、大きな問題となる。よって、本発明ではこの検出方法を採用しない。 Also, as shown in FIG. 4B, when the relationship between the frequency of the applied signal and the resonance frequency changes, the timing of the swinging (deflection) of the deflecting means changes greatly. That is, the timing at which the maximum swing (deflection) angle is easily changed. This is a serious problem when the maximum swing angle is detected by an optical sensor that detects the passage timing of the scanning light. Therefore, this detection method is not adopted in the present invention.

他方、光源201と偏向手段202と受光素子101の位置関係が固定されているなら、この偏向光の折り返し位置は偏向手段の最大の揺動角と関係する。そのため、或る印加信号の周波数での受光素子101上での折り返し位置を検出することで、他の印加信号の周波数に対する相対的な偏向手段の最大の偏向角の情報を得ることができる。本発明では、この原理を用いた検出方法を採用する。 On the other hand, if the positional relationship among the light source 201, the deflecting unit 202, and the light receiving element 101 is fixed, the return position of the deflected light is related to the maximum swing angle of the deflecting unit. Therefore, by detecting the folding position on the light receiving element 101 at the frequency of a certain applied signal, information on the maximum deflection angle of the deflecting means relative to the frequency of other applied signals can be obtained. In the present invention, a detection method using this principle is adopted.

ここの例では、偏向光の走査領域103の最右端を折り返し位置としたが、実際の偏向光の中心点の折り返し位置とは異なる。しかし、偏向光の持つ大きさは常に同じなので、印加信号の周波数毎の折り返しの相対位置は変わらなく、制御上の問題はない。 In this example, the rightmost end of the scanning region 103 for deflected light is the folding position, but it is different from the folding position of the center point of the actual deflected light. However, since the magnitude of the deflected light is always the same, the relative position of the folding for each frequency of the applied signal does not change, and there is no problem in control.

次に、上記の説明に基づく共振周波数の算出方法について説明する。偏向手段の印加周波数を、低い周波数から徐々に高い周波数に掃引していき(この逆でもよい)、上記の如く各周波数での折り返し位置を測定する。この際、掃引する周波数範囲は、受光素子上で折り返し位置が右方向に移動する周波数範囲と、左方向に移動する周波数範囲を含んでいる必要がある。このように偏向手段202の印加周波数を変化させて、受光素子101により折り返し位置を検出した一例を、図5に示す。横軸は印加周波数、縦軸は折り返し位置である。ここでは、共振周波数fcは、図4(a)の特性が線対称になる軸の周波数である。 Next, a method for calculating the resonance frequency based on the above description will be described. The applied frequency of the deflecting means is gradually swept from a low frequency to a high frequency (or vice versa), and the return position at each frequency is measured as described above. At this time, the frequency range to be swept needs to include a frequency range in which the folding position moves on the light receiving element in the right direction and a frequency range in which the return position moves in the left direction. FIG. 5 shows an example in which the folding position is detected by the light receiving element 101 by changing the applied frequency of the deflecting means 202 in this way. The horizontal axis is the applied frequency, and the vertical axis is the folding position. Here, the resonance frequency fc is an axis frequency at which the characteristic of FIG.

図4(a)の特性が共振周波数fcを中心に線対称であるので、図5の特性も共振周波数fcを中心に線対称となり、図5で同じ折り返し位置(ここでは、受光素子101の中心になる受光領域102の位置
N/2+1/2とする)となる2つの周波数f1とf2を平均した周波数を、共振周波数fc(=(f1+f2)/2)と算出することができる。勿論、偏向手段の特性が、共振周波数を中心として非対称であってその非対称の比率が分かっていれば、上記平均は比率による重みを付けた平均を取ることになる。こうした特性は予め調べておいて検知ないし算出手段内にメモリしておいて、算出手順をプログラム化しておけばよい。
Since the characteristic of FIG. 4A is line symmetric about the resonance frequency fc, the characteristic of FIG. 5 is also line symmetric about the resonance frequency fc, and the same folding position (here, the center of the light receiving element 101 in FIG. 5). The frequency obtained by averaging the two frequencies f1 and f2 at which the position N / 2 + 1/2 of the light receiving region 102 becomes) can be calculated as the resonance frequency fc (= (f1 + f2) / 2). Of course, if the characteristics of the deflecting means are asymmetric with respect to the resonance frequency and the ratio of the asymmetry is known, the average is an average weighted by the ratio. Such characteristics may be examined in advance, stored in the detection or calculation means, and the calculation procedure may be programmed.

この算出した共振周波数を元に、偏向手段202への印加周波数を共振周波数とすることで、最大の揺動(偏向)角で偏向手段が揺動(偏向)されることになる。或いは、共振周波数から任意の周波数ズラした印加信号の周波数を与えてもよい。このように駆動周波数と共振周波数の差を一定値に保つ制御を行う場合、所望の周波数からの周波数がズレた時に振幅変化の増減により、周波数のズレ方向を検出することができるため、周波数追従制御が容易になる。 Based on the calculated resonance frequency, the applied frequency to the deflecting means 202 is set to the resonance frequency, so that the deflecting means is swung (deflected) at the maximum swing (deflection) angle. Or you may give the frequency of the applied signal which shifted arbitrary frequency from the resonant frequency. When controlling the difference between the drive frequency and the resonance frequency to a constant value in this way, the frequency deviation direction can be detected by detecting the change in amplitude when the frequency deviates from the desired frequency. Control becomes easy.

以上に説明したように、本実施の形態により、環境などにより偏向手段の共振周波数が変化した場合でも、共振周波数を容易に検出することができ、任意の偏向特性を得ることができる。本実施の形態では、偏向光を受光素子で検出し、折り返し位置を直接測定する方法を用いることにより、環境の変化などによる検出部の特性変化に影響されることなく、検出を行なえる。 As described above, according to the present embodiment, even when the resonance frequency of the deflecting means changes due to the environment or the like, the resonance frequency can be easily detected, and an arbitrary deflection characteristic can be obtained. In the present embodiment, detection can be performed without being affected by changes in the characteristics of the detection unit due to changes in the environment or the like by using a method in which deflected light is detected by a light receiving element and the return position is directly measured.

上記構成において、受光素子101は、光偏向中心軸206から離して配置する必要がある。これは、受光素子を光偏向中心に配置した場合、図4(a)の裾の部分を検出することになり、受光素子に必要な幅が大きくなる上に、検出誤差が大きくなるためである。この形態により、印加信号の周波数に対して最大の揺動角の変化の割合が大きな領域で検出できるため、検出精度が向上する。 In the above configuration, the light receiving element 101 needs to be arranged away from the light deflection center axis 206. This is because when the light receiving element is arranged at the center of light deflection, the bottom part of FIG. 4A is detected, and the width required for the light receiving element is increased and the detection error is increased. . According to this embodiment, detection accuracy can be improved because detection can be performed in a region where the change rate of the maximum swing angle with respect to the frequency of the applied signal is large.

また、本実施の形態を用いれば、受光素子101内に偏向光がすべて入射する必要はなく、或る周波数の掃引領域で折り返しの位置を検出するだけでよい。そのため、本実施の形態の受光素子101の走査方向の幅は、受光素子が配置される平面での偏向光による走査幅に対して小さくできる。つまり、受光素子として小さいものを用いることができ、低コストな光偏向器を実現できる。加えて、本実施の形態では、受光素子101上での折り返しの相対位置を用いるので、取り付け位置精度に対する制約が無い。また、測定中に光源201と偏向手段202と受光素子101の配置関係を固定しておけばよいだけなので、何らかの要因で何れかのものがズレたとしても、ズレた状態で関係が固定されれば、問題なく用いることができる。 Further, if this embodiment is used, it is not necessary for all the deflected light to enter the light receiving element 101, and it is only necessary to detect the position of the return in the sweep region of a certain frequency. Therefore, the width in the scanning direction of the light receiving element 101 of the present embodiment can be made smaller than the scanning width by the deflected light on the plane where the light receiving element is arranged. That is, a small light receiving element can be used, and a low-cost optical deflector can be realized. In addition, in this embodiment, since the relative position of folding on the light receiving element 101 is used, there is no restriction on the accuracy of the mounting position. In addition, since it is only necessary to fix the positional relationship among the light source 201, the deflecting unit 202, and the light receiving element 101 during the measurement, even if any one of them shifts due to some reason, the relationship is fixed in a shifted state. Can be used without problems.

本実施の形態で用いる受光素子101は、偏向光の折り返し位置を位置情報として検出できる受光素子101である必要がある。本実施の形態において、受光素子101には、複数の受光領域105から構成されたラインセンサ(イメージセンサ)を用いられる。そのような構成の場合、光電変換部である受光素子と、光電変換された電荷の蓄積部と、蓄積した電荷の転送部を備えている必要がある。 The light receiving element 101 used in this embodiment needs to be a light receiving element 101 that can detect the return position of the deflected light as position information. In the present embodiment, a line sensor (image sensor) composed of a plurality of light receiving regions 105 is used as the light receiving element 101. In such a configuration, it is necessary to include a light receiving element that is a photoelectric conversion unit, an accumulation unit for photoelectrically converted charges, and a transfer unit for accumulated charges.

この場合、複数の受光領域毎に偏向光の光量を検出できるので受光素子上における偏向光の位置を容易に特定できる。この際、蓄積した電荷の転送は、走査速度に合わせて高速に行う必要は無く、受光素子101上で走査が1回以上行われた後に、より低速な転送を行うことができる。そのため、受光面101上での走査速度vが高速になっても(例えば、印加駆動波形の1周期が短くなっても)、折り返し位置の検出を行うことができるため、好ましい。 In this case, the amount of the deflected light can be detected for each of the plurality of light receiving regions, so that the position of the deflected light on the light receiving element can be easily specified. At this time, it is not necessary to transfer the accumulated charge at a high speed in accordance with the scanning speed, and a slower transfer can be performed after the light receiving element 101 is scanned once or more. Therefore, it is preferable because the return position can be detected even when the scanning speed v on the light receiving surface 101 is increased (for example, even if one cycle of the applied drive waveform is shortened).

本受光素子を用いれば、走査光の受光素子101上での光量分布を電荷として蓄積し、複数の受光領域105毎の位置情報として出力される。そのため、最大の揺動(偏向)角となる走査(偏向)タイミングが変化しても、その走査(偏向)タイミングに同期を取って検出する必要がなく、容易且つ高精度に折り返し位置を検出することができる。 If this light receiving element is used, the light amount distribution on the light receiving element 101 of the scanning light is accumulated as electric charges, and is output as position information for each of the plurality of light receiving regions 105. Therefore, even if the scanning (deflection) timing at which the maximum swing (deflection) angle is changed, it is not necessary to detect in synchronization with the scanning (deflection) timing, and the return position can be detected easily and accurately. be able to.

本実施の形態では、複数の受光領域105から構成されたラインセンサを挙げたが、2次元状に配置した受光領域として縦横に揃って配置された受光領域構成や、受光領域をハニカム状として夫々を配置した構成、走査軌跡方向あるいは軌跡に交差する方向において受光領域の列及び行が入れ子にずれた構成、あるいは受光領域が円形状、平行四辺形形状、三角形形状、ひし形形状、台形形状、その他多角形形状を有する構成でも用いることができる。 In the present embodiment, a line sensor constituted by a plurality of light receiving regions 105 is described. However, a light receiving region configuration in which the light receiving regions are arranged vertically and horizontally as a light receiving region arranged two-dimensionally, and the light receiving region is formed in a honeycomb shape. , A configuration in which the columns and rows of the light-receiving areas are nested in the scanning trajectory direction or the direction intersecting the trajectory, or the light-receiving areas are circular, parallelogram, triangular, rhombus, trapezoidal, etc. A configuration having a polygonal shape can also be used.

また、本実施の形態では、前記測定手段は、受光素子またはその近傍上での偏向走査光を連続点灯光とし、その偏向走査光の折り返し位置を受光素子により測定したが、例えば、各駆動周波数において、連続点灯ではなく、少しずつ点灯タイミングをずらしていって光源を或る時間間隔で点灯し、複数の偏向走査の中から光スポットの最も端になる位置を見出して或る周波数での折り返し位置を測定する方法も採り得る。これにより、連続光を必ずしも用いる必要が無くなる。 In the present embodiment, the measurement unit uses the deflection scanning light on the light receiving element or the vicinity thereof as continuous lighting light and measures the return position of the deflection scanning light by the light receiving element. In this case, instead of continuous lighting, the lighting timing is shifted little by little, the light source is turned on at a certain time interval, and the position at the end of the light spot is found from a plurality of deflection scans, and the light is turned back at a certain frequency. A method of measuring the position can also be adopted. This eliminates the need to use continuous light.

以下に、より具体的な実施例を説明する。
(第1の実施例)
本実施例は、共振型光偏向器を1次元の偏向手段に用い、回転する円筒状の感光体の長尺方向に偏向光を走査することで、感光体表面で2次元的に偏向光を走査して静電潜像を得る所謂電子写真方式の画像形成装置の感光体への露光装置として適用する光偏向器に係る。その他の点は、上記実施の形態とほぼ同じである。
Hereinafter, more specific examples will be described.
(First embodiment)
In this embodiment, a resonance type optical deflector is used as a one-dimensional deflecting unit, and the deflected light is scanned two-dimensionally on the surface of the photosensitive member by scanning the deflected light in the longitudinal direction of the rotating cylindrical photosensitive member. The present invention relates to an optical deflector applied as an exposure device for a photoreceptor of a so-called electrophotographic image forming apparatus that scans to obtain an electrostatic latent image. The other points are almost the same as the above embodiment.

図6は、本実施例の装置構成を示す模式的斜視図である。図6において、受光素子101、光源201、偏向手段202、光源201から出射された光線203、共振周波数fcにおける最大偏向角での光線204と205、感光体ドラム220、感光体ドラム上での走査軌跡を含む軸221、受光素子101へ偏向光を導く反射ミラー223が図示されている。ここで、偏向手段202により偏向された偏向光の一部は、反射ミラー223により反射され、受光素子101に入射される。受光素子としては、1/7インチCMOSイメージセンサ(CIF仕様、白黒センサ)を用いている。また、光源201は、半導体レーザ(波長λ=780nm)を用いて、直接変調を行っている。偏向手段202は、図11に示す様な共振型光偏向器を用いており、共振周波数は8kHz前後(Q値1000)である。 FIG. 6 is a schematic perspective view showing the apparatus configuration of the present embodiment. In FIG. 6, the light receiving element 101, the light source 201, the deflecting means 202, the light beam 203 emitted from the light source 201, the light beams 204 and 205 at the maximum deflection angle at the resonance frequency fc, the photosensitive drum 220, and scanning on the photosensitive drum. An axis 221 including a locus and a reflection mirror 223 that guides deflected light to the light receiving element 101 are illustrated. Here, part of the deflected light deflected by the deflecting means 202 is reflected by the reflecting mirror 223 and is incident on the light receiving element 101. As the light receiving element, a 1/7 inch CMOS image sensor (CIF specification, monochrome sensor) is used. The light source 201 directly modulates using a semiconductor laser (wavelength λ = 780 nm). The deflecting means 202 uses a resonance type optical deflector as shown in FIG. 11, and the resonance frequency is around 8 kHz (Q value 1000).

図7は、第1の実施例に係る光偏向器の制御システムを模式的に表すブロック図である。図7において、光源201からの光線203が偏向手段202で偏向されて形成される光線208、光源201の変調信号発生手段301、光源201の変調信号305、測定手段を構成する受光素子101からの検出信号306、検出信号306と駆動信号309の周波数に基づいて共振周波数を算出する検知手段である共振周波数算出手段302(ここには共振周波数の算出方法がソフトとして入っている)、共振周波数算出信号307、制御手段である制御信号発生手段303、偏向手段202の制御信号308、偏向手段202の駆動手段304、偏向手段202の駆動信号309が図示されている。   FIG. 7 is a block diagram schematically illustrating the control system for the optical deflector according to the first embodiment. In FIG. 7, a light beam 208 formed by deflecting a light beam 203 from a light source 201 by a deflecting unit 202, a modulation signal generating unit 301 of a light source 201, a modulation signal 305 of a light source 201, and a light receiving element 101 constituting a measuring unit. Resonance frequency calculation means 302 (detection frequency calculation method is included as software), which is a detection means for calculating the resonance frequency based on the frequency of the detection signal 306, the detection signal 306 and the drive signal 309, and calculation of the resonance frequency A signal 307, a control signal generating means 303 as control means, a control signal 308 of the deflecting means 202, a driving means 304 of the deflecting means 202, and a driving signal 309 of the deflecting means 202 are shown.

図8は、本実施例での共振周波数の算出と駆動周波数の制御にかかわるフローチャートである。画像形成装置の電源がONされると制御が開始(S101)され、光源201の変調信号発生手段301により、まず光源201を全点灯(S102)する。次に、制御信号発生手段303により、印加信号(偏向手段202の制御信号308)の周波数は、予め設定された掃引の開始周波数(ここでは、7.9kHz)に設定(S104)される。次に、その周波数での偏向光の折り返し位置を、受光素子101を用いて検出(S105)する。その後、制御信号発生手段303により、予め設定された掃引ステップ分だけ周波数を変化(ここでは、1Hzステップ)させる(S104)。そして、予め設定された掃引の終了周波数(ここでは、8.1kHz)になる(S103)まで、周波数変化と折り返し位置の検出が繰り返し(S104、S105)行われる。その繰り返しのループから抜けた後、光源201の変調信号発生手段301により、光源201の全点灯が終了(S106)される。 FIG. 8 is a flowchart relating to the calculation of the resonance frequency and the control of the drive frequency in this embodiment. When the power source of the image forming apparatus is turned on, control is started (S101). First, the light source 201 is completely turned on (S102) by the modulation signal generation unit 301 of the light source 201. Next, the frequency of the applied signal (control signal 308 of the deflecting means 202) is set by the control signal generating means 303 to a preset sweep start frequency (here, 7.9 kHz) (S104). Next, the return position of the deflected light at that frequency is detected using the light receiving element 101 (S105). Thereafter, the control signal generating means 303 changes the frequency (here, 1 Hz step) by a preset sweep step (S104). The frequency change and the detection of the return position are repeated (S104, S105) until the preset sweep end frequency (here, 8.1 kHz) is reached (S103). After exiting the loop, the light source 201 is completely turned on by the modulation signal generator 301 of the light source 201 (S106).

印加信号の周波数と、受光素子101から得られた折り返し位置の情報(一例として、図5に示すような関係)から、共振周波数fcが共振周波数算出手段302により算出(S107)される。その算出結果を元に、制御信号発生手段303により、偏向手段202への印加信号(偏向手段202の制御信号308)の周波数が、共振周波数fcに変更(S108)される。その後、次の制御(S109)に移る。こうして、感光体が回転を開始し、感光体の長尺方向に光を変調しながら(例えば、ON、OFFしながら)走査することにより、本光偏向器は感光体への露光装置として用いることができる。 A resonance frequency fc is calculated by the resonance frequency calculation means 302 from the frequency of the applied signal and the information on the folding position obtained from the light receiving element 101 (for example, the relationship as shown in FIG. 5) (S107). Based on the calculation result, the control signal generator 303 changes the frequency of the applied signal to the deflector 202 (control signal 308 of the deflector 202) to the resonance frequency fc (S108). Thereafter, the process proceeds to the next control (S109). Thus, the photoconductor starts rotating, and scanning is performed while modulating the light in the longitudinal direction of the photoconductor (for example, while turning on and off), so that the present optical deflector can be used as an exposure device for the photoconductor. Can do.

本実施例により、偏向手段202の走査特性を所望の状態に保つことができ、高画質な画像形成装置を実現することができる。また、以上の制御を随時行って、時間の経過に伴う走査特性の変化を検出し、補正を行うことができる。 According to this embodiment, the scanning characteristic of the deflecting unit 202 can be maintained in a desired state, and a high-quality image forming apparatus can be realized. In addition, the above control can be performed at any time to detect and correct a change in scanning characteristics over time.

(第2の実施例)
本実施例に係る光偏向器は、偏向光を被投影面に2次元状に投射する光偏向器に係る。その他については第1の実施例とほぼ同じである。図9は本実施例に係る光偏向器を模式的に示す斜視図である。
(Second embodiment)
The optical deflector according to the present embodiment relates to an optical deflector that projects the deflected light two-dimensionally onto the projection surface. Others are almost the same as the first embodiment. FIG. 9 is a perspective view schematically showing an optical deflector according to the present embodiment.

図9において、受光素子101、光源201、偏向手段202、出射光203、偏向光204と205、走査線210、第2の偏向手段211、偏向光212、遮蔽部213、走査領域214、走査線の軌跡215、投影面220が図示されている。図9の装置は、レーザである光源201から光203を、偏向手段202と第2の偏向手段211により2次元走査することにより、投影面220に画像を表示するレーザディスプレイ装置である。 In FIG. 9, the light receiving element 101, the light source 201, the deflecting means 202, the emitted light 203, the deflected lights 204 and 205, the scanning line 210, the second deflecting means 211, the deflected light 212, the shielding portion 213, the scanning region 214, and the scanning line. The locus 215 and the projection plane 220 are shown. The apparatus in FIG. 9 is a laser display device that displays an image on the projection surface 220 by two-dimensionally scanning light 203 from a light source 201 that is a laser by means of a deflecting unit 202 and a second deflecting unit 211.

受光素子101は、1/7インチCMOSイメージセンサ(CIF仕様、白黒センサ)を用いている。また、光源201は、半導体レーザ(λ=630nm)を用いて、直接変調を行っている。偏向手段202は、図11に示す様な共振型光偏向器を用いており、共振周波数は20kHz前後(Q値2000)である。本実施例における、第1の実施例の所で述べた掃引の開始周波数は19.9kHz、掃引ステップは1Hzステップ、掃引の終了周波数は20.1kHzである。 The light receiving element 101 uses a 1/7 inch CMOS image sensor (CIF specification, monochrome sensor). The light source 201 directly modulates using a semiconductor laser (λ = 630 nm). The deflecting means 202 uses a resonance type optical deflector as shown in FIG. 11, and the resonance frequency is around 20 kHz (Q value 2000). In this embodiment, the sweep start frequency described in the first embodiment is 19.9 kHz, the sweep step is 1 Hz step, and the sweep end frequency is 20.1 kHz.

図10は、有効表示領域と受光領域と水平走査・垂直走査を示す模式図である。図10は、遮蔽面213上の走査領域214内での走査線の軌跡215を示している。有効表示領域216内において、遮蔽面213は存在せず、投影面220において偏向光が画像を形成する。有効表示領域216以外の領域では、遮蔽面213により偏向光が遮蔽され、投影面220に偏向光が到達しないようになっている。 FIG. 10 is a schematic diagram showing an effective display area, a light receiving area, and horizontal scanning / vertical scanning. FIG. 10 shows a scanning line locus 215 within the scanning region 214 on the shielding surface 213. In the effective display area 216, the shielding surface 213 does not exist, and the deflected light forms an image on the projection surface 220. In an area other than the effective display area 216, the deflected light is shielded by the shielding surface 213 so that the deflected light does not reach the projection surface 220.

本発明の制御では、偏向手段202への印加周波数を変化させて、共振周波数の検出を行なうため、検出中に偏向光が投影面220に表れると、ノイズが発生してしまう。本実施例では、このノイズを発生させないために、遮蔽面213を用いることが特徴である。この遮蔽面213上の有効表示領域216以外の部分に受光素子101を配置して、受光素子101上の偏向光を連続光とし有効表示領域216での偏向光を消灯することにより、検出時に投影面220に検出のための光線が現れることはない。そのため、本実施例を用いれば、装置起動時等に、投影面220に画像を表示することなく(検出による偏向光のノイズを表示することなく)、検出の制御を行うことができる。 In the control according to the present invention, the resonance frequency is detected by changing the frequency applied to the deflecting means 202, and noise will be generated if the deflected light appears on the projection plane 220 during the detection. The present embodiment is characterized in that the shielding surface 213 is used in order not to generate this noise. The light receiving element 101 is arranged in a portion other than the effective display area 216 on the shielding surface 213, and the deflected light on the light receiving element 101 is made continuous light, and the deflected light in the effective display area 216 is turned off to project at the time of detection. No light beam for detection appears on the surface 220. Therefore, if this embodiment is used, the detection can be controlled without displaying an image on the projection plane 220 (without displaying the noise of the deflected light due to the detection) when the apparatus is activated.

図10において、偏向光212は、走査点S1から走査を開始すると、水平走査方向Xを往路・復路と移動し、次第に垂直走査方向Yに向かって走査範囲上部から下部へ走査される。走査点S2まで走査された偏向光は、再び走査点S1に戻され、同様な走査が繰り返される。走査線215上に配置された受光素子101は、偏向光212が通過するように配置されている。 In FIG. 10, when scanning is started from the scanning point S1, the deflected light 212 moves in the horizontal scanning direction X from the forward path to the backward path, and is gradually scanned from the upper part to the lower part in the vertical scanning direction Y. The deflected light scanned up to the scanning point S2 is returned again to the scanning point S1, and the same scanning is repeated. The light receiving element 101 arranged on the scanning line 215 is arranged so that the deflected light 212 passes.

本発明の実施の形態に係る光偏向器の偏向手段から偏向(反射)された偏向光が受光素子上を往復する様子をその軌跡とともに表す模式図である。It is a schematic diagram showing a mode that the deflection light deflected (reflected) from the deflection | deviation means of the optical deflector which concerns on embodiment of this invention reciprocates on a light receiving element with the locus | trajectory. 偏向手段の最大偏向角が異なる場合の受光素子上の様子を表す図である。It is a figure showing the mode on a light receiving element in case the largest deflection angles of a deflection | deviation means differ. 偏向手段の最大偏向角が異なる場合の受光素子上の様子を表す図である。It is a figure showing the mode on a light receiving element in case the largest deflection angles of a deflection | deviation means differ. 共振型偏向器の周波数特性の一例を示すグラフである。It is a graph which shows an example of the frequency characteristic of a resonance type deflector. 本発明の実施の形態において偏向手段の印加周波数を変化させて、受光素子により折り返し位置を検出した時の測定結果の一例を示すグラフである。It is a graph which shows an example of the measurement result when changing the application frequency of a deflection | deviation means in embodiment of this invention, and detecting a folding position by a light receiving element. 偏向光を1次元に投影する第1の実施例の光偏向器を示す模式的斜視図である。It is a typical perspective view which shows the optical deflector of the 1st Example which projects a deflected light to one dimension. 第1の実施例の制御システムを示すブロック図である。It is a block diagram which shows the control system of a 1st Example. 第1の実施例の制御フローを示す図である。It is a figure which shows the control flow of a 1st Example. 偏向光を2次元に投影する第2の実施例の光偏向器を示す模式的斜視図である。It is a typical perspective view which shows the optical deflector of the 2nd Example which projects a deflection | deviation light in two dimensions. 有効表示領域と受光領域と水平走査・垂直走査を示す模式図である。It is a schematic diagram which shows an effective display area, a light receiving area, and horizontal scanning / vertical scanning. 従来例の光偏向器を示す図である。It is a figure which shows the optical deflector of a prior art example.

符号の説明Explanation of symbols

101 受光素子(測定手段)
201 光源
202 偏向手段
203 光源からで出射された光線
208 偏向された光線
301 光源の変調信号発生手段
302 共振周波数算出手段(検知手段)
303 制御信号発生手段(制御手段)
304 偏向手段の駆動手段
305 光源の変調信号
306 受光素子からの検出信号
307 共振周波数算出信号
308 偏向手段の制御信号
309 偏向手段の駆動信号
101 Light receiving element (measuring means)
201 light source 202 deflecting unit 203 light beam 208 emitted from light source deflected light beam 301 modulation signal generating unit 302 of light source resonance frequency calculating unit (detecting unit)
303 Control signal generating means (control means)
304 Deflection means drive means 305 Light source modulation signal 306 Detection signal 307 from light receiving element Resonance frequency calculation signal 308 Deflection means control signal 309 Deflection means drive signal

Claims (12)

光源からの光を往復偏向させ該偏向光を走査する偏向手段を有する光偏向器における偏向手段の共振周波数を検出する検出装置であって、偏向手段への印加駆動信号の異なる周波数毎について、受光素子またはその近傍上での偏向走査光の折り返し位置を測定する測定手段と、該異なる周波数と該折り返し位置の測定情報から偏向手段の共振周波数を検知する検知手段を有することを特徴とする検出装置。 A detection device for detecting a resonance frequency of a deflecting unit in an optical deflector having a deflecting unit that reciprocally deflects light from a light source and scans the deflected light, and receives light at different frequencies of a drive signal applied to the deflecting unit. A detecting device comprising: measuring means for measuring the return position of the deflected scanning light on the element or its vicinity; and detecting means for detecting the resonance frequency of the deflecting means from the measurement information of the different frequency and the return position. . 前記測定手段は、受光素子またはその近傍上での偏向走査光を連続点灯光とし、その偏向走査光の折り返し位置を受光素子により測定する請求項1に記載の検出装置。 The detection device according to claim 1, wherein the measuring unit uses the deflection scanning light on the light receiving element or the vicinity thereof as continuous lighting light, and measures the return position of the deflection scanning light by the light receiving element. 前記検知手段は、前記受光素子上の走査方向に関して同じ位置で折り返される偏向走査光に対応する複数の周波数を検出し、その複数の周波数を元に共振周波数を検知する請求項1または2に記載の検出装置。 3. The detection unit according to claim 1, wherein the detection unit detects a plurality of frequencies corresponding to the deflected scanning light that is folded back at the same position in the scanning direction on the light receiving element, and detects a resonance frequency based on the plurality of frequencies. Detection device. 前記検知手段は、前記検出した複数の周波数を平均することにより共振周波数を算出する請求項3に記載の検出装置。 The detection device according to claim 3, wherein the detection unit calculates a resonance frequency by averaging the plurality of detected frequencies. 前記受光素子は、これが検出する偏向走査光に、前記偏向手段の偏向中心位置での偏向走査光が含まれない様に、設けられる請求項1乃至4の何れかに記載の検出装置。 The detection device according to claim 1, wherein the light receiving element is provided so that the deflection scanning light detected by the light receiving element does not include the deflection scanning light at the deflection center position of the deflection unit. 前記受光素子は、複数の受光領域から構成されており、該受光領域に入射された光を電荷に変換する手段と、発生した電荷を領域毎に一定期間蓄積する手段と、蓄積した電荷を領域毎に転送する手段を有する受光素子である請求項1乃至5の何れかに記載の検出装置。 The light receiving element is composed of a plurality of light receiving regions, means for converting light incident on the light receiving region into electric charges, means for accumulating the generated charges for each region for a certain period, and the accumulated electric charges in the regions. The detection device according to claim 1, wherein the detection device is a light receiving element having means for transferring each time. 請求項1乃至6のいずれかに記載の検出装置、前記検知手段の検知結果を用いて、印加駆動信号の周波数と共振周波数を近づけるように制御する制御手段を有することを特徴とする光偏向器。 7. The optical deflector comprising: the detection device according to claim 1; and a control unit that controls the frequency of the applied drive signal to be close to the resonance frequency using a detection result of the detection unit. . 前記制御手段は、偏向手段が所望の共振状態に保持されるように制御する請求項7に記載の光偏向器。 The optical deflector according to claim 7, wherein the control unit controls the deflection unit to be held in a desired resonance state. 前記制御手段は、印加駆動信号の周波数と共振周波数との周波数差を一定に保つように制御する請求項7に記載の光偏向器。 The optical deflector according to claim 7, wherein the control unit controls the frequency difference between the frequency of the applied drive signal and the resonance frequency to be kept constant. 請求項7乃至9の何れかに記載の光偏向器を備え、非画像形成領域で前記制御手段による制御を行うことを特徴とする画像形成装置。 An image forming apparatus comprising the optical deflector according to claim 7, wherein the control unit performs control in a non-image forming area. 請求項7乃至9の何れかに記載の光偏向器を備え、該光偏向器は、受光素子を備え有効表示領域以外への偏向走査光を遮蔽する遮蔽面を有し、非画像形成領域で光源から連続点灯光を出射して前記制御手段による制御を行うことを特徴とする2次元画像形成装置。 An optical deflector according to claim 7, wherein the optical deflector includes a light receiving element, has a shielding surface that shields deflected scanning light outside the effective display area, and is used in a non-image forming area. A two-dimensional image forming apparatus characterized in that continuous lighting light is emitted from a light source and controlled by the control means. 光源からの光を往復偏向させ該偏向光を走査する偏向手段を有する光偏向器における偏向手段の共振周波数を検出する検出方法であって、偏向手段への印加駆動信号の異なる周波数毎について、受光素子またはその近傍上での走査光の折り返し位置を測定し、該異なる周波数と該折り返し位置の測定情報から偏向手段の共振周波数を検知することを特徴とする検出方法。 A detection method for detecting a resonance frequency of a deflecting unit in an optical deflector having a deflecting unit that reciprocally deflects light from a light source and scans the deflected light, and receives light at different frequencies of a drive signal applied to the deflecting unit. A detection method, comprising: measuring a folding position of scanning light on an element or the vicinity thereof; and detecting a resonance frequency of a deflecting unit from the measurement information of the different frequency and the folding position.
JP2004052580A 2004-02-27 2004-02-27 Optical deflector, and detector and method for detecting resonance frequency of deflection means in optical deflector Pending JP2005241482A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004052580A JP2005241482A (en) 2004-02-27 2004-02-27 Optical deflector, and detector and method for detecting resonance frequency of deflection means in optical deflector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004052580A JP2005241482A (en) 2004-02-27 2004-02-27 Optical deflector, and detector and method for detecting resonance frequency of deflection means in optical deflector

Publications (1)

Publication Number Publication Date
JP2005241482A true JP2005241482A (en) 2005-09-08

Family

ID=35023360

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004052580A Pending JP2005241482A (en) 2004-02-27 2004-02-27 Optical deflector, and detector and method for detecting resonance frequency of deflection means in optical deflector

Country Status (1)

Country Link
JP (1) JP2005241482A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008046537A (en) * 2006-08-21 2008-02-28 Seiko Epson Corp Scanning-type optical apparatus
WO2008032485A1 (en) * 2006-09-15 2008-03-20 Nec Corporation Laser projector
JP2008224572A (en) * 2007-03-15 2008-09-25 Brother Ind Ltd Device and method for measuring deflection angle of optical deflection device
JP2008310301A (en) * 2007-05-17 2008-12-25 Canon Inc Oscillator device, optical deflector and image forming apparatus using the optical deflector
JP2009086371A (en) * 2007-09-28 2009-04-23 Brother Ind Ltd Image display device
US7750746B2 (en) 2008-02-13 2010-07-06 Canon Kabushiki Kaisha Oscillator device and optical deflection device
US7855606B2 (en) 2008-02-22 2010-12-21 Canon Kabushiki Kaisha Oscillator device
JP2011118194A (en) * 2009-12-04 2011-06-16 Ricoh Co Ltd Optical scanner and image forming apparatus
JP2011128244A (en) * 2009-12-16 2011-06-30 Canon Electronics Inc Oscillation element, optical scanner, image projector and image forming apparatus
JP2013041289A (en) * 2012-09-19 2013-02-28 Hitachi Ltd Image display device, and method of adjusting vibration state of reflection mirror in image display device
JP2014041384A (en) * 2013-11-14 2014-03-06 Canon Electronics Inc Vibrator, optical scanner, video projection device, and image forming device
CN110539563A (en) * 2018-05-28 2019-12-06 精工爱普生株式会社 Image processing apparatus, wrinkle determination method, and machine learning apparatus
JP2020154111A (en) * 2019-03-20 2020-09-24 株式会社リコー Optical scanner, display system, and mobile object

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7471446B2 (en) 2006-08-21 2008-12-30 Seiko Epson Corporation Scan-type optical apparatus
JP2008046537A (en) * 2006-08-21 2008-02-28 Seiko Epson Corp Scanning-type optical apparatus
JP5245829B2 (en) * 2006-09-15 2013-07-24 日本電気株式会社 Laser projector
WO2008032485A1 (en) * 2006-09-15 2008-03-20 Nec Corporation Laser projector
US8519324B2 (en) 2006-09-15 2013-08-27 Nec Corporation Laser projector for projecting and displaying an image based on the raster scanning of a laser beam
CN101517455B (en) * 2006-09-15 2012-01-11 日本电气株式会社 Laser projector
JP2008224572A (en) * 2007-03-15 2008-09-25 Brother Ind Ltd Device and method for measuring deflection angle of optical deflection device
JP2008310301A (en) * 2007-05-17 2008-12-25 Canon Inc Oscillator device, optical deflector and image forming apparatus using the optical deflector
US8018294B2 (en) 2007-05-17 2011-09-13 Canon Kabushiki Kaisha Oscillator device, optical deflector and image forming apparatus using the optical deflector
JP2009086371A (en) * 2007-09-28 2009-04-23 Brother Ind Ltd Image display device
US7750746B2 (en) 2008-02-13 2010-07-06 Canon Kabushiki Kaisha Oscillator device and optical deflection device
US7855606B2 (en) 2008-02-22 2010-12-21 Canon Kabushiki Kaisha Oscillator device
JP2011118194A (en) * 2009-12-04 2011-06-16 Ricoh Co Ltd Optical scanner and image forming apparatus
JP2011128244A (en) * 2009-12-16 2011-06-30 Canon Electronics Inc Oscillation element, optical scanner, image projector and image forming apparatus
JP2013041289A (en) * 2012-09-19 2013-02-28 Hitachi Ltd Image display device, and method of adjusting vibration state of reflection mirror in image display device
JP2014041384A (en) * 2013-11-14 2014-03-06 Canon Electronics Inc Vibrator, optical scanner, video projection device, and image forming device
CN110539563A (en) * 2018-05-28 2019-12-06 精工爱普生株式会社 Image processing apparatus, wrinkle determination method, and machine learning apparatus
JP2020154111A (en) * 2019-03-20 2020-09-24 株式会社リコー Optical scanner, display system, and mobile object

Similar Documents

Publication Publication Date Title
US7242506B2 (en) Optical deflector
US8254007B2 (en) Scanner and image forming apparatus including the same
US8400698B2 (en) Oscillator device, optical deflecting device and method of controlling the same
JP4174252B2 (en) Optical deflection apparatus, image forming apparatus using the same, and driving method thereof
JP4174345B2 (en) Optical deflector and optical deflector control method
JP5221965B2 (en) Two-dimensional scanning device and projection-type image display device
CN101308248B (en) Oscillator device, optical deflector and image forming apparatus using the optical deflector
JP2005241482A (en) Optical deflector, and detector and method for detecting resonance frequency of deflection means in optical deflector
JP4065502B2 (en) Electromagnetic actuator, drive and drive state detection method, control method, optical deflector, and image forming apparatus using the same
US8270057B2 (en) Oscillator device, optical deflecting device and method of controlling the same
JP2009058616A (en) Oscillating body apparatus, light deflector and image forming apparatus using the same
US7855606B2 (en) Oscillator device
US8345339B2 (en) Optical deflector
JP4423066B2 (en) Optical deflector and image forming apparatus
JP2008191010A (en) Beam profile measuring apparatus, optical scanner and image forming device
JP2009116137A (en) Rocking body apparatus and equipment using the same
JP5058661B2 (en) Image forming apparatus
JP2009109928A (en) Optical scanner and optical equipment using the same
JP2010032827A (en) Vibration mirror and image recorder
JP2009122137A (en) Rocking apparatus and optical equipment using the same
JP2007041115A (en) Optical deflector and image forming apparatus
JP2009025795A (en) Optical deflector
JP2008040081A (en) Optical scanner
JP2001082919A (en) Method and apparatus for sensing imaging position of laser beam, apparatus for adjusting imaging position of laser beam, apparatus for adjusting source of laser beam, apparatus for collimating source of laser beam, and image forming apparatus
JP2010019871A (en) Movable body apparatus, and optical instrument using the movable body apparatus