Nothing Special   »   [go: up one dir, main page]

JP2005134091A - Cooling storage device and operation control method therefor - Google Patents

Cooling storage device and operation control method therefor Download PDF

Info

Publication number
JP2005134091A
JP2005134091A JP2003373588A JP2003373588A JP2005134091A JP 2005134091 A JP2005134091 A JP 2005134091A JP 2003373588 A JP2003373588 A JP 2003373588A JP 2003373588 A JP2003373588 A JP 2003373588A JP 2005134091 A JP2005134091 A JP 2005134091A
Authority
JP
Japan
Prior art keywords
cooling
solenoid valve
temperature
storage device
cooler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003373588A
Other languages
Japanese (ja)
Inventor
Yoshitoshi Shimizu
美俊 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoshizaki Electric Co Ltd
Original Assignee
Hoshizaki Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoshizaki Electric Co Ltd filed Critical Hoshizaki Electric Co Ltd
Priority to JP2003373588A priority Critical patent/JP2005134091A/en
Publication of JP2005134091A publication Critical patent/JP2005134091A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To avoid the overload operation of a compressor in a cooling storage device of a type for cooling a plurality of storages by one freezer and an operation control method therefor. <P>SOLUTION: When it is detected that the inside temperature is higher than a pull-down temperature by a temperature sensor 20, a large cooling load is determined, and a program for pull-down is executed. A first solenoid valve 18A is opened, and a compressor 11 is started, and a refrigerant is carried only to a first cooler 14A to cool only a first cooling chamber 10A. When 10 minutes passes, or when the inside temperature of the first cooling chamber 10A is lowered to an upper limit temperature, a second solenoid valve 18B is opened, and the first solenoid valve 18A is successively closed. Thereafter, the refrigerant is carried only to a second cooler 14B to cool only a second cooling chamber 10B. When the same condition is established, the first solenoid valve 18A is opened again. In the pull-down control, the refrigerant is alternately carried to the first cooler 14A and the second cooler 14B within 10 minutes at a maximum, and the overload operation of the compressor 11 can be thus avoided. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、1台の冷凍装置で複数台の貯蔵庫を冷却する形式の冷却貯蔵装置及びその稼働制御方法に関する。   The present invention relates to a cooling storage device of a type that cools a plurality of storages with a single refrigeration device, and an operation control method thereof.

冷却貯蔵装置の一形式として、以下のようなものが知られている。これは、圧縮機、凝縮器等を有する1台の冷凍装置が備られえる一方、この冷凍装置に対して2台の冷却器がそれぞれ電磁弁を介して接続され、各冷却器が独立した貯蔵庫に配設された構造となっている。そして各貯蔵庫では、温度センサで検知された庫内温度が予め設定された設定温度よりも高いか低いかによって対応する電磁弁が開閉され、冷却器への冷媒の流通と停止とが制御されることにより、庫内がほぼ設定温度に維持されるようになっている。
なお、この種の冷却貯蔵装置は、特許文献1等に記載されている。
特開2002−295941公報
The following are known as one type of cooling storage device. This can be equipped with one refrigeration unit having a compressor, a condenser, etc., while two refrigeration units are connected to the refrigeration unit via electromagnetic valves, and each chiller is an independent storage. It is the structure arranged in. In each storage, the corresponding electromagnetic valve is opened and closed depending on whether the internal temperature detected by the temperature sensor is higher or lower than a preset temperature, and the flow and stop of the refrigerant to the cooler are controlled. As a result, the inside of the cabinet is maintained at a substantially set temperature.
In addition, this kind of cooling storage apparatus is described in patent document 1 grade | etc.,.
JP 2002-295941 A

ところで、この種の冷却貯蔵装置では、両貯蔵庫の冷却具合によっては、両電磁弁がともに開いて両貯蔵庫の冷却器に冷媒が流通する、言い換えると両冷却器が揃って稼働することがあり得る。しかるにこれは、各貯蔵庫内を設定温度付近に維持するいわゆるコントロール運転のときはまだしも、例えば夏場に冷却貯蔵装置を設置して初めて運転する場合のように、両貯蔵庫の庫内温度が相当に高い状態から設定温度まで冷却しようとした場合(プルダウン運転)には、圧縮機が過負荷運転となり、保護装置が作動して停止するおそれがあった。
本発明は上記のような事情に基づいて完成されたものであって、その目的は、圧縮機の過負荷運転を回避するところにある。
By the way, in this kind of cooling storage device, depending on the cooling conditions of both storages, both solenoid valves may be opened and the refrigerant will flow through the coolers of both storages, in other words, both coolers may be working together. . However, this is because the so-called control operation in which the interior of each storage is maintained near the set temperature is still high, for example, when the cooling storage device is installed for the first time in summer, the internal temperatures of both storages are considerably high. When trying to cool from the state to the set temperature (pull-down operation), the compressor is overloaded, and the protection device may be activated and stopped.
The present invention has been completed based on the above circumstances, and its object is to avoid overload operation of the compressor.

上記の目的を達成するための手段として、請求項1の発明に係る冷却貯蔵装置の稼働制御方法は、圧縮機等を有する共通の冷凍装置に対し複数の冷却器が接続されてそれぞれ独立した貯蔵庫に配設され、各冷却器への冷媒の流通と停止とを制御することにより対応する各貯蔵庫がそれぞれ設定された温度に冷却されるようにした冷却貯蔵装置において、前記貯蔵庫に係る冷却負荷が所定以上である場合には、同時に冷媒が流通される冷却器の数を制限し、かつ冷媒が流通可能とされる冷却器を順次に交替させるように制御するところに特徴を有する。   As a means for achieving the above object, an operation control method for a cooling storage device according to the invention of claim 1 is an independent storage in which a plurality of coolers are connected to a common refrigeration device having a compressor or the like. In the cooling storage device, each of the corresponding storages is cooled to a set temperature by controlling the circulation and stoppage of the refrigerant to each cooler, the cooling load related to the storage is If the number is greater than or equal to a predetermined value, the number of coolers through which the refrigerant is circulated is limited, and the coolers through which the refrigerant can be circulated are controlled to be sequentially replaced.

請求項2の発明は、圧縮機等を有する共通の冷凍装置に対し複数の冷却器がそれぞれ電磁弁を介して接続され、各冷却器が独立した貯蔵庫に配設されており、各貯蔵庫では、庫内温度を検知する温度センサの出力に基づいて対応する電磁弁が開閉されて冷却器への冷媒の流通と停止とが制御されることにより、庫内が設定温度に維持されるようにした冷却貯蔵装置において、前記貯蔵庫に係る冷却負荷を検知する負荷検知手段と、この負荷検知手段の検知値が所定以上である場合には、同時に開放される電磁弁の数を制限し、かつ開放可能とされる電磁弁を順次に交替させる弁駆動制御手段とが設けられている構成としたところに特徴を有する。   In the invention of claim 2, a plurality of coolers are connected to a common refrigeration apparatus having a compressor or the like via respective electromagnetic valves, and each cooler is arranged in an independent storage, Based on the output of the temperature sensor that detects the internal temperature, the corresponding solenoid valve is opened and closed to control the flow and stop of the refrigerant to the cooler, so that the internal temperature is maintained at the set temperature. In the cooling storage device, if the detection value of the load detection means for detecting the cooling load related to the storage and the detection value of the load detection means is greater than or equal to a predetermined value, the number of solenoid valves opened simultaneously can be limited and opened. And a valve drive control means for sequentially replacing the solenoid valves.

請求項3の発明は、請求項2に記載のものにおいて、前記弁駆動制御手段は、一の電磁弁が開放している間は他の電磁弁が開放することを規制する制御信号を出力するとともに、前記一の電磁弁の開放時間が所定時間経過するか若しくはこの一の電磁弁を設けた貯蔵庫の庫内温度が所定以下に低下した場合に、前記制御信号を停止して他の電磁弁の開放を許容しその後に前記一の電磁弁を閉鎖する機能を備えているところに特徴を有する。   According to a third aspect of the present invention, in the second aspect, the valve drive control means outputs a control signal for restricting the opening of the other solenoid valve while the one solenoid valve is open. In addition, when the opening time of the one electromagnetic valve elapses for a predetermined time or when the internal temperature of the storage provided with the one electromagnetic valve decreases below a predetermined value, the control signal is stopped and another electromagnetic valve is stopped. It is characterized in that it has a function of allowing the opening of the first solenoid valve and then closing the one solenoid valve.

請求項4の発明は、請求項3に記載のものにおいて、前記各貯蔵庫には通信部が設けられ、前記制御信号等が前記各通信部間で通信可能となっているところに特徴を有する。
請求項5の発明は、請求項2ないし請求項4のいずれかに記載のものにおいて、前記冷却負荷が、前記温度センサの出力に基づいて定められるところに特徴を有する。
The invention of claim 4 is characterized in that, in the invention of claim 3, a communication unit is provided in each storage, and the control signal and the like are communicable between the communication units.
The invention of claim 5 is characterized in that, in any of claims 2 to 4, the cooling load is determined based on an output of the temperature sensor.

<請求項1の発明>
冷却負荷が所定以上になると、同時に冷媒が流通される冷却器の数が制限されつつ各冷却器に交替で冷媒が流通され、各貯蔵庫が交替して冷却される。例えば、庫内温度が相当に高い状態から設定温度まで冷却するプルダウン運転が必要な場合には、全冷却器に同時に冷媒を流通させるのではなく、一部の冷却器ずつ順次に流通させ得るようにしたから、圧縮機が過負荷運転をすることが回避される。そのため保護装置で停止されることなく圧縮機の運転が担保され、ひいてはプルダウン冷却を確実に行うことができる。
<Invention of Claim 1>
When the cooling load becomes equal to or greater than a predetermined value, the number of coolers through which the refrigerant is circulated is limited, and the refrigerant is circulated alternately to each chiller, and each storage is replaced and cooled. For example, when a pull-down operation for cooling from a state where the inside temperature is considerably high to a set temperature is necessary, it is possible to sequentially circulate some of the coolers sequentially instead of circulating the refrigerant to all the coolers at the same time. Therefore, it is avoided that the compressor is overloaded. Therefore, the operation of the compressor is ensured without being stopped by the protection device, and pull-down cooling can be performed reliably.

<請求項2の発明>
負荷検知手段により冷却負荷が所定以上であることが検知されると、弁駆動制御手段により、同時に開放する電磁弁の数が制限されつつ各電磁弁が交替で開放可能とされ、対応する冷却器に冷媒が流通されることで各貯蔵庫が交替して冷却される。
庫内温度が相当に高い状態から設定温度まで冷却するプルダウン運転が必要な場合には、全電磁弁を同時に開放するのではなく一部の電磁弁ずつ順次に開放できるようにし、すなわち一部の冷却器ずつ順次に冷媒を流通させ得るようにしたから、圧縮機が過負荷運転をすることが回避される。そのため保護装置で停止されることなく圧縮機の運転が担保され、ひいてはプルダウン冷却を確実に行うことができる。
<Invention of Claim 2>
When it is detected by the load detection means that the cooling load is greater than or equal to the predetermined value, the valve drive control means allows the solenoid valves to be opened alternately while limiting the number of solenoid valves to be opened simultaneously, and the corresponding cooler As the refrigerant is circulated, each storage is replaced and cooled.
When pull-down operation is required to cool the chamber temperature from a considerably high state to the set temperature, not all solenoid valves are opened at the same time, but some solenoid valves can be opened sequentially. Since the refrigerant can be circulated sequentially for each cooler, the compressor can be prevented from being overloaded. Therefore, the operation of the compressor is ensured without being stopped by the protection device, and pull-down cooling can be performed reliably.

<請求項3の発明>
冷却負荷が所定以上であることが検知されて、まず一の電磁弁が開放されると、開放されている間制御信号が出されることで、他の電磁弁が開放することが規制される。一の電磁弁の開放時間が所定時間経過するか若しくはこの一の電磁弁を設けた貯蔵庫の庫内温度が所定以下に低下すると、制御信号が停止することで他の電磁弁の開放が許容され、したがって他の電磁弁を設けた貯蔵庫の庫内温度が高い等の条件を満たせば他の電磁弁が開放され、その後に一の電磁弁が閉鎖する。この繰り返しによって、各電磁弁が交替して開放される。
<Invention of Claim 3>
When it is detected that the cooling load is greater than or equal to a predetermined value and one of the solenoid valves is first opened, a control signal is issued while the solenoid valve is open, thereby restricting the opening of the other solenoid valves. When the opening time of one solenoid valve elapses for a predetermined time or the internal temperature of the storage provided with this one solenoid valve drops below a predetermined value, the control signal is stopped to allow other solenoid valves to be opened. Therefore, if a condition such as a high temperature inside the storage provided with another electromagnetic valve is satisfied, the other electromagnetic valve is opened, and then one electromagnetic valve is closed. By repeating this, each solenoid valve is alternately opened.

<請求項4の発明>
各電磁弁は、各通信部間で制御信号等を遣り取りしながらその開閉が制御される。
<請求項5の発明>
冷却負荷の大小は、貯蔵庫に装備された温度センサの出力に基づいて定められる。
<Invention of Claim 4>
Each solenoid valve is controlled to open and close while exchanging control signals and the like between the communication units.
<Invention of Claim 5>
The magnitude of the cooling load is determined based on the output of the temperature sensor provided in the storage.

以下、本発明の一実施形態を図1ないし図3に基づいて説明する。
本実施形態では、図1に示すように、第1冷蔵庫10Aと第2冷蔵庫10Bの2台を備えている。一方、両冷蔵庫10A,10B内を冷却するための冷凍回路は、圧縮機11、凝縮器12、膨張機構13(キャピラリチューブ)及び冷却器14(蒸発器)を冷媒配管で循環接続した構造であるが、このうち圧縮機11と凝縮器12とは1個ずつであって、両者により本願発明に言う共通の冷凍装置15が構成されている。それに対して、膨張機構13と冷却器14とは2個ずつ備えられ、膨張機構13と冷却器14とを1個ずつ直列に接続した組が2組形成され、各組が、凝縮器12の出口と圧縮機11の入口との間で並列に接続されている。
Hereinafter, an embodiment of the present invention will be described with reference to FIGS. 1 to 3.
In this embodiment, as shown in FIG. 1, two units of a first refrigerator 10A and a second refrigerator 10B are provided. On the other hand, the refrigeration circuit for cooling the refrigerators 10A and 10B has a structure in which the compressor 11, the condenser 12, the expansion mechanism 13 (capillary tube), and the cooler 14 (evaporator) are circulated and connected by refrigerant piping. However, among these, the compressor 11 and the condenser 12 are one each, and the common refrigeration apparatus 15 said to this invention is comprised by both. On the other hand, two expansion mechanisms 13 and two coolers 14 are provided, and two sets in which the expansion mechanism 13 and the cooler 14 are connected in series are formed. The outlet and the inlet of the compressor 11 are connected in parallel.

上記した冷凍回路において、一方の冷却器14A(以下、第1冷却器14Aという)は第1冷蔵庫10Aに、他方の冷却器14B(以下、第2冷却器14Bという)は第2冷蔵庫10Bにそれぞれ設置されている。また、第1冷却器14A側の配管17Aには第1電磁弁18Aが、第2冷却器14B側の配管17Bには第2電磁弁18Bが、それぞれ膨張機構13の上流側に設けられている。
各冷蔵庫10A,10Bには、それぞれの庫内温度を検知する第1と第2の温度センサ20A,20Bが設けられている。
In the refrigeration circuit described above, one cooler 14A (hereinafter referred to as the first cooler 14A) is provided in the first refrigerator 10A, and the other cooler 14B (hereinafter referred to as the second cooler 14B) is provided in the second refrigerator 10B. is set up. Further, the first electromagnetic valve 18A is provided on the pipe 17A on the first cooler 14A side, and the second electromagnetic valve 18B is provided on the upstream side of the expansion mechanism 13 on the pipe 17B on the second cooler 14B side. .
The refrigerators 10A and 10B are provided with first and second temperature sensors 20A and 20B that detect the internal temperature of the refrigerator.

また、各冷蔵庫10A,10Bには、それぞれ信号入出力部22A,22Bが装備されている。この信号入出力部22A,22Bには、それぞれ対応する庫内温度センサ20A,20Bからの入力線23A,23B、電磁弁18A,18Bへの出力線24A,24B、及び圧縮機11への出力線25A,25Bが接続されている。また、両信号入出力部22A,22B間は、双方向通信可能に通信線27で接続されている。したがって信号入出力部22A,22Bは、本願の通信部をも兼ねている。
一方、後記するような制御を行うプログラムを格納した制御部30が設けられ、上記した両信号入出力部22A,22Bと接続されている。
Each refrigerator 10A, 10B is equipped with signal input / output units 22A, 22B, respectively. The signal input / output units 22A and 22B include input lines 23A and 23B from the corresponding internal temperature sensors 20A and 20B, output lines 24A and 24B to the electromagnetic valves 18A and 18B, and output lines to the compressor 11, respectively. 25A and 25B are connected. The signal input / output units 22A and 22B are connected by a communication line 27 so as to be capable of bidirectional communication. Therefore, the signal input / output units 22A and 22B also serve as the communication unit of the present application.
On the other hand, a control unit 30 storing a program for performing control as described later is provided and connected to both the signal input / output units 22A and 22B.

先に、両冷蔵庫10A,10Bの庫内温度をほぼ設定温度に維持するコントロール運転の際の動作を、図2のタイミングチャートによって説明する。
基本的な動作としては、第1冷蔵庫10Aと第2冷蔵庫10Bのいずれも、温度センサ20A,20Bで検知された庫内温度が、設定温度よりも所定値高い上限温度に上昇したら、対応する電磁弁18A,18Bがオン(開放)され、逆に設定温度よりも所定値低い下限温度に下降したら、電磁弁18A,18Bがオフ(閉鎖)される。電磁弁18A,18Bのいずれか一方がオンされることに伴って圧縮機11がオン(起動)され、両電磁弁18A,18Bがともにオフになったところで圧縮機11がオフ(停止)される。
First, the operation at the time of the control operation for maintaining the inside temperatures of the refrigerators 10A and 10B at substantially the set temperature will be described with reference to the timing chart of FIG.
As a basic operation, in both the first refrigerator 10A and the second refrigerator 10B, if the internal temperature detected by the temperature sensors 20A and 20B rises to an upper limit temperature higher than the set temperature by a predetermined value, the corresponding electromagnetic When the valves 18A and 18B are turned on (opened) and conversely fall to a lower limit temperature lower than the set temperature by a predetermined value, the electromagnetic valves 18A and 18B are turned off (closed). When either one of the solenoid valves 18A and 18B is turned on, the compressor 11 is turned on (started), and when both the solenoid valves 18A and 18B are turned off, the compressor 11 is turned off (stopped). .

ここで圧縮機11は、その保護のために20秒以上連続運転される。逆に一旦停止されたら、120秒は停止時間を取る。そのため各冷蔵庫10A,10Bにおいて、電磁弁18A,18Bがオフとなったら、対応する信号入出力部22A,22Bから、制御信号として、120秒間「H」信号が出力され、反対側の信号入出力部22A,22Bには「L」信号として入力される。この「L」信号が入力された側では、120秒の間電磁弁18A,18Bがオンされず、したがって圧縮機11もオン(起動)されない。   Here, the compressor 11 is continuously operated for 20 seconds or more for protection. Conversely, once it is stopped, it takes 120 seconds to stop. Therefore, when the solenoid valves 18A and 18B are turned off in the refrigerators 10A and 10B, the corresponding signal input / output units 22A and 22B output “H” signals as control signals for 120 seconds, and the opposite signal input / outputs. The parts 22A and 22B are input as “L” signals. On the side where the “L” signal is input, the solenoid valves 18A and 18B are not turned on for 120 seconds, and therefore the compressor 11 is not turned on (activated).

また、両電磁弁18A,18Bの一方がオフとなってから、制御信号「H」が出力されるまでにタイムラグができ、その隙を衝いて他方の電磁弁18A,18Bがオンすると、圧縮機11が一旦停止してから直ちに再起動する、いわゆる圧縮機11の瞬間停止現象を呈するため、それを避けるために、電磁弁18A,18Bがオフとなる前の1秒間に、制御信号「H」を出力するようにしている。言い換えると、庫内温度が下限温度に下降したときに制御信号「H」を出力し、1秒間遅延させて電磁弁18A,18Bをオフするようにしている。   In addition, there is a time lag from when one of the two solenoid valves 18A, 18B is turned off until the control signal “H” is output, and when the other solenoid valve 18A, 18B is turned on by striking the gap, the compressor In order to avoid this phenomenon, the control signal “H” is output for 1 second before the solenoid valves 18A and 18B are turned off. Is output. In other words, when the internal temperature falls to the lower limit temperature, the control signal “H” is output, and the solenoid valves 18A and 18B are turned off with a delay of 1 second.

図2のタイミングチャートに倣うと、第1冷蔵庫10Aの庫内温度が上限温度に上がると(タイミングt1)、第1電磁弁18Aがオンするとともに圧縮機11がオンし、第1冷却器14Aに冷媒が供給されて第1冷蔵庫10A内が冷却される。続いて、同様に第2冷蔵庫10Bの庫内温度が上限温度に上がると(タイミングt2)、第2電磁弁18Bがオンし、第2冷却器14Bにも冷媒が供給されて第2冷蔵庫10B内が冷却される。
そののち、第1冷蔵庫10Aの庫内温度が下限温度に下がると(タイミングt3)、第1冷蔵庫10A側から制御信号「H」が出され、その1秒後に第1電磁弁18Aがオフとなる(タイミングt4)。さらに120秒間「H」信号が出力される。同様に、第2冷蔵庫10Bの庫内温度が下限温度に下がると、第2冷蔵庫10B側から制御信号「H」が出され、その1秒後に第2電磁弁18Bがオフとなる(タイミングt5)。これに伴い、圧縮機11がオフとなって停止する。さらに120秒間「H」信号が出力される。
According to the timing chart of FIG. 2, when the internal temperature of the first refrigerator 10A rises to the upper limit temperature (timing t1), the first electromagnetic valve 18A is turned on, the compressor 11 is turned on, and the first cooler 14A is turned on. The refrigerant is supplied to cool the inside of the first refrigerator 10A. Subsequently, similarly, when the internal temperature of the second refrigerator 10B rises to the upper limit temperature (timing t2), the second electromagnetic valve 18B is turned on, and the refrigerant is also supplied to the second cooler 14B, so that the inside of the second refrigerator 10B. Is cooled.
After that, when the internal temperature of the first refrigerator 10A falls to the lower limit temperature (timing t3), a control signal “H” is issued from the first refrigerator 10A side, and the first electromagnetic valve 18A is turned off after 1 second. (Timing t4). Furthermore, an “H” signal is output for 120 seconds. Similarly, when the internal temperature of the second refrigerator 10B falls to the lower limit temperature, the control signal “H” is issued from the second refrigerator 10B side, and the second electromagnetic valve 18B is turned off 1 second later (timing t5). . Along with this, the compressor 11 is turned off and stopped. Furthermore, an “H” signal is output for 120 seconds.

それ以降、上記と同様の動作が繰り返される。ただ、両電磁弁18A,18Bが閉じて圧縮機11が停止したのち(タイミングt6)、120秒経過する前に、例えば先に第1電磁弁18Aが閉じた第1冷蔵庫10Aの庫内温度が上限温度まで上がったとしても(タイミングt7)、第1電磁弁18Aはオンされず、従って圧縮機11もオンされない。120秒経過して初めて第1電磁弁18Aがオンされ、併せて圧縮機11がオンする(タイミングt8)。
コントロール運転時には以上のような動作が繰り返されて、第1冷蔵庫10Aと第2冷蔵庫10Bの庫内温度が、それぞれほぼ設定温度に維持される。
Thereafter, the same operation as described above is repeated. However, after both the solenoid valves 18A and 18B are closed and the compressor 11 is stopped (timing t6), before the elapse of 120 seconds, for example, the internal temperature of the first refrigerator 10A in which the first solenoid valve 18A is closed first is Even if the temperature reaches the upper limit temperature (timing t7), the first electromagnetic valve 18A is not turned on, and therefore the compressor 11 is not turned on. The first solenoid valve 18A is turned on only after 120 seconds elapses, and the compressor 11 is also turned on (timing t8).
During the control operation, the above-described operation is repeated, and the internal temperatures of the first refrigerator 10A and the second refrigerator 10B are maintained substantially at the set temperatures.

さて本実施形態では、両冷蔵庫10A,10Bの庫内温度が高い状態から設定温度付近まで冷却する場合、すなわちプルダウン運転を行う場合に、圧縮機11が過負荷運転とならないような手段が講じられている。
そのため、プルダウン運転時には、上記のコントロール運転時とは別のプログラムで制御されるようになっている。
Now, in this embodiment, when cooling from the state where both the refrigerators 10A and 10B have a high internal temperature to the vicinity of the set temperature, that is, when performing pull-down operation, measures are taken to prevent the compressor 11 from being overloaded. ing.
Therefore, the pull-down operation is controlled by a program different from the control operation described above.

以下、プルダウン運転の際の動作を、図3のタイミングチャートによって説明する。
第1冷蔵庫10Aと第2冷蔵庫10Bのいずれか一方の庫内温度でも、上限温度よりもさらに所定値高いプルダウン温度を超えていたら、プルダウン運転用のプログラムが実行され、端的には、第1冷蔵庫10Aと第2冷蔵庫10Bに装備された第1電磁弁18Aと第2電磁弁18Bとが、最長でも10分間(正確には後記するように10分と2秒間)ずつ交互にオン(開放)される。
Hereinafter, the operation in the pull-down operation will be described with reference to the timing chart of FIG.
If the internal temperature of either one of the first refrigerator 10A and the second refrigerator 10B exceeds a pull-down temperature that is higher than the upper limit temperature by a predetermined value, a program for pull-down operation is executed. 10A and the first solenoid valve 18A and the second solenoid valve 18B equipped in the second refrigerator 10B are alternately turned on (opened) alternately for 10 minutes at the longest (more precisely, 10 minutes and 2 seconds as will be described later). The

このプログラムでは、上記したコントロール運転のときと同じく、圧縮機11は、保護のために20秒以上の連続運転と、120秒以上の停止時間が取られる。そのため既述したと同様に、電磁弁18A,18Bがオフとなったら、対応する信号入出力部22A,22Bから制御信号「H」が120秒間出力され、それに伴い反対側の信号入出力部22A,22Bには「L」信号として入力され、その間対応する電磁弁18A,18Bがオンすることが規制される。また、圧縮機11の瞬間停止を防止するために、電磁弁18A,18Bがオフとなる前の1秒間(以下、後の1秒間という)、制御信号「H」が出力されることも同様である。   In this program, as in the control operation described above, the compressor 11 takes a continuous operation of 20 seconds or more and a stop time of 120 seconds or more for protection. Therefore, as described above, when the solenoid valves 18A and 18B are turned off, the control signal “H” is output from the corresponding signal input / output units 22A and 22B for 120 seconds, and accordingly, the opposite signal input / output unit 22A. , 22B is input as an “L” signal, and the corresponding solenoid valves 18A, 18B are restricted from being turned on during that time. In addition, in order to prevent the instantaneous stop of the compressor 11, the control signal “H” is output for 1 second before the solenoid valves 18A and 18B are turned off (hereinafter, referred to as the subsequent 1 second). is there.

それに加え、プルダウン運転用のプログラムでは、各電磁弁18A,18Bがオンしている間、対応する信号入出力部22A,22Bから制御信号「H」が出力され、それに伴い反対側の信号入出力部22A,22Bには「L」信号として入力され、その間対応する電磁弁18A,18Bがオンすることが規制される。ただし、電磁弁18A,18Bがオフとなる2秒前からの1秒間(以下、先の1秒間という)、制御信号「L」が出力される。それに伴い反対側の信号入出力部22A,22Bには「H」信号として入力され、その間、対応する電磁弁18A,18Bがオンすることが可能とされる。このとき電磁弁18A,18Bがオンする条件としては、対応する冷蔵庫10A,10Bの庫内温度が上限温度以上にあることである。   In addition, in the program for pull-down operation, while each solenoid valve 18A, 18B is on, the control signal “H” is output from the corresponding signal input / output unit 22A, 22B. The parts 22A and 22B are input as “L” signals, and the corresponding solenoid valves 18A and 18B are restricted from being turned on during that time. However, the control signal “L” is output for 1 second (hereinafter referred to as the previous 1 second) from 2 seconds before the electromagnetic valves 18A and 18B are turned off. Accordingly, “H” signals are input to the signal input / output units 22A and 22B on the opposite side, and during that time, the corresponding solenoid valves 18A and 18B can be turned on. At this time, the condition that the electromagnetic valves 18A and 18B are turned on is that the internal temperature of the corresponding refrigerators 10A and 10B is equal to or higher than the upper limit temperature.

なお、一方の電磁弁18A,18Bがオフとなる前における先の1秒間において、反対側の冷蔵庫10A,10Bの庫内温度が上限温度未満であったり、あるいは除霜運転中であると、対応する電磁弁18A,18Bがオンしないため、一方の電磁弁18A,18Bがオフとなることに伴って圧縮機11がオフとなるのであるが、この場合も、120秒の制御信号「H」が出力されるまでの隙に他方の電磁弁18A,18Bがオンすると、同じく圧縮機11の瞬間停止現象を呈するため、それを避けるために、後の1秒間の制御信号「H」を出力することが有効となる。   In addition, in the previous 1 second before one solenoid valve 18A, 18B is turned off, if the inside temperature of the refrigerators 10A, 10B on the opposite side is lower than the upper limit temperature or the defrosting operation is in progress Since the solenoid valves 18A and 18B are not turned on, the compressor 11 is turned off when one of the solenoid valves 18A and 18B is turned off. In this case as well, the control signal “H” for 120 seconds is output. If the other solenoid valve 18A, 18B is turned on until the time until it is output, the compressor 11 will also exhibit an instantaneous stop phenomenon, and in order to avoid it, the subsequent control signal “H” for 1 second is output. Becomes effective.

プルダウン運転時の制御を、図3のタイミングチャートによって説明する。プルダウン運転時には、例えば先に第1冷蔵庫10Aの第1電磁弁18Aが、後に第2冷蔵庫10Bの第2電磁弁18Bがオンするように定められる。
庫内温度条件からプルダウン運転用のプログラムが実行されると、まず、電源がオンされたところで(タイミングT1)、第1冷蔵庫10A側の信号入出力部22Aから制御信号「H」が出力され、120秒経過すると(タイミングT2)、第1電磁弁18Aがオンするとともに圧縮機11がオンし、第1冷却器14Aに冷媒が供給されて第1冷蔵庫10A内が冷却される。制御信号「H」は継続して出力される。
Control during pull-down operation will be described with reference to the timing chart of FIG. During the pull-down operation, for example, it is determined that the first electromagnetic valve 18A of the first refrigerator 10A is turned on first, and the second electromagnetic valve 18B of the second refrigerator 10B is turned on later.
When the program for pull-down operation is executed from the internal temperature condition, first, when the power is turned on (timing T1), the control signal “H” is output from the signal input / output unit 22A on the first refrigerator 10A side, When 120 seconds elapse (timing T2), the first electromagnetic valve 18A is turned on, the compressor 11 is turned on, the refrigerant is supplied to the first cooler 14A, and the inside of the first refrigerator 10A is cooled. The control signal “H” is continuously output.

第1冷蔵庫10Aの庫内温度が未だ上限温度より高くても、第1電磁弁18Aがオンしてから10分間が経過すると(タイミングT3)、第1冷蔵庫10A側から制御信号「L」が1秒間(先の1秒間)出力され、それに伴い第2冷蔵庫10B側に制御信号「H」が入力される。このとき、第2冷蔵庫10Bの庫内温度が上限温度以上であれば、第2電磁弁18Bがオンし、併せて第2冷蔵庫10B側から制御信号「H」が継続して出力される。そののち、後の1秒間を経て第1電磁弁18Aがオフとなり(タイミングT4)、それからは第2冷却器14Bにのみ冷媒が供給されて第2冷蔵庫10B内のみが冷却される。   Even if the internal temperature of the first refrigerator 10A is still higher than the upper limit temperature, when 10 minutes have passed since the first electromagnetic valve 18A was turned on (timing T3), the control signal “L” is 1 from the first refrigerator 10A side. Is output for one second (the previous one second), and accordingly, the control signal “H” is input to the second refrigerator 10B side. At this time, if the internal temperature of the second refrigerator 10B is equal to or higher than the upper limit temperature, the second electromagnetic valve 18B is turned on, and the control signal “H” is continuously output from the second refrigerator 10B side. After that, the first electromagnetic valve 18A is turned off after the next one second (timing T4), and then the refrigerant is supplied only to the second cooler 14B and only the inside of the second refrigerator 10B is cooled.

第2電磁弁18Bがオンしてから10分間が経過するか、あるいは第2冷蔵庫10Bの庫内温度が上限温度未満に下がると(タイミングT5)、第2冷蔵庫10B側から制御信号「L」が1秒間(先の1秒間)出力され、それに伴い第1冷蔵庫10A側に制御信号「H」が入力される。このとき、第1冷蔵庫10Aの庫内温度が上限温度以上であれば、第1電磁弁18Aがオンし、併せて第1冷蔵庫10A側から制御信号「H」が継続して出力される。そののち、後の1秒間を経て第2電磁弁18Bがオフとなり(タイミングT6)、それからは第1冷却器14Aにのみ冷媒が供給されて第1冷蔵庫10A内のみが冷却される。   When 10 minutes have elapsed after the second electromagnetic valve 18B is turned on, or when the internal temperature of the second refrigerator 10B falls below the upper limit temperature (timing T5), the control signal “L” is sent from the second refrigerator 10B side. The signal is output for one second (the previous one second), and accordingly, the control signal “H” is input to the first refrigerator 10A side. At this time, if the internal temperature of the first refrigerator 10A is equal to or higher than the upper limit temperature, the first electromagnetic valve 18A is turned on, and the control signal “H” is continuously output from the first refrigerator 10A side. After that, the second electromagnetic valve 18B is turned off after the next one second (timing T6), and then the refrigerant is supplied only to the first cooler 14A and only the first refrigerator 10A is cooled.

そののち、第1冷蔵庫10Aの庫内温度が上限温度まで下がると(タイミングT7)、第1冷蔵庫10A側から制御信号「L」が1秒間(先の1秒間)出力され、それに伴い第2冷蔵庫10B側に制御信号「H」が入力される。このとき、第2冷蔵庫10Bの庫内温度が上限温度未満であれば、第2電磁弁18Bはオフのままである。そののち、後の1秒間を経て第1電磁弁18Aもオフとなり、圧縮機11も停止する。両電磁弁18A,18Bが併せてオフとなったことを以て、プルダウン運転が終了する。
その後は、120秒の圧縮機11の停止時間が取られたのち、既述したコントロール運転が行われる。
After that, when the internal temperature of the first refrigerator 10A falls to the upper limit temperature (timing T7), the control signal “L” is output from the first refrigerator 10A side for 1 second (previous 1 second), and accordingly the second refrigerator The control signal “H” is input to the 10B side. At this time, if the internal temperature of the second refrigerator 10B is lower than the upper limit temperature, the second electromagnetic valve 18B remains off. After that, the first electromagnetic valve 18A is also turned off after the subsequent one second, and the compressor 11 is also stopped. The pull-down operation ends when both the solenoid valves 18A and 18B are turned off together.
Thereafter, after the compressor 11 has been stopped for 120 seconds, the control operation described above is performed.

以上のように本実施形態によれば、プルダウン運転を行う必要がある場合には、第1電磁弁18Aと第2電磁弁18Bとが交互に開放可能とされ、すなわち第1冷却器14Aと第2冷却器14Bとに交互に冷媒を流通させることから、圧縮機11が過負荷運転をすることが回避される。そのため圧縮機11は、保護装置で停止されることなくその運転が担保され、ひいては各冷蔵庫10A,10Bにおけるプルダウン冷却を確実に行うことができる。   As described above, according to the present embodiment, when it is necessary to perform a pull-down operation, the first electromagnetic valve 18A and the second electromagnetic valve 18B can be opened alternately, that is, the first cooler 14A and the first cooler 14A. Since the refrigerant is circulated alternately to the two coolers 14B, the compressor 11 is prevented from being overloaded. Therefore, the operation of the compressor 11 is ensured without being stopped by the protective device, and as a result, pull-down cooling can be reliably performed in the refrigerators 10A and 10B.

<他の実施形態>
本発明は上記記述及び図面によって説明した実施形態に限定されるものではなく、例えば次のような実施形態も本発明の技術的範囲に含まれ、さらに、下記以外にも要旨を逸脱しない範囲内で種々変更して実施することができる。
(1)上記実施形態では、プルダウン冷却の制御に入るトリガとなる冷却負荷が所定以上であることを、少なくとも一方の冷蔵庫の庫内温度が上限温度よりも所定値大きいプルダウン温度以上であることを以て判断したが、この他にも、両冷蔵庫の庫内温度がプルダウン温度以上であるとか、プルダウン温度に代えて上限温度を用いるといったように、条件等に応じて適当なものを設定することができる。
<Other embodiments>
The present invention is not limited to the embodiments described with reference to the above description and drawings. For example, the following embodiments are also included in the technical scope of the present invention, and further, within the scope not departing from the gist of the invention other than the following. Various modifications can be made.
(1) In the above embodiment, the cooling load serving as a trigger for entering the pull-down cooling control is equal to or higher than a predetermined value, and the internal temperature of at least one refrigerator is equal to or higher than the pull-down temperature higher than the upper limit temperature by a predetermined value. In addition to this, it is possible to set an appropriate one according to the conditions such as the inside temperature of both refrigerators being equal to or higher than the pull-down temperature or using the upper limit temperature instead of the pull-down temperature. .

(2)プルダウン運転において電磁弁が連続開放される時間を最大10分としたのは一例であって、他の適当な時間を設定してもよい。
(3)両信号入出力部を共通として通信機能は敢えて備えないようにしてもよく、そのようなものも本発明の技術的範囲に含まれる。
(4)本発明は、1台の冷凍装置で3以上の複数台の貯蔵庫を冷却する形式の冷却貯蔵装置にも、同様に適用することが可能である。
(2) In the pull-down operation, the time for which the solenoid valve is continuously opened is set to 10 minutes at a maximum, and other appropriate time may be set.
(3) Both signal input / output sections may be shared so that no communication function is provided, and such a structure is also included in the technical scope of the present invention.
(4) The present invention can be similarly applied to a cooling storage device in which three or more storages are cooled by one refrigeration device.

本発明の一実施形態のシステムブロック図System block diagram of one embodiment of the present invention コントロール運転時のタイミングチャートTiming chart during control operation プルダウン運転時並びにコントロール運転に移行する際のタイミングチャートTiming chart for pull-down operation and transition to control operation

符号の説明Explanation of symbols

10A,10B…冷蔵庫(貯蔵庫) 11…圧縮機 14A,14B…冷却器 15…冷凍装置 18A,18B…電磁弁 20A,20B…温度センサ(負荷検知手段) 22A,22B…信号入出力部(通信部) 30…制御部(弁駆動制御手段)   DESCRIPTION OF SYMBOLS 10A, 10B ... Refrigerator (storage) 11 ... Compressor 14A, 14B ... Cooler 15 ... Refrigeration apparatus 18A, 18B ... Solenoid valve 20A, 20B ... Temperature sensor (load detection means) 22A, 22B ... Signal input / output part (communication part) 30 ... Control unit (valve drive control means)

Claims (5)

圧縮機等を有する共通の冷凍装置に対し複数の冷却器が接続されてそれぞれ独立した貯蔵庫に配設され、各冷却器への冷媒の流通と停止とを制御することにより対応する各貯蔵庫がそれぞれ設定された温度に冷却されるようにした冷却貯蔵装置において、
前記貯蔵庫に係る冷却負荷が所定以上である場合には、同時に冷媒が流通される冷却器の数を制限し、かつ冷媒が流通可能とされる冷却器を順次に交替させるように制御することを特徴とする冷却貯蔵装置の稼働制御方法。
A plurality of coolers are connected to a common refrigeration apparatus having a compressor or the like and are arranged in independent storages, and each corresponding storage is controlled by controlling the circulation and stoppage of the refrigerant to each cooler. In a cooling storage device that is cooled to a set temperature,
When the cooling load related to the storage is greater than or equal to a predetermined value, the number of coolers through which the refrigerant is circulated is restricted at the same time, and the coolers in which the refrigerant can be circulated are sequentially controlled. An operation control method for a cooling storage device.
圧縮機等を有する共通の冷凍装置に対し複数の冷却器がそれぞれ電磁弁を介して接続され、各冷却器が独立した貯蔵庫に配設されており、各貯蔵庫では、庫内温度を検知する温度センサの出力に基づいて対応する電磁弁が開閉されて冷却器への冷媒の流通と停止とが制御されることにより、庫内が設定温度に維持されるようにした冷却貯蔵装置において、
前記貯蔵庫に係る冷却負荷を検知する負荷検知手段と、
この負荷検知手段の検知値が所定以上である場合には、同時に開放される電磁弁の数を制限し、かつ開放可能とされる電磁弁を順次に交替させる弁駆動制御手段とが設けられていることを特徴とする冷却貯蔵装置。
A plurality of coolers are connected to a common refrigeration apparatus having a compressor or the like via respective solenoid valves, and each cooler is disposed in an independent storage. In each storage, the temperature at which the internal temperature is detected. In the cooling storage device in which the corresponding solenoid valve is opened and closed based on the output of the sensor and the flow and stop of the refrigerant to the cooler are controlled, so that the interior is maintained at the set temperature.
Load detecting means for detecting a cooling load related to the storage; and
When the detection value of the load detection means is equal to or greater than a predetermined value, there is provided a valve drive control means for limiting the number of solenoid valves that are simultaneously opened and sequentially changing the solenoid valves that can be opened. A cooling storage device.
前記弁駆動制御手段は、一の電磁弁が開放している間は他の電磁弁が開放することを規制する制御信号を出力するとともに、前記一の電磁弁の開放時間が所定時間経過するか若しくはこの一の電磁弁を設けた貯蔵庫の庫内温度が所定以下に低下した場合に、前記制御信号を停止して他の電磁弁の開放を許容しその後に前記一の電磁弁を閉鎖する機能を備えていることを特徴とする請求項2記載の冷却貯蔵装置。 While the one solenoid valve is open, the valve drive control means outputs a control signal for restricting the opening of the other solenoid valve, and whether the opening time of the one solenoid valve elapses for a predetermined time. Alternatively, when the internal temperature of the storage provided with the one solenoid valve is lowered below a predetermined value, the control signal is stopped, the other solenoid valve is allowed to open, and then the one solenoid valve is closed. The cooling storage device according to claim 2, further comprising: 前記各貯蔵庫には通信部が設けられ、前記制御信号等が前記各通信部間で通信可能となっていることを特徴とする請求項3記載の冷却貯蔵装置。 The cooling storage device according to claim 3, wherein a communication unit is provided in each storage, and the control signal and the like can be communicated between the communication units. 前記冷却負荷が、前記温度センサの出力に基づいて定められることを特徴とする請求項2ないし請求項4のいずれかに記載の冷却貯蔵装置。 The cooling storage device according to any one of claims 2 to 4, wherein the cooling load is determined based on an output of the temperature sensor.
JP2003373588A 2003-10-31 2003-10-31 Cooling storage device and operation control method therefor Pending JP2005134091A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003373588A JP2005134091A (en) 2003-10-31 2003-10-31 Cooling storage device and operation control method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003373588A JP2005134091A (en) 2003-10-31 2003-10-31 Cooling storage device and operation control method therefor

Publications (1)

Publication Number Publication Date
JP2005134091A true JP2005134091A (en) 2005-05-26

Family

ID=34649571

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003373588A Pending JP2005134091A (en) 2003-10-31 2003-10-31 Cooling storage device and operation control method therefor

Country Status (1)

Country Link
JP (1) JP2005134091A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010071480A (en) * 2008-09-16 2010-04-02 Mitsubishi Electric Corp Refrigerator
WO2011134467A3 (en) * 2010-04-27 2012-01-12 Danfoss A/S A method for operating a vapour compression system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010071480A (en) * 2008-09-16 2010-04-02 Mitsubishi Electric Corp Refrigerator
WO2011134467A3 (en) * 2010-04-27 2012-01-12 Danfoss A/S A method for operating a vapour compression system
CN103097833A (en) * 2010-04-27 2013-05-08 丹福斯有限公司 A method for operating a vapour compression system
US9243819B2 (en) 2010-04-27 2016-01-26 Danfoss A/S Method for operating a vapour compression system

Similar Documents

Publication Publication Date Title
EP3144604B1 (en) Cooling system with low temperature load
US7441413B2 (en) Refrigerator and control method thereof
JP6545252B2 (en) Refrigeration cycle device
JP2007315702A (en) Freezer
EP3132212B1 (en) Refrigerator and method of controlling the same
JP7105933B2 (en) Outdoor unit of refrigerating device and refrigerating device provided with the same
US11384961B2 (en) Cooling system
JP2007292458A (en) Control device of refrigerator-freezer
US10473388B2 (en) Refrigerator and method for controlling constant temperature thereof
KR100726456B1 (en) Refrigerator
JP2015152266A (en) air-cooled heat pump unit
JP2008267700A (en) Cooling and heating device
JP2005134091A (en) Cooling storage device and operation control method therefor
JP2007139244A (en) Refrigeration device
JP5897215B1 (en) refrigerator
US20050210898A1 (en) Refrigerator and control method thereof
JP2013053801A (en) Refrigerator
JP2013117360A (en) Air conditioning device and method
KR20090043991A (en) Hot-line apparatus of refrigerator
KR200309880Y1 (en) A direct cooling-typed refrigerator
KR101386474B1 (en) Cooling apparatus of refrigerator and controlling method thereof
JP2008052484A (en) Automatic vending machine
JP2009103394A (en) Refrigerator for land transportation, and operation control method of refrigerator for land transportation
KR102729520B1 (en) Air conditioner system comprising refrigerant cycle circuitry for oil flow blocking
JP2010276238A (en) Refrigerating cycle device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060921

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070511

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090217

A521 Written amendment

Effective date: 20090417

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090611

A521 Written amendment

Effective date: 20090807

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090910