Nothing Special   »   [go: up one dir, main page]

JP2005132767A - Method for producing purine compound - Google Patents

Method for producing purine compound Download PDF

Info

Publication number
JP2005132767A
JP2005132767A JP2003370045A JP2003370045A JP2005132767A JP 2005132767 A JP2005132767 A JP 2005132767A JP 2003370045 A JP2003370045 A JP 2003370045A JP 2003370045 A JP2003370045 A JP 2003370045A JP 2005132767 A JP2005132767 A JP 2005132767A
Authority
JP
Japan
Prior art keywords
formula
group
tri
purine compound
ribofuranosylpurine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003370045A
Other languages
Japanese (ja)
Inventor
Taketo Hayashi
健人 林
Wei Zhu
ウェイ ズー
Jiyou Xu
ジヨウ ク
Rujian Ma
ルジャン マ
Ge Li
ゲ リ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2003370045A priority Critical patent/JP2005132767A/en
Priority to PCT/JP2004/016467 priority patent/WO2005042557A1/en
Publication of JP2005132767A publication Critical patent/JP2005132767A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H19/00Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof
    • C07H19/02Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof sharing nitrogen
    • C07H19/04Heterocyclic radicals containing only nitrogen atoms as ring hetero atom
    • C07H19/16Purine radicals
    • C07H19/167Purine radicals with ribosyl as the saccharide radical
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Saccharide Compounds (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a purine compound of formula(3) ( wherein, X is a halogen atom; Y is H, a halogen atom or amino; R<SP>2</SP>is an acyl or alkoxycarbonyl; and R<SP>3</SP>and R<SP>4</SP>are each a protecting group ) in higher yield without using any reagents of large environmental burden. <P>SOLUTION: The method for producing the purine compound of formula(3) comprises carrying out a reaction between a purine compound of formula(1)( wherein, X is a halogen atom; and Y is H, a halogen atom or amino ) and a compound of formula(2)( wherein, R<SP>1</SP>is an acyl or alkoxycarbonyl; and R<SP>2</SP>, R<SP>3</SP>and R<SP>4</SP>are each the same as mentioned above ) in a nitrile-based solvent or ester-based solvent in the presence of a silylating agent and a Lewis acid. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、プリン化合物の製造方法に関する。   The present invention relates to a method for producing a purine compound.

式(3)

Figure 2005132767
(式中、Xはハロゲン原子を表わし、Yは水素原子、ハロゲン原子またはアミノ基を表わし、R2はアシル基またはアルコキシカルボニル基を表わし、R3およびR4はそれぞれ同一または相異なって、保護基を表わす。)
で示されるプリン化合物は、医薬中間体として重要な化合物であり(例えば非特許文献1参照。)、その製造方法としては、例えばグアノシンを出発原料とする方法が知られている(例えば非特許文献1参照。)。しかしながら、多段階の反応であり、収率の面で必ずしも十分満足し得るものではなく、しかも、例えば四塩化炭素や亜硝酸n−ペンチル等の環境負荷の大きい試剤を大過剰量用いており、労働衛生面や環境面からも改善が望まれていた。 Formula (3)
Figure 2005132767
(In the formula, X represents a halogen atom, Y represents a hydrogen atom, a halogen atom or an amino group, R 2 represents an acyl group or an alkoxycarbonyl group, and R 3 and R 4 are the same or different, Represents a group.)
Is an important compound as a pharmaceutical intermediate (see, for example, Non-patent Document 1), and as its production method, for example, a method using guanosine as a starting material is known (for example, Non-patent Document 1). 1). However, it is a multi-stage reaction, which is not always satisfactory in terms of yield, and uses a large excess of a reagent with a large environmental load, such as carbon tetrachloride and n-pentyl nitrite, Improvements were also desired in terms of occupational health and the environment.

Synthesis,670(1982)Synthesis, 670 (1982)

このような状況のもと、本発明者らは、より収率よく、また、環境負荷の大きな試剤を用いることなく、目的とする上記式(3)で示されるプリン化合物を製造する方法を開発すべく検討したところ、入手が容易な式(1)

Figure 2005132767
(式中、Xはハロゲン原子を表わし、Yは水素原子、ハロゲン原子またはアミノ基を表わす。)
で示されるプリン類を原料とし、かかるプリン類と式(2)
Figure 2005132767
(式中、R1およびR2はそれぞれ同一または相異なって、アシル基またはアルコキシカルボニル基を表わし、R3およびR4はそれぞれ同一または相異なって、保護基を表わす。)
で示される化合物とを、ニトリル系溶媒またはエステル系溶媒中、シリル化剤およびルイス酸の存在下に反応させることにより、目的とする上記式(3)で示されるプリン化合物が収率よく得られることを見出し、本発明に至った。 Under such circumstances, the present inventors have developed a method for producing the target purine compound represented by the above formula (3) without using a reagent with a higher yield and a larger environmental load. As soon as possible, formula (1) is easy to obtain
Figure 2005132767
(In the formula, X represents a halogen atom, and Y represents a hydrogen atom, a halogen atom or an amino group.)
And the puddings represented by formula (2)
Figure 2005132767
(In the formula, R 1 and R 2 are the same or different and each represents an acyl group or an alkoxycarbonyl group, and R 3 and R 4 are the same or different and each represents a protecting group.)
Is reacted in the presence of a silylating agent and a Lewis acid in a nitrile solvent or an ester solvent to obtain the target purine compound represented by the above formula (3) in a high yield. As a result, they have reached the present invention.

すなわち本発明は、式(1)

Figure 2005132767
(式中、Xはハロゲン原子を表わし、Yは水素原子、ハロゲン原子またはアミノ基を表わす。)
で示されるプリン類と式(2)
Figure 2005132767
(式中、R1およびR2はそれぞれ同一または相異なって、アシル基またはアルコキシカルボニル基を表わし、R3およびR4はそれぞれ同一または相異なって、保護基を表わす。)
で示される化合物とを、ニトリル系溶媒またはエステル系溶媒中、シリル化剤およびルイス酸の存在下に反応させることを特徴とする式(3)
Figure 2005132767
(式中、X、Y、R2、R3およびR4は上記と同一の意味を表わす。)
で示されるプリン化合物の製造方法を提供するものである。 That is, the present invention provides the formula (1)
Figure 2005132767
(In the formula, X represents a halogen atom, and Y represents a hydrogen atom, a halogen atom or an amino group.)
Purines and formula (2)
Figure 2005132767
(In the formula, R 1 and R 2 are the same or different and each represents an acyl group or an alkoxycarbonyl group, and R 3 and R 4 are the same or different and each represents a protecting group.)
The compound represented by formula (3) is reacted in a nitrile solvent or ester solvent in the presence of a silylating agent and a Lewis acid.
Figure 2005132767
(In the formula, X, Y, R 2 , R 3 and R 4 have the same meaning as described above.)
The purine compound shown by these is provided.

本発明によれば、環境負荷の大きな試剤を用いることなく、より収率よくプリン化合物を製造することができるため、工業的に有利である。   According to the present invention, a purine compound can be produced with higher yield without using a reagent having a large environmental load, which is industrially advantageous.

式(1)

Figure 2005132767
で示されるプリン類(以下、プリン類(1)と略記する。)の式中、Xはハロゲン原子を表わし、Yは水素原子、ハロゲン原子またはアミノ基を表わす。ハロゲン原子としては、例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられる。 Formula (1)
Figure 2005132767
In the formula of purines (hereinafter abbreviated as purines (1)), X represents a halogen atom, and Y represents a hydrogen atom, a halogen atom or an amino group. Examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.

かかるプリン類(1)としては、例えば6−フルオロプリン、6−クロロプリン、2,6−ジクロロプリン、2−アミノ−6−クロロプリン、2−アミノ−6−ヨードプリン等が挙げられる。かかるプリン類(1)は、市販されているものを用いてもよいし、例えば特開平5−170766号公報、特開平6−157530号公報、特開平11−60575号公報、特開2002−88082号公報等の公知の方法に準じて製造したものを用いてもよい。   Examples of such purines (1) include 6-fluoropurine, 6-chloropurine, 2,6-dichloropurine, 2-amino-6-chloropurine, 2-amino-6-iodopurine and the like. As the puddings (1), commercially available ones may be used. For example, JP-A-5-170766, JP-A-6-157530, JP-A-11-60575, JP-A-2002-88082. You may use what was manufactured according to well-known methods, such as gazette.

式(2)

Figure 2005132767
で示される化合物(以下、化合物(2)と略記する。)の式中、R1およびR2はそれぞれ同一または相異なって、アシル基またはアルコキシカルボニル基を表わす。アシル基としては、例えばアセチル基等の脂肪族アシル基、例えばベンゾイル基等の芳香族アシル基等が挙げられる。アルコキシカルボニル基としては、例えばメトキシカルボニル基、エトキシカルボニル基、n−プロポキシカルボニル基、イソプロポキシカルボニル基、n−ブトキシカルボニル基、tert−ブトキシカルボニル基等の炭素数1〜4の低級アルコキシ基とカルボニル基とから構成される基等が挙げられる。また、R3およびR4はそれぞれ同一または相異なって、保護基を表わす。保護基としては、水酸基の保護基として使用可能なものであればよく、例えばベンジル基等のアラルキル基、例えばアセチル基等の脂肪族アシル基、例えばベンゾイル基等の芳香族アシル基、例えばメトキシカルボニル基等のアルコキシカルボニル基、例えばトリメチルシリル基等の三置換シリル基、例えばメトキシメチル基等のアルコキシアルキル基等が挙げられ、アラルキル基、脂肪族アシル基、芳香族アシル基が好ましい。 Formula (2)
Figure 2005132767
In the formula (hereinafter abbreviated as compound (2)), R 1 and R 2 are the same or different and each represents an acyl group or an alkoxycarbonyl group. Examples of the acyl group include an aliphatic acyl group such as an acetyl group, and an aromatic acyl group such as a benzoyl group. Examples of the alkoxycarbonyl group include lower alkoxy groups having 1 to 4 carbon atoms such as methoxycarbonyl group, ethoxycarbonyl group, n-propoxycarbonyl group, isopropoxycarbonyl group, n-butoxycarbonyl group, tert-butoxycarbonyl group, and carbonyl. And a group composed of a group. R 3 and R 4 are the same or different and each represents a protecting group. The protecting group is not particularly limited as long as it can be used as a protecting group for a hydroxyl group. For example, an aralkyl group such as a benzyl group, an aliphatic acyl group such as an acetyl group, an aromatic acyl group such as a benzoyl group, for example, methoxycarbonyl, etc. An alkoxycarbonyl group such as a trimethylsilyl group, an alkoxyalkyl group such as a methoxymethyl group, and the like, and an aralkyl group, an aliphatic acyl group, and an aromatic acyl group are preferred.

かかる化合物(2)としては、例えばテトラ−O−アセチル−D−リボフラノース、テトラ−O−ベンゾイル−D−リボフラノース、テトラ−O−(メトキシカルボニル)−D−リボフラノース、テトラ−O−(tert−ブトキシカルボニルオキシ)−D−リボフラノース、1−O−アセチル−2,3,5−トリ−O−ベンゾイル−D−リボフラノース、1,2−ジ−O−アセチル−3,5−ジ−O−ベンジル−D−リボフラノース、テトラ−O−アセチル−L−リボフラノース、テトラ−O−ベンゾイル−L−リボフラノース、テトラ−O−(メトキシカルボニル)−L−リボフラノース、テトラ−O−(tert−ブトキシカルボニル)−L−リボフラノース等が挙げられる。かかる化合物(2)は、市販されているものを用いてもよいし、公知の方法に準じて製造したものを用いてもよい。   Examples of the compound (2) include tetra-O-acetyl-D-ribofuranose, tetra-O-benzoyl-D-ribofuranose, tetra-O- (methoxycarbonyl) -D-ribofuranose, tetra-O- ( tert-butoxycarbonyloxy) -D-ribofuranose, 1-O-acetyl-2,3,5-tri-O-benzoyl-D-ribofuranose, 1,2-di-O-acetyl-3,5-di -O-benzyl-D-ribofuranose, tetra-O-acetyl-L-ribofuranose, tetra-O-benzoyl-L-ribofuranose, tetra-O- (methoxycarbonyl) -L-ribofuranose, tetra-O- (Tert-butoxycarbonyl) -L-ribofuranose and the like. As the compound (2), a commercially available product may be used, or a compound produced according to a known method may be used.

本反応においては、プリン類(1)に対して、化合物(2)を1モル倍以上用いてもよいし、化合物(2)に対して、プリン類(1)を1モル倍以上用いてもよく、プリン類(1)および化合物(2)のコストや入手性、後処理面等を考慮して使用量を決めればよい。   In this reaction, compound (2) may be used in an amount of 1 mol or more with respect to purine (1), or purine (1) may be used in an amount of 1 mol or more with respect to compound (2). The amount used may be determined in consideration of the cost and availability of the purines (1) and the compound (2), the post-treatment surface, and the like.

シリル化剤としては、例えばN,O−ビス(トリメチルシリル)アセトアミド、ヘキサメチルジシラザン、トリメチルシリルクロリド等の単独または混合物が挙げられ、N,O−ビス(トリメチルシリル)アセトアミドが好ましい。かかるシリル化剤の使用量は、プリン類(1)に対して、通常0.8〜5モル倍である。   Examples of the silylating agent include N, O-bis (trimethylsilyl) acetamide, hexamethyldisilazane, trimethylsilyl chloride and the like, and N, O-bis (trimethylsilyl) acetamide is preferable. The usage-amount of this silylating agent is 0.8-5 mole times normally with respect to purines (1).

ルイス酸としては、例えばトリフルオロメタンスルホン酸トリメチルシリル、トリメチルシリルヨーダイド等が挙げられ、トリフルオロメタンスルホン酸トリメチルシリルが好ましい。かかるルイス酸は、通常市販されているものが用いられ、その使用量は、あまり多すぎると、不純物の副生が増加するため、プリン類(1)および化合物(2)のうちの使用量の少ない方に対して、通常0.005〜1モル倍、好ましくは0.01〜0.5モル倍である。   Examples of the Lewis acid include trimethylsilyl trifluoromethanesulfonate and trimethylsilyl iodide, and trimethylsilyl trifluoromethanesulfonate is preferable. As such Lewis acid, a commercially available product is used, and if the amount used is too large, the amount of impurities by-product increases, so that the amount of the purine (1) and the compound (2) used is less than the amount used. The amount is usually 0.005 to 1 mol times, preferably 0.01 to 0.5 mol times with respect to the smaller one.

本発明は、プリン類(1)と化合物(2)を、ニトリル系溶媒またはエステル系溶媒(以下、溶媒と略記する。)中、シリル化剤およびルイス酸の存在下に反応させるものであり、これにより、収率よく式(3)

Figure 2005132767
(式中、X、Y、R2、R3およびR4は上記と同一の意味を表わす。)
で示されるプリン化合物(以下、プリン化合物(3)と略記する。)を製造することができる。 In the present invention, the purines (1) and the compound (2) are reacted in a nitrile solvent or an ester solvent (hereinafter abbreviated as a solvent) in the presence of a silylating agent and a Lewis acid. Thereby, the formula (3) can be obtained with good yield.
Figure 2005132767
(In the formula, X, Y, R 2 , R 3 and R 4 have the same meaning as described above.)
Can be produced (hereinafter abbreviated as purine compound (3)).

ニトリル系溶媒としては、例えばアセトニトリル、プロピオニトリル等の親水性ニトリル系溶媒が挙げられ、エステル系溶媒としては、例えば酢酸エチル、酢酸プロピル等が挙げられる。反応後の処理が容易で、目的とするプリン化合物(3)を結晶として取り出しやすいという点で、親水性ニトリル系溶媒が好ましく、なかでも、アセトニトリルが好ましい。   Examples of the nitrile solvent include hydrophilic nitrile solvents such as acetonitrile and propionitrile, and examples of the ester solvent include ethyl acetate and propyl acetate. A hydrophilic nitrile solvent is preferable in that the treatment after the reaction is easy and the target purine compound (3) can be easily taken out as crystals, and acetonitrile is particularly preferable.

溶媒の使用量は、プリン類(1)に対して、通常1〜20重量倍である。   The usage-amount of a solvent is 1-20 weight times normally with respect to purines (1).

本反応は、通常プリン類(1)、化合物(2)、シリル化剤およびルイス酸を、溶媒中で混合することにより実施され、その混合順序は特に制限されず、例えばプリン類(1)、化合物(2)、シリル化剤、ルイス酸および溶媒を一括混合してもよいし、プリン類(1)、シリル化剤および溶媒を混合した後、化合物(2)およびルイス酸を加えてもよい。また、プリン類(1)、シリル化剤、化合物(2)および溶媒を混合した後、ルイス酸を加えてもよいし、プリン類(1)、シリル化剤、ルイス酸および溶媒を混合した後、化合物(2)を加えてもよい。収率および化合物(2)の安定性の点で、プリン類(1)、シリル化剤および溶媒を混合した後、化合物(2)およびルイス酸を加えることが好ましい。   This reaction is usually carried out by mixing purines (1), compound (2), silylating agent and Lewis acid in a solvent, and the mixing order is not particularly limited. For example, purines (1), Compound (2), silylating agent, Lewis acid and solvent may be mixed together, or after purine (1), silylating agent and solvent are mixed, compound (2) and Lewis acid may be added. . Further, after mixing the purines (1), the silylating agent, the compound (2) and the solvent, a Lewis acid may be added, or after the purines (1), the silylating agent, the Lewis acid and the solvent are mixed. Compound (2) may be added. From the viewpoint of yield and stability of the compound (2), it is preferable to add the compound (2) and Lewis acid after mixing the purines (1), the silylating agent and the solvent.

本反応は、常圧条件下で実施してもよいし、加圧条件下で実施してもよい。また、シリル化剤等の分解を抑えるため、例えば窒素ガス等の不活性ガス雰囲気下で実施することが好ましい。また、反応温度は、通常0〜150℃、好ましくは50〜150℃である。   This reaction may be carried out under normal pressure conditions or under pressurized conditions. Moreover, in order to suppress decomposition | disassembly of a silylating agent etc., it is preferable to implement in inert gas atmosphere, such as nitrogen gas, for example. Moreover, reaction temperature is 0-150 degreeC normally, Preferably it is 50-150 degreeC.

反応終了後、例えば反応液と水を混合した後、必要に応じて水に不溶の有機溶媒を加え、分液処理し、得られる有機層を濃縮処理することにより、プリン化合物(3)を取り出すことができる。原料であるプリン類(1)が反応液中に残存しているときには、反応液と水を混合し、中和処理した後、分液処理することが好ましい。中和処理は、通常反応液と水を混合した後、例えばアンモニア水、炭酸水素ナトリウム水溶液等のアルカリ水溶液を、中和処理後の処理液のpHが、通常7〜9の範囲になる量加えることにより実施される。なお、例えばアセトニトリル等の親水性ニトリル系溶媒を用いた場合には、反応終了後、反応液と水を混合することにより、通常目的とするプリン化合物(3)が結晶として析出するため、析出した結晶を、例えば濾過等の手段により、容易に取り出すことができる。この場合も、原料であるプリン類(1)が反応液中に残存しているときには、反応液と水を混合し、中和処理した後、濾過処理することが、得られるプリン化合物(3)の純度の点で好ましい。取り出したプリン化合物(3)は、例えば再結晶等の通常の精製手段によりさらに精製してもよい。水に不溶の有機溶媒としては、例えばトルエン、キシレン等の芳香族炭化水素系溶媒、例えばヘキサン、ヘプタン等の脂肪族炭化水素系溶媒等が挙げられる。   After completion of the reaction, for example, the reaction solution and water are mixed, and if necessary, an organic solvent insoluble in water is added, followed by liquid separation treatment, and concentration of the resulting organic layer to extract the purine compound (3). be able to. When the raw material purine (1) remains in the reaction solution, it is preferable to perform a liquid separation treatment after mixing the reaction solution with water and neutralizing. The neutralization treatment is usually performed by mixing the reaction solution and water, and then adding an aqueous alkali solution such as aqueous ammonia or sodium hydrogen carbonate solution in such an amount that the pH of the treatment solution after the neutralization treatment is usually in the range of 7-9. Is implemented. For example, when a hydrophilic nitrile solvent such as acetonitrile is used, since the purine compound (3) of interest is usually precipitated as a crystal by mixing the reaction solution and water after the completion of the reaction, it is precipitated. The crystal can be easily taken out by means such as filtration. Also in this case, when the raw material purine (1) remains in the reaction liquid, the reaction liquid and water are mixed, neutralized, and then filtered to obtain the purine compound (3). From the point of purity, it is preferable. The extracted purine compound (3) may be further purified by ordinary purification means such as recrystallization. Examples of the organic solvent insoluble in water include aromatic hydrocarbon solvents such as toluene and xylene, and aliphatic hydrocarbon solvents such as hexane and heptane.

なお、本反応においては、立体保持で反応が進行する。例えばプリン類(1)として2,6−ジクロロプリンを、化合物(2)としてテトラ−O−アセチル−D−リボフラノースを用いた場合は、2,6−ジクロロ−9β−(2’,3’,5’−トリ−O−アセチル)−D−リボフラノシルプリンが得られ、プリン類(1)として2,6−ジクロロプリンを、化合物(2)としてテトラ−O−アセチル−L−リボフラノースを用いた場合は、2,6−ジクロロ−9β−(2’,3’,5’−トリ−O−アセチル)−L−リボフラノシルプリンが得られる。   In this reaction, the reaction proceeds by steric retention. For example, when 2,6-dichloropurine is used as the purine (1) and tetra-O-acetyl-D-ribofuranose is used as the compound (2), 2,6-dichloro-9β- (2 ′, 3 ′ , 5'-tri-O-acetyl) -D-ribofuranosylpurine, 2,6-dichloropurine as purine (1), and tetra-O-acetyl-L-ribofuranose as compound (2) Is used, 2,6-dichloro-9β- (2 ′, 3 ′, 5′-tri-O-acetyl) -L-ribofuranosylpurine is obtained.

かくして得られるプリン化合物(3)としては、例えば6−フルオロ−9β−(2’,3’,5’−トリ−O−アセチル)−D−リボフラノシルプリン、6−クロロ−9β−(2’,3’,5’−トリ−O−アセチル)−D−リボフラノシルプリン、2,6−ジクロロ−9β−(2’,3’,5’−トリ−O−アセチル)−D−リボフラノシルプリン、2−アミノ−6−クロロ−9β−(2’,3’,5’−トリ−O−アセチル)−D−リボフラノシルプリン、2−アミノ−6−ヨード−9β−(2’,3’,5’−トリ−O−アセチル)−D−リボフラノシルプリン、2−ブロモ−6−クロロ−9β−(2’,3’,5’−トリ−O−アセチル)−D−リボフラノシルプリン、2−ヨード−6−クロロ−9β−(2’,3’,5’−トリ−O−アセチル)−D−リボフラノシルプリン、6−フルオロ−9β−(2’,3’,5’−トリ−O−ベンゾイル)−D−リボフラノシルプリン、6−クロロ−9β−(2’,3’,5’−トリ−O−ベンゾイル)−D−リボフラノシルプリン、2−フルオロ−6−クロロ−9β−(2’,3’,5’−トリ−O−アセチル)−D−リボフラノシルプリン、2,6−ジクロロ−9β−(2’,3’,5’−トリ−O−ベンゾイル)−D−リボフラノシルプリン、2−アミノ−6−クロロ−9β−(2’,3’,5’−トリ−O−ベンゾイル)−D−リボフラノシルプリン、2−アミノ−6−ヨード−9β−(2’,3’,5’−トリ−O−ベンゾイル)−D−リボフラノシルプリン、2−ブロモ−6−クロロ−9β−(2’,3’,5’−トリ−O−ベンゾイル)−D−リボフラノシルプリン、2−ヨード−6−クロロ−9β−(2’,3’,5’−トリ−O−ベンゾイル)−D−リボフラノシルプリン、   Examples of the purine compound (3) thus obtained include 6-fluoro-9β- (2 ′, 3 ′, 5′-tri-O-acetyl) -D-ribofuranosylpurine, 6-chloro-9β- (2 ', 3', 5'-tri-O-acetyl) -D-ribofuranosylpurine, 2,6-dichloro-9β- (2 ', 3', 5'-tri-O-acetyl) -D-ribo Furanosylpurine, 2-amino-6-chloro-9β- (2 ′, 3 ′, 5′-tri-O-acetyl) -D-ribofuranosylpurine, 2-amino-6-iodo-9β- (2 ', 3', 5'-tri-O-acetyl) -D-ribofuranosylpurine, 2-bromo-6-chloro-9β- (2 ', 3', 5'-tri-O-acetyl) -D Ribofuranosylpurine, 2-iodo-6-chloro-9β- (2 ′, 3 ′, 5′-tri-O— Cetyl) -D-ribofuranosylpurine, 6-fluoro-9β- (2 ′, 3 ′, 5′-tri-O-benzoyl) -D-ribofuranosylpurine, 6-chloro-9β- (2 ′, 3 ′, 5′-tri-O-benzoyl) -D-ribofuranosylpurine, 2-fluoro-6-chloro-9β- (2 ′, 3 ′, 5′-tri-O-acetyl) -D-ribo Furanosylpurine, 2,6-dichloro-9β- (2 ′, 3 ′, 5′-tri-O-benzoyl) -D-ribofuranosylpurine, 2-amino-6-chloro-9β- (2 ′, 3 ′, 5′-tri-O-benzoyl) -D-ribofuranosylpurine, 2-amino-6-iodo-9β- (2 ′, 3 ′, 5′-tri-O-benzoyl) -D-ribo Furanosylpurine, 2-bromo-6-chloro-9β- (2 ′, 3 ′, 5′-tri-O-be Benzoyl)-D-ribofuranosyl purines, 2-iodo-6-chloro -9β- (2 ', 3', 5'- tri -O- benzoyl)-D-ribofuranosyl purines,

6−フルオロ−9β−(2’,3’,5’−トリ−O−メトキシカルボニル)−D−リボフラノシルプリン、6−クロロ−9β−(2’,3’,5’−トリ−O−メトキシカルボニル)−D−リボフラノシルプリン、2,6−ジクロロ−9β−(2’,3’,5’−トリ−O−メトキシカルボニル)−D−リボフラノシルプリン、2−アミノ−6−クロロ−9β−(2’,3’,5’−トリ−O−メトキシカルボニル)−D−リボフラノシルプリン、2−アミノ−6−ヨード−9β−(2’,3’,5’−トリ−O−メトキシカルボニル)−D−リボフラノシルプリン、6−フルオロ−9β−(2’,3’,5’−トリ−O−tert−ブトキシカルボニル)−D−リボフラノシルプリン、6−クロロ−9β−(2’,3’,5’−トリ−O−tert−ブトキシカルボニル)−D−リボフラノシルプリン、2,6−ジクロロ−9β−(2’,3’,5’−トリ−O−tert−ブトキシカルボニル)−D−リボフラノシルプリン、2−アミノ−6−クロロ−9β−(2’,3’,5’−トリ−O−tert−ブトキシカルボニル)−D−リボフラノシルプリン、2−アミノ−6−ヨード−9β−(2’,3’,5’−トリ−O−tert−ブトキシカルボニル)−D−リボフラノシルプリン、2−ブロモ−6−クロロ−9β−(2’,3’,5’−トリ−O−tert−ブトキシカルボニル)−D−リボフラノシルプリン、2−ヨード−6−クロロ−9β−(2’,3’,5’−トリ−O−tert−ブトキシカルボニル)−D−リボフラノシルプリン、2,6−ジクロロ−9β−(2’−O−アセチル−3’,5’−ジ−O−ベンジル)−D−リボフラノシルプリン、2,6−ジクロロ−9β−(2’,3’,5’−トリ−O−ベンゾイル)−L−リボフラノシルプリン、2−アミノ−6−クロロ−9β−(2’,3’,5’−トリ−O−アセチル)−L−リボフラノシルプリン、2−ヨード−6−クロロ−9β−(2’,3’,5’−トリ−O−アセチル)−L−リボフラノシルプリン等が挙げられる。 6-Fluoro-9β- (2 ′, 3 ′, 5′-tri-O-methoxycarbonyl) -D-ribofuranosylpurine, 6-chloro-9β- (2 ′, 3 ′, 5′-tri-O -Methoxycarbonyl) -D-ribofuranosylpurine, 2,6-dichloro-9β- (2 ', 3', 5'-tri-O-methoxycarbonyl) -D-ribofuranosylpurine, 2-amino-6 -Chloro-9β- (2 ', 3', 5'-tri-O-methoxycarbonyl) -D-ribofuranosylpurine, 2-amino-6-iodo-9β- (2 ', 3', 5'- Tri-O-methoxycarbonyl) -D-ribofuranosylpurine, 6-fluoro-9β- (2 ′, 3 ′, 5′-tri-O-tert-butoxycarbonyl) -D-ribofuranosylpurine, 6- Chloro-9β- (2 ′, 3 ′, 5′-tri-Ot rt-butoxycarbonyl) -D-ribofuranosylpurine, 2,6-dichloro-9β- (2 ′, 3 ′, 5′-tri-O-tert-butoxycarbonyl) -D-ribofuranosylpurine, 2- Amino-6-chloro-9β- (2 ′, 3 ′, 5′-tri-O-tert-butoxycarbonyl) -D-ribofuranosylpurine, 2-amino-6-iodo-9β- (2 ′, 3 ', 5'-tri-O-tert-butoxycarbonyl) -D-ribofuranosylpurine, 2-bromo-6-chloro-9β- (2', 3 ', 5'-tri-O-tert-butoxycarbonyl) ) -D-ribofuranosylpurine, 2-iodo-6-chloro-9β- (2 ′, 3 ′, 5′-tri-O-tert-butoxycarbonyl) -D-ribofuranosylpurine, 2,6- Dichloro-9β- (2′- O-acetyl-3 ′, 5′-di-O-benzyl) -D-ribofuranosylpurine, 2,6-dichloro-9β- (2 ′, 3 ′, 5′-tri-O-benzoyl) -L Ribofuranosylpurine, 2-amino-6-chloro-9β- (2 ′, 3 ′, 5′-tri-O-acetyl) -L-ribofuranosylpurine, 2-iodo-6-chloro-9β- (2 ′, 3 ′, 5′-tri-O-acetyl) -L-ribofuranosylpurine and the like.

以下、実施例により本発明をさらに詳細に説明するが、本発明はこれら実施例に限定されない。   EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to these Examples.

実施例1
反応容器に、アセトニトリル50mL、2,6−ジクロロプリン1.9g、テトラ−O−アセチル−D−リボフラノース3.5gおよびN,O−ビス(トリメチルシリル)アセトアミド2gを加え、窒素雰囲気下で1時間還流させた。室温まで冷却した後、トリフルオロメタンスルホン酸トリメチルシリル0.1gを加え、6時間還流、反応させた。反応液を室温まで冷却し、飽和炭酸水素ナトリウム水溶液20mLおよび酢酸エチル50mLを加え、抽出処理した。得られた有機層を飽和食塩水30mLで2回洗浄処理した後、無水硫酸マグネシウムで乾燥させた。硫酸マグネシウムを濾別した後、減圧条件下で濃縮処理し、得られた濃縮残渣に酢酸エチル8mLを加え、再結晶させ、2,6−ジクロロ−9β−(2’,3’,5’−トリ−O−アセチル)−D−リボフラノシルプリン3.9gを得た。収率:88%。
Example 1
To a reaction vessel, 50 mL of acetonitrile, 1.9 g of 2,6-dichloropurine, 3.5 g of tetra-O-acetyl-D-ribofuranose and 2 g of N, O-bis (trimethylsilyl) acetamide were added, and the reaction was performed for 1 hour under a nitrogen atmosphere. Refluxed. After cooling to room temperature, 0.1 g of trimethylsilyl trifluoromethanesulfonate was added, and the mixture was refluxed and reacted for 6 hours. The reaction mixture was cooled to room temperature, extracted with 20 mL of saturated aqueous sodium bicarbonate and 50 mL of ethyl acetate. The obtained organic layer was washed twice with 30 mL of saturated brine and then dried over anhydrous magnesium sulfate. After magnesium sulfate was filtered off, the filtrate was concentrated under reduced pressure, and 8 mL of ethyl acetate was added to the resulting concentrated residue for recrystallization, and 2,6-dichloro-9β- (2 ′, 3 ′, 5′- 3.9 g of tri-O-acetyl) -D-ribofuranosylpurine was obtained. Yield: 88%.

1H−NMR(CDCl3,δ/ppm)
2.10(s,3H),2.15(s,3H),2.18(s,3H),4.42(d,J=3.6Hz,2H),4.48(m,1H),5.58(t,J=5.6Hz,1H),5.80(t,J=5.6Hz,1H),6.22(d,J=5.6Hz,1H),8.30(s,1H)
1 H-NMR (CDCl 3 , δ / ppm)
2.10 (s, 3H), 2.15 (s, 3H), 2.18 (s, 3H), 4.42 (d, J = 3.6 Hz, 2H), 4.48 (m, 1H) , 5.58 (t, J = 5.6 Hz, 1H), 5.80 (t, J = 5.6 Hz, 1H), 6.22 (d, J = 5.6 Hz, 1H), 8.30 ( s, 1H)

実施例2
反応容器に、アセトニトリル120mL、2−アミノ−6−クロロプリン5.1g、テトラ−O−アセチル−D−リボフラノース9.5gおよびN,O−ビス(トリメチルシリル)アセトアミド13gを加え、窒素雰囲気下で1時間還流させた。室温まで冷却した後、トリフルオロメタンスルホン酸トリメチルシリル0.3gを加え、6時間還流、反応させた。反応液を室温まで冷却し、飽和炭酸水素ナトリウム水溶液50mLおよび酢酸エチル100mLを加え、抽出処理した。得られた有機層を飽和食塩水150mLで2回洗浄処理した後、無水硫酸マグネシウムで乾燥させた。硫酸マグネシウムを濾別した後、減圧条件下で濃縮処理し、得られた濃縮残渣にメタノールを加え、再結晶させ、2−アミノ−6−クロロ−9β−(2’,3’,5’−トリ−O−アセチル)−D−リボフラノシルプリン11.9gを得た。収率:93%。
Example 2
To the reaction vessel were added 120 mL of acetonitrile, 5.1 g of 2-amino-6-chloropurine, 9.5 g of tetra-O-acetyl-D-ribofuranose and 13 g of N, O-bis (trimethylsilyl) acetamide, and under a nitrogen atmosphere. Reflux for 1 hour. After cooling to room temperature, 0.3 g of trimethylsilyl trifluoromethanesulfonate was added and reacted by refluxing for 6 hours. The reaction mixture was cooled to room temperature, extracted with 50 mL of saturated aqueous sodium bicarbonate and 100 mL of ethyl acetate. The obtained organic layer was washed twice with 150 mL of saturated saline and then dried over anhydrous magnesium sulfate. Magnesium sulfate was filtered off and concentrated under reduced pressure. Methanol was added to the resulting concentrated residue for recrystallization, and 2-amino-6-chloro-9β- (2 ′, 3 ′, 5′- 11.9 g of tri-O-acetyl) -D-ribofuranosylpurine was obtained. Yield: 93%.

1H−NMR(DMSO−d6,δ/ppm)
2.01(s,6H),2.10(s,3H),4.24−4.41(m,3H),5.52(d,J=3.6Hz,5.6Hz,1H),5.86(dd,J=5.6Hz,6.0Hz,1H),6.09(dd,J=6.0Hz,1H),7.04(br,2H),8.34(s,1H)
1 H-NMR (DMSO-d 6 , δ / ppm)
2.01 (s, 6H), 2.10 (s, 3H), 4.24-4.41 (m, 3H), 5.52 (d, J = 3.6 Hz, 5.6 Hz, 1H), 5.86 (dd, J = 5.6 Hz, 6.0 Hz, 1H), 6.09 (dd, J = 6.0 Hz, 1H), 7.04 (br, 2H), 8.34 (s, 1H )

実施例3
反応容器に、アセトニトリル50mL、2,6−ジクロロプリン10gおよびN,O−ビス(トリメチルシリル)アセトアミド11gを加え、窒素雰囲気下で2時間還流させた。室温まで冷却した後、テトラ−O−アセチル−D−リボフラノース17.5gおよびトリフルオロメタンスルホン酸トリメチルシリル3gを加え、3時間還流、反応させた。反応液を室温まで冷却し、水175mLに滴下した後、アンモニア水を加えて、pHを8〜9に調整し、析出した結晶を濾取、乾燥させ、2,6−ジクロロ−9β−(2’,3’,5’−トリ−O−アセチル)−D−リボフラノシルプリン22gを得た。収率:93%。
Example 3
To the reaction vessel, 50 mL of acetonitrile, 10 g of 2,6-dichloropurine and 11 g of N, O-bis (trimethylsilyl) acetamide were added and refluxed for 2 hours under a nitrogen atmosphere. After cooling to room temperature, 17.5 g of tetra-O-acetyl-D-ribofuranose and 3 g of trimethylsilyl trifluoromethanesulfonate were added and reacted by refluxing for 3 hours. The reaction solution was cooled to room temperature and dropped into 175 mL of water, and then aqueous ammonia was added to adjust the pH to 8-9. The precipitated crystals were collected by filtration and dried, and 2,6-dichloro-9β- (2 22 g of ', 3', 5'-tri-O-acetyl) -D-ribofuranosylpurine was obtained. Yield: 93%.

実施例4
反応容器に、アセトニトリル20mL、2−アミノ−6−クロロプリン3.4gおよびN,O−ビス(トリメチルシリル)アセトアミド9.4gを加え、窒素雰囲気下で2時間還流させた。室温まで冷却した後、テトラ−O−アセチル−D−リボフラノース6.4gおよびトリフルオロメタンスルホン酸トリメチルシリル0.4gを加え、3時間還流、反応させた。反応液を室温まで冷却し、水50mLに滴下した後、アンモニア水を加えて、pHを8〜9に調整し、析出した結晶を濾取、乾燥させ、2−アミノ−6−クロロ−9β−(2’,3’,5’−トリ−O−アセチル)−D−リボフラノシルプリン7gを得た。収率:81%。
Example 4
To the reaction vessel, 20 mL of acetonitrile, 3.4 g of 2-amino-6-chloropurine and 9.4 g of N, O-bis (trimethylsilyl) acetamide were added and refluxed for 2 hours under a nitrogen atmosphere. After cooling to room temperature, 6.4 g of tetra-O-acetyl-D-ribofuranose and 0.4 g of trimethylsilyl trifluoromethanesulfonate were added and reacted by refluxing for 3 hours. The reaction solution was cooled to room temperature and added dropwise to 50 mL of water, then aqueous ammonia was added to adjust the pH to 8-9, the precipitated crystals were collected by filtration and dried, and 2-amino-6-chloro-9β- 7 g of (2 ′, 3 ′, 5′-tri-O-acetyl) -D-ribofuranosylpurine was obtained. Yield: 81%.

実施例5〜7
アセトニトリル溶媒中、N,O−ビス(トリメチルシリル)アセトアミドおよびトリフルオロメタンスルホン酸トリメチルシリルの存在下、種々のプリン類とテトラ−O−アセチル−D−リボフラノースを、還流条件下、3時間反応させ、対応するプリン化合物を含む反応液を得た。結果を表1に示した。なお、表中、プリン化合物(%)は、得られた反応液中のプリン化合物の面積百分率値(高速液体クロマトグラフィ分析による)である。
Examples 5-7
In the presence of N, O-bis (trimethylsilyl) acetamide and trimethylsilyl trifluoromethanesulfonate in acetonitrile solvent, various purines and tetra-O-acetyl-D-ribofuranose were reacted under reflux conditions for 3 hours. A reaction solution containing the purine compound was obtained. The results are shown in Table 1. In the table, the purine compound (%) is an area percentage value (by high performance liquid chromatography analysis) of the purine compound in the obtained reaction solution.

Figure 2005132767
Figure 2005132767

実施例8
実施例5において、アセトニトリルに代えて、同体積の酢酸エチルを用い、5時間還流、反応させた以外は実施例5と同様に実施し、2,6−ジクロロ−9β−(2’,3’,5’−トリ−O−アセチル)−D−リボフラノシルプリンを含む反応液を得た。該反応液を高速液体クロマトグラフィ分析したところ、2,6−ジクロロ−9β−(2’,3’,5’−トリ−O−アセチル)−D−リボフラノシルプリンの面積百分率値は、90.8%であった。
Example 8
In Example 5, 2,6-dichloro-9β- (2 ′, 3 ′) was carried out in the same manner as in Example 5 except that the same volume of ethyl acetate was used instead of acetonitrile and the reaction was refluxed for 5 hours. , 5′-tri-O-acetyl) -D-ribofuranosylpurine was obtained. When the reaction solution was analyzed by high performance liquid chromatography, the area percentage value of 2,6-dichloro-9β- (2 ′, 3 ′, 5′-tri-O-acetyl) -D-ribofuranosylpurine was 90. It was 8%.

実施例9
反応容器に、アセトニトリル20mL、2−アミノ−6−クロロプリン1.7g、N,O−ビス(トリメチルシリル)アセトアミド4g、テトラ−O−アセチル−D−リボフラノース3.2gおよびトリメチルシリルヨーダイド0.1gを加え、7時間還流、反応させ、2−アミノ−6−クロロ−9β−(2’,3’,5’−トリ−O−アセチル)−D−リボフラノシルプリンを含む反応液を得た。該反応液を高速液体クロマトグラフィ分析したところ、2,6−ジクロロ−9β−(2’,3’,5’−トリ−O−アセチル)−D−リボフラノシルプリンの面積百分率値は、62.2%であった。
Example 9
In a reaction vessel, 20 mL of acetonitrile, 1.7 g of 2-amino-6-chloropurine, 4 g of N, O-bis (trimethylsilyl) acetamide, 3.2 g of tetra-O-acetyl-D-ribofuranose and 0.1 g of trimethylsilyl iodide The mixture was refluxed and reacted for 7 hours to obtain a reaction liquid containing 2-amino-6-chloro-9β- (2 ′, 3 ′, 5′-tri-O-acetyl) -D-ribofuranosylpurine. . When the reaction solution was analyzed by high performance liquid chromatography, the area percentage value of 2,6-dichloro-9β- (2 ′, 3 ′, 5′-tri-O-acetyl) -D-ribofuranosylpurine was 62. 2%.

実施例10
反応容器に、アセトニトリル10mL、2−アミノ−6−クロロプリン0.43g、1,2−ジ−O−アセチル−3,5−ジ−O−ベンジル−D−リボフラノース1gおよびN,O−ビス(トリメチルシリル)アセトアミド1.3mLを加え、窒素雰囲気下で1時間還流させた。室温まで冷却した後、トリフルオロメタンスルホン酸トリメチルシリル28mgを加え、6時間還流、反応させた。反応液を濃縮処理し、得られた濃縮残渣をカラムクロマトグラフィ処理し、2−アミノ−6−クロロ−9β−(2’−O−アセチル−3’,5’−ジ−O−ベンジル)−D−リボフラノシルプリンを収率84%で得た。
Example 10
In a reaction vessel, 10 mL of acetonitrile, 0.43 g of 2-amino-6-chloropurine, 1 g of 1,2-di-O-acetyl-3,5-di-O-benzyl-D-ribofuranose and N, O-bis (Trimethylsilyl) acetamide (1.3 mL) was added, and the mixture was refluxed for 1 hour under a nitrogen atmosphere. After cooling to room temperature, 28 mg of trimethylsilyl trifluoromethanesulfonate was added, and the mixture was refluxed and reacted for 6 hours. The reaction solution is concentrated, and the resulting concentrated residue is subjected to column chromatography to give 2-amino-6-chloro-9β- (2′-O-acetyl-3 ′, 5′-di-O-benzyl) -D. -Ribofuranosylpurine was obtained in 84% yield.

Claims (7)

式(1)
Figure 2005132767
(式中、Xはハロゲン原子を表わし、Yは水素原子、ハロゲン原子またはアミノ基を表わす。)
で示されるプリン類と式(2)
Figure 2005132767
(式中、R1およびR2はそれぞれ同一または相異なって、アシル基またはアルコキシカルボニル基を表わし、R3およびR4はそれぞれ同一または相異なって、保護基を表わす。)
で示される化合物とを、ニトリル系溶媒またはエステル系溶媒中、シリル化剤およびルイス酸の存在下に反応させることを特徴とする式(3)
Figure 2005132767
(式中、X、Y、R2、R3およびR4は上記と同一の意味を表わす。)
で示されるプリン化合物の製造方法。
Formula (1)
Figure 2005132767
(In the formula, X represents a halogen atom, and Y represents a hydrogen atom, a halogen atom or an amino group.)
Purines and formula (2)
Figure 2005132767
(In the formula, R 1 and R 2 are the same or different and each represents an acyl group or an alkoxycarbonyl group, and R 3 and R 4 are the same or different and each represents a protecting group.)
The compound represented by formula (3) is reacted in a nitrile solvent or ester solvent in the presence of a silylating agent and a Lewis acid.
Figure 2005132767
(In the formula, X, Y, R 2 , R 3 and R 4 have the same meaning as described above.)
The manufacturing method of the purine compound shown by these.
ニトリル系溶媒中で反応を実施する請求項1に記載のプリン化合物の製造方法。 The method for producing a purine compound according to claim 1, wherein the reaction is carried out in a nitrile solvent. ニトリル系溶媒が、親水性ニトリル系溶媒である請求項1または2に記載のプリン化合物の製造方法。 The method for producing a purine compound according to claim 1 or 2, wherein the nitrile solvent is a hydrophilic nitrile solvent. 親水性ニトリル系溶媒がアセトニトリルである請求項3に記載のプリン化合物の製造方法。 The method for producing a purine compound according to claim 3, wherein the hydrophilic nitrile solvent is acetonitrile. シリル化剤が、N,O−ビス(トリメチルシリル)アセトアミドである請求項1に記載のプリン化合物の製造方法。 The method for producing a purine compound according to claim 1, wherein the silylating agent is N, O-bis (trimethylsilyl) acetamide. ルイス酸が、トリフルオロメタンスルホン酸トリメチルシリルである請求項1に記載のプリン化合物の製造方法。 The method for producing a purine compound according to claim 1, wherein the Lewis acid is trimethylsilyl trifluoromethanesulfonate. 保護基が、アラルキル基である請求項1に記載のプリン化合物の製造方法。
The method for producing a purine compound according to claim 1, wherein the protecting group is an aralkyl group.
JP2003370045A 2003-10-30 2003-10-30 Method for producing purine compound Pending JP2005132767A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003370045A JP2005132767A (en) 2003-10-30 2003-10-30 Method for producing purine compound
PCT/JP2004/016467 WO2005042557A1 (en) 2003-10-30 2004-10-29 Method for producing purine compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003370045A JP2005132767A (en) 2003-10-30 2003-10-30 Method for producing purine compound

Publications (1)

Publication Number Publication Date
JP2005132767A true JP2005132767A (en) 2005-05-26

Family

ID=34543846

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003370045A Pending JP2005132767A (en) 2003-10-30 2003-10-30 Method for producing purine compound

Country Status (2)

Country Link
JP (1) JP2005132767A (en)
WO (1) WO2005042557A1 (en)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2900104B2 (en) * 1991-11-22 1999-06-02 住化ファインケム株式会社 Method for producing synthetic intermediate of 2-amino-6-halogenopurine
JPH05170766A (en) * 1991-12-19 1993-07-09 Sanyo Kokusaku Pulp Co Ltd Method for synthesizing 6-chloropurine
JP3930616B2 (en) * 1997-08-25 2007-06-13 住友化学株式会社 Method for purifying 2-amino-6-substituted purine
GB9913932D0 (en) * 1999-06-15 1999-08-18 Pfizer Ltd Purine derivatives
US20030008841A1 (en) * 2000-08-30 2003-01-09 Rene Devos Anti-HCV nucleoside derivatives
US20030087873A1 (en) * 2000-10-18 2003-05-08 Lieven Stuyver Modified nucleosides for the treatment of viral infections and abnormal cellular proliferation
JP2002208082A (en) * 2001-01-12 2002-07-26 Alps Electric Co Ltd Phs terminal for tracing
GB2372742A (en) * 2001-03-03 2002-09-04 Univ Leiden C2,5'-Disubstituted and N6,C2,5'-trisubstituted adenosine derivatives and their different uses

Also Published As

Publication number Publication date
WO2005042557A1 (en) 2005-05-12

Similar Documents

Publication Publication Date Title
CN101541818A (en) Process for preparation of 4&#39;-azido cytidine derivatives
WO2013168693A1 (en) Method for producing sepiapterin and tetrahydrolactoylpterin
CN106749259A (en) A kind of synthetic method of cyclopenta pyrimido azoles
JP2007145841A (en) Synthesis of trithiocarbonate
JP4231479B2 (en) Process for producing 9- [4-acetoxy-3- (acetoxymethyl) but-1-yl] -2-aminopurine
JP2005132767A (en) Method for producing purine compound
JP3032837B2 (en) Fluoroalkyl group-containing pyrimidine derivative and method for producing the same
WO2008047812A1 (en) Method for producing hydrophilic monomer
JPH10130244A (en) Production of acyclonucleoside
JP7420550B2 (en) Method for producing 2-hydroxy-2-(perfluoroalkyl) malonic acid ester derivative, and 2-(trimethylsilyloxy)-2-(perfluoroalkyl) malonic acid ester derivative and 5-hydroxy-5-(perfluoroalkyl) Pyrimidine-2,4,6(1H,3H,5H)-trione and their production method
WO1998046568A1 (en) Process for producing 1-chlorocarbonyl-4-piperidinopiperidine or hydrochloride thereof
JP3468543B2 (en) 2-butyl-4-chloro-5-methylimidazole and method for synthesizing the same
JPH0478638B2 (en)
JP2002193967A (en) Production method of 2,6-dichloropurine
JP5243729B2 (en) Method for producing 2,6-dichloropurine
JPH10168068A (en) Production of acyclonucleoside
JP4542480B2 (en) Method for producing maleonitriles
JP5034277B2 (en) Of 3- (N-acylamino) -3- (4-tetrahydropyranyl) -2-oxopropanoic acid ester and 3- (N-acylamino) -3- (4-tetrahydropyranyl) -2-oxopropanohydrazide Production method
JP3217541B2 (en) Method for producing guanine derivative
KR20070065654A (en) Chlorination of heterocyclic compounds using phosphorus oxychloride and benzyltriethylammonium chloride
JP3150565B2 (en) Method for producing 1-alkylaminoanthraquinone derivative
JP5836851B2 (en) Method for producing brinzolamide
JP2011148738A (en) Method for producing ribonucleoside derivative or salt thereof
JP2020015686A (en) Manufacturing method of tolvaptan, salt thereof and solvate
JPS637557B2 (en)