JP2005121535A - Method for simulating rubber material - Google Patents
Method for simulating rubber material Download PDFInfo
- Publication number
- JP2005121535A JP2005121535A JP2003358167A JP2003358167A JP2005121535A JP 2005121535 A JP2005121535 A JP 2005121535A JP 2003358167 A JP2003358167 A JP 2003358167A JP 2003358167 A JP2003358167 A JP 2003358167A JP 2005121535 A JP2005121535 A JP 2005121535A
- Authority
- JP
- Japan
- Prior art keywords
- model
- rubber material
- interface
- strain
- matrix
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000463 material Substances 0.000 title claims abstract description 96
- 238000000034 method Methods 0.000 title claims abstract description 50
- 239000011159 matrix material Substances 0.000 claims abstract description 66
- 239000000945 filler Substances 0.000 claims abstract description 55
- 238000004458 analytical method Methods 0.000 claims abstract description 11
- 238000004088 simulation Methods 0.000 claims description 46
- 238000004364 calculation method Methods 0.000 claims description 11
- 239000003190 viscoelastic substance Substances 0.000 description 22
- 230000006870 function Effects 0.000 description 11
- 230000014509 gene expression Effects 0.000 description 8
- 239000006229 carbon black Substances 0.000 description 7
- 230000008859 change Effects 0.000 description 7
- 238000010586 diagram Methods 0.000 description 7
- 230000008569 process Effects 0.000 description 7
- 238000000265 homogenisation Methods 0.000 description 6
- 238000002474 experimental method Methods 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 230000006399 behavior Effects 0.000 description 3
- 125000004432 carbon atom Chemical group C* 0.000 description 3
- 238000006073 displacement reaction Methods 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 238000011084 recovery Methods 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000009795 derivation Methods 0.000 description 2
- 238000005304 joining Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 125000004429 atom Chemical group 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 230000002706 hydrostatic effect Effects 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 238000005381 potential energy Methods 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 239000011164 primary particle Substances 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 229910000601 superalloy Inorganic materials 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
- 230000003936 working memory Effects 0.000 description 1
Landscapes
- Image Generation (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
Description
本発明は、ゴム材料の変形状態を精度良く解析するのに役立つゴム材料のシミュレーション方法に関する。 The present invention relates to a rubber material simulation method useful for accurately analyzing a deformation state of a rubber material.
ゴム材料は、タイヤ、スポーツ用品、その他各種の工業製品に使用される。ゴム材料は、負荷を受けると大きく変形し、負荷を完全に取り除くと元の状態へと復元しうる。またゴム材料は、変形に際して応力とひずみとが比例せず、かつ、荷重の負荷時と除荷時とでは応力−ひずみ曲線の経路を異にする非線形性を有している。試作の手間とコストとを減じるために、ゴム材料の変形過程などを予めコンピュータを用いてシミュレーションすることが行われている。従来、ゴム材料のシミュレーション方法としては、下記の特許文献1や非特許文献1等が知られている。 Rubber materials are used in tires, sporting goods, and other various industrial products. The rubber material is greatly deformed when subjected to a load, and can be restored to its original state when the load is completely removed. The rubber material has non-linearity in which stress and strain are not proportional to each other during deformation, and the stress-strain curve path is different between when a load is applied and when the load is unloaded. In order to reduce the labor and cost of prototyping, a process of deforming a rubber material is simulated in advance using a computer. Conventionally, as a rubber material simulation method, the following Patent Document 1, Non-Patent Document 1, and the like are known.
特許文献1は、ゴム材料(粘弾性材料)がひずみ速度に応じて異なった縦弾性係数を示す点に着目している。具体的には、予め粘弾性材料の実使用状態を想定した測定条件で、当該粘弾性材料に生じるひずみ、ひずみ速度、応力などを測定し、縦弾性係数とひずみないしひずみ速度との対応関係を導出する工程が行われる。そして、解析対象である粘弾性材料の製品モデルに対して、所定のひずみ速度を与えるとともに、上記対応関係から縦弾性係数を適宜計算して変形シミュレーションを行っている。特許文献1の方法は、粘弾性材料の縦弾性係数が、ひずみ速度に応じて変化するという試みを含むため、ヒステリシスロスをシミュレーションの中に取り込み得る点で評価できる。 Patent Document 1 focuses on the fact that a rubber material (viscoelastic material) exhibits different longitudinal elastic modulus depending on the strain rate. Specifically, the strain, strain rate, stress, etc. generated in the viscoelastic material are measured in advance under the measurement conditions assuming the actual usage state of the viscoelastic material, and the correspondence relationship between the longitudinal elastic modulus and the strain or strain rate is determined. A derivation step is performed. A predetermined strain rate is given to the product model of the viscoelastic material to be analyzed, and a deformation simulation is performed by appropriately calculating the longitudinal elastic modulus from the above correspondence. Since the method of patent document 1 includes the trial that the longitudinal elastic modulus of a viscoelastic material changes according to a strain rate, it can evaluate in the point which can take in hysteresis loss in simulation.
またArrudaらが提案した非特許文献1は、分子鎖網目理論を用いることにより、ゴム材料を高分子レベルにまでモデル化して計算することが記載されている。ここで、分子鎖網目理論について簡単に述べる。 Further, Non-Patent Document 1 proposed by Arruda et al. Describes that a rubber material is modeled and calculated up to a polymer level by using a molecular chain network theory. Here, the molecular chain network theory will be briefly described.
分子鎖網目理論は、図16(A)、(B)に示すように、連続体としてのゴム材料aは、微視構造として、無秩序に配向された分子鎖cが接合点bで連結された網目構造を持つとの考えを前提とする。接合点bは、例えば分子間の化学的結合であってそれには架橋点などが含まれる。 In the molecular chain network theory, as shown in FIGS. 16A and 16B, the rubber material a as a continuum has a microscopic structure in which randomly oriented molecular chains c are connected at junctions b. The premise is that it has a mesh structure. The junction point b is, for example, a chemical bond between molecules, and includes a crosslinking point.
1本の分子鎖cは、同図(C)に示すように、複数のセグメントdから構成される。一つのセグメントdは、分子鎖網目理論においては繰り返しの最小構成単位である。また一つのセグメントdは、化学的には同図(D)に示すように、炭素原子が共有結合によって連結した複数個のモノマーfが連結したものと等価である。個々の炭素原子は、原子同士の結合軸の周りで互いに自由に回転しうるため、セグメントdは全体として曲がりくねるなど様々な形態をとり得る。 One molecular chain c is composed of a plurality of segments d as shown in FIG. One segment d is a repeating minimum structural unit in the molecular chain network theory. One segment d is chemically equivalent to a plurality of monomers f in which carbon atoms are connected by covalent bonds, as shown in FIG. Since the individual carbon atoms can freely rotate around the bond axis between the atoms, the segment d can take various forms such as winding as a whole.
分子鎖網目理論では、接合点bが原子の揺らぎ周期に対して長時間的には平均位置が変化しないものとし、接合点bの回りの摂動を無視する。さらに二つの接合点b、bを両端に持つ分子鎖cの端−端ベクトル(end-to-end vector )は、それが埋め込まれているゴム材料の連続体と共変形するものと仮定する。 In the molecular chain network theory, it is assumed that the average position of the junction b does not change for a long time with respect to the atomic fluctuation period, and the perturbation around the junction b is ignored. It is further assumed that the end-to-end vector of the molecular chain c having two junctions b, b at both ends co-deforms with the rubber material continuum in which it is embedded.
Aruudaらは、分子鎖網目理論に基づいてさらに8鎖モデルを提案している。図4(A)に示されるように、粘弾性材料は、巨視的には、微小な8鎖モデルgが集合した立方体状の網目構造体hとして考えることができる。一つの8鎖モデルgは、図4(B)に拡大して示すように、分子鎖cが立方体の中心に定められた一つの接合点b1から、各頂点に設けられた8つの各接合点b2にそれぞれのびているものと仮定される。 Aruuda et al. Have proposed a further eight-chain model based on molecular chain network theory. As shown in FIG. 4A, the viscoelastic material can be considered macroscopically as a cubic network structure h in which minute 8-chain models g are assembled. As shown in an enlarged view in FIG. 4B, one 8-chain model g is composed of eight junction points provided at each vertex from one junction point b1 in which the molecular chain c is defined at the center of the cube. It is assumed that it extends to b2.
ゴム材料は、シミュレーションにおいては超弾性体(体積変化を殆ど生じず除荷後も元の形状に戻る材料)として取り扱われる。超弾性体は、下記式(1)で示されるように、Green ひずみの成分Eijによって微分されることにより、共役なkirchhoff 応力Sijを生じるようなひずみエネルギー関数Wが存在する物質として定義される。換言すれば、ひずみエネルギー関数は、ゴム材料が変形したときに蓄えられたポテンシャルエネルギの存在を仮定的に示す。従って、ひずみエネルギー関数Wの微分勾配から応力とひずみ関係を得ることができる。
Aruudaらは、非ガウス鎖理論により、ゴム材料の変形が大きくなるとエントロピー変化が急激に大きくなる(分子鎖が伸びきって配向する)と考え、式(2)のゴム弾性体のひずみエネルギ関数Wを示した。そして、このひずみエネルギー関数Wを上記式に代入することにより、ゴム材料の応力とひずみとの関係を取り出すことができる。
Aruudaらの応力とひずみとの関係を用いて、粘弾性材料の変形シミュレーションを行うことにより、例えば図17に示すように、1軸引張変形シミュレーションにおいて、非線形な応力とひずみとの関係を得ることができる。この結果は、荷重の負荷変形時における実測値と良い相関を示す。 By performing a deformation simulation of a viscoelastic material using the relationship between stress and strain of Aruuda et al., For example, as shown in FIG. 17, in a uniaxial tensile deformation simulation, a relationship between nonlinear stress and strain is obtained. Can do. This result shows a good correlation with the actually measured value when the load is deformed.
工業製品として使用されているゴム材料には、通常、カーボンブラック等のフィラー(充填剤)が配合されている。このようなフィラーを配合したゴム材料の変形シミュレーションを行う場合、フィラーとマトリックスゴムとの界面をどのように取り扱うかは重要な問題である。種々の研究の結果、前記界面には、様々な現象が生じており、とりわけ界面におけるゴムマトリックスとフィラーとの滑りないし摩擦現象は、比較的大きなエネルギーロスを生じさせることが昨今分かってきた。従って、精度の良いゴム材料のシミュレーションを行うためには、このような界面をモデルとして取り込むことが重要である。 A rubber material used as an industrial product usually contains a filler (filler) such as carbon black. When a deformation simulation of a rubber material containing such a filler is performed, how to handle the interface between the filler and the matrix rubber is an important problem. As a result of various studies, various phenomena have occurred at the interface, and it has recently been found that a slip or friction phenomenon between the rubber matrix and the filler at the interface causes a relatively large energy loss. Therefore, in order to simulate a rubber material with high accuracy, it is important to incorporate such an interface as a model.
しかるに、特許文献1では、ゴムマトリックスとフィラーとの界面については考慮されていない。非特許文献2についても同様である。 However, Patent Document 1 does not consider the interface between the rubber matrix and the filler. The same applies to Non-Patent Document 2.
本発明は、以上のような問題点に鑑み案出なされたもので、ゴム材料モデルを、ゴムマトリックスをモデル化したマトリックスモデルと、フィラーをモデル化したフィラーモデルと、前記マトリックスモデルと前記フィラーモデルとの間の界面を形成する界面モデルとを含んで設定することを基本として、界面に独自の特性を与えて精度良くゴム材料を変形シミュレーションしうるゴム材料のシミュレーション方法を提供することを目的としている。 The present invention has been devised in view of the above problems. A rubber material model is a matrix model in which a rubber matrix is modeled, a filler model in which a filler is modeled, the matrix model, and the filler model. The purpose is to provide a rubber material simulation method capable of accurately deforming and simulating rubber materials by giving unique characteristics to the interface based on the interface model that forms the interface between Yes.
本発明のうち請求項1記載の発明は、フィラーが配合されたゴム材料の変形をシミュレーションするゴム材料のシミュレーション方法であって、前記ゴム材料を数値解析が可能な要素でモデル化したゴム材料モデルを設定するステップと、前記ゴム材料モデルに条件を設定して変形計算を行うステップと、前記変形計算から必要な物理量を取得するステップとを含むとともに、前記ゴム材料モデルは、ゴムマトリックスをモデル化したマトリックスモデルと、フィラーをモデル化したフィラーモデルと、前記マトリックスモデルと前記フィラーモデルとの間の界面を形成する界面モデルとを含むことを特徴とするゴム材料のシミュレーション方法である。 The invention according to claim 1 of the present invention is a rubber material simulation method for simulating deformation of a rubber material mixed with a filler, and a rubber material model in which the rubber material is modeled by an element capable of numerical analysis. A step of setting a condition in the rubber material model and performing a deformation calculation, and obtaining a necessary physical quantity from the deformation calculation, and the rubber material model models a rubber matrix. The method of simulating a rubber material, comprising: a matrix model that is formed, a filler model that models a filler, and an interface model that forms an interface between the matrix model and the filler model.
また請求項2記載の発明は、前記界面モデルは、前記マトリックスモデルとは異なる粘弾性特性が定義されることを特徴とする請求項1記載のゴム材料のシミュレーション方法である。 The invention according to claim 2 is the rubber material simulation method according to claim 1, wherein the interface model defines viscoelastic characteristics different from the matrix model.
また請求項3記載の発明は、前記界面モデルは、前記マトリックスモデルよりも軟い粘弾性特性が定義されることを特徴とする請求項1記載のゴム材料のシミュレーション方法である。 The invention according to claim 3 is the rubber material simulation method according to claim 1, characterized in that the interface model defines softer viscoelastic properties than the matrix model.
また請求項4記載の発明は、前記界面モデルは、前記マトリックスモデルよりも硬い粘弾性特性が定義されることを特徴とする請求項1記載のゴム材料のシミュレーション方法である。 The invention according to claim 4 is the rubber material simulation method according to claim 1, wherein the interface model defines a harder viscoelastic property than the matrix model.
また請求項5記載の発明は、前記界面モデルは、前記マトリックスモデルよりもヒステリシスロスが大きい粘弾性特性が定義されることを特徴とする請求項1乃至4のいずれかに記載のゴム材料のシミュレーション方法である。 The invention according to claim 5 is characterized in that the interface model defines a viscoelastic property having a hysteresis loss larger than that of the matrix model, and the simulation of the rubber material according to any one of claims 1 to 4 Is the method.
本発明のゴム材料のシミュレーション方法では、解析の対象となるゴム材料モデルが、ゴムマトリックスをモデル化したマトリックスモデルと、フィラーをモデル化したフィラーモデルと、前記マトリックスモデルと前記フィラーモデルとの間の界面を形成する界面モデルとを含む。従って、界面の影響を計算の結果に取り込むことが可能となり、実際の粘弾性材料の特性に即した精度の高いシミュレーションが可能になる。 In the rubber material simulation method of the present invention, a rubber material model to be analyzed includes a matrix model in which a rubber matrix is modeled, a filler model in which a filler is modeled, and the matrix model and the filler model. And an interface model for forming an interface. Therefore, the influence of the interface can be taken into the calculation result, and a highly accurate simulation according to the characteristics of the actual viscoelastic material is possible.
以下、本発明の実施の一形態を図面に基づき説明する。
図1には、本発明のシミュレーション方法を実施するためのコンピュータ装置1が示されている。このコンピュータ装置1は、本体1aと、入力手段としてのキーボード1b、マウス1cと、出力手段としてのディスプレイ装置1dとから構成されている。本体1aには、図示していないが、演算処理装置(CPU)、ROM、作業用メモリー、磁気ディスクなどの大容量記憶装置、CD−ROMやフレキシブルディスクのドライブ1a1、1a2が設けられている。そして、前記大容量記憶装置には後述する本発明のシミュレーション方法を実行するための処理手順(プログラム)が記憶されている。コンピュータ装置1にはEWSなどが好適である。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 shows a computer apparatus 1 for carrying out the simulation method of the present invention. The computer device 1 includes a main body 1a, a keyboard 1b as an input means, a mouse 1c, and a display device 1d as an output means. Although not shown, the main body 1a is provided with a processing unit (CPU), a ROM, a working memory, a mass storage device such as a magnetic disk, and CD-ROM and flexible disk drives 1a1 and 1a2. The mass storage device stores a processing procedure (program) for executing a simulation method of the present invention, which will be described later. The computer device 1 is preferably EWS or the like.
図2には、シミュレーション方法の処理手順の一例が示される。本実施形態では、先ずフィラーが配合されたゴム材料モデルが設定される(ステップS1)。図3には、微視構造としてのゴム材料モデル2の一例が視覚化して示されている。 FIG. 2 shows an example of the processing procedure of the simulation method. In the present embodiment, first, a rubber material model in which a filler is blended is set (step S1). In FIG. 3, an example of the rubber material model 2 as a microscopic structure is visualized.
該ゴム材料モデル2は、解析しようとするゴム材料(実在するか否かを問わない)の微小領域が、有限個の小さな要素2a、2b、2c…に置き換えられたものである。各要素2a、2b、2c…は、数値解析が可能に定義される。数値解析が可能とは、例えば有限要素法、有限体積法、差分法又は境界要素法といった数値解析法により、各要素ないし系全体についての変形計算が可能なことを意味する。具体的には、各要素2a、2b、2c…について、座標系における節点座標値、要素形状、材料特性などが定義される。各要素2a、2b、2c…には、例えば2次元平面としての三角形ないし四辺形の要素、3次元要素としては、例えば4ないし6面体の要素が好ましく用いられる。これにより、ゴム材料モデル2は、前記コンピュータ装置1にて取り扱い可能な数値データを構成しうる。 The rubber material model 2 is obtained by replacing a minute region of a rubber material to be analyzed (whether or not actually exist) with a finite number of small elements 2a, 2b, 2c. Each element 2a, 2b, 2c... Is defined so as to be capable of numerical analysis. The possibility of numerical analysis means that deformation calculation for each element or the entire system can be performed by a numerical analysis method such as a finite element method, a finite volume method, a difference method, or a boundary element method. Specifically, for each element 2a, 2b, 2c..., A node coordinate value, an element shape, a material characteristic, etc. in the coordinate system are defined. For each of the elements 2a, 2b, 2c, etc., for example, a triangular or quadrilateral element as a two-dimensional plane, and a tetrahedral element, for example, is preferably used as a three-dimensional element. Thus, the rubber material model 2 can constitute numerical data that can be handled by the computer device 1.
この実施形態のゴム材料モデル2は、後述する変形シミュレーションにおいて平面ひずみ状態で解析が行われる。したがってZ方向にはひずみを持たない。ゴム材料モデル2の一辺の長さは、例えば縦横それぞれ300nm×300nmとしている。 The rubber material model 2 of this embodiment is analyzed in a plane strain state in a deformation simulation described later. Therefore, there is no distortion in the Z direction. The length of one side of the rubber material model 2 is, for example, 300 nm × 300 nm in both vertical and horizontal directions.
この実施形態のゴム材料モデル2は、ゴムマトリックス部分がモデル化されたマトリックスモデル3(最も濃い部分)と、このマトリックスモデル3の中に分散して配されかつフィラー(充填材)がモデル化されたフィラーモデル4(白い部分)と、前記マトリックスモデル3と前記フィラーモデル4との間に介在しかつ両者の間の界面を形成する界面モデル5(やや黒い部分)とからなるものが例示される。 The rubber material model 2 of this embodiment includes a matrix model 3 (the darkest part) in which a rubber matrix portion is modeled, and a filler (filler) that is distributed and arranged in the matrix model 3. And a filler model 4 (white portion) and an interface model 5 (slightly black portion) that is interposed between the matrix model 3 and the filler model 4 and forms an interface between the two. .
前記マトリックスモデル3は、ゴム材料モデル2の主要部を構成し、かつ、例えば三角形ないし四辺形の要素を用いて表現されている。マトリックスモデル3を構成する各要素には、材料特性として、下記式(3)の応力とひずみとの関係が定義される。したがって、マトリックスモデル3は各要素について、それぞれ応力とひずみとの関係が得られる。
ここで、式(3)の導出過程について触れる。ゴム材料は、変形による体積変化が小さいため、それを無視することができる。このため、非圧縮性の粘弾性材料では、非圧縮条件により密度を一定とすることができ、kirchhoff 応力Sijは、式(4)で表すことができる。なお、EijはGreen ひずみの成分、pは静水圧(境界条件により定まる)、Xi は、応力もひずみも0である状態C0 における任意の物体点Pの位置、xj は変形した状態Cにおける物体点Pの位置である。
Cauchy応力の成分σijと、kirchhoff 応力の成分Smnとは下記式(5)の関係を有する。従って、式(4)から式(6)を得ることができる。
ここで、体積が一定の場合、物体の体積変化率を示す式(5)のJは1とみなせる。また、式(2)のひずみエネルギー関数は、左Cauchy-Green変形テンソルAijのひずみの1次の不変量I1 だけの関数であるため、式(6)から式(7)が得られる。
また、下記の関係式(8ないし10)を用いることにより、式(7)の速度形式表示は式(11)になる。
そして、体積一定条件下で、式(11)に示すCauchy応力のJaumann 速度をkirchhoff 応力のJaumann 速度に置き換えても本質的な差異はないことと、変形速度テンソルDをひずみ速度テンソルに置き換えることとにより、非圧縮性の粘弾性材料の構成式の速度形式表示を前記式(3)で表すことができる。 And, there is no essential difference even if the Jaumann velocity of the Cauchy stress shown in Equation (11) is replaced with the Jaumann velocity of the kirchhoff stress, and the deformation rate tensor D is replaced with the strain rate tensor. Thus, the speed format display of the constitutive formula of the incompressible viscoelastic material can be expressed by the formula (3).
ところが、単にこの式(3)だけを用いた場合では、Aruudaらの非特許文献1と同様、ゴム材料の特徴の一つでもあるエネルギーロスを考慮することができない。即ち図17の状態Qから荷重を除荷するシミュレーションを行うと、該曲線と実質的に同じ経路を通ってひずみの回復が行われる。これでは、ヒステリシスループが形成されずエネルギーロスの計算を行うことができない。 However, when only this formula (3) is used, energy loss, which is one of the characteristics of the rubber material, cannot be taken into account, as in Non-Patent Document 1 by Aruuda et al. That is, when a simulation of unloading from the state Q in FIG. 17 is performed, strain recovery is performed through substantially the same path as the curve. With this, a hysteresis loop is not formed and energy loss cannot be calculated.
発明者らは、Aruudaらのモデルを前提として種々の実験を試みた。先ずゴム材料は、上述のように複雑に絡み合った長い分子鎖cが伸びることによって数百%にも達し得る大ひずみが許容されると考えられる。そこで、発明者らは、荷重の負荷における変形過程において、粘弾性材料の分子鎖cの互いに絡み合った部分がほどけたり(接合点bの数の減少)、或いは荷重の除荷によってさらなる絡み合い(接合点bの数の増加)が生じ得るとの仮定を立てた。換言すれば、この仮定は、前記式(1)における1本の分子鎖当たりの平均セグメント数Nは、負荷ないし除荷変形時において可変のパラメータであることを意味している。発明者らは、この仮定を検証したところ、粘弾性材料のヒステリシスを表現可能であることが分かった。 The inventors tried various experiments based on the model of Aruuda et al. First, it is considered that the rubber material is allowed to have a large strain that can reach several hundreds of percent by extending the long molecular chain c intertwined in a complicated manner as described above. Therefore, the inventors unraveled the intertwined portions of the molecular chains c of the viscoelastic material in the deformation process under load (reduction of the number of joint points b), or further entanglement (unbonding) by unloading the load. An assumption was made that an increase in the number of points b) may occur. In other words, this assumption means that the average number of segments N per molecular chain in the equation (1) is a variable parameter during loading or unloading deformation. The inventors verified this assumption and found that the hysteresis of the viscoelastic material can be expressed.
このように、本実施形態のゴム材料モデル2は、前記式(3)において、1本の分子鎖当たりの平均セグメント数Nが負荷変形時と除荷変形時とで異なるパラメータとして定義されている。これにより、マトリックスモデル3の各要素は、エネルギーロスを計算上取り込むことができる。ここで、負荷変形時とは、微小時間の間でモデルのひずみが増大する変形であり、逆に除荷変形時とは、ひずみが減少する変形を意味する。 As described above, in the rubber material model 2 of the present embodiment, the average number of segments N per molecular chain is defined as a parameter different in load deformation and unload deformation in the formula (3). . Thereby, each element of the matrix model 3 can capture an energy loss in calculation. Here, at the time of load deformation is a deformation in which the strain of the model increases during a very short time, and conversely, at the time of unloading deformation means a deformation in which the strain decreases.
図4(A)には、粘弾性材料の巨視的な3次元の網目構造体hを、また図4(B)には、この網目構造体hを構成する8鎖モデルgの1つを拡大して示した。この例の網目構造体hは、幅方向、高さ方向及び奥行き方向にそれぞれ8鎖モデルgがk個結合したものとする。 4A shows a macroscopic three-dimensional network structure h of a viscoelastic material, and FIG. 4B enlarges one of the 8-chain models g constituting the network structure h. Showed. The network structure h in this example is assumed to have k 8-chain models g coupled in the width direction, the height direction, and the depth direction.
いま、網目構造体hに含まれる接合点bの総数を「からみ数」として符号mで表すと、からみ数mは、式(12)で表すことができる。同様に、網目構造体hに含まれる分子鎖cの数(即ち、マトリックスモデル3の単位体積中に含まれる分子鎖の数)をnとすると、このnは、式(13)で表すことができる。
m=(k+1)3 +k3 …式(12)
n=8k3 …式(13)
Now, when the total number of junction points b included in the mesh structure h is represented by the symbol m as “entanglement number”, the entanglement number m can be represented by Expression (12). Similarly, when the number of molecular chains c contained in the network structure h (that is, the number of molecular chains contained in the unit volume of the matrix model 3) is n, this n can be expressed by the formula (13). it can.
m = (k + 1) 3 + k 3 Formula (12)
n = 8k 3 (13)
ここで、kは十分に大きい数とすると、kの3次項以外を省略して上式はそれぞれ次のような式(14)、(15)で表すことができ、さらにこれらの関係から、からみ数mは、nを用いて、式(16)で表すことができる。
m=2k3 …式(14)
n=8k3 …式(15)
m=n/4 …式(16)
Here, if k is a sufficiently large number, the above equations can be expressed by the following equations (14) and (15), respectively, except for the third-order term of k. The number m can be expressed by equation (16) using n.
m = 2k 3 Formula (14)
n = 8k 3 (15)
m = n / 4 Formula (16)
さらに、マトリックスモデル3は、変形してもその中に含まれる分子鎖のセグメントの総数NA は変化しないと仮定すると、式(17)〜(18)が成り立つ。
NA =n・N …式(17)
N=NA /n=NA /4m …式(18)
Further, assuming that the total number N A of molecular chain segments contained in the matrix model 3 does not change even when the matrix model 3 is deformed, equations (17) to (18) are established.
N A = n · N (17)
N = N A / n = N A / 4m ... formula (18)
発明者らは、シミュレーションにおいてマトリックスモデル3のエネルギーロスを表現するために、荷重の負荷過程及びこれに続くひずみの回復過程において、粘弾性材料の分子鎖cのからみ数mが変化するとの着想を試みた。即ち、図5(A)に示すように、例えば一つの接合点bで接合されている分子鎖c1ないしc4に矢印方向の引張応力が作用すると、各分子鎖c1ないしc4は伸び、接合点bは大きなひずみを受けて破損するものと考えた。 In order to express the energy loss of the matrix model 3 in the simulation, the inventors have an idea that the entanglement number m of the molecular chain c of the viscoelastic material changes in the load application process and the subsequent strain recovery process. Tried. That is, as shown in FIG. 5A, for example, when tensile stress in the direction of the arrow acts on the molecular chains c1 to c4 joined at one joining point b, each molecular chain c1 to c4 expands, and the joining point b. Was considered to be damaged by large strain.
この結果、図5(B)に示すように、これまで2本であった分子鎖c1及びc2は、あたかも1本の長い分子鎖c5のように振る舞うものと考えられる。分子鎖c3及びc4についても同様である。そして、このような現象は、ゴム材料の負荷変形が進むにつれて逐次発生していくものと考えられる。 As a result, as shown in FIG. 5B, the two molecular chains c1 and c2 that have been two so far are considered to behave as if they were one long molecular chain c5. The same applies to the molecular chains c3 and c4. Such a phenomenon is considered to occur sequentially as the load deformation of the rubber material proceeds.
以上のような接合点bの破損は、マトリックスモデル3におけるからみ数mの減少に他ならない。マトリックスモデル3自体は材料の出入りがないため、その中に含まれる分子鎖cのセグメントの総数NA が変化しないと仮定すると、マトリックスモデル3の負荷変形が進むにつれて、1本の分子鎖cに含まれる平均セグメント数Nが増加することは式(18)から明らかである。つまり、前記平均セグメント数Nは、一定ではなく、負荷変形時と除荷変形時とで異なる可変のパラメータとすることが適切と考えられる。これによって、マトリックスモデル3の変形時におけるエネルギーロスが再現できる。これについては、さらに詳細を後で述べる。 The breakage of the junction point b as described above is nothing but a decrease in the number of entanglements m in the matrix model 3. Since the matrix model 3 itself has no material in and out, assuming that the total number N A of the segments of the molecular chain c contained therein does not change, as the load deformation of the matrix model 3 proceeds, one molecular chain c It is clear from equation (18) that the average number N of included segments increases. That is, the average segment number N is not constant, and it is considered appropriate to use a variable parameter that is different between load deformation and unload deformation. Thereby, the energy loss when the matrix model 3 is deformed can be reproduced. This will be described in more detail later.
このような様子をコンピュータ上でより好ましく再現するためには、前記平均セグメント数Nは、負荷変形時では、そのひずみに関するパラメータに応じて増大させることが特に好適である。前記ひすみに関するパラメータとしては、特に制限されるものではないが、例えば、ひずみ量、ひずみ速度又はひずみの1次の不変量I1 などが挙げられる。本実施形態では、前記平均セグメント数Nが、下記式(19)に示すように、当該マトリックスモデル3の各要素個々において、それぞれひずみの1次の不変量I1 を平方根であるパラメータλc の関数となるものを示す。
なお式(19)は、種々の実験によって定めた一例であり、上記AないしEは、いずれも定数であって、ゴム試験片の単純な1軸引張試験などの実測結果からように定めることができる。この例では、上記定数を次のように設定している。
A=+2.9493
B=−5.8029
C=+5.5220
D=−1.3582
E=+0.1325
Equation (19) is an example determined by various experiments, and A to E are constants and can be determined from actual measurement results such as a simple uniaxial tensile test of a rubber specimen. it can. In this example, the above constants are set as follows.
A = + 2.9493
B = −5.8029
C = + 5.5220
D = -1.3582
E = + 0.1325
図6には、マトリックスモデル3の各要素の負荷変形時における平均セグメント数Nとパラメータλc との関係を示す。ひずみに関するパラメータであるλc が大きくなると、平均セグメント数Nは滑らかに増大する。この例では、パラメータλc の上限は2.5である。後述するゴム材料モデル2の変形シミュレーションでは、マトリックスモデル3の各要素について、負荷変形時においてはパラメータλc が常時計算される。計算されたλc は、式(19)に代入される。これにより、当該要素の当該ひずみ状態における平均セグメント数Nが計算できる。 FIG. 6 shows the relationship between the average number of segments N and the parameter λc during load deformation of each element of the matrix model 3. As λc, which is a parameter related to strain, increases, the average segment number N increases smoothly. In this example, the upper limit of the parameter λc is 2.5. In the deformation simulation of the rubber material model 2 to be described later, the parameter λc is always calculated for each element of the matrix model 3 at the time of load deformation. The calculated λc is substituted into equation (19). Thereby, the average number of segments N in the strain state of the element can be calculated.
他方、マトリックスモデル3の除荷変形時には、平均セグメント数Nは一定値としている。平均セグメント数Nを決定する方法としては、例えば次の方法がある。解析対象となる粘弾性材料において、一つの応力−ひずみ曲線がある場合、先ず除荷時の曲線に合うように前記n、Nを定める(つまり、NA =n・Nが決まる。)。次に、負荷時、除荷時とも分子鎖の総セグメント数NA は同一であるため、負荷時の曲線に整合するよう、各ひずみにおける平均セグメント数Nを求める(このNは変化させる。)。そして、決定された負荷時の平均セグメントNに一致するよう、式(19)のパラメータAないしEを決定する。本実施形態では、N=6.6を使用し、かつ、負荷終了時のNが除荷時のNとなるように設定している。 On the other hand, at the time of unloading deformation of the matrix model 3, the average number of segments N is a constant value. As a method for determining the average segment number N, for example, there is the following method. In the viscoelastic material to be analyzed, when there is one stress-strain curve, first, n and N are determined so as to match the unloading curve (that is, N A = n · N is determined). Then, when the load, because the total number of segments N A unloading during both molecular chain is identical, to match the load of the curve to determine the average number of segments N in each strain (where N is changed.) . Then, parameters A to E in Expression (19) are determined so as to match the determined average segment N at the time of loading. In this embodiment, N = 6.6 is used, and N at the end of load is set to be N at unloading.
前記フィラーモデル4は、本実施形態ではフィラーとしてのカーボンブラックをモデル化したものが示されている。但しフィラーは、カーボンブラックに限定されるものではなく、例えばシリカ等でも良い。この例では、フィラーモデル4の物理的形状は、実際のゴム中に充填されたカーボンブラックの形状を電子顕微鏡にて撮像した形状に基づいて定められている。カーボンブラック6の形状(最小単位)は、具体的には、図7に略示するように、炭素原子からなる直径数10nm程度の球状の一次粒子7が不規則に3次元的に結合した葡萄の房状構造をなしている。 In the present embodiment, the filler model 4 is a model of carbon black as a filler. However, the filler is not limited to carbon black, and may be silica, for example. In this example, the physical shape of the filler model 4 is determined based on a shape obtained by imaging the shape of carbon black filled in actual rubber with an electron microscope. Specifically, the shape (minimum unit) of the carbon black 6 is, as schematically shown in FIG. 7, spherical primary particles 7 made of carbon atoms and having a diameter of about several tens of nm are irregularly bonded three-dimensionally. Has a tufted structure.
またカーボンブラックは、ゴム等の粘弾性材料に比べると数百倍の硬さ(縦弾性係数)を持つため、フィラーモデル4は、本実施形態では粘弾性体ではなく弾性体として取り扱われる。したがって、フィラーモデル4は、材料特性として縦弾性係数が与えられ、変形計算上、応力とひずみとが比例する。フィラーモデル4の量は、ゴムへの配合量を考慮して適宜定められる。 In addition, since carbon black has a hardness (longitudinal elastic modulus) several hundred times that of a viscoelastic material such as rubber, the filler model 4 is handled as an elastic body instead of a viscoelastic body in this embodiment. Accordingly, the filler model 4 is given a longitudinal elastic modulus as a material characteristic, and stress and strain are proportional in deformation calculation. The amount of the filler model 4 is appropriately determined in consideration of the amount added to rubber.
またフィラーモデル4の周りには、前記界面モデル5が設定される。物理的な構造として、フィラーとゴムマトリックスとの界面にこのような特殊な層が形成されていることは確認されていない。しかしながら、上で述べたように、フィラーとマトリックスゴムとの界面では、様々な現象が生じており、とりわけ界面における滑りないし摩擦現象は、比較的大きなエネルギーロスを生じさせる。 The interface model 5 is set around the filler model 4. As a physical structure, it has not been confirmed that such a special layer is formed at the interface between the filler and the rubber matrix. However, as described above, various phenomena occur at the interface between the filler and the matrix rubber. Especially, slipping or friction phenomenon at the interface causes a relatively large energy loss.
本実施形態の界面モデル5は、フィラーモデル4を連続して取り囲み、かつ、薄い厚さで設定されるとともに、マトリックスモデル3とは異なる粘弾性特性が定義される。これは、ゴム材料モデル2において、界面での大きなエネルギーロスの再現を可能とするのに役立つ。なお界面モデル5は必ずしも連続してフィラーモデル4を取り囲む形態に限定されるものではないが、その大部分を囲むことが望ましい。また界面モデル5の厚さtも特に限定はされないが、大きすぎるとエネルギーロスが過大に表現されてしまう傾向があり、逆に小さすぎても界面でのエネルギーロスの再現が困難となりやすい。種々の実験の結果、前記厚さtは、例えば1〜20nm、より好ましくは5〜10nmであることが望ましい。 The interface model 5 of the present embodiment continuously surrounds the filler model 4 and is set with a small thickness, and viscoelastic characteristics different from the matrix model 3 are defined. This is useful for enabling a large energy loss to be reproduced at the interface in the rubber material model 2. The interface model 5 is not necessarily limited to a form that continuously surrounds the filler model 4, but it is desirable to surround most of the interface model 5. The thickness t of the interface model 5 is not particularly limited, but if it is too large, the energy loss tends to be excessively expressed, and conversely if it is too small, it is difficult to reproduce the energy loss at the interface. As a result of various experiments, the thickness t is desirably 1 to 20 nm, and more preferably 5 to 10 nm, for example.
また界面モデル5は、粘弾性材料として取り扱われる。従って、マトリックスモデル3と同様に前記式(3)に基づいて応力とひずみとの関係が定義される。本実施形態の界面モデル5は、前記マトリックスモデル3よりも軟い粘弾性特性が定義される。具体的には、応力−ひずみ(又は伸び)曲線における弾性成分の傾き(弾性体の縦弾性係数に相当)をマトリックスモデル3のそれよりも小としている。さらに本実施形態の界面モデル5は、前記マトリックスモデル3よりもヒステリシスロス(ひずみの1サイクル当たりに生じるエネルギーロス)が大きい粘弾性特性が定義される。 The interface model 5 is handled as a viscoelastic material. Therefore, the relationship between stress and strain is defined based on the above equation (3) as in the matrix model 3. The interface model 5 of the present embodiment defines viscoelastic properties that are softer than the matrix model 3. Specifically, the slope of the elastic component (corresponding to the longitudinal elastic modulus of the elastic body) in the stress-strain (or elongation) curve is made smaller than that of the matrix model 3. Further, the interface model 5 of the present embodiment defines viscoelastic characteristics having a larger hysteresis loss (energy loss generated per strain cycle) than the matrix model 3.
次に本実施形態のシミュレーション方法では、設定されたゴム材料モデル2を用いて変形シミュレーションが行われる(ステップS3)。変形シミュレーションの具体的な処理手順は、図8に示される。変形シミュレーションでは、先ずデータがコンピュータ装置1に入力される(ステップS31)。入力されるデータには、各要素に定義された節点の位置や材料特性といった情報が含まれる。 Next, in the simulation method of the present embodiment, a deformation simulation is performed using the set rubber material model 2 (step S3). A specific processing procedure of the deformation simulation is shown in FIG. In the deformation simulation, first, data is input to the computer apparatus 1 (step S31). The input data includes information such as the positions of nodes and material properties defined for each element.
コンピュータ装置1では、入力されたデータに基づいて各要素の剛性マトリックスを作成し(ステップS32)、しかる後、全体構造の剛性マトリックスを組み立てる(ステップS33)。全体構造の剛性マトリックスには、既知節点の変位、節点力が導入され(ステップS34)、剛性方程式の解析が行われる。そして、未知節点変位が決定され(ステップS35)、各要素のひずみ、応力、主応力といった物理量を計算し、出力する(ステップS36ないし37)。ステップS38では、計算を終了させるか否かの判定がなされ、否定的である場合には、ステップS32以降を繰り返す。 The computer apparatus 1 creates a stiffness matrix for each element based on the input data (step S32), and then assembles a stiffness matrix for the entire structure (step S33). Displacement of known nodes and nodal forces are introduced into the stiffness matrix of the entire structure (step S34), and the stiffness equation is analyzed. Then, unknown node displacement is determined (step S35), and physical quantities such as strain, stress and principal stress of each element are calculated and output (steps S36 to 37). In step S38, it is determined whether or not to end the calculation. If negative, step S32 and subsequent steps are repeated.
シミュレーションは、例えば有限要素法を用いたエンジニアリング系の解析アプリケーションソフトウエア(例えば米国リバモア・ソフトウェア・テクノロジー社で開発・改良されたLS−DYNA等)を用いて行うことができる。 The simulation can be performed using, for example, engineering analysis application software using the finite element method (for example, LS-DYNA developed and improved by Livermore Software Technology, USA).
本シミュレーションは、均質化法(漸近展開均質化法)に基づいて行われる態様を例示する。均質化法は、図9に示すように、図3に示した微視構造(ユニットセル)を周期的に持っているゴム材料全体Mを表現するxI と、前記微視構造を表現するyI との独立した2変数が用いられる。微視的スケールと巨視的スケールという異なる尺度の場におけるそれぞれ独立した変数を漸近展開することにより、図3に示した微視構造のモデル構造を反映させたゴム材料全体の平均的な力学応答を求めることができる。即ち、解析対象領域が任意の微視構造の繰り返しによって構成され、その繰り返し度合いが非常に密なために直接有限要素法で領域を離散化出来ない場合、解析対象を均質な等価モデルで代用して全体を解析し、その解析結果を任意の点での微視構造に戻すことによって微視構造自身の変形を近似的に求めることができる。漸近展開均質化法については、例えば次の文献に詳細に述べられている。
Higa,Y.and Tomita,Y,,Computational Prediction of Mechanical Properties of Nickel-based superalloy with gamma Prime Phase Precipitates,Proceedings of ICM8(Victoria,B.C.,Canada),Advance Materials and Modeling of Mechanical Behavior,(Edited by Ellyin,F,and Proven,J.W.),III(1999),1061-1066,Fleming Printing Ltd..
比嘉吉一,冨田佳宏,粒子強化型複合材の均質化法による変形挙動のモデル化とシミュレーション,日本機械学会論文集,A66(2000),1441-1446.
具体的には前記式(3)に加え下記式(20)の巨視的平衡方程式及び式(21)の特性変位関数(Y−periodic)が用いられる。
This simulation illustrates an embodiment performed based on a homogenization method (asymptotic expansion homogenization method). As shown in FIG. 9, the homogenization method includes x I representing the entire rubber material M periodically having the microscopic structure (unit cell) shown in FIG. 3, and y representing the microscopic structure. two independent variables and I is used. By asymptotically expanding each independent variable in different scale fields, the microscopic scale and the macroscopic scale, the average mechanical response of the entire rubber material reflecting the model structure of the microscopic structure shown in FIG. Can be sought. In other words, if the analysis target area is composed of repetitions of an arbitrary microscopic structure, and the repetition degree is so dense that the area cannot be discretized directly by the finite element method, the analysis target is replaced with a homogeneous equivalent model. By analyzing the whole and returning the analysis result to the microscopic structure at an arbitrary point, the deformation of the microscopic structure itself can be obtained approximately. The asymptotic expansion homogenization method is described in detail, for example, in the following document.
Higa, Y. And Tomita, Y ,, Computational Prediction of Mechanical Properties of Nickel-based superalloy with gamma Prime Phase Precipitates, Proceedings of ICM8 (Victoria, BC, Canada), Advance Materials and Modeling of Mechanical Behavior, (Edited by Ellyin, F, and Proven, JW), III (1999), 1061-1066, Fleming Printing Ltd.
Yoshikazu Higa, Yoshihiro Hamada, Modeling and Simulation of Deformation Behavior by Homogenization Method of Particle Reinforced Composites, Transactions of the Japan Society of Mechanical Engineers, A66 (2000), 1441-1446.
Specifically, in addition to the equation (3), a macroscopic equilibrium equation of the following equation (20) and a characteristic displacement function (Y-periodic) of the equation (21) are used.
また、本実施形態では、式(3)の定数等を次のように設定した。
CR =0.268
N=6.6
T=296
kB =1.38066×10-29
n=CR /KB /T=6.558×1025
NA =n・N=4.328×1026
フィラーモデルの体積含有率 30%
フィラーモデルの縦弾性係数E:100MPa
フィラーモデルのポアソン比ν:0.3
Further, in the present embodiment, the constants of Expression (3) are set as follows.
C R = 0.268
N = 6.6
T = 296
k B = 1.38066 × 10 −29
n = C R / K B /T=6.558×10 25
N A = n · N = 4.328 × 10 26
Volume content of filler model 30%
Longitudinal elastic modulus E of filler model: 100 MPa
Poisson's ratio ν of filler model: 0.3
また変形シミュレーションは、巨視的モデルMとして2mm×2mmの矩形状の解析領域を設定し、この巨視的モデルMに一様な一軸引張変形を発生させるため、図9のx2方向に平均ひずみ速度1.0×10-5/sを加え、ひずみを0.01きざみで零から2.5まで漸増させるとともに、各ひずみ毎にゴム材料モデル2に作用する応力を計算している。またひずみが2.5に達した後は、逆に0.01きざみで前記と同じひずみ速度でひずみを零まで漸減させた。各ひずみ状態において、それぞれ平均セグメント数Nが計算され、この値は式(3)へ代入され逐次計算が行われる。なおゴム材料モデルは、厚さ方向(図3のZ軸方向)に変化しないようにArrudaらの3次元8鎖モデルが用いられている。また、マトリックスモデル3及び界面モデル5の平均セグメント数Nは次のように設定した。 In the deformation simulation, a rectangular analysis region of 2 mm × 2 mm is set as the macroscopic model M, and an average strain rate 1 in the x2 direction of FIG. 9 is generated in order to generate uniform uniaxial tensile deformation in the macroscopic model M. 0.0 × 10 −5 / s is added and the strain is gradually increased from zero to 2.5 in steps of 0.01, and the stress acting on the rubber material model 2 is calculated for each strain. On the contrary, after the strain reached 2.5, the strain was gradually reduced to zero at the same strain rate as described above in increments of 0.01. In each strain state, the average number of segments N is calculated, and this value is substituted into equation (3) for sequential calculation. As the rubber material model, a three-dimensional 8-chain model of Arruda et al. Is used so as not to change in the thickness direction (Z-axis direction in FIG. 3). The average number of segments N of the matrix model 3 and the interface model 5 was set as follows.
<マトリックスモデル>
・負荷変形時の平均セグメント数N
N=-3.2368+20.6175 λc-21.8168 λc2+10.8227λc3-1.9003 λc4
・除荷変形時の平均セグメント数N(一定)
N=6.6
・分子鎖のセグメントの総数NA (一定)
NA =4.3281×1026
<Matrix model>
・ Average number of segments N during load deformation
N = -3.2368 + 20.6175 λc-21.8168 λc 2 + 10.8227λc 3 -1.9003 λc 4
・ Average number of segments N during unloading deformation (constant)
N = 6.6
・ Total number of molecular chain segments N A (constant)
N A = 4.3281 × 10 26
<界面モデル>
・負荷変形時の平均セグメント数N
N=-5.9286+20.6175 λc-21.8168 λc2+10.8227λc3-1.9003 λc4
・除荷変形時の平均セグメント数N(一定)
N=3.91
・分子鎖のセグメントの総数NA (一定)
NA =3.203×1025
<Interface model>
・ Average number of segments N during load deformation
N = -5.9286 + 20.6175 λc-21.8168 λc 2 + 10.8227λc 3 -1.9003 λc 4
・ Average number of segments N during unloading deformation (constant)
N = 3.91
・ Total number of molecular chain segments N A (constant)
N A = 3.203 × 10 25
前記変形計算が行われると、その結果から必要な物理量を取得することができる(ステップS4)。図10には、マトリックスモデル3、フィラーモデル4及び界面モデル5について、それぞれ単独で変形シミュレーションを行った結果を示している。フィラーモデル4が最も高い弾性を示し、エネルギーロスは生じていない。界面モデル5は、同じ応力でもマトリックスモデル3よりも大きなひずみが生じる粘弾性特性が表れており、かつ、エネルギーロス(曲線のループ面積)も大きくなっている。 When the deformation calculation is performed, a necessary physical quantity can be acquired from the result (step S4). FIG. 10 shows the results of the deformation simulation performed independently for each of the matrix model 3, the filler model 4, and the interface model 5. The filler model 4 shows the highest elasticity and no energy loss occurs. The interface model 5 shows viscoelastic characteristics that cause a larger strain than the matrix model 3 even at the same stress, and the energy loss (the loop area of the curve) is also large.
また図11の曲線Laは、上記各モデルを図3の微視構造(セルユニット)として組み入れたゴム材料モデル全体における真応力とひずみとの関係を示している。負荷変形時には、非線形の第1の曲線La1が得られた。また除荷変形時では、第1の曲線La1とは異なる第2の曲線La2が得られた。第2の曲線La2は、第1の曲線La1よりも軟化しており(低弾性)、ヒステリシスループが再現できた。このループの閉面積を計算することにより、変形1サイクルでのエネルギーロスを計算することができる。 A curve La in FIG. 11 shows the relationship between the true stress and strain in the entire rubber material model in which the above models are incorporated as the microscopic structure (cell unit) in FIG. At the time of load deformation, a non-linear first curve La1 was obtained. Further, at the time of unloading deformation, a second curve La2 different from the first curve La1 was obtained. The second curve La2 was softer than the first curve La1 (low elasticity), and a hysteresis loop could be reproduced. By calculating the closed area of this loop, the energy loss in one deformation cycle can be calculated.
ちなみに、分子鎖1本当たりの平均セグメント数Nを一定として Arruda らと同様の変形シミュレーションを行った場合、負荷変形時及び除荷変形時とも、同じ曲線を通り、エネルギーロスを表現し得ない結果となる。また上記実施形態では、平均セグメント数Nがパラメータλc の関数である態様を示したが、λc に代えてひずみ速度やひずみ量を用いることができる。この場合、式(19)と同様に、負荷変形時と除荷変形時とで係数を違えることにより、エネルギーロスを表現することができる。 By the way, when the same deformation simulation as Arruda et al. Was performed with the average number of segments N per molecular chain being constant, the result of not being able to express energy loss through the same curve during load deformation and unload deformation. It becomes. In the above embodiment, the average segment number N is a function of the parameter λc. However, a strain rate or a strain amount can be used instead of λc. In this case, similarly to the equation (19), the energy loss can be expressed by changing the coefficient between the load deformation and the unload deformation.
各曲線La1、La2の形状は、式(19)において、係数AないしEを適宜設定し分子鎖1本当たりの平均セグメント数Nを定める関数を変えることにより種々設定しうる。したがって、例えば解析しようとするゴム材料に応じて、係数AないしEを種々設定することにより、材料毎にエネルギーロスなどを詳細に検討することができる。これは、粘弾性材料を主要部として用いるタイヤ、ゴルフボールの性能改善などに大いに役立つ。また、シミュレーション対象の材料の応力−ひずみ曲線が分かっている場合、それに応じて前記係数AないしE等を調整することにより、実際の粘弾性材料と同じ応力ーひずみの関係を表す粘弾性材料のシミュレーションを簡単に行うことができる。 The shape of each of the curves La1 and La2 can be variously set by appropriately setting the coefficients A to E and changing the function for determining the average number of segments N per molecular chain in the equation (19). Therefore, for example, energy loss can be examined in detail for each material by setting various coefficients A to E according to the rubber material to be analyzed. This is very useful for improving the performance of tires and golf balls using viscoelastic materials as the main part. Further, when the stress-strain curve of the material to be simulated is known, by adjusting the coefficients A to E and the like accordingly, the viscoelastic material representing the same stress-strain relationship as the actual viscoelastic material can be obtained. Simulation can be performed easily.
また、図11には、界面モデル5にマトリックスモデル3と同一の材料特性を与えたモデル(つまり、界面を考慮していないモデル)で同一の実験を行った結果が、曲線Lbとして示されている。曲線Lbは、ゴム材料モデル2において、ひずみが大きく生じる界面の軟質領域がないため、応力ーひずみ曲線の傾きが曲線Laよりも立ち上がっている。また、界面モデル5のように界面で大きなエネルギーロスが生じにくいため、モデル全体のエネルギーロスも小さい。 Further, FIG. 11 shows a result obtained by performing the same experiment on a model in which the same material characteristics as the matrix model 3 are given to the interface model 5 (that is, a model not considering the interface) as a curve Lb. Yes. In the rubber material model 2, the curve Lb has no soft region at the interface where a large strain occurs, so that the slope of the stress-strain curve rises more than the curve La. Moreover, since a large energy loss is unlikely to occur at the interface as in the interface model 5, the energy loss of the entire model is also small.
さらに図11には、界面モデル5に、曲線Laとは逆の材料特性を与えてシミュレーションを行った結果が、曲線Lcとして示されている。即ち、曲線Lcを示すゴム材料モデル2は、図12に示すように、界面モデル5の方がマトリックスモデル3よりも高弾性を示すように粘弾性特性を定義したものである。この結果、ゴム材料モデル2の系全体の粘弾性特性が曲線Lbよりも非常に高い勾配を示し、高弾性化されていることが確認できる。なお、この実施形態では、各モデルの平均セグメント数Nは次のように設定している。 Further, in FIG. 11, a result of performing a simulation by giving the interface model 5 a material characteristic opposite to that of the curve La is shown as a curve Lc. That is, the rubber material model 2 showing the curve Lc is defined in terms of viscoelasticity so that the interface model 5 exhibits higher elasticity than the matrix model 3 as shown in FIG. As a result, it can be confirmed that the viscoelastic property of the entire system of the rubber material model 2 has a much higher gradient than the curve Lb and is highly elastic. In this embodiment, the average segment number N of each model is set as follows.
<マトリックスモデル>
・負荷変形時の平均セグメント数N
N=-3.2368+20.6175 λc-21.8168 λc2+10.8227λc3-1.9003 λc4
・除荷変形時の平均セグメント数N(一定)
N=6.6
・分子鎖のセグメントの総数NA (一定)
NA =4.3281×1026
<Matrix model>
・ Average number of segments N during load deformation
N = -3.2368 + 20.6175 λc-21.8168 λc 2 + 10.8227λc 3 -1.9003 λc 4
・ Average number of segments N during unloading deformation (constant)
N = 6.6
・ Total number of molecular chain segments N A (constant)
N A = 4.3281 × 10 26
<界面モデル>
・負荷変形時の平均セグメント数N
N=-5.4800+20.6175 λc-21.8168 λc2+10.8227λc3-1.9003 λc4
・除荷変形時の平均セグメント数N(一定)
N=4.36
・分子鎖のセグメントの総数NA (一定)
NA =8.569×1026
<Interface model>
・ Average number of segments N during load deformation
N = -5.4800 + 20.6175 λc-21.8168 λc 2 + 10.8227λc 3 -1.9003 λc 4
・ Average number of segments N during unloading deformation (constant)
N = 4.36
・ Total number of molecular chain segments N A (constant)
N A = 8.569 × 10 26
図13には、前記ゴム材料モデル2(曲線Laのもの)の単軸引張の変形シミュレーションにおける一つの微視構造(ユニットセル)について、変形〜回復状態の進行過程を間欠的に視覚化して示す。図13(A)〜(E)は、負荷変形時を、同(F)〜(J)は除荷変形をそれぞれ示している。また色彩が白く変化しているところは、ひずみの大きい領域を示している。この結果では、フィラーモデル4の界面及びフィラーモデル4、4間に大きなひずみが集中していることが正確に再現されている。特に、フィラーモデル4、4間の距離が小さい部分に大きなひずみが生じていることが分かる。 FIG. 13 intermittently visualizes the process of deformation to recovery in one microscopic structure (unit cell) in the uniaxial tensile deformation simulation of the rubber material model 2 (curve La). . FIGS. 13A to 13E show load deformation, and FIGS. 13F to 13J show unload deformation. Moreover, the place where the color is changing to white indicates a region with a large distortion. This result accurately reproduces that a large strain is concentrated between the interface of the filler model 4 and between the filler models 4 and 4. In particular, it can be seen that a large strain occurs in a portion where the distance between the filler models 4 and 4 is small.
図14には、最大ひずみ時における各要素の引張方向のひずみ分布を示し、(A)は、界面を考慮していない図11の曲線Lbを、(B)は界面を考慮した同曲線Laのものである。色彩が薄くなるところほど大きなひずみが生じていることを示す。界面を考慮していない(A)のものでは、ひずみの発生が全体的に広範囲にかつ穏やかに生じているのに対して、界面を考慮した(B)のものでは、フィラーモデル4の周辺に大きなひずみが集中していることが良く再現できている。 FIG. 14 shows the strain distribution in the tensile direction of each element at the maximum strain, (A) shows the curve Lb in FIG. 11 not considering the interface, and (B) shows the curve La in consideration of the interface. Is. The thinner the color, the greater the distortion. In the case of (A) in which the interface is not taken into consideration, the generation of strain is broadly and gently generated as a whole, whereas in the case of (B) in which the interface is taken into consideration, around the filler model 4 It is well reproduced that large strains are concentrated.
また図15には、各要素毎にひずみの1サイクルのエネルギーロスを計算し、その大小を色彩にて示す。色彩が薄いところほど大きなエネルギーロスが生じていることを示す。またモデルの形状は、図14の最大変形形状で表しており、(A)は、図11の曲線Lbを、(B)は同曲線Laのものである。界面を考慮した(B)のものでは、フィラーモデル4の界面に集中して大きなエネルギーロスが生じていることが確認できる。 In FIG. 15, the energy loss of one cycle of strain is calculated for each element, and the magnitude is shown by color. The lighter the color, the greater the energy loss. Further, the shape of the model is represented by the maximum deformed shape in FIG. 14, (A) is the curve Lb in FIG. 11, and (B) is the curve La. In the case of (B) considering the interface, it can be confirmed that a large energy loss occurs at the interface of the filler model 4.
このようなシミュレーションは、例えばゴム材へのフィラーの配合割合、フィラーの種類を種々違えたゴム材について、エネルギーロスを含めた粘弾性特性を精度良く評価することができる。 Such a simulation can accurately evaluate the viscoelastic characteristics including energy loss for rubber materials in which the blending ratio of filler to the rubber material and the type of filler are variously changed.
1 コンピュータ装置
2 ゴム材料モデル
3 マトリックスモデル
4 フィラーモデル
5 界面モデル
1 Computer device 2 Rubber material model 3 Matrix model 4 Filler model 5 Interface model
Claims (5)
前記ゴム材料を数値解析が可能な要素でモデル化したゴム材料モデルを設定するステップと、
前記ゴム材料モデルに条件を設定して変形計算を行うステップと、
前記変形計算から必要な物理量を取得するステップとを含むとともに、
前記ゴム材料モデルは、ゴムマトリックスをモデル化したマトリックスモデルと、フィラーをモデル化したフィラーモデルと、前記マトリックスモデルと前記フィラーモデルとの間の界面を形成する界面モデルとを含むことを特徴とするゴム材料のシミュレーション方法。 A rubber material simulation method for simulating deformation of a rubber material containing a filler,
Setting a rubber material model obtained by modeling the rubber material with an element capable of numerical analysis;
Performing deformation calculation by setting conditions in the rubber material model;
Obtaining a necessary physical quantity from the deformation calculation, and
The rubber material model includes a matrix model that models a rubber matrix, a filler model that models a filler, and an interface model that forms an interface between the matrix model and the filler model. Rubber material simulation method.
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003358167A JP3668238B2 (en) | 2003-10-17 | 2003-10-17 | Rubber material simulation method |
EP04017402A EP1526468B1 (en) | 2003-10-17 | 2004-07-22 | Method of simulating viscoelastic material |
DE602004023360T DE602004023360D1 (en) | 2003-10-17 | 2004-07-22 | Method for simulating viscoelastic material |
US10/896,862 US7415398B2 (en) | 2003-10-17 | 2004-07-23 | Method of simulating viscoelastic material |
TW093122349A TWI339263B (en) | 2003-10-17 | 2004-07-27 | Method of simulating viscoelastic material |
CN2004100769195A CN1609884B (en) | 2003-10-17 | 2004-09-02 | Method of simulating viscoelastic material |
KR1020040070751A KR101083654B1 (en) | 2003-10-17 | 2004-09-06 | Method of simulating viscoelastic material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003358167A JP3668238B2 (en) | 2003-10-17 | 2003-10-17 | Rubber material simulation method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005121535A true JP2005121535A (en) | 2005-05-12 |
JP3668238B2 JP3668238B2 (en) | 2005-07-06 |
Family
ID=34614828
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003358167A Expired - Lifetime JP3668238B2 (en) | 2003-10-17 | 2003-10-17 | Rubber material simulation method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3668238B2 (en) |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006138810A (en) * | 2004-11-15 | 2006-06-01 | Sumitomo Rubber Ind Ltd | Simulation method for rubber material |
JP2007233859A (en) * | 2006-03-02 | 2007-09-13 | Japan Research Institute Ltd | Model generating method, simulation method, model generating device, simulation device and computer program |
JP2007249643A (en) * | 2006-03-16 | 2007-09-27 | Fujitsu Ltd | Collision analysis apparatus and collision analysis program |
JP2008122154A (en) * | 2006-11-09 | 2008-05-29 | Sumitomo Rubber Ind Ltd | Manufacturing method of rubber material analyzing model |
EP1947582A2 (en) | 2007-01-16 | 2008-07-23 | Fujitsu Limited | Apparatus and method for creating an analysis model for an elastomeric material member that has a strong nonlinearity |
JP2009003747A (en) * | 2007-06-22 | 2009-01-08 | Yokohama Rubber Co Ltd:The | Method of generating simulation model of composite material and simulation method |
KR101083654B1 (en) | 2003-10-17 | 2011-11-16 | 스미토모 고무 고교 가부시키가이샤 | Method of simulating viscoelastic material |
WO2011145621A1 (en) * | 2010-05-20 | 2011-11-24 | 住友ゴム工業株式会社 | Method for simulating rubber material |
JP2012185042A (en) * | 2011-03-04 | 2012-09-27 | Yokohama Rubber Co Ltd:The | Simulation method and material parameter identification method |
EP2579173A1 (en) | 2011-10-03 | 2013-04-10 | Sumitomo Rubber Industries Limited | Method for simulating deformation of rubber compound with filler particles |
WO2013073360A1 (en) * | 2011-11-18 | 2013-05-23 | 住友ゴム工業株式会社 | Method for simulating rubber material |
KR101293982B1 (en) | 2011-12-08 | 2013-08-07 | 현대자동차주식회사 | Method for simulating elastomer |
JP2014062891A (en) * | 2012-08-31 | 2014-04-10 | Sumitomo Rubber Ind Ltd | Simulation method for high polymer material |
WO2015052996A1 (en) * | 2013-10-07 | 2015-04-16 | 住友ゴム工業株式会社 | Method for creating finite element model for filler-containing rubber |
JP2015075837A (en) * | 2013-10-07 | 2015-04-20 | 住友ゴム工業株式会社 | Method of producing finite element model of filler-loaded rubber |
EP2752780A4 (en) * | 2011-10-20 | 2015-06-03 | Sumitomo Rubber Ind | Simulation model generation method for filler mixed material |
JP2015162236A (en) * | 2014-02-28 | 2015-09-07 | 住友ゴム工業株式会社 | Method for creating filler compounded rubber model |
JP2017075873A (en) * | 2015-10-15 | 2017-04-20 | 東洋ゴム工業株式会社 | Method of calculating hysteresis loss of filler filling rubber, device thereof and program thereof |
JP7197871B1 (en) | 2021-11-25 | 2022-12-28 | 住友理工株式会社 | A simulator for viscoelastic properties of polymer composites |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5001883B2 (en) * | 2008-03-12 | 2012-08-15 | 住友ゴム工業株式会社 | Rubber material simulation method |
JP5395864B2 (en) | 2011-09-14 | 2014-01-22 | 住友ゴム工業株式会社 | Rubber material simulation method |
-
2003
- 2003-10-17 JP JP2003358167A patent/JP3668238B2/en not_active Expired - Lifetime
Cited By (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101083654B1 (en) | 2003-10-17 | 2011-11-16 | 스미토모 고무 고교 가부시키가이샤 | Method of simulating viscoelastic material |
JP2006138810A (en) * | 2004-11-15 | 2006-06-01 | Sumitomo Rubber Ind Ltd | Simulation method for rubber material |
JP4594043B2 (en) * | 2004-11-15 | 2010-12-08 | 住友ゴム工業株式会社 | Rubber material simulation method |
JP2007233859A (en) * | 2006-03-02 | 2007-09-13 | Japan Research Institute Ltd | Model generating method, simulation method, model generating device, simulation device and computer program |
JP2007249643A (en) * | 2006-03-16 | 2007-09-27 | Fujitsu Ltd | Collision analysis apparatus and collision analysis program |
JP4685747B2 (en) * | 2006-11-09 | 2011-05-18 | 住友ゴム工業株式会社 | How to create a rubber material analysis model |
JP2008122154A (en) * | 2006-11-09 | 2008-05-29 | Sumitomo Rubber Ind Ltd | Manufacturing method of rubber material analyzing model |
US8560288B2 (en) | 2007-01-16 | 2013-10-15 | Fujitsu Limited | Apparatus and method for creating analysis model for an elastomeric material member with a strong nonlinearity |
EP1947582A2 (en) | 2007-01-16 | 2008-07-23 | Fujitsu Limited | Apparatus and method for creating an analysis model for an elastomeric material member that has a strong nonlinearity |
JP2009003747A (en) * | 2007-06-22 | 2009-01-08 | Yokohama Rubber Co Ltd:The | Method of generating simulation model of composite material and simulation method |
WO2011145621A1 (en) * | 2010-05-20 | 2011-11-24 | 住友ゴム工業株式会社 | Method for simulating rubber material |
JP2011242336A (en) * | 2010-05-20 | 2011-12-01 | Sumitomo Rubber Ind Ltd | Simulation method of rubber material |
US9134292B2 (en) | 2010-05-20 | 2015-09-15 | Sumitomo Rubber Industries, Ltd. | Method for simulating rubber material |
JP2012185042A (en) * | 2011-03-04 | 2012-09-27 | Yokohama Rubber Co Ltd:The | Simulation method and material parameter identification method |
EP2579173A1 (en) | 2011-10-03 | 2013-04-10 | Sumitomo Rubber Industries Limited | Method for simulating deformation of rubber compound with filler particles |
US9348955B2 (en) | 2011-10-03 | 2016-05-24 | Sumitomo Rubber Industries, Ltd. | Method for simulating deformation of rubber compound with filler particles |
US10002210B2 (en) | 2011-10-20 | 2018-06-19 | Sumitomo Rubber Industries, Ltd. | Simulation model generation method for filler mixed material |
EP2752780A4 (en) * | 2011-10-20 | 2015-06-03 | Sumitomo Rubber Ind | Simulation model generation method for filler mixed material |
JP2013108800A (en) * | 2011-11-18 | 2013-06-06 | Sumitomo Rubber Ind Ltd | Method for simulating rubber material |
CN103890572A (en) * | 2011-11-18 | 2014-06-25 | 住友橡胶工业株式会社 | Method for simulating rubber material |
WO2013073360A1 (en) * | 2011-11-18 | 2013-05-23 | 住友ゴム工業株式会社 | Method for simulating rubber material |
KR101293982B1 (en) | 2011-12-08 | 2013-08-07 | 현대자동차주식회사 | Method for simulating elastomer |
JP2014062891A (en) * | 2012-08-31 | 2014-04-10 | Sumitomo Rubber Ind Ltd | Simulation method for high polymer material |
JP2015075837A (en) * | 2013-10-07 | 2015-04-20 | 住友ゴム工業株式会社 | Method of producing finite element model of filler-loaded rubber |
KR20160065120A (en) * | 2013-10-07 | 2016-06-08 | 스미토모 고무 고교 가부시키가이샤 | Method for creating finite element model for filler-containing rubber |
WO2015052996A1 (en) * | 2013-10-07 | 2015-04-16 | 住友ゴム工業株式会社 | Method for creating finite element model for filler-containing rubber |
US10303826B2 (en) | 2013-10-07 | 2019-05-28 | Sumitomo Rubber Industries, Ltd. | Method for creating finite element model for filler-containing rubber |
KR102262622B1 (en) | 2013-10-07 | 2021-06-08 | 스미토모 고무 코교 카부시키카이샤 | Method for creating finite element model for filler-containing rubber |
JP2015162236A (en) * | 2014-02-28 | 2015-09-07 | 住友ゴム工業株式会社 | Method for creating filler compounded rubber model |
JP2017075873A (en) * | 2015-10-15 | 2017-04-20 | 東洋ゴム工業株式会社 | Method of calculating hysteresis loss of filler filling rubber, device thereof and program thereof |
JP7197871B1 (en) | 2021-11-25 | 2022-12-28 | 住友理工株式会社 | A simulator for viscoelastic properties of polymer composites |
JP2023077944A (en) * | 2021-11-25 | 2023-06-06 | 住友理工株式会社 | Simulation device for viscoelastic property of polymer composite material |
Also Published As
Publication number | Publication date |
---|---|
JP3668238B2 (en) | 2005-07-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3668238B2 (en) | Rubber material simulation method | |
KR101083654B1 (en) | Method of simulating viscoelastic material | |
JP4594043B2 (en) | Rubber material simulation method | |
JP3668239B2 (en) | Simulation method for viscoelastic materials | |
JP5559594B2 (en) | Rubber material simulation method | |
JP5432549B2 (en) | Rubber material simulation method | |
JP6405183B2 (en) | Rubber material simulation method | |
JP2016081297A (en) | Simulation method for polymeric material | |
JP6254325B1 (en) | Coarse-grained molecular dynamics simulation method for polymer materials | |
JP5266366B2 (en) | Rubber material simulation method | |
JP3660932B2 (en) | Rubber material simulation method | |
Bonari et al. | A new finite element paradigm to solve contact problems with roughness | |
JP5001883B2 (en) | Rubber material simulation method | |
JP4697870B2 (en) | Simulation method for viscoelastic materials | |
JP2007265382A (en) | Heterogeneous material simulation method | |
JP5749973B2 (en) | Rubber material simulation method | |
JP2005351770A (en) | Simulation method for rubber material | |
Barnett et al. | Critical state theory for sand with fines: A DEM perspective | |
JP7087300B2 (en) | Polymer material simulation method and polymer material fracture property evaluation method | |
JP7159809B2 (en) | Rubber material simulation method and rubber material manufacturing method | |
Tu | Three-Dimensional Finite Element Analysis of Creep Evolution and Damage at Grain Boundary Level | |
JP2022149869A (en) | Generating method of filler model | |
JP2022139140A (en) | Filler model creation method | |
JP2020135375A (en) | Creation method of rubber material model, simulation method of rubber material and manufacturing method of rubber material | |
JP2019101794A (en) | Rough visualization molecule dynamic simulation method for polymeric material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050214 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20050329 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20050407 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080415 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090415 Year of fee payment: 4 |
|
RVTR | Cancellation due to determination of trial for invalidation | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090415 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090415 Year of fee payment: 4 |