JP2005121467A - Method for evaluating adhesion property of thin film, and method for manufacturing base having thin film on surface - Google Patents
Method for evaluating adhesion property of thin film, and method for manufacturing base having thin film on surface Download PDFInfo
- Publication number
- JP2005121467A JP2005121467A JP2003356317A JP2003356317A JP2005121467A JP 2005121467 A JP2005121467 A JP 2005121467A JP 2003356317 A JP2003356317 A JP 2003356317A JP 2003356317 A JP2003356317 A JP 2003356317A JP 2005121467 A JP2005121467 A JP 2005121467A
- Authority
- JP
- Japan
- Prior art keywords
- thin film
- amount
- adhesion
- peel test
- film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Analysing Materials By The Use Of Radiation (AREA)
- Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
Abstract
Description
本発明は、材料表面に形成された薄膜の密着性を正確かつ迅速に評価する方法および表面に薄膜を有する基材の製造方法に関する。 The present invention relates to a method for accurately and quickly evaluating the adhesion of a thin film formed on a material surface and a method for producing a substrate having a thin film on the surface.
鉄鋼製品や化学製品における表面処理技術、あるいは半導体製品、記録やディスプレー関連製品など、多くの技術分野において、薄膜付与技術、薄膜制御技術は、特性発現の要である。すなわち、基材表面の厚さ数オングストローム〜数百ナノメートルの薄膜の特性、物性、膜厚やその分布が性能支配因子となっていることが多い。薄膜技術が重要になればなるほど、その評価技術は製品開発および検査・管理の鍵を握ってくるといっても過言ではない。 In many technical fields such as surface treatment technology for steel products and chemical products, semiconductor products, recording and display related products, etc., the thin film application technology and the thin film control technology are the key to the development of characteristics. That is, the characteristics, physical properties, film thickness, and distribution of a thin film having a thickness of several angstroms to several hundreds of nanometers on the surface of the substrate are often the performance controlling factors. It is no exaggeration to say that the more important the thin film technology is, the more the evaluation technology becomes the key to product development, inspection and management.
薄膜の特性において、その密着性は非常に重要な特性の一つである。密着性が不良であれば、薄膜の剥離や剥離を介した腐食につながり、製品の性能を著しく損ねてしまう。そのため、薄膜の密着性を評価する方法は大切である。 In the properties of thin films, the adhesion is one of the very important properties. If the adhesion is poor, it will lead to corrosion through peeling of the thin film and peeling, and the performance of the product will be significantly impaired. Therefore, a method for evaluating the adhesion of the thin film is important.
皮膜の密着性を評価する方法は、例えばスクラッチ試験、磨耗試験のような機械的な方法、あるいはテープを一旦試料に貼り付けた後引き剥がして、テープ上に付着した皮膜構成元素を定量分析するテープ剥離試験などがある。後者においては、加工時の密着性を評価するため、加工(例えば90°曲げや、ドロービード試験)後にテープ剥離試験を行う方法も含まれる。またこのなかには、クロスカットを升目状に入れ、剥がれた升目の数を数えるJIS K5400のような手法も含まれる。よりマクロ的には、張り合わせ部のせん断引張試験などがある。 The method for evaluating the adhesion of the film is, for example, a mechanical method such as a scratch test or an abrasion test, or the tape is once attached to the sample and then peeled off to quantitatively analyze the film constituent elements adhering to the tape. There is a tape peeling test. The latter includes a method of performing a tape peeling test after processing (for example, 90 ° bending or a draw bead test) in order to evaluate adhesion during processing. Also included in this is a method such as JIS K5400, in which crosscuts are put in a grid and the number of peeled grids is counted. More macroscopically, there is a shear tensile test of the bonded portion.
しかしながら上記の方法は、皮膜のマクロ的な密着性を評価する方法であり、微小な部分の皮膜密着性の評価、および数十ナノメートル程度の薄い膜厚の皮膜の評価は困難である。 However, the above method is a method for evaluating the macroscopic adhesion of the film, and it is difficult to evaluate the film adhesion of a minute portion and the film having a thin film thickness of about several tens of nanometers.
昨今、材料や部品がミクロ的な構造を有し、材質、形状等が異なる複数の材料を組合せた複合材料を使用するようになってきており、特定の微小な部位あるいは特定材質上の皮膜密着性を評価することが必要になってきたが、前述の評価方法は、係る目的には適していない。すなわち、既存方法では本来知りたい部位の皮膜密着性とそれ以外の部分の皮膜密着性を含めたマクロな部分の評価しかできない。 Nowadays, materials and parts have a micro structure, and composite materials that combine multiple materials with different materials, shapes, etc., have come to be used. Although it has become necessary to evaluate the property, the aforementioned evaluation method is not suitable for the purpose. That is, the existing method can only evaluate the macro part including the film adhesion of the part that is originally desired and the film adhesion of the other part.
また、剥離試験後の試料を仔細に研究することなしには、どのような皮膜剥離が起こっているか、剥離した部分の分布はどうであるかなど、皮膜密着性の改善策や製造条件の変更を行うために重要な知見を得ることは困難である。 In addition, without detailed study of the sample after the peel test, what kind of film peeling occurs, how the distribution of the peeled part is distributed, etc. It is difficult to obtain important knowledge to do.
さらに、従来法では、試験に長時間を要する。テープ剥離法では、剥離試験後に定量分析を行う必要があるため、迅速に結果がでない。そのため、製品の出荷検査、製造条件へのフィードバックを効率的に行えないばかりか、研究開発のスピードも鈍らせる。 Furthermore, the conventional method requires a long time for the test. In the tape peeling method, since it is necessary to perform a quantitative analysis after the peeling test, the result is not quickly obtained. For this reason, not only can product delivery inspection and feedback to manufacturing conditions be performed efficiently, but also the speed of research and development is slowed down.
さらに重要な点は、皮膜がより薄く、また皮膜が微量領域に付与されたものになってくると、機械的な手法は適用が困難になり、テープ剥離法は、剥離量そのものが低下するため、定量分析の精度がネックになり、正確な評価が困難になることである。機械的剥離法には、走査プローブ顕微鏡を用いたナノスクラッチ試験があるが、測定や結果の解釈に熟練を要し、またシリコンウエハやハードディスクのような平滑性の高い下地にしか適用できない。表面に凹凸がある試料は適用困難である。テープ剥離法では、精度を上げようとすると、膨大な試料面積を必要とし現実的でない。 The more important point is that when the film becomes thinner and the film is applied to a small amount of area, the mechanical method becomes difficult to apply, and the tape peeling method reduces the peeling amount itself. The accuracy of quantitative analysis becomes a bottleneck, and accurate evaluation becomes difficult. The mechanical peeling method includes a nano scratch test using a scanning probe microscope, but requires skill in measurement and interpretation of results, and can be applied only to a highly smooth substrate such as a silicon wafer or a hard disk. It is difficult to apply a sample having irregularities on the surface. The tape peeling method requires an enormous sample area to increase accuracy and is not practical.
さらにテープ剥離法では、テープに付着する物質は必ずしも皮膜物質とは限らないところも問題である。たとえば、下地の一部が剥離してテープに付着したり、試料表面に存在していた不純物がテープに付着し、剥離した皮膜量を過剰に見積もってしまう可能性が高い。 Further, in the tape peeling method, there is a problem that the substance adhering to the tape is not necessarily a film substance. For example, there is a high possibility that a part of the base peels off and adheres to the tape, or impurities present on the sample surface adhere to the tape and the amount of the peeled film is excessively estimated.
前記したように、薄膜の密着性を、対象材料の特定部位について、薄膜剥離の分布も含めて評価でき、しかも迅速に行える手法が必要である。また、平滑でない下地に対しても薄膜の密着性を評価できる手法が必要である。 As described above, there is a need for a technique that can evaluate the adhesion of a thin film at a specific portion of the target material, including the distribution of thin film peeling, and can be performed quickly. In addition, a method capable of evaluating the adhesion of the thin film to a non-smooth substrate is required.
本発明は以上のような事情を考慮してなされたものであり、材料表面に形成された薄膜の密着性を正確かつ迅速に評価する手法を提供することを課題とする。 The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a method for accurately and quickly evaluating the adhesion of a thin film formed on a material surface.
上記課題を解決する本発明の特徴は次のとおりである。 The features of the present invention that solve the above problems are as follows.
第1発明は、(1)表面に薄膜を有する試料表面に、膜厚に応じて選択された所定加速電圧で電子線を照射し、二次電子量を測定する工程と、
(2)前記試料を剥離試験する工程と、
(3)剥離試験後の試料表面に、前記所定加速電圧で電子線を照射し、二次電子量を測定する工程と、
(4)前記剥離試験前の二次電子量の測定値と前記剥離試験後の二次電子量の測定値との差を求める工程と、
(5)前記剥離試験前後の二次電子量の測定値の差に基いて、薄膜の密着性を評価する工程と、
を有することを特徴とする、薄膜の密着性の評価方法である。
The first invention is (1) a step of irradiating a sample surface having a thin film on the surface with an electron beam at a predetermined acceleration voltage selected according to the film thickness, and measuring the amount of secondary electrons;
(2) a step of performing a peel test on the sample;
(3) irradiating the surface of the sample after the peel test with an electron beam at the predetermined acceleration voltage and measuring the amount of secondary electrons;
(4) A step of obtaining a difference between a measured value of the amount of secondary electrons before the peel test and a measured value of the amount of secondary electrons after the peel test;
(5) A step of evaluating the adhesion of the thin film based on the difference in the measured value of the amount of secondary electrons before and after the peel test;
It is the evaluation method of the adhesiveness of a thin film characterized by having.
第2発明は、(1)表面に薄膜を有する試料表面に、膜厚に応じて選択された所定加速電圧で電子線を照射し、その二次電子像を観察し、その二次電子量を二次電子量の明るさ数値として数値化する工程と、
(2)前記試料を剥離試験する工程と、
(3)剥離試験後の試料表面に、前記所定加速電圧で電子線を照射し、その二次電子像を観察し、その二次電子量を、二次電子量の明るさ数値として数値化する工程と、
(4)前記剥離試験前の二次電子量の明るさ数値と前記剥離試験後の二次電子量の明るさ数値との差を求める工程と、
(5)前記剥離試験前後の二次電子量の明るさ数値の差に基いて、薄膜の密着性を評価する工程と、
を有することを特徴とする、薄膜の密着性の評価方法である。
In the second invention, (1) a sample surface having a thin film on the surface is irradiated with an electron beam at a predetermined acceleration voltage selected according to the film thickness, the secondary electron image is observed, and the amount of secondary electrons is determined. A process of digitizing the brightness value of secondary electrons,
(2) a step of performing a peel test on the sample;
(3) The surface of the sample after the peel test is irradiated with an electron beam at the predetermined acceleration voltage, the secondary electron image is observed, and the secondary electron quantity is quantified as a brightness value of the secondary electron quantity. Process,
(4) obtaining a difference between the brightness value of the secondary electron amount before the peel test and the brightness value of the secondary electron amount after the peel test;
(5) a step of evaluating the adhesion of the thin film based on the difference in brightness value of the amount of secondary electrons before and after the peel test;
It is the evaluation method of the adhesiveness of a thin film characterized by having.
第3発明は、第1発明において、試料表面に照射する電子線を、前記試料表面上を走査しながら照射し、剥離試験前及び剥離試験後における電子線照射位置に対応した二次電子量を各々測定し、電子線照射位置に対応した剥離試験前の二次電子量と剥離試験後の二次電子量の測定値の差から、試料表面上の各位置における薄膜の密着性を評価することを特徴とする、薄膜の密着性の評価方法である。 According to a third invention, in the first invention, the electron beam irradiated on the sample surface is irradiated while scanning the sample surface, and the amount of secondary electrons corresponding to the electron beam irradiation position before and after the peeling test is obtained. Measure the adhesion of the thin film at each position on the sample surface from the difference between the measured values of the secondary electron quantity before the peel test and the secondary electron quantity after the peel test corresponding to the electron beam irradiation position. It is the evaluation method of the adhesiveness of a thin film characterized by these.
第4発明は、第2発明において、試料表面に照射する電子線を、前記試料表面上を走査しながら照射し、剥離試験前及び剥離試験後における電子線照射位置に対応した二次電子量の明るさ数値を各々求め、電子線照射位置に対応した剥離試験前の二次電子量の明るさ数値と剥離試験後の二次電子量の明るさ数値の差から、試料表面上の各位置における薄膜の密着性を評価することを特徴とする、薄膜の密着性の評価方法である。 According to a fourth invention, in the second invention, the electron beam irradiated on the sample surface is irradiated while scanning the sample surface, and the amount of secondary electrons corresponding to the electron beam irradiation position before and after the peeling test is measured. Each brightness value is obtained, and the difference between the brightness value of the secondary electron quantity before the peel test corresponding to the electron beam irradiation position and the brightness value of the secondary electron quantity after the peel test at each position on the sample surface. A method for evaluating the adhesion of a thin film, comprising evaluating the adhesion of a thin film.
第5発明は、第1〜第4発明において、試料表面に照射する電子線の加速電圧は0.01kV以上2kV以下の範囲内であることを特徴とする、薄膜の密着性の評価方法である。 A fifth invention is a method for evaluating adhesion of a thin film according to any one of the first to fourth inventions, wherein the acceleration voltage of the electron beam applied to the sample surface is in the range of 0.01 kV to 2 kV. .
第6発明は、第1〜第5発明において、薄膜は、金属あるいは半導体上の酸化物および/または水酸化物からなることを特徴とする、薄膜の密着性の評価方法である。 A sixth invention is a method for evaluating adhesion of a thin film according to the first to fifth inventions, wherein the thin film is made of an oxide and / or hydroxide on a metal or a semiconductor.
第7発明は、基材の表面に薄膜を形成する製造工程と、前記製造工程で表面に薄膜を形成した基材の一部又は全部に対して第1〜第6発明のいずれかに記載の方法で薄膜の密着性を評価する評価工程と、を有することを特徴とする、表面に薄膜を有する基材の製造方法である。 7th invention is the manufacturing process which forms a thin film on the surface of a base material, and the base material which formed the thin film on the surface by the said manufacturing process in any one of 1st-6th invention with respect to one part or all. And a method for producing a substrate having a thin film on the surface thereof.
第8発明は、予め、剥離試験前後の二次電子量の差と密着性との対応関係又は剥離試験前後の二次電子量の明るさ数値の差と密着性との対応関係を求め、前記評価工程は、前記剥離試験前後の二次電子量の差と密着性との対応関係と、前記評価工程の剥離試験前後の二次電子量の測定値の差、又は、前記剥離試験前後の二次電子量の明るさ数値の差と密着性との対応関係と、前記評価工程の剥離試験前後の二次電子量の明るさ数値の差に基いて、薄膜が所定の密着性を有するか否かを判定することを特徴とする、第7発明に記載の表面に薄膜を有する基材の製造方法である。 The eighth invention, in advance, to determine the correspondence between the difference between the amount of secondary electrons before and after the peel test and the adhesiveness or the difference between the brightness value of the secondary electron amount before and after the peel test and the adhesiveness, The evaluation process includes a correspondence relationship between the difference in secondary electron amount before and after the peel test and adhesion, and a difference in measured value of the secondary electron amount before and after the peel test in the evaluation process, or two before and after the peel test. Whether or not the thin film has a predetermined adhesion, based on the correspondence between the difference in the brightness value of the secondary electron amount and the adhesiveness, and the difference in the brightness value of the secondary electron amount before and after the peel test in the evaluation step. This is a method for producing a substrate having a thin film on the surface according to the seventh invention.
本発明の評価法によれば、材料の特性の多くを左右する表面の薄膜の密着性を、既存手法より簡便・迅速、かつより正確に評価できる。本発明の評価法によれば、極低加速電圧を用いることにより、既存技術では評価困難な、厚さ数nm程度の極薄薄膜の密着性評価にも対応できる。 According to the evaluation method of the present invention, the adhesion of the thin film on the surface that influences many of the characteristics of the material can be evaluated more simply, more quickly and more accurately than existing methods. According to the evaluation method of the present invention, by using an extremely low acceleration voltage, it is possible to cope with the adhesion evaluation of an ultrathin thin film having a thickness of about several nanometers, which is difficult to evaluate with existing technology.
また、本発明の評価法によれば、微小部位おける密着性の評価が可能であるので、平滑でない表面に形成された薄膜や、材料の特定部位の薄膜の密着性を正確に評価することができる。 In addition, according to the evaluation method of the present invention, it is possible to evaluate the adhesion at a minute site, so it is possible to accurately evaluate the adhesion of a thin film formed on a non-smooth surface or a thin film at a specific site of a material. it can.
基材表面に薄膜を形成する際に、本発明法で薄膜の密着性を評価し、その結果に基づいて、製品の開発はもとより、適切な製品管理、出荷管理が可能になる。また、評価結果を薄膜を形成する製造工程へフィードバックし、製造条件の調整に利用することもできる。 When forming a thin film on the substrate surface, the adhesion of the thin film is evaluated by the method of the present invention, and based on the result, appropriate product management and shipping management become possible as well as product development. Also, the evaluation result can be fed back to the manufacturing process for forming the thin film and used for adjusting the manufacturing conditions.
以下、本発明について詳しく説明する。
本発明の特徴は、(i)工業製品上で重要な皮膜の多くが低導電性であることと、(ii)電子線照射に対して皮膜物質と下地物質の二次電子放出率の違いに着目し、(iii)皮膜の有無を一定加速電圧に対する二次電子放出率の変化の違いとして検出することにある。ただし後述するように、皮膜物質と下地との間で二次電子放出量に差があるものであれば、(i)の条件は必須ではない。
The present invention will be described in detail below.
The features of the present invention are (i) that many of the important films on industrial products have low conductivity, and (ii) the difference in secondary electron emission rate between the film material and the base material with respect to electron beam irradiation. Paying attention, (iii) is to detect the presence or absence of the film as a difference in the change in secondary electron emission rate with respect to a constant acceleration voltage. However, as will be described later, the condition of (i) is not essential as long as there is a difference in the amount of secondary electrons emitted between the coating substance and the base.
発明者らは極低加速SEM技術を利用し種々の薄膜サンプルを調べるうち、低導電性皮膜の有無によって二次電子像の明るさに大きな違いがあることに気づいた。この明るさの違い(以下コントラスト)は、金属上に導電性の低い酸化物層が存在する場合を例にとると、図1に模式的に示したメカニズムで生じると考えている。 The inventors have found that there is a great difference in the brightness of the secondary electron image depending on the presence or absence of a low-conductivity film while examining various thin film samples using the ultra-low acceleration SEM technique. This difference in brightness (hereinafter referred to as contrast) is considered to be caused by the mechanism schematically shown in FIG. 1 in the case where an oxide layer having low conductivity exists on a metal.
すなわち、通常加速電圧では、図1(a)に示すように、膜物質がある部分、膜物質がない部分のいずれでも、下地物質からの二次電子放出が支配的である。そのため、膜物質がある部分と膜物質がない部分とで二次電子放出量の差は小さい。これに対して、入射電子の加速電圧を、入射後の電子の拡散が皮膜物質内に収まるような条件で選択された場合、図1(b)に示されるように、膜物質がある部分における二次電子放出は膜物質そのもので決定され、膜物質が無い部分における二次電子放出量は下地物質そのもので決定される。このとき、膜物質と下地との二次電子放出量に差が生じる。そのために、膜物質がある部分と無い部分とで物質の違いにより物質コントラストが生じるのである。皮膜が低導電性の場合、皮膜が存在する部分は、二次電子量の少ない領域、すなわち暗いコントラストとして表れる。 That is, at the normal acceleration voltage, as shown in FIG. 1A, secondary electron emission from the base material is dominant in both the portion with the film material and the portion without the film material. Therefore, the difference in the amount of secondary electron emission between the portion with the film material and the portion without the film material is small. On the other hand, when the acceleration voltage of the incident electrons is selected under the condition that the diffusion of the electrons after the incident is within the coating material, as shown in FIG. Secondary electron emission is determined by the film material itself, and the amount of secondary electron emission in the portion without the film material is determined by the base material itself. At this time, a difference occurs in the amount of secondary electron emission between the film material and the base. For this reason, a material contrast is generated due to a difference in material between the portion with and without the film material. When the film has a low conductivity, a portion where the film exists appears as a region having a small amount of secondary electrons, that is, a dark contrast.
発明者らは、この現象を利用して、薄膜の密着性を評価できることを見出した。 The inventors have found that the adhesiveness of the thin film can be evaluated using this phenomenon.
すなわち、剥離試験前の試料に上記のような皮膜領域と下地領域で二次電子量に差がでる加速電圧で電子線を照射し、次いで剥離試験を行い、剥離試験後の試料に前記と同じ加速電圧で電子線を照射し、剥離試験前後における二次電子量の変化(差)を求める。剥離試験で皮膜の一部が剥離すると、皮膜面積が減少し、下地の面積が増加することから、剥離試験前後で二次電子量が変化する。 That is, the sample before the peel test is irradiated with an electron beam at an acceleration voltage that causes a difference in the amount of secondary electrons between the film region and the base region as described above, then the peel test is performed, and the sample after the peel test is the same as described above. An electron beam is irradiated with an acceleration voltage, and a change (difference) in the amount of secondary electrons before and after the peel test is obtained. When a part of the film is peeled in the peel test, the film area is reduced and the area of the base is increased. Therefore, the amount of secondary electrons changes before and after the peel test.
剥離試験前後における二次電子量の変化に基き、皮膜の被覆率の差、すなわち剥離面積が求まることから、皮膜の密着性を評価できるのである。 Based on the change in the amount of secondary electrons before and after the peel test, the difference in the coverage of the film, that is, the peel area can be obtained, so that the adhesion of the film can be evaluated.
特定の微小部における密着性を評価する場合、又は剥離部の面内における分布を評価する場合は、入射電子線を細く絞り走査して表面の特定部位に照射し、電子線照射位置に対応して二次電子量を測定する。すなわち走査電子顕微鏡(SEM)の原理に基づき、二次電子量を試料上の位置に対応させて記録する。この場合、剥離試験前後で同一試料、同一視野を観察して、その二次電子量の分布の違いを計測することがより正確である。両者の二次電子量の分布を計測し、その差を求めることで、皮膜剥離を起こした部分の面内の分布を瞬時に知ることができ、また各点の二次電子量を、評価する特定の領域について平均化することで、特定領域の密着性を評価できる。 When evaluating the adhesion at a specific minute part or when evaluating the distribution in the surface of the peeled part, the incident electron beam is finely scanned to irradiate a specific part of the surface, corresponding to the electron beam irradiation position. To measure the amount of secondary electrons. That is, based on the principle of a scanning electron microscope (SEM), the amount of secondary electrons is recorded corresponding to the position on the sample. In this case, it is more accurate to observe the same sample and the same visual field before and after the peel test and to measure the difference in the distribution of secondary electrons. By measuring the distribution of the amount of secondary electrons between the two and obtaining the difference between them, the distribution in the surface of the part where the film peeling occurred can be known instantly, and the amount of secondary electrons at each point is evaluated. By averaging the specific area, the adhesion of the specific area can be evaluated.
前記は薄膜の一部分が全層剥離する場合を念頭において説明したが、薄膜が全層剥離ではなく、例えば皮膜の上部のみが剥離することも考えられる。このような剥離形態が混在する場合でも下記のようにして皮膜の密着性を評価可能である。発明者らは、二次電子量が薄膜の厚さに関連して、連続的に変化することを見出した。皮膜が薄くなると二次電子量が増加し下地の二次電子量に近づくように変化するので、剥離試験前後における視野全体の二次電子量の変化、あるいは特定領域で平均化された二次電子量の変化に基いて皮膜剥離量を、また電子線照射位置に対応した剥離試験前後の二次電子量の変化から、剥離量の面内の分布も評価することが可能である。 The above has been described with the case where a part of the thin film is peeled off in all layers, but it is conceivable that the thin film is not peeled off in all layers, for example, only the upper part of the film peels off. Even when such peeling forms coexist, the adhesion of the film can be evaluated as follows. The inventors have found that the amount of secondary electrons varies continuously in relation to the thickness of the thin film. As the film becomes thinner, the amount of secondary electrons increases and changes so as to approach the amount of secondary electrons of the base, so the change in the amount of secondary electrons in the entire field of view before and after the peel test, or secondary electrons averaged in a specific region It is possible to evaluate the in-plane distribution of the amount of peeling from the amount of film peeling based on the change in amount, and from the change in the amount of secondary electrons before and after the peeling test corresponding to the electron beam irradiation position.
上記の手法において、本質は二次電子の放出量であるが、SEMを用いて二次電子像の明るさを測定し、それを数値化し、その数値で二次電子放出量の相対的な違いを評価することができる。二次電子像の明るさを数値化して評価することには、(1)簡便であること、(2)皮膜、厚さの二次元分布を容易に取得できること、の利点がある。また、(3)SEMが具備する各種表面画像観察機能や元素分析機能を利用して、試料の表面形態や組成分布などを必要に応じて評価できることである。 In the above method, the essence is the amount of secondary electron emission, but the brightness of the secondary electron image is measured using SEM, and it is converted into a numerical value. Can be evaluated. Quantifying and evaluating the brightness of the secondary electron image has the advantages of (1) being simple and (2) being able to easily obtain a two-dimensional distribution of film and thickness. (3) The surface morphology and composition distribution of the sample can be evaluated as necessary using various surface image observation functions and element analysis functions provided in the SEM.
本発明で照射する電子線の加速電圧範囲、すなわち皮膜領域と皮膜のない下地領域で二次電子量に差がでる加速電圧範囲は、薄膜の厚さによって決定される。 The acceleration voltage range of the electron beam irradiated in the present invention, that is, the acceleration voltage range in which the amount of secondary electrons is different between the coating region and the base region without the coating is determined by the thickness of the thin film.
皮膜の有無で二次電子量の異なる加速電圧を実測して求める方法の一例は、試料に照射する電子線の加速電圧を高い方から低い方へ又は低い方から高い方へ変化させて、加速電圧に対する二次電子発生量(二次電子像の明るさ)の変化を評価し、皮膜の有無で前記二次電子発生量(明るさ数値)が異なる加速電圧を求める方法である。 An example of a method for measuring and obtaining acceleration voltages with different amounts of secondary electrons depending on the presence or absence of a film is to accelerate by changing the acceleration voltage of the electron beam irradiating the sample from higher to lower or from lower to higher. In this method, changes in secondary electron generation amount (brightness of secondary electron image) with respect to voltage are evaluated, and acceleration voltages having different secondary electron generation amounts (brightness numerical values) depending on the presence or absence of a film are obtained.
図2は、金属上に該金属よりも導電性の低い物質で構成され、膜厚の異なる薄膜(ここでは酸化物層)を有する試料(2)〜(4)について、加速電圧を高い方から低い方へ変化させたときの二次電子発生量の変化を示す模式図である。膜厚は試料(4)>試料(3)>試料(2)である。皮膜が存在しない試料(1)表面からの二次電子放出量は、実際には加速電圧を低下すると二次電子発生量はわずかずつ変化し、滑らかな曲線となる加速電圧依存性を有しているが、図2では、その変化を無視し、皮膜が存在しない試料(1)の二次電子発生量の加速電圧依存性を、二次電子発生量が一定の直線で示してある。 FIG. 2 shows a sample (2) to (4) having a thin film (here, an oxide layer) made of a material having a lower conductivity than that of the metal on the metal. It is a schematic diagram which shows the change of the amount of secondary electrons generated when it is changed to the lower side. The film thickness is sample (4)> sample (3)> sample (2). The amount of secondary electrons emitted from the surface of the sample (1) where the film does not exist is actually dependent on the acceleration voltage, and the amount of secondary electrons generated changes little by little when the acceleration voltage is lowered. However, in FIG. 2, the change is ignored, and the dependency of the amount of secondary electrons generated on the sample (1) having no coating on the acceleration voltage is shown by a straight line with a constant amount of secondary electrons generated.
低導電性の皮膜が表面に存在する試料(2)〜(4)の二次電子発生量の加速電圧依存性は、各々図中に示されるような曲線になる。すなわち、加速電圧が高い領域では、加速電圧を低下しても二次電子発生量の変化は薄膜が存在しない試料(1)と類似しているが、加速電圧をさらに低下すると、ある加速電圧から二次電子発生量は顕著に減少するようになる。これは、前述のように入射電子の試料内での広がりが皮膜内に限定されるようになることで、低導電性の皮膜表面が正に帯電し、二次電子発生量が減少するためと考えられる。なお、図2では、装置の二次電子検出効率の加速電圧依存性は無視されている。 The acceleration voltage dependence of the amount of secondary electrons generated in the samples (2) to (4) having a low-conductivity film on the surface is a curve as shown in the figure. That is, in the region where the acceleration voltage is high, the change in the amount of secondary electrons generated is similar to that of the sample (1) in which the thin film does not exist even if the acceleration voltage is lowered. The amount of secondary electrons generated decreases significantly. This is because, as described above, the spread of incident electrons in the sample is limited to the inside of the film, so that the surface of the low-conductive film is positively charged and the amount of secondary electrons generated is reduced. Conceivable. In FIG. 2, the dependence of the secondary electron detection efficiency of the device on the acceleration voltage is ignored.
二次電子発生量が滑らかな曲線から外れて減少を開始する加速電圧(図2中、▽印ア〜ウで示す。)を求め、膜厚と二次電子発生量が減少を開始する加速電圧の関係を図示すると、図3に示すような特性曲線が得られる。本発明において、電子線の加速電圧は、薄膜の厚さに対応して決定される図3中の特性曲線より下方の領域から加速電圧が選択される。 An acceleration voltage at which the secondary electron generation amount deviates from the smooth curve and starts to decrease (indicated by ▽ marks in FIG. 2) is obtained, and the acceleration voltage at which the film thickness and secondary electron generation amount start to decrease is obtained. When the relationship is shown, a characteristic curve as shown in FIG. 3 is obtained. In the present invention, the acceleration voltage of the electron beam is selected from a region below the characteristic curve in FIG. 3 determined according to the thickness of the thin film.
以上、照射する電子線の加速電圧範囲を実測結果に基づいて決定する方法を説明したが、膜物質の成分・組成・密度と膜厚がわかっている場合は、モンテカルロシミュレーションなどで、入射電子の試料内での広がりが皮膜内に限定される加速電圧を求めることで、決定することができる。モンテカルロシミュレーションには、市販のモンテカルロシミュレーションソフトウエアを利用できる。 The method for determining the accelerating voltage range of the electron beam to be irradiated based on the measurement results has been described above. However, if the composition, composition, density, and film thickness of the film material are known, the Monte Carlo simulation etc. This can be determined by obtaining an accelerating voltage that limits the spread in the sample within the film. For the Monte Carlo simulation, commercially available Monte Carlo simulation software can be used.
対象とする薄膜の厚さが1nm以上50nm以下である場合、皮膜物質によるが加速電圧0.01kV以上2kV以下の極低加速電圧とすることが必要である。例えば、薄膜の厚さが1nm以上30nm以下の場合、加速電圧として0.01kV以上1.0kV以下が有効である。また、薄膜で厚さが1nm以上10nm以下の場合、加速電圧として0.01kV以上0.3kV以下が有効である。 When the thickness of the target thin film is 1 nm or more and 50 nm or less, it is necessary to set the acceleration voltage to an extremely low acceleration voltage of 0.01 kV or more and 2 kV or less depending on the film material. For example, when the thickness of the thin film is 1 nm or more and 30 nm or less, an acceleration voltage of 0.01 kV or more and 1.0 kV or less is effective. When the thickness is 1 nm or more and 10 nm or less with a thin film, an acceleration voltage of 0.01 kV or more and 0.3 kV or less is effective.
図4は、図3中の特性曲線より下方の領域にある加速電圧から選択された一定加速電圧(図2中の加速電圧X)における試料(2)〜(4)の二次電子発生量を、各々a、b、cとし、膜厚と二次電子発生量の関係を図示したものである。図4においては、二次電子発生量は膜厚に対応していることから、前記加速電圧で、二次電子発生量を測定することにより皮膜厚さを評価できる。また、この関係を利用し、剥離試験前の皮膜厚さ、剥離試験後の皮膜厚さを各々評価し、その差を求めることで皮膜剥離の程度を評価、すなわち皮膜の密着性を評価できる。図4に示すような一定加速電圧における二次電子発生量と皮膜厚さとの関係をあらかじめ求めておくことにより、膜厚未知の試料の皮膜厚さを決定できる。このことにより、皮膜の全層剥離の場合だけでなく、皮膜内の破壊・脱離より、皮膜厚さが薄くなるような場合も、皮膜の脱落を評価することができ、密着性を評価できることになる。 FIG. 4 shows the amount of secondary electrons generated in samples (2) to (4) at a constant acceleration voltage (acceleration voltage X in FIG. 2) selected from the acceleration voltage in the region below the characteristic curve in FIG. , A, b, and c, respectively, illustrating the relationship between the film thickness and the amount of secondary electrons generated. In FIG. 4, since the secondary electron generation amount corresponds to the film thickness, the film thickness can be evaluated by measuring the secondary electron generation amount with the acceleration voltage. Further, by utilizing this relationship, the film thickness before the peel test and the film thickness after the peel test are evaluated, and the difference between them is evaluated to evaluate the degree of film peeling, that is, the adhesion of the film. By obtaining the relationship between the amount of secondary electrons generated at a constant acceleration voltage as shown in FIG. 4 and the film thickness in advance, the film thickness of a sample with an unknown film thickness can be determined. As a result, it is possible to evaluate the film dropout and the adhesiveness not only in the case of peeling of all layers of the film but also in the case where the film thickness becomes thin due to destruction / desorption in the film. become.
図2〜図4は二次電子発生量と膜厚との関係を示した例であるが、二次電子発生量に代えて明るさ数値と膜厚との関係も同様にして求めることができる。 2 to 4 show examples of the relationship between the amount of secondary electrons generated and the film thickness, but the relationship between the brightness value and the film thickness can be obtained in the same manner instead of the amount of secondary electrons generated. .
本発明は上記知見に基づきなされたものである。発明者らは、上記の発見に基づいて、本発明の薄膜の密着性の評価方法を金属や半導体上の低導電性膜に適用し、皮膜の密着性の評価に有用であることを確認した。本発明の薄膜の密着性の評価方法は、これら材料の製品検査、出荷品質管理に利用することができ、さらにはその評価工程を組み込んだ製造方法、操業条件修正方法等にも応用できる。 The present invention has been made based on the above findings. Based on the above findings, the inventors applied the thin film adhesion evaluation method of the present invention to a low-conductivity film on a metal or semiconductor, and confirmed that it is useful for evaluating the adhesion of the film. . The thin film adhesion evaluation method of the present invention can be used for product inspection and shipping quality control of these materials, and can also be applied to a manufacturing method incorporating the evaluation process, a method for correcting operating conditions, and the like.
以下、本発明を、SEMを使用して明るさ数値に基いて試料面内の密着性分布までも評価する場合を例に挙げて具体的に説明する。密着性の評価が平均情報でよい場合は、単純に結果を平均化したり、あるいは絞らないビームで評価したり、さらには、試料に照射できる電子線源と試料より発生する二次電子量を測定する機能を備えた簡単な装置でも評価可能である。 Hereinafter, the present invention will be described in detail by taking as an example the case of evaluating even the in-plane adhesion distribution based on the brightness value using SEM. When average information is sufficient for evaluating adhesion, the results can be simply averaged or evaluated with an unsqueezed beam, and the electron beam source that can irradiate the sample and the amount of secondary electrons generated from the sample are measured. It is possible to evaluate even a simple device having the function to do this.
本発明では、予め、評価対象材料と同種の薄膜を有し、薄膜厚さの異なる材料について、適切な一定加速電圧(皮膜領域と皮膜のない下地領域で二次電子量に差がでる加速電圧範囲内から選択される加速電圧)でSEMによりその表面を観察し、画像を取込んだ後、明るさを数値化し、例えば、図5に示すような、膜厚と明るさとの関係を調査して求めておく。薄膜が無い試料又は下地部分(薄膜が無い部分)の明るさも調査して求めておく。図5において、Bsは下地部分の明るさ数値である。ただし、皮膜の剥離形態が全層剥離であって、皮膜の有無により密着性が評価できる場合には、このステップは省略できる。 In the present invention, an appropriate constant accelerating voltage (an accelerating voltage that causes a difference in the amount of secondary electrons between a film region and a base region without a film) is previously obtained for a material having the same type of thin film as the material to be evaluated and having a different thin film thickness. The surface is observed with an SEM at an acceleration voltage selected from within the range, and after taking an image, the brightness is quantified and, for example, the relationship between film thickness and brightness is investigated as shown in FIG. And ask. The brightness of the sample without the thin film or the base portion (the portion without the thin film) is also investigated and determined. In FIG. 5, Bs is the brightness value of the background portion. However, this step can be omitted when the peeling mode of the coating is all-layer peeling and the adhesion can be evaluated by the presence or absence of the coating.
次に、評価対象の材料から必要に応じて密着性評価用の試料を切出す。次いで、切出した試料を必要であれば洗浄した後、適切な加速電圧でSEMによりその表面を観察し、画像を取込んだ後、明るさを数値化する。その後該試料を剥離試験に供する。その方法は、テープ剥離方法でもよいし、加工後にテープ剥離する方法、機械的な磨耗試験でもよい。また、腐食促進試験などの溶液に浸す方法で腐食による皮膜の密着性を評価する際にも適用できる。剥離試験が終了後、必要に応じて試料を洗浄し、試験前に観察した部分を同じ加速電圧で観察し、画像を取り込んだのち、明るさを数値化する。剥離試験前後の明るさの差を求め、その結果より薄膜の密着性を評価する。すなわち、図5において、剥離試験前の明るさをBF1、剥離試験後の明るさをBF2とすると、前記明るさBF1、BF2は各々膜厚(膜厚が不均一の場合は、平均膜厚となる)t1、t2に対応していることから、剥離試験前後の明るさの差BF1−BF2は、剥離試験による皮膜減少t1−t2に対応している。従って、剥離試験前後の明るさの差BF1−BF2に基き薄膜の密着性を評価できる(全層剥離の場合は、BF2=BSとなる。)。 Next, a sample for adhesion evaluation is cut out from the material to be evaluated as necessary. Next, the cut sample is washed if necessary, the surface thereof is observed with an SEM at an appropriate acceleration voltage, an image is taken in, and the brightness is digitized. The sample is then subjected to a peel test. The method may be a tape peeling method, a tape peeling method after processing, or a mechanical abrasion test. It can also be applied to the evaluation of film adhesion due to corrosion by a method of immersing in a solution such as a corrosion acceleration test. After the peel test is completed, the sample is washed as necessary, the portion observed before the test is observed with the same acceleration voltage, the image is taken in, and the brightness is digitized. The difference in brightness before and after the peel test is obtained, and the adhesion of the thin film is evaluated from the result. That is, in FIG. 5, if the brightness before the peel test is B F1 and the brightness after the peel test is B F2 , the brightness B F1 and B F2 are the film thicknesses (if the film thickness is not uniform, Since it corresponds to t 1 and t 2 (which is the average film thickness), the difference in brightness B F1 -B F2 before and after the peel test corresponds to the film reduction t 1 -t 2 by the peel test. Therefore, the adhesion of the thin film can be evaluated based on the difference in brightness before and after the peeling test B F1 -B F2 (in the case of full-layer peeling, B F2 = B S ).
また、剥離試験前の皮膜厚t1はBF1−BSに対応し、剥離試験後の残存皮膜厚t2はBF2−BSに対応していることから、(BF2−BS)/(BF1−BS)は、剥離試験後の皮膜残存率を表す。これによって薄膜の密着性を評価することもできる。 Further, since the film thickness t 1 of the previous peeling test corresponds to the B F1 -B S, the remaining film thickness t 2 after the peel test corresponds to the B F2 -B S, (B F2 -B S) / (B F1 −B S ) represents the film remaining rate after the peel test. Thereby, the adhesion of the thin film can also be evaluated.
密着性の評価には、加速電圧2kV以下の電子線を常時安定して照射できるSEMを用いることができる。この加速電圧の範囲で、5nmより良い空間分解能を損なわずに自由に加速電圧を変化させることができるもので、電子線の安定性の観点からショットキー電界放出電子銃を有すること望ましい。二次電子検出器としては、低エネルギーの二次電子を、できれば選択的に、多く検出できるものが望ましい。また、迅速に測定までのセットアップができることから試料準備室を有することが望ましい。一例をあげるとすると、LEO1500シリーズやSUPRAシリーズ(LEO社)は、上記の目的に適している。 For the evaluation of adhesion, an SEM that can always stably irradiate an electron beam with an acceleration voltage of 2 kV or less can be used. In this acceleration voltage range, the acceleration voltage can be freely changed without losing the spatial resolution better than 5 nm, and it is desirable to have a Schottky field emission electron gun from the viewpoint of electron beam stability. As the secondary electron detector, one capable of selectively detecting low energy secondary electrons as much as possible is desirable. In addition, it is desirable to have a sample preparation room because it can set up up to measurement quickly. As an example, the LEO 1500 series and the SUPRA series (LEO) are suitable for the above purpose.
二次電子量の測定は、二次電子を電流として取り込む方法が直接的であるが、二次電子像の明るさを数値化して評価することが簡便である。二次電子は、低エネルギーの二次電子を多く取り込むようにすると、導電性の違いに伴う二次電子量の変化を効率よく測定できる。 The measurement of the amount of secondary electrons is a direct method of taking secondary electrons as a current, but it is easy to evaluate the brightness of the secondary electron image numerically. If the secondary electrons take in a lot of low energy secondary electrons, the change in the amount of secondary electrons accompanying the difference in conductivity can be measured efficiently.
一定の加速電圧で得られた明るさから、皮膜の分布を定量的に評価するためには、観察・画像取り込み、および数値化の条件を同一にすることが肝要である。特に試験前後で同じ視野を定量的に評価する場合、検査対象に対して同一条件で得られた結果を比較する必要がある。同一条件で画像をデジタルデータとして取込む。その際に同一にする観察条件は以下のとおりである。
・加速電圧:前記のごとく対象とする膜厚により決定する。
・入射電子条件:加速電圧、アパーチャ−、ビーム径(通常最小)、電子の走査範囲(倍率)、走査スピード(一点あたりの電子線照射時間)、走査方法
・検出条件:検出器の条件(印可電圧など)、明るさ、コントラスト
・画像取込み条件:取込み点数、取込み時間、明るさ、コントラスト
次いで取込んだ画像を、画像処理ソフトウエアで読み込む。このソフトウエアは自作、市販品を問わない。後者の一例は、Adobe製Photoshopである。前記ソフトウエア上で、付着物など異常部を除いた画像範囲の明るさを数値化する。数値化方法は問わないが、例えば明るさを256階調に分ける。
In order to quantitatively evaluate the distribution of the film from the brightness obtained at a constant acceleration voltage, it is important to make the observation / image capturing and quantification conditions the same. In particular, when the same visual field is quantitatively evaluated before and after the test, it is necessary to compare the results obtained under the same conditions with respect to the inspection object. Capture images as digital data under the same conditions. In this case, the same observation conditions are as follows.
Acceleration voltage: Determined according to the target film thickness as described above.
・ Entrance electron conditions: acceleration voltage, aperture, beam diameter (normally minimum), electron scanning range (magnification), scanning speed (electron beam irradiation time per point), scanning method / detection conditions: detector conditions (applicable) Voltage, etc.), brightness, contrast / image capture conditions: number of capture points, capture time, brightness, contrast Next, the captured image is read by image processing software. This software can be self-made or commercially available. An example of the latter is Adobe Photoshop. On the software, the brightness of the image range excluding abnormal parts such as adhering matter is digitized. There is no limitation on the numerical method, but for example, the brightness is divided into 256 gradations.
試料表面の平均情報を得る場合は、前記範囲内の画像データ点数で平均化する方法を採用できる。剥離試験前の試料と試験後の試料の両方について、同様の方法で画像を数値化する。また、同一条件で観察された、皮膜のみの領域と下地のみの領域の明るさを各々数値化する。
これらの結果より、皮膜の被覆率は、(2)式により評価できる。
When obtaining average information of the sample surface, a method of averaging with the number of image data points within the above range can be employed. For both the sample before the peel test and the sample after the test, the images are digitized in the same manner. Also, the brightness of the film-only region and the base-only region observed under the same conditions is digitized.
From these results, the coating rate of the film can be evaluated by equation (2).
これは、皮膜部分の明るさBF、下地部分の明るさをBS、皮膜の被覆率をCとすると、全体の明るさ平均値Bと、B=(BF×C+BS×(1−C))の関係があることによる。 This means that the brightness B F of the film part, the brightness of the base part B S , and the coverage of the film C, the overall brightness average value B and B = (B F × C + B S × (1− C)).
この皮膜被覆率を、剥離試験前後で各々求める。図5に示したように、全体の明るさ平均値Bは皮膜厚さに対応していることから、(3)式より、皮膜残存率、すなわち皮膜の密着性を評価できる。 The film coverage is obtained before and after the peel test. As shown in FIG. 5, since the overall average brightness value B corresponds to the film thickness, the film remaining rate, that is, the adhesion of the film can be evaluated from the equation (3).
なお、(2)式における皮膜被覆率は、皮膜の全層剥離を想定した記述であるが、剥離試験により皮膜厚さが薄くなる場合は、これを平均膜厚に置き換え、皮膜の密着性、皮膜残存率を同様に評価できる。 In addition, the film coverage in the formula (2) is a description assuming that all layers of the film are peeled off, but when the film thickness is thinned by a peel test, this is replaced with an average film thickness, The film remaining rate can be similarly evaluated.
ここでは、剥離試験前後で同一試料の同一視野を評価することを述べたが、剥離試験前の皮膜の状況がわかっている場合、例えば皮膜が均一の厚さで試料表面の全面を覆っている場合や皮膜の分布が均一な場合、一度このような皮膜の二次電子像明るさを評価しておけば、その後は剥離試験後の表面の評価を行うだけで密着性を評価できる。 Here, it was described that the same field of view of the same sample was evaluated before and after the peel test. However, when the state of the film before the peel test is known, for example, the film covers the entire surface of the sample with a uniform thickness. If the distribution of the film or the film is uniform, once the secondary electron image brightness of such a film is evaluated, the adhesion can be evaluated simply by evaluating the surface after the peel test.
また、より簡便な方法として、同一条件で得られた二次電子像の明るさを数値化して、適当な明るさ(閾値)で皮膜部分と下地露出部分を二値化して、それぞれ皮膜の被覆率を計算し、(3)式を用いて皮膜残存率を評価することができる。この方法は、皮膜のみ、下地のみの明るさを計測する必要はない。 In addition, as a simpler method, the brightness of the secondary electron image obtained under the same conditions is digitized, and the film part and the ground exposed part are binarized at an appropriate brightness (threshold value). The film residual rate can be evaluated by calculating the rate and using the equation (3). In this method, it is not necessary to measure the brightness of only the film and only the ground.
特定微小部の密着性を評価するには、特定領域のデータのみを平均化したものについて、(2)式、(3)式を適用すればよい。 In order to evaluate the adhesion of the specific minute portion, the equations (2) and (3) may be applied to the data obtained by averaging only the data of the specific region.
皮膜剥離程度の面内分布を調べるには、剥離試験前後の二次電子像の明るさ分布の比(剥離試験後の明るさ数値/剥離試験前の明るさ数値、あるいはその逆)の分布を得ることにより、剥離した部分を可視化できる。 In order to investigate the in-plane distribution of the degree of film peeling, the distribution of the brightness distribution ratio of secondary electron images before and after the peeling test (brightness value after peeling test / brightness value before peeling test or vice versa) By obtaining, the part which peeled can be visualized.
本発明が対象とする材料は、基材(下地物質)表面の少なくとも一部に薄膜を有しており、該薄膜は基材の導電性よりも低い導電性物質からなる材料である。具体例としては、金属や半導体上にそれより低導電性の皮膜が存在する材料が本発明の対象となる。半導体分野では、シリコン上の絶縁皮膜や誘電体皮膜などを挙げることができる。前述の低導電性皮膜としては、例えば、鋼板などの金属板上の酸化物や水酸化物、あるいは有機化合物や高分子材料を主体とする表面処理皮膜などがある。 The material targeted by the present invention has a thin film on at least a part of the surface of the base material (underlying substance), and the thin film is a material made of a conductive material lower than the conductivity of the base material. As a specific example, a material in which a film having a lower conductivity is present on a metal or semiconductor is an object of the present invention. In the semiconductor field, an insulating film or a dielectric film on silicon can be cited. Examples of the low conductive film include an oxide or hydroxide on a metal plate such as a steel plate, or a surface treatment film mainly composed of an organic compound or a polymer material.
これらの製品の特性が低導電性皮膜の厚さに依存しているものは、本発明の格好の対象である。対象となる低導電性の薄膜の厚さは、1nm以上1μm以下である。本発明は、厚さ1nm以上100nm以下の薄膜に対してより好適に適用でき、厚さ1nm以上10nm以下の極薄の薄膜に対して特に好適に適用できる。 It is a good subject of the present invention that the properties of these products depend on the thickness of the low conductive film. The thickness of the target low-conductivity thin film is 1 nm or more and 1 μm or less. The present invention can be more suitably applied to a thin film having a thickness of 1 nm to 100 nm, and can be particularly preferably applied to an extremely thin thin film having a thickness of 1 nm to 10 nm.
しかし、本発明は、必ずしも皮膜の導電性に限定されることはなく、皮膜物質と下地物質とで二次電子量に違いのでるものであれば、適応可能である。 However, the present invention is not necessarily limited to the conductivity of the film, and can be applied as long as the amount of secondary electrons differs between the film material and the base material.
また、原理は図1と異なるが、膜物質と下地物質との平均原子番号が異なる場合は、反射電子検出器を使って、膜物質と下地物質との平均原子番号の違いによる反射電子量の違いを利用することができる。この方法は、極薄層には適さないが、導電性に差がない場合も適用可能である。 Although the principle is different from that in FIG. 1, if the average atomic number of the film material and the base material is different, the backscattered electron detector is used to calculate the amount of reflected electrons due to the difference in the average atomic number of the film material and the base material. You can take advantage of the differences. This method is not suitable for ultrathin layers, but can also be applied when there is no difference in conductivity.
本発明によれば、薄膜の密着性を的確、迅速に評価できる。基材の表面に薄膜を形成する製造工程で製造された材料に対して、本発明の薄膜の評価方法を適用することで、該材料の出荷先を適切に振り分けることが可能となる。 According to the present invention, the adhesion of a thin film can be accurately and quickly evaluated. By applying the thin film evaluation method of the present invention to the material manufactured in the manufacturing process of forming a thin film on the surface of the substrate, it becomes possible to appropriately distribute the shipping destination of the material.
すなわち、密着性試験前後の二次電子量の測定値の差又は剥離試験前後の明るさ数値の差と密着性との対応関係を求め、さらに薄膜の密着性が所定の密着性レベルとなる密着性試験前後の二次電子量の測定値の差又は密着性試験前後の明るさ数値の差の閾値を予め設定しておく。そして、製造工程で製造された材料の薄膜の評価結果から得られた密着性試験前後の二次電子量の測定値の差又は剥離試験前後の明るさ数値の差が前記閾値以上であれば薄膜は所定の密着性を有すると判定する。 That is, the correspondence between the difference in the measured value of the amount of secondary electrons before and after the adhesion test or the difference in the brightness value before and after the peel test and the adhesion is obtained, and the adhesion at which the adhesion of the thin film becomes a predetermined adhesion level. The threshold value of the difference in the measured value of the amount of secondary electrons before and after the property test or the difference in brightness value before and after the adhesion test is set in advance. If the difference in measured secondary electron quantity before and after the adhesion test or the difference in brightness value before and after the peel test obtained from the evaluation result of the thin film of the material manufactured in the manufacturing process is equal to or greater than the threshold value, the thin film Is determined to have a predetermined adhesion.
前記閾値を、密着性の合否を判定する閾値とし、製造工程で製造された材料の薄膜の密着性評価結果が該閾値以上であれば当該材料を所定の引当先に振り向け、該閾値未満であれば当該材料を所定の引当先に振り向けないようにすることができる。 The threshold value is used as a threshold value for determining whether or not the adhesiveness is acceptable. If the adhesion evaluation result of the thin film of the material manufactured in the manufacturing process is equal to or greater than the threshold value, the material is directed to a predetermined allocation destination. For example, the material can be prevented from being directed to a predetermined allocation destination.
また、前記閾値を、密着性レベルに対応して、複数の閾値、例えば高グレード閾値、低グレード閾値の2種の閾値を設定し、製造工程で製造された材料の薄膜の密着性評価結果と前記各々の閾値とを対比し、該材料の薄膜の密着性評価結果が高グレード閾値以上であれば高グレードの密着性が必要な引当先に振り向け、低グレード閾値以上であれば低グレードの密着性が必要な引当先に振り向け、低グレード閾値未満であれば、前記の何れにも引き当てないようにしてもよい。 Further, the threshold value is set to a plurality of threshold values, for example, a high grade threshold value and a low grade threshold value, corresponding to the adhesion level, and the adhesion evaluation result of the thin film of the material manufactured in the manufacturing process Compared to each of the above threshold values, if the result of the adhesion evaluation of the thin film of the material is equal to or higher than the high grade threshold value, it is directed to a provision that requires high grade adhesion. However, if it is less than the low grade threshold value, it may not be assigned to any of the above.
皮膜の被覆率により製品の良否を判定できる場合、本明細書で記載する皮膜の被覆率を求める方法を利用して、製品や試作品における薄膜の被覆率を評価することが有効である。求めた薄膜の被覆率を、上記の密着性と同様に、取扱うことにより、製品の検査(良否判定やグレード仕分け)、および製造工程における製造条件決定を行うことができる。 When the quality of the product can be determined by the coating rate of the film, it is effective to evaluate the coverage of the thin film in the product or prototype using the method for obtaining the coating rate described in this specification. By handling the obtained coverage of the thin film in the same manner as the above-mentioned adhesion, it is possible to inspect the product (evaluation of quality or grade sorting) and determine the manufacturing conditions in the manufacturing process.
次に、本発明を実施例により説明する。
合金化溶融亜鉛めっき鋼板を常法により製造し、調質圧延によりめっき表面に平坦部をもうけた。その鋼板をpH1の酢酸ソーダを含有する酸性溶液に浸漬後200℃で乾燥することで、合金化溶融亜鉛めっき鋼板の表面にZnを主体とする酸化物層を形成させた。酢酸ソーダの含有量を変化させて3種類の酸化物層を形成させた。オージェ電子顕微鏡で測定した結果、酸化物は調質圧延により作製した平坦部にのみ形成されており、酸化物の厚さはすべて40nm前後であった。この酸化物層を、アセチルセルロースフィルムを、アセトンを介して試料表面に30秒間圧着し、剥離することを2回繰返す剥離試験を行った。
Next, an example explains the present invention.
An alloyed hot-dip galvanized steel sheet was produced by a conventional method, and a flat portion was provided on the plated surface by temper rolling. The steel sheet was immersed in an acidic solution containing sodium acetate at
SEM(LEO1530)を用い、加速電圧0.5kVで上記試料表面を走査し、画像をデジタルデータで取り込んだ。画像の取り込みは、剥離試験前後で同一視野について行った。それぞれの画像データから、平坦部の明るさの平均を数値化した。また、それぞれの画像データから、皮膜存在部のみ、下地部分のみの領域を選択し、それぞれの領域の明るさの平均値を数値化した。これらの数値から、前記(2)式、(3)式より、皮膜被覆率、皮膜残存率を求めた。なお明るさの数値化は、市販のソフトウエアPhotoshop(Adobe製)を用いて256階調で数値化した。 Using the SEM (LEO1530), the sample surface was scanned at an acceleration voltage of 0.5 kV, and an image was captured as digital data. Image capture was performed for the same field of view before and after the peel test. From each image data, the average brightness of the flat portion was quantified. In addition, from the respective image data, regions of only the film existing portion and only the base portion were selected, and the average value of the brightness of each region was digitized. From these numerical values, the film coverage and the film remaining rate were determined from the above equations (2) and (3). The numerical value of the brightness was numerically expressed with 256 gradations using commercially available software Photoshop (manufactured by Adobe).
表1は、試料A〜Cの画像データから数値化した結果と、試料の平坦部における剥離試験前後の皮膜被覆率および皮膜残存率を評価した結果である。 Table 1 shows the results of quantification from the image data of samples A to C, and the results of evaluation of the film coverage and the film residual ratio before and after the peel test on the flat portion of the sample.
試料Aは、三試料中でもっとも皮膜の密着性が劣ることがわかる。また、試料Cは、剥離試験前の皮膜の被覆率は他の試料より低いが、皮膜残存率(皮膜密着率)はもっとも高く、剥離試験後の皮膜被覆率が高い。この結果に基づき、密着性の高い酸化物の皮膜形成条件を決定することができた。 It can be seen that Sample A has the poorest film adhesion among the three samples. Sample C has a lower film coverage before the peel test than other samples, but has the highest film residual rate (film adhesion rate) and a high film coverage after the peel test. Based on this result, it was possible to determine the conditions for forming an oxide film with high adhesion.
この例のように、皮膜の形成が表面の特定部分に限られる場合に本発明は特に有効である。例えばテープ剥離試験では定量的な評価ができたとしても、皮膜の分布がわからないため、試料の単位面積あたりの密着性評価(広い領域の平均的な密着性評価)ができるだけで、平坦部に形成された皮膜の密着性は評価できない。 As in this example, the present invention is particularly effective when the formation of the film is limited to a specific portion of the surface. For example, even if a quantitative evaluation can be made in the tape peeling test, the distribution of the film is not known, so the adhesion per unit area of the sample (average adhesion evaluation over a wide area) can be performed and formed on a flat part. The adhesion of the applied film cannot be evaluated.
前記と同じ画像データに、皮膜部を抽出できるように閾値を決め、その閾値で二値化して、剥離試験前後での皮膜の被覆率の変化を調べることも行った。この結果、試料Aでは、皮膜の残存率は約40%と、前記と同様の結果を得た。この方法でも皮膜の密着性を評価できることを示している。 A threshold value was determined so that the film portion could be extracted from the same image data as described above, and binarization was performed based on the threshold value, and the change in the coating rate before and after the peel test was also examined. As a result, in Sample A, the remaining rate of the film was about 40%, which was the same result as described above. This shows that the adhesion of the film can also be evaluated by this method.
なお、図6は、試料Aの剥離試験前後の二次電子像で、(a)は剥離試験前の二次電子像、(b)は(a)に対応する部分の剥離試験後の二次電子像である。ともに0.5kVの加速電圧により得られたものである。これらの像の明るさを数値化して、表1の試料Aの明るさ数値を求めた。試料B、Cでも同様にして明るさ数値を求めた。 6A and 6B are secondary electron images before and after the peel test of Sample A, (a) is the secondary electron image before the peel test, and (b) is the secondary electron image after the peel test corresponding to (a). It is an electronic image. Both were obtained with an acceleration voltage of 0.5 kV. The brightness values of these images were digitized to determine the brightness values of Sample A in Table 1. The brightness values were similarly obtained for samples B and C.
また、図7は、図6(b)の各点の明るさ数値を図6(a)のそれで割った結果を示す図である。平坦部において、皮膜が剥離した領域が暗いコントラストで表されており、皮膜が剥離した領域の分布が明瞭に示されている。 FIG. 7 is a diagram showing a result of dividing the brightness value of each point in FIG. 6B by that in FIG. 6A. In the flat part, the area where the film is peeled is represented by dark contrast, and the distribution of the area where the film is peeled is clearly shown.
本発明は、基材表面に形成された薄膜、例えば厚さ数nm以上の薄膜の密着性評価に利用できる。本発明は、特に、半導体材料や鉄鋼材料分野において、半導体や金属上の酸化膜からなる薄膜を形成させた材料の密着性の評価に好適に利用できる。 The present invention can be used for evaluating the adhesion of a thin film formed on the surface of a substrate, for example, a thin film having a thickness of several nm or more. The present invention can be suitably used for evaluating the adhesion of a material formed with a thin film made of an oxide film on a semiconductor or metal, particularly in the field of semiconductor materials and steel materials.
本発明によれば、SEMを使うことができるため、平面内で数十nmのなかでの膜厚の密着性評価や剥離部の可視化も可能であり、ナノテクノロジーにより開発される材料の極薄薄膜の密着性の評価に利用できる。 According to the present invention, since SEM can be used, it is possible to evaluate the adhesion of the film thickness within a few tens of nanometers in the plane and visualize the peeled portion. It can be used to evaluate the adhesion of thin films.
本発明は、前記のような製品の開発はもとより該製品の製品管理、出荷管理、さらには該製品を製造する製造工程の製造条件調整へのフィードバックにも利用可能である。 The present invention can be used not only for the development of the product as described above, but also for product management and shipping management of the product, and also for feedback to the adjustment of the manufacturing conditions of the manufacturing process for manufacturing the product.
Claims (8)
(2)前記試料を剥離試験する工程と、
(3)剥離試験後の試料表面に、前記所定加速電圧で電子線を照射し、二次電子量を測定する工程と、
(4)前記剥離試験前の二次電子量の測定値と前記剥離試験後の二次電子量の測定値との差を求める工程と、
(5)前記剥離試験前後の二次電子量の測定値の差に基いて、薄膜の密着性を評価する工程と、
を有することを特徴とする、薄膜の密着性の評価方法。 (1) A step of irradiating a sample surface having a thin film on the surface with an electron beam at a predetermined acceleration voltage selected according to the film thickness, and measuring the amount of secondary electrons;
(2) a step of performing a peel test on the sample;
(3) irradiating the surface of the sample after the peel test with an electron beam at the predetermined acceleration voltage and measuring the amount of secondary electrons;
(4) A step of obtaining a difference between a measured value of the amount of secondary electrons before the peel test and a measured value of the amount of secondary electrons after the peel test;
(5) A step of evaluating the adhesion of the thin film based on the difference in the measured value of the amount of secondary electrons before and after the peel test;
A method for evaluating the adhesion of a thin film, comprising:
(2)前記試料を剥離試験する工程と、
(3)剥離試験後の試料表面に、前記所定加速電圧で電子線を照射し、その二次電子像を観察し、その二次電子量を、二次電子量の明るさ数値として数値化する工程と、
(4)前記剥離試験前の二次電子量の明るさ数値と前記剥離試験後の二次電子量の明るさ数値との差を求める工程と、
(5)前記剥離試験前後の二次電子量の明るさ数値の差に基いて、薄膜の密着性を評価する工程と、
を有することを特徴とする、薄膜の密着性の評価方法。 (1) The surface of a sample having a thin film on the surface is irradiated with an electron beam at a predetermined acceleration voltage selected according to the film thickness, the secondary electron image is observed, and the amount of secondary electrons is A process of digitizing the brightness value;
(2) a step of performing a peel test on the sample;
(3) The surface of the sample after the peel test is irradiated with an electron beam at the predetermined acceleration voltage, the secondary electron image is observed, and the secondary electron quantity is quantified as a brightness value of the secondary electron quantity. Process,
(4) obtaining a difference between the brightness value of the secondary electron amount before the peel test and the brightness value of the secondary electron amount after the peel test;
(5) a step of evaluating the adhesion of the thin film based on the difference in brightness value of the amount of secondary electrons before and after the peel test;
A method for evaluating the adhesion of a thin film, comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003356317A JP2005121467A (en) | 2003-10-16 | 2003-10-16 | Method for evaluating adhesion property of thin film, and method for manufacturing base having thin film on surface |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003356317A JP2005121467A (en) | 2003-10-16 | 2003-10-16 | Method for evaluating adhesion property of thin film, and method for manufacturing base having thin film on surface |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2005121467A true JP2005121467A (en) | 2005-05-12 |
Family
ID=34613598
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003356317A Pending JP2005121467A (en) | 2003-10-16 | 2003-10-16 | Method for evaluating adhesion property of thin film, and method for manufacturing base having thin film on surface |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2005121467A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010025833A (en) * | 2008-07-23 | 2010-02-04 | Jfe Steel Corp | Method of measuring coverage of iron-based powder |
CN113720868A (en) * | 2020-05-26 | 2021-11-30 | 国家能源投资集团有限责任公司 | Method for measuring content of mesophase pitch of asphalt material |
-
2003
- 2003-10-16 JP JP2003356317A patent/JP2005121467A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010025833A (en) * | 2008-07-23 | 2010-02-04 | Jfe Steel Corp | Method of measuring coverage of iron-based powder |
CN113720868A (en) * | 2020-05-26 | 2021-11-30 | 国家能源投资集团有限责任公司 | Method for measuring content of mesophase pitch of asphalt material |
CN113720868B (en) * | 2020-05-26 | 2024-04-09 | 国家能源投资集团有限责任公司 | Method for measuring content of mesophase pitch of pitch material |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Tougaard | Practical guide to the use of backgrounds in quantitative XPS | |
US8269960B2 (en) | Computer-implemented methods for inspecting and/or classifying a wafer | |
JP6167182B2 (en) | Method and apparatus for measuring thickness of thin film layer using X-ray | |
KR101992717B1 (en) | Method for checking forsterite, apparatus for evaluating forsterite, and production line for manufacturing steel sheet | |
EP3306653B1 (en) | Semiconductor wafer evaluation method | |
CN113097089B (en) | Method and system for determining film continuity | |
KR100447713B1 (en) | Method and apparatus for showing scanning image of sample | |
JP4089580B2 (en) | Method for evaluating thin film thickness and thickness distribution | |
Jablonski et al. | Information depth for elastic-peak electron spectroscopy | |
CN110763716A (en) | Test method and device | |
JP2005121467A (en) | Method for evaluating adhesion property of thin film, and method for manufacturing base having thin film on surface | |
Bekeris et al. | Rapid quantification of nanosphere lithography packing defects using scanning electron microscopy edge effects | |
JP2009288016A (en) | Fluorescent x-ray analyzer and evaluation system of semiconductor device using it | |
Ingham | Statistical measures of spottiness in diffraction rings | |
JP6358045B2 (en) | X-ray analysis method for surface-coated fine particles and X-ray analyzer for surface-coated fine particles | |
Baer et al. | Challenges in applying surface analysis methods to nanoparticles and nanostructured materials | |
TWI516760B (en) | Semiconductor inspection device and inspection method using charged particle line | |
Mahjoub et al. | XPS combined with MM-EPES technique for in situ study of ultra thin film deposition: Application to an Au/SiO2/Si structure | |
TW201732280A (en) | Method of imaging defects using an electron microscope | |
Berger et al. | Measurement and Monte Carlo simulation of the spatial resolution in element analysis with the FEG-EPMA JEOL JXA-8530F | |
JP2000055841A (en) | X-ray analysis method | |
Varepo et al. | Revisiting the quality control of ink layer | |
JP6677943B2 (en) | Microspectroscopic data measurement apparatus and method | |
JP2906606B2 (en) | Qualitative analysis of thin film samples | |
Jablonski et al. | Monte Carlo simulations of electron transport in solids: applications to electron backscattering from surfaces |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20060921 |