JP2005120547A - Reinforcing material made from fiber-reinforced thermoplastic resin and method for producing the same - Google Patents
Reinforcing material made from fiber-reinforced thermoplastic resin and method for producing the same Download PDFInfo
- Publication number
- JP2005120547A JP2005120547A JP2003359244A JP2003359244A JP2005120547A JP 2005120547 A JP2005120547 A JP 2005120547A JP 2003359244 A JP2003359244 A JP 2003359244A JP 2003359244 A JP2003359244 A JP 2003359244A JP 2005120547 A JP2005120547 A JP 2005120547A
- Authority
- JP
- Japan
- Prior art keywords
- melting point
- thermoplastic resin
- fiber
- point component
- net
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Pit Excavations, Shoring, Fill Or Stabilisation Of Slopes (AREA)
- Reinforcement Elements For Buildings (AREA)
- Manufacturing Of Tubular Articles Or Embedded Moulded Articles (AREA)
- Braiding, Manufacturing Of Bobbin-Net Or Lace, And Manufacturing Of Nets By Knotting (AREA)
Abstract
Description
本発明は、モルタル、コンクリート等の格子筋、法面形成、盛土工法等の補強材、土木構築物や建築壁面の下地補強材等に好適に使用される繊維強化熱可塑性樹脂(FRP)製補強材およびその製造方法に関するものである。 The present invention relates to a reinforcing material made of fiber reinforced thermoplastic resin (FRP) which is suitably used for reinforcing materials such as lattice reinforcing bars such as mortar and concrete, slope formation, embankment method, foundation reinforcing material for civil engineering structures and building walls, etc. And a manufacturing method thereof.
従来、モルタル、コンクリート等の補強用には、格子状に組立てられた鉄筋が用いられている。また、コンクリートに合成樹脂を混入したレジンコンクリートは、例えば、チャンネル、トラフ、ボックス、あるいはこれらの蓋等の二次製品に用いられているが、これらの部材には、軽量化,廃棄処理,リサイクル等の点から、従来、金網や格子状FRPが補強材に使用されている。 Conventionally, reinforcing bars assembled in a lattice shape are used for reinforcing mortar, concrete, and the like. Resin concrete in which synthetic resin is mixed into concrete is used for secondary products such as channels, troughs, boxes, and lids for these, but these members are lighter, discarded, and recycled. In view of the above, conventionally, a wire mesh or a lattice-like FRP has been used as a reinforcing material.
さらに、軟弱地盤盛土や急勾配法面の補強材として、耐蝕性、耐久性、軽量性からポリエチレン製ネットやプラスチックグリッド材等が使用されている。 Furthermore, polyethylene nets, plastic grid materials, and the like are used as reinforcement materials for soft ground embankments and steep slopes due to their corrosion resistance, durability and light weight.
また、法面補強のためモルタル吹付け時の補強材にラス金網や格子状FRPが使用され、このような補強材は、土木,建築分野のコンクリート構造物の壁面下地材としても用いられている。ところが、このような用途に用いられている補強材には、以下に説明する技術的な課題があった。 In addition, lath wire mesh and lattice FRP are used as reinforcements when spraying mortar for slope reinforcement, and such reinforcements are also used as wall base materials for concrete structures in civil engineering and construction fields. . However, the reinforcing material used for such applications has the following technical problems.
すなわち、コンクリート構造物の補強用に埋設された鉄筋は、酸性雨による腐食で、モルタル,コンクリートの剥離の問題がある。また、レジンコンクリートにおいては、破損時に格子状FRPとレジンコンクリートとの分別処理に手間と費用を要する問題がある。 In other words, reinforcing bars embedded for reinforcing concrete structures are corroded by acid rain and have a problem of peeling of mortar and concrete. Moreover, in resin concrete, there exists a problem which requires an effort and expense for the separation process of lattice-like FRP and resin concrete at the time of a failure | damage.
また、盛土や法面補強に用いられているネットないしはグリット材は、曲面にフィットし難いという問題があった。さらに、コンクリート製構築物の壁面下地材として用いられている、ラス金網は、錆びが発生するという問題があった。 Further, the net or grit material used for embankment and slope reinforcement has a problem that it is difficult to fit a curved surface. Furthermore, the lath wire mesh used as the wall surface base material of the concrete structure has a problem that rust is generated.
そこで、本発明者らは、鉄筋の腐食によるモルタル、コンクリートの剥離の問題や、分別処理に手間と費用を要する等の問題が解決でき、しかも、曲面へのフィット性も改良できる手段を鋭意検討して本願発明の完成に至ったものであって、その目的とするところは、コストが安く、取り扱いが容易で、耐久性に優れた繊維強化熱可塑性樹脂製補強材およびその製造方法を提供することにある。 Therefore, the present inventors have intensively studied means that can solve problems such as mortar and concrete peeling due to corrosion of reinforcing bars and troublesome and expensive separation processing, and can also improve the fit to curved surfaces. The present invention has been completed, and the object thereof is to provide a fiber-reinforced thermoplastic resin reinforcing material that is low in cost, easy to handle, and excellent in durability, and a method for manufacturing the same. There is.
上記目的を達成するために、本発明は、マトリックス樹脂を構成する熱可塑性樹脂からなる低融点成分と、補強繊維を構成する熱可塑性樹脂からなる高融点成分とを備えた複合繊維を収束した複合繊維束中間線状体を、所定目合いのメッシュ状体に編網した後、緊張下に、前記低融点成分を溶融固化させて、前記補強繊維を前記低融点成分で一体的に結着したネット状物から繊維強化熱可塑性樹脂製補強材を構成した。 In order to achieve the above object, the present invention is a composite in which a composite fiber having a low melting point component made of a thermoplastic resin constituting a matrix resin and a high melting point component made of a thermoplastic resin constituting a reinforcing fiber is converged. After the fiber bundle intermediate linear body is knitted into a mesh having a predetermined mesh size, the low melting point component is melted and solidified under tension, and the reinforcing fibers are integrally bound with the low melting point component. A fiber-reinforced thermoplastic resin reinforcement was constructed from the net.
前記複合繊維は、前記低融点成分を構成する鞘部と、前記高融点成分を構成する芯部とを備えた鞘芯型複合繊維であって、前記鞘部の融点が、前記芯部の融点より10℃以上低くすることができる。 The composite fiber is a sheath-core type composite fiber having a sheath portion that constitutes the low-melting-point component and a core portion that constitutes the high-melting-point component, and the melting point of the sheath portion is the melting point of the core portion. Further, it can be lowered by 10 ° C. or more.
前記複合繊維束中間線状体は、複合繊維束の外周に熱可塑性樹脂被覆層を有することができる。 The composite fiber bundle intermediate linear body may have a thermoplastic resin coating layer on the outer periphery of the composite fiber bundle.
前記メッシュ状体は、無結節編とすることができる。
前記複合繊維は、前記鞘部の融点(軟化点)以上で、前記芯部の融点(軟化点)以下の温度で延伸し、引張強度が4.0cN/dtex以上とすることができる。
The mesh-like body may be a knotless knitting.
The composite fiber may be stretched at a temperature equal to or higher than the melting point (softening point) of the sheath portion and equal to or lower than the melting point (softening point) of the core portion to have a tensile strength of 4.0 cN / dtex or higher.
前記複合繊維束は、前記鞘部の融点(軟化点)以上で、前記芯部の融点(軟化点)以下で、延伸と同時に融合した1本或いは複数本の繊維束の繊度が5,550dtex以下とすることができる。 The composite fiber bundle has a fineness of one or a plurality of fiber bundles that are equal to or higher than the melting point (softening point) of the sheath portion and equal to or lower than the melting point (softening point) of the core portion. It can be.
前記ネット状物は、各辺の構成要素の線状体の引張強力が49N以上とすることができる。 The net-like object may have a tensile strength of a linear member of each side component of 49 N or more.
前記複合繊維は、前記芯部がポリプロピレン、ポリエチレンテレフタレート、ナイロン、芳香族ポリエステル(LCP)樹脂のうち、単一或いは複数の混合樹脂から構成することができる。 In the composite fiber, the core may be composed of a single resin or a plurality of mixed resins among polypropylene, polyethylene terephthalate, nylon, and aromatic polyester (LCP) resin.
この場合、芯成分に芳香族ポリエステル用いたものは、非常に高い強度が得られる。また、鞘成分の素材としては芯成分樹脂より融点、軟化点が低い樹脂であれば良く、ポリエチレン、ポリオレフィン等の共重合ポリプロピレン、結晶性ポリプロピレン、低融点PET等が望ましい。芯部をポリプロピレン、鞘部をポリエチレンとしたものは、価格的に非常に有利である。また芯鞘成分樹脂には必要に応じて、公知の耐光剤、顔料等の着色剤を添加することができる。 In this case, the use of aromatic polyester as the core component provides very high strength. The sheath component may be a resin having a lower melting point and softening point than the core component resin, and is preferably a copolymer polypropylene such as polyethylene or polyolefin, a crystalline polypropylene, or a low melting point PET. A core made of polypropylene and a sheath made of polyethylene is very advantageous in price. Moreover, colorants, such as a well-known light resistance agent and a pigment, can be added to core-sheath component resin as needed.
また、芯成分の芳香族ポリエステルとして、例えば融点が310℃のポリアリレートを用い、鞘部を融点が270℃のポリエチレンナフタレートとすればより高強度で耐熱性の高い複合繊維束、ネット状物が得られる。 Further, as the core component aromatic polyester, for example, if polyarylate having a melting point of 310 ° C. is used and the sheath is made of polyethylene naphthalate having a melting point of 270 ° C., a composite fiber bundle having a higher strength and higher heat resistance, or a net-like material Is obtained.
前記ネット状物は、編網後に熱プレスにより前記複合繊維束が扁平になるように加工することができる。 The net-like object can be processed so that the composite fiber bundle becomes flat by hot pressing after the knitting net.
前記ネット状物は、編網後の前記熱プレスにより芯部の補強繊維束を覆う低融点成分による熱可塑性樹脂被膜を形成することができる。 The net-like material can form a thermoplastic resin film with a low melting point component that covers the reinforcing fiber bundle at the core by the hot press after the knitting net.
前記熱可塑性樹脂被膜は、前記ネット状物の上下面が平滑で、側面に突出する突起を有することができる。 The thermoplastic resin coating may have protrusions that protrude from the side surfaces with smooth upper and lower surfaces of the net-like material.
前記熱可塑性樹脂被膜は、その上下面に凹凸加工を施すことができる。
前記補強材は、これをモルタル又はコンクリートの格子筋として用いることができる。
The thermoplastic resin coating can be subjected to uneven processing on the upper and lower surfaces thereof.
The reinforcing material can be used as a lattice of mortar or concrete.
前記補強材は、これを法面又は盛土用補強材として用いることができる。
前記補強材は、これを土木又は建設壁面の下地補強材として用いることができる。
The reinforcing material can be used as a slope or a reinforcing material for embankments.
The reinforcing material can be used as a foundation reinforcing material for civil engineering or construction wall surfaces.
また、本発明は、マトリックス樹脂を構成する熱可塑性樹脂からなる低融点成分と、補強繊維を構成する熱可塑性樹脂からなる高融点成分とを備えた複合繊維で構成した線状体によるネット状補強材の製造方法であって、複数本の前記複合繊維を撚り掛けて収束させた複合繊維束中間線状体とし、複合繊維束中間線状体を10mm以上の目合いのメッシュ状体に編網し、しかる後、前記メッシュ状体を一定の緊張状態で、前記低融点成分の融点以上、前記高融点成分の融点以下に加熱して前記低融点成分を溶融した後冷却して、前記補強繊維を前記低融点成分で一体的に結着したネット状物を形成するようにした。 Further, the present invention provides a net-like reinforcement by a linear body composed of a composite fiber having a low melting point component made of a thermoplastic resin constituting a matrix resin and a high melting point component made of a thermoplastic resin constituting a reinforcing fiber. A composite fiber bundle intermediate linear body in which a plurality of the composite fibers are twisted and converged, and the composite fiber bundle intermediate linear body is knitted into a mesh-like body having a mesh size of 10 mm or more. Then, in a certain tension state, the mesh-like body is heated to a melting point of the low melting point component or higher and below the melting point of the high melting point component to melt the low melting point component, and then cooled to cool the reinforcing fiber. To form a net-like material integrally bound with the low melting point component.
また、本発明は、マトリックス樹脂を構成する熱可塑性樹脂からなる低融点成分と、補強繊維を構成する熱可塑性樹脂からなる高融点成分とを備えた複合繊維で構成するネット状補強材の製造方法であって、複数本の前記複合繊維を収束した後に、前記低融点成分よりも高融点の熱可塑性樹脂により被覆して、被覆複合繊維束中間線状体を得、複数の前記被覆複合繊維束中間線状体を、10mm以上の目合いのメッシュ状体に編網し、しかる後、前記メッシュ状体を一定緊張状態で、前記複合繊維の低融点成分の融点以上、高融点成分、または、前記被覆複合繊維束中間線状体の被覆樹脂の融点以下に加熱して、前記低融点成分を溶融した後冷却して、前記補強繊維を前記低融点成分で一体的に結着したネット状物を形成するようにした。 The present invention also relates to a method for producing a net-like reinforcing material comprising a composite fiber comprising a low melting point component comprising a thermoplastic resin constituting a matrix resin and a high melting point component comprising a thermoplastic resin constituting a reinforcing fiber. Then, after converging a plurality of the composite fibers, the composite fiber bundle intermediate linear body is obtained by coating with a thermoplastic resin having a melting point higher than that of the low melting point component, and a plurality of the coated composite fiber bundles. The intermediate linear body is knitted into a mesh body having a mesh size of 10 mm or more, and then the mesh body is in a constant tension state, the melting point of the low melting point component of the composite fiber, the high melting point component, or A net-like material in which the reinforcing fiber is integrally bonded with the low-melting component by heating to below the melting point of the coating resin of the coated composite fiber bundle intermediate linear body, melting the low-melting-point component and then cooling. To form.
前記複合繊維は、前記鞘部の融点(軟化点)以上で、前記芯部の融点(軟化点)以下の温度で延伸しつつ、鞘部を融合させて、引張強度が4.0cN/dtex以上の複合繊維束を得、該複合繊維束を1本或いは複数本集束して繊度が、5,550dtex以下の複合繊維中間線状体を得、複数の前記複合繊維束中間線状体を、10mm以上の目合いのメッシュ状体に編網し、しかる後、前記メッシュ状体を一定緊張状態で、前記複合繊維の低融点成分の融点以上、高融点成分の融点以下に加熱して、前記低融点成分を溶融した後冷却して、前記補強繊維を前記低融点成分で一体的に結着したネット状物を形成することができる。 The composite fiber is stretched at a temperature equal to or higher than the melting point (softening point) of the sheath portion and equal to or lower than the melting point (softening point) of the core portion, and fuses the sheath portion to have a tensile strength of 4.0 cN / dtex or higher. The composite fiber bundle is obtained, and one or a plurality of the composite fiber bundles are converged to obtain a composite fiber intermediate linear body having a fineness of 5,550 dtex or less. The mesh-like body having the above-mentioned mesh is knitted, and then the mesh-like body is heated to a melting point of the low-melting component of the composite fiber to a melting point of the high-melting component in a constant tension state. The melting point component is melted and then cooled to form a net-like material in which the reinforcing fibers are integrally bound with the low melting point component.
また、本発明の製造方法では、編網により前記メッシュ状体を形成した後、または、前記メッシュ状体を一定緊張状態で、前記複合繊維の低融点成分の融点以上、高融点成分、または、前記被覆複合繊維束中間線状体の被覆樹脂の融点以下に加熱して、前記低融点成分を溶融した後冷却して、前記補強繊維を前記低融点成分で一体的に結着したネット状物を形成した後に、加熱プレスまたは加熱ローラーにより上下面から加熱加圧して、前記低融点成分の熱可塑性樹脂を溶融して、複合繊維束線状体を扁平化するか、または、芯部の補強繊維束を覆う低融点成分による熱可塑性樹脂被膜を形成することができる。 Further, in the production method of the present invention, after forming the mesh-like body by a knitted mesh, or in a state of constant tension of the mesh-like body, the melting point of the low melting point component of the composite fiber, the high melting point component, or A net-like material in which the reinforcing fiber is integrally bonded with the low-melting component by heating to below the melting point of the coating resin of the coated composite fiber bundle intermediate linear body, melting the low-melting-point component and then cooling. After forming, the hot pressing or heating roller is used to heat and press from above and below to melt the low melting point thermoplastic resin and flatten the composite fiber bundle linear body, or to reinforce the core A thermoplastic resin film composed of a low melting point component covering the fiber bundle can be formed.
また、本発明の製造方法では、編網により前記メッシュ体の形成した後、または、前記メッシュ状体を一定緊張状態で、前記複合繊維の低融点成分の融点以上、高融点成分、または、前記被覆複合繊維束中間線状体の被覆樹脂の融点以下に加熱して、前記低融点成分を溶融した後冷却して、前記補強繊維を前記低融点成分で一体的に結着したネット状物を形成した後に、加熱プレス又は加熱ローラーによりネット上下面から加熱加圧して、前記低融点成分の熱可塑性樹脂を溶融し、芯部の補強繊維束を覆う低融点成分による熱可塑性樹脂被膜を形成し、しかる後表面に凹凸を有する加熱プレス又はローラーによりネット状物の上面又は下面もしくは両面に凹凸加工を施すことができる。 Further, in the production method of the present invention, after the formation of the mesh body by a knitted mesh, or in a state of constant tension of the mesh-like body, the melting point of the low melting point component of the composite fiber, the high melting point component, or the above Heating below the melting point of the coating resin of the coated composite fiber bundle intermediate linear body, melting the low melting point component and then cooling, to form a net-like material integrally binding the reinforcing fibers with the low melting point component After forming, heat pressurize from the upper and lower surfaces of the net with a hot press or heated roller to melt the thermoplastic resin of the low melting point component and form a thermoplastic resin film with a low melting point component covering the reinforcing fiber bundle in the core part. Thereafter, the top surface, the bottom surface, or both surfaces of the net-like material can be subjected to a concavo-convex process by a heating press or roller having a concavo-convex surface.
前記複合繊維を収束させた複合繊維束としては、1本1本が独立している場合には、5,550dtex〜55,550dtex程度が好ましく、繊度がこれより小さいとネット状物の強度が不足し、繊度がこれより大きいと編網加工が困難になる。 The composite fiber bundle in which the composite fibers are converged is preferably about 5,550 dtex to 55,550 dtex when each one is independent. If the fineness is smaller than this, the strength of the net-like material is insufficient. However, if the fineness is larger than this, it is difficult to process the net.
また、1本1本が独立している複合繊維束の場合には、各複合繊維がバラバラになるのを防ぐため撚りを掛ける必要がある。この際の撚りの数は、例えば、(0.5〜3)回/cm程度が好ましい。撚りの数が、これより少ないとバラバラになりやすく、多いと繊維の強度が低下する。複合繊維束に撚りをかけない場合には、一括して、熱可塑性樹脂で被覆する。 Further, in the case of a composite fiber bundle in which each one is independent, it is necessary to twist each composite fiber to prevent the composite fibers from falling apart. The number of twists at this time is preferably about (0.5 to 3) times / cm, for example. If the number of twists is less than this, it tends to fall apart, and if it is more, the strength of the fiber decreases. When the composite fiber bundle is not twisted, it is collectively covered with a thermoplastic resin.
被覆樹脂材料としては、柔軟性を有するポリオレフィン、ポリエステル、ポリアミド樹脂等が上げられる。芯部をポリプロピレン、鞘部をポリエチレンとして、例えば、高温・高圧蒸気などで、ポリエチレンの融点以上、ポリプロピレンの融点未満の温度で高延伸した場合、鞘部であるポリエチレンが、延伸状態で融合一体化する。 Examples of the coating resin material include flexible polyolefin, polyester, polyamide resin, and the like. When the core is made of polypropylene and the sheath is made of polyethylene, for example, when it is highly stretched at a temperature higher than the melting point of polyethylene and less than the melting point of polypropylene with high-temperature, high-pressure steam, the sheath polyethylene is fused and integrated in the stretched state. To do.
複合繊維束の収束体の全てが融合すると、剛性が高くなり過ぎる場合には、編網が困難になるので、延伸槽内で、複合繊維束の繊度が、5、550dtex以下になるように分割してやる必要がある。 When all of the convergent bodies of the composite fiber bundle are fused, if the rigidity becomes too high, the knitting network becomes difficult. Therefore, in the drawing tank, the fineness of the composite fiber bundle is divided so as to be 5,550 dtex or less. I need to do it.
この様な連続状態の複合繊維束を用いた中間線状体でネット状物を形成する際には、複合繊維束中間線状体を所定目合いに編網してメッシュ状体を形成した後、これをピンなどで型に固定し、又はメッシュ体の縦横を展張して、鞘部の熱可塑性樹脂の融点以上に加熱して鞘部を相互に融合する。 When forming a net-like material with an intermediate linear body using such a continuous composite fiber bundle, after forming a mesh-like body by knitting the composite fiber bundle intermediate linear body into a predetermined mesh Then, this is fixed to a mold with a pin or the like, or the length and width of the mesh body are stretched and heated to the melting point of the thermoplastic resin of the sheath portion to fuse the sheath portions to each other.
融合後の線状体内部に空隙を発生させないためには、内部加圧が可能な加熱装置を用いると良い。加熱と同時に加圧する方法によると、線状体の密度の高いものが得られる。 In order not to generate a void in the linear body after the fusion, it is preferable to use a heating device capable of internal pressurization. According to the method of pressurizing simultaneously with heating, a linear body having a high density can be obtained.
メッシュ状体の中間線状体を加熱融合した後、冷却し、得られたネット状物は、所定大きさの矩形状に切断する。切断されたネット状物は、端部を必要に応じて加熱ドライヤー等で加熱し折り返す事で二重にすると、補強が容易に行える。 After the intermediate linear body of the mesh body is heated and fused, it is cooled, and the obtained net-like object is cut into a rectangular shape having a predetermined size. If the cut net-like object is doubled by heating and turning the end part with a heating dryer or the like as necessary, reinforcement can be easily performed.
本発明にかかる繊維強化熱可塑性樹脂製補強材によれば、鉄筋の腐食によるモルタル、コンクリートの剥離の問題や、分別処理に手間と費用を要する等の問題が解決でき、しかも、曲面へのフィット性も改良できる。また、本発明にかかる繊維強化熱可塑性樹脂製補強材の製造方法によれば、このような特質を備えた補強材を安価に製造することができる。 According to the reinforcing material made of fiber reinforced thermoplastic resin according to the present invention, it is possible to solve problems such as mortar caused by corrosion of reinforcing bars, separation of concrete, and troublesome and expensive separation processing, and fit to a curved surface. The property can be improved. Moreover, according to the manufacturing method of the fiber-reinforced thermoplastic resin reinforcing material according to the present invention, a reinforcing material having such characteristics can be manufactured at low cost.
以下本発明の実施の形態を、図面を参考にして説明する。図1から図4は、本発明にかかる繊維強化熱可塑性樹脂製補強材およびその製造方法の第1実施例を示している。 Embodiments of the present invention will be described below with reference to the drawings. 1 to 4 show a first embodiment of a fiber-reinforced thermoplastic resin reinforcing material and a method for manufacturing the same according to the present invention.
図1(A)は、本発明にかかる繊維強化熱可塑性樹脂製補強材およびその製造方法に用いる複合繊維束中間線状体1の断面状態を模式的に示す外観図であり、図1(B)は、複合繊維1の断面状態を示す外観図であり、図2は、図1(A)に示した複合繊維束中間線状体1により編網したメッシュ状体の直線部分の外観図と断面図である。
FIG. 1 (A) is an external view schematically showing a cross-sectional state of a composite fiber bundle intermediate
また、図3は、図1(A)に示した複合繊維束中間線状体1を複数本使用し、所定目合いに編網したメッシュ状体3の外観図であり、図4は、図3に示したメッシュ状体3から形成したネット状物4の外観図と断面図である。
FIG. 3 is an external view of a mesh-
複合繊維2は、マトリックス樹脂を構成する熱可塑性樹脂からなる低融点成分2aと、補強繊維を構成する熱可塑性樹脂からなる高融点成分2bとを備えていて、中央に配置した高融点成分2bの外周を、低融点成分2aで被覆する形態の同心円状の鞘芯構造になっている。
The
すなわち、本実施例の場合には、複合繊維2は、低融点成分2aが鞘部となっていて、高融点成分2bが芯部となる鞘芯型構造になっている。この複合繊維2は、多数本、収束した複合繊維束中間線状体1とされる。複数本の複合繊維2を複合繊維束中間線状体1にする際には、撚りを掛けることによって、離脱してバラバラになることが防止される。
That is, in the case of the present Example, the
この撚りは、複合繊維2の直径や、本数によっても異なるが、例えば、(0.5〜3)回/cm程度が好ましい。複合繊維束中間線状体1は、連続状態で製作され、編網可能な柔軟性を有した中間体であって、網撚合機の線状物供出ボビンに巻かれて編網され、図3に示すメッシュ状体3に形成される。
Although this twist varies depending on the diameter and number of the
メッシュ状体3の目合いは、例えば、10mm以上とされる。図3には、無結節網とした状態の一部が示されている。このように形成されたメッシュ状体3は、一定の緊張状態で、低融点成分2aの融点以上で、高融点成分2bの融点以下に加熱して、低融点成分2aを溶融した後冷却して、補強繊維(高融点成分2b)を低融点成分2aで一体的に結着した繊維強化熱可塑性樹脂製ネット状物4とされる。
The mesh of the mesh-
また、低融点成分2aが溶融して、補強繊維(高融点成分2b)を一体的に結着したネット状物4では、低融点成分2a同士が溶融して一体化するので、図4に示すように、複合繊維束中間線状体1の撚り構造が、外見上確認できない形態になる場合もある。
Further, in the net-
充分な柔軟性を有し、製網された無結節網形態のメッシュ状体3は、は、その後加熱処理されることによって充分な剛性を有する無結節網となる。
The mesh-
この場合、メッシュ状体3の一例として無結節網を例示して説明したが、本発明の目的が達せられるならば、例えば、結節網,ラッセル網等いかなる方法によってもメッシュ状体を作成することができる。
In this case, a nodule network has been described as an example of the mesh-
図5は、本発明にかかるネット状物およびその製造方法の他の実施例を示しており、上記実施例と同一もしくは相当する部分には、同一符号を付してその説明を省略するとともに、以下にその特徴点についてのみ説明する。 FIG. 5 shows another embodiment of the net-like object and the method for manufacturing the same according to the present invention. The same or corresponding parts as those in the above embodiment are designated by the same reference numerals and the description thereof is omitted. Only the feature points will be described below.
図5(A)は、上記実施例の図1に示した中間線状体1に相当する複合繊維中間線状体1’を示している。本実施例の場合、複合繊維束中間線状体1’には、上記実施例と同様に複合繊維2が用いられている。
FIG. 5A shows a composite fiber intermediate
複合繊維2は、上記実施例と同様に、マトリックス樹脂を構成する熱可塑性樹脂からなる低融点成分2aと、補強繊維を構成する熱可塑性樹脂からなる高融点成分2bとを備えていて、中央に配置した高融点成分2bの外周を、低融点成分2aで被覆する形態の同心円状の鞘芯構造になっている。
The
本実施例の場合には、複合繊維束中間線状体1’を形成する際には、各複合繊維2に撚りを加えないで、縦添えし、その外周を熱可塑性樹脂製の被覆層1aで覆うことにより、複数本の複合繊維2が離脱してバラけることを防止している。
In the case of the present embodiment, when forming the composite fiber bundle intermediate
このような形態の複合繊維束中間線状体1’は、上記実施例と同様に、複数本が編網されてメッシュ状体(図5(B)にその直線部分を示し、図5(C)に断面を示している。)とされた後に、一定の緊張状態で、低融点成分2aの融点以上で、高融点成分2bの融点以下に加熱して、低融点成分2aを溶融した後冷却して、補強繊維(高融点成分2b)を低融点成分2aで一体的に結着したネット状物4とされる。
In the composite fiber bundle intermediate
なお、実施例では、同心形状の鞘芯型複合繊維を使用してネット状物を形成する場合を例示したが、本発明の実施は、これに限定されることはなく、例えば、図6に示すように、低融点成分2aと高融点成分2bとで、偏芯型ないしは並列型の複合繊維を構成する構造であってもよい。
In addition, in the Example, although the case where a net-like thing was formed using a concentric sheath-core type composite fiber was illustrated, implementation of the present invention is not limited to this, for example, in FIG. As shown, the low
図7は、本発明にかかる繊維強化合成樹脂製補強材の他の実施例を示しており、上記実施例と同一もしくは相当する部分には、同一符号を付してその説明を省略すると共に以下にその特徴点についてのみ説明する。 FIG. 7 shows another embodiment of the fiber-reinforced synthetic resin reinforcing material according to the present invention. The same or corresponding parts as those in the above embodiment are designated by the same reference numerals and the description thereof is omitted. Only the feature points will be described.
図7は、繊維強化合成樹脂補強材であるネット状物40の外観図と断面図であり、本実施例のネット状物40も、上記実施例と同様に、鞘心型ないしは並列型の複合繊維20から構成され、この複合繊維20は、低融点成分20aと高融点成分20bとを備えている。
FIG. 7 is an external view and a cross-sectional view of a net-
本実施例の場合、ネット状物40は、編網後に熱プレスを加えることにより、偏平な形状になっていて、芯部の補強繊維束を覆う低融点成分20aによる熱可塑性樹脂からなる被膜42が形成されている。この被膜42は、上下面がほぼ平坦な平滑面となっていて、側面には、外方に突出する突起44が設けられている。
In the case of the present embodiment, the net-
なお、被膜42の上下面は、必ずしも平滑にする必要はなく、例えば、凹凸を有する加熱ローラまたはプレスにより凹凸加工を施しても良い。この場合、凹凸加工は、上下のいずれか一方の面、ないしは、双方の面に施すことができ、このような凹凸や突起44を設けることにより、盛土や法面,コンクリート壁体などにネット状物40を埋設した際に、土砂やセメント粒子との間の接触面積を拡大することができる。
Note that the upper and lower surfaces of the
本実施例のネット状物40は、上記実施例同様に、メッシュ状体を形成した後に、一定の緊張状態で、低融点成分20aの融点以上で、高融点成分20bの融点以下に加熱して、低融点成分20aを溶融した後冷却して、補強繊維(高融点成分20b)を低融点成分20aで一体的に結着して形成されるが、この際に、加熱プレス又は加熱ローラーにより上下面から加熱加圧して、低融点成分20aの熱可塑性樹脂を溶融して、複合繊維束線状体の扁平化を図りつつ、芯部の補強繊維束を覆う低融点成分20aによる熱可塑性樹脂被膜42を形成する。なお、この熱可塑性樹脂被膜42の形成は、必ずしも必要とせず、扁平化させるだけであってもよい。
The net-
図8から図10は、上記実施例で示したネット状物4,40からなる繊維強化合成樹脂製補強材の使用例を示しており、図8は、盛土50の補強用に用いた場合を示している。
FIG. 8 to FIG. 10 show an example of use of a fiber reinforced synthetic resin reinforcing material composed of the
盛土50をネット状物4,40で補強する際には、盛土50中に、上下方向に所定の間隔を隔てて、ネット状物4,40が層状に埋設される。ネット状物4,40は、盛土50の土砂の性状に応じて、所定目合いに形成され、1枚、ないしは複数枚を、ほぼ水平に敷設して、その上部部側に盛土土砂が積層される。
When reinforcing the
また、図9に示した使用例は、法面52の補強にネット状物4,40からなる繊維強化合成樹脂製補強材を用いる場合であって、本使用例の場合には、法面52の傾斜に沿って、複数層のネット状物4,40が埋設されて、法面52を補強している。
Further, the use example shown in FIG. 9 is a case where a reinforcing material made of fiber reinforced synthetic resin made of
この場合、ネット状物4,40は、複合繊維束の本数や、目合いの大きさを適宜選定することで、法面52の勾配に沿ってフィツトするように埋設することができる。
In this case, the net-
また、法面52の補強では、ネット状物4,40を法面52に埋設すること以外に、法面52に沿ってネット状物4,40を覆設して、その上部側からコンクリートないしはモルタルを吹き付けることで、これを法面52に固定させて補強することもできる。
In the reinforcement of the
さらに、図10に示した使用例は、コンクリートないしはモルタル製のスラブ54の補強に、ネット状物4,40からなる繊維強化合成樹脂製補強材を用いた例である。
Furthermore, the use example shown in FIG. 10 is an example in which a reinforcing material made of fiber reinforced synthetic resin made of net-
スラブ54内には、3層状にネット状物4,40が埋設されていて、特に、本実施例の場合には、スラブ54内に埋設される格子筋の替わりに用いられている。
In the
次に、本発明のより具体的な実施例について説明する。 Next, more specific examples of the present invention will be described.
(具体的実施例1)
芯部にPP(ポリプロピレン)、鞘部にPE(ポリエチレン)を用い、PP/PEの体積比率が、6:4、単糸の繊度が23.6dtexの複合延伸長繊維を1600フィラメント集合(トータル繊度37,800dtex)し、これに1cm当たり1回の撚りを加え、ボビンに巻き取り複合繊維束中間線状体1とした。
(Specific Example 1)
PP (polypropylene) is used for the core, PE (polyethylene) is used for the sheath, PP / PE volume ratio is 6: 4, single filament fineness is 23.6 dtex, 1600 filament aggregate (total fineness) 37,800 dtex), 1 twist per 1 cm was added thereto, and it was wound around a bobbin to obtain a composite fiber bundle intermediate
この複合繊維束中間線状体1を使用して、目合いが50mmの無結節網となるように編網機で製網してメッシュ状体3を得、このメッシュ状体3を、緊張下で熱処理して、ネット状物4を形成した。
なお、このネット状物4の線状体の強度を確認するため複合繊維束中間線状体1を直線状で、140℃で加熱融着したものの引張強力は0.89KN、見かけの直径は、約2.9mmであった。
Using this composite fiber bundle intermediate
In addition, in order to confirm the strength of the linear body of the net-
(具体的実施例2)
具体的実施例1に示した複合延伸長繊維の1,600フィラメントを、撚りを掛けることなく、そのまま被覆ダイスに導入し、0.15mm厚みのポリエチレン樹脂の被覆層1aを設けて、被覆複合繊維束中間線状体1’を作製し、ボビンに巻き取った。外径は、約3.2mmであった。この被覆複合繊維束中間線状体1を使用して、実施例1と同一の条件により繊維強化合成樹脂製ネット状物を作製した。
(Specific Example 2)
The 1,600 filaments of the composite stretched long fiber shown in the specific example 1 were introduced into the coating die as they were without twisting, and the polyethylene
このネット状物4の線状体の強度を確認するため被覆複合繊維束中間体1’を直線状で、140℃で加熱融着したものの引張強力は0.94kN、見かけの直径は、約3.2mmであった。 In order to confirm the strength of the linear body of the net 4, the coated composite fiber bundle intermediate 1 ′ was linear, heated and fused at 140 ° C., the tensile strength was 0.94 kN, and the apparent diameter was about 3 2 mm.
(具体的実施例3)
PP(芯部)/PE(鞘部)の体積比率が、6:4で単糸の繊度が444dtex×50フィラメントの未延伸糸を得、この未延伸糸を、155℃、(絶対圧5.7kg/cm2)の高圧蒸気で20倍延伸し、鞘部のPEが融合したトータル繊度1,110dtexで50フイラメントの扁平状PP繊維束を得た(引張強度5.1cN/dtex)。
(Specific Example 3)
An undrawn yarn having a PP (core portion) / PE (sheath portion) volume ratio of 6: 4 and a single yarn fineness of 444 dtex × 50 filaments was obtained, and the undrawn yarn was obtained at 155 ° C. (absolute pressure of 5. A flat PP fiber bundle of 50 filaments was obtained (tensile strength 5.1 cN / dtex) with a total fineness of 1,110 dtex, which was stretched 20 times with 7 kg / cm 2 ) high-pressure steam and fused with PE in the sheath.
これを21本集束し(トータルデニール23,310dtex)、1cm当たり1回の撚りを加えボビンに巻き取った。この中間体を定長下、140℃のオーブン中で加熱融着したものの引張強力は、1.13kN、見かけの直径は、約2mmであった。 Twenty-one of these were converged (total denier 23, 310 dtex), twisted once per cm, and wound on a bobbin. The intermediate was heated and fused in an oven at 140 ° C. under a constant length. The tensile strength was 1.13 kN, and the apparent diameter was about 2 mm.
(比較例1)
1,110dtexの高強力ポリエステル繊維束を12本使用し、三井化学製H2000HVと中村化学製NKエステル3Gを混合し触媒を加えた未硬化状熱硬化性樹脂を含浸させ、それをポリエチレン系熱可塑性樹脂で被覆した。外形は、2.05mmで、110℃で6分間硬化したものの引張強力は、90kgであった。また、この中間体の材料費は、実施例1のそれと比較し約2倍となった。
(Comparative Example 1)
Using 12 high-strength polyester fiber bundles of 1,110 dtex, impregnated with uncured thermosetting resin mixed with Mitsui Chemicals' H2000HV and Nakamura Chemical's NK ester 3G and added with a catalyst, it is made of polyethylene thermoplastic Covered with resin. The outer shape was 2.05 mm, and the tensile strength of what was cured at 110 ° C. for 6 minutes was 90 kg. In addition, the material cost of this intermediate was about twice that of Example 1.
(具体的実施例4)
芯成分樹脂として定法の固相重合法で分子量調整した固有粘度(IV)1.22のポリエチレンテレフタレート(PET)を使用し、紡糸温度295℃、紡糸繊度(複合ノズル125H)111dtexで紡糸し、延伸倍率5.5倍とした以外は、実施例1と同じ条件で中間体を得た(引張強度5.3N/dtex)。この中間体を12本集束(35,000dtex)し、定長下140℃で加熱融着したものの引張強力は、1.18kN、見かけの直径は、約2.4mmであった。
(Specific Example 4)
Polyethylene terephthalate (PET) having an intrinsic viscosity (IV) of 1.22 whose molecular weight is adjusted by a conventional solid phase polymerization method is used as a core component resin, and spinning is performed at a spinning temperature of 295 ° C. and a spinning fineness (composite nozzle 125H) of 111 dtex. An intermediate was obtained under the same conditions as in Example 1 except that the magnification was 5.5 (tensile strength 5.3 N / dtex). Twelve of these intermediate bodies were focused (35,000 dtex), heat-sealed at 140 ° C. under a constant length, the tensile strength was 1.18 kN, and the apparent diameter was about 2.4 mm.
(具体的実施例5)
芯成分樹脂として定法の固相重合法で分子量調整した固有粘度(IV)1.22のポリエチレンテレフタレート(PET)を使用し、紡糸温度295℃、紡糸繊度(複合ノズル50H)167dtexで紡糸した以外は、実施例3と同じ条件で紡糸し、延伸後200℃熱風で3%緩和の下、7.5倍延伸した以外は、実施例3と同じ条件で延伸と同時にPEでフィラメント間を融合したトータルデニール1,110dtex、PETフィラメント数:50フィラメント(理論PET単繊維デニール:15.2dtex)の扁平状のPEで融着したPET繊維束中間体を得た(引張強度5.0CN/dtex)。
(Specific Example 5)
The core component resin is polyethylene terephthalate (PET) having an intrinsic viscosity (IV) of 1.22 adjusted in molecular weight by a conventional solid-phase polymerization method, except that the spinning temperature is 295 ° C. and the spinning fineness (composite nozzle 50H) is 167 dtex. Spinning under the same conditions as in Example 3, and after stretching, the filament was fused with PE at the same time as stretching under the same conditions as in Example 3 except that it was stretched 7.5 times under 3% relaxation with hot air at 200 ° C. A PET fiber bundle intermediate fused with a flat PE having a denier of 1,110 dtex and a PET filament number of 50 filaments (theoretical PET monofilament denier: 15.2 dtex) was obtained (tensile strength: 5.0 CN / dtex).
これを21本集束し(トータルデニール23,310dtex)、1cm当たり1回の撚りを加えボビンに巻き取った。この中間体を定長下、140℃のオーブン中で加熱融着したものの引張強力は、1.14kN、見かけの直径は、約1.8mmであった。 Twenty-one of these were converged (total denier 23, 310 dtex), twisted once per cm, and wound on a bobbin. This intermediate was heated and fused in an oven at 140 ° C. under a constant length. The tensile strength was 1.14 kN and the apparent diameter was about 1.8 mm.
(具体的実施例6)
芯成分樹脂として硫酸相対粘度(RV)2.7のナイロン66(PA66)を使用し、紡糸温度290℃、紡糸繊度(複合ノズル125H)89dtexで紡糸し、延伸倍率4.3倍とした以外は、実施例1と同じ条件で中間体を得た(引張強度4.4cN/dtex)。
(Specific Example 6)
Nylon 66 (PA66) having a relative viscosity of sulfuric acid (RV) of 2.7 is used as the core component resin, and spinning is performed at a spinning temperature of 290 ° C. and a spinning fineness (composite nozzle 125H) of 89 dtex, and the draw ratio is 4.3 times. An intermediate was obtained under the same conditions as in Example 1 (tensile strength 4.4 cN / dtex).
この中間体を11本集束(35,200dtex)し、定長下140℃で加熱融着したものの引張強力は、0.88kN、見かけの直径は、約2.3mmであった。 Eleven of these intermediate bodies were focused (35,200 dtex), heat-fused at 140 ° C. under a constant length, the tensile strength was 0.88 kN, and the apparent diameter was about 2.3 mm.
(具体的実施例7)
芯成分樹脂として硫酸相対粘度(RV)2.7のナイロン66(PA66)を使用し、紡糸温度290℃、紡糸繊度(複合ノズル50H)128dtexで紡糸した以外は、実施例3と同じ条件で紡糸し、延伸後200?熱風で6%緩和の下、6倍延伸した以外は、実施例3と同じ条件で延伸と同時にPEでフィラメント間を融合したトータルデニール1,110dtex、ナイロンフィラメント数:50フィラメント(理論PA66単繊維デニール:14.2dtex)の扁平状のPEで融着したナイロン66繊維束中間体を得た(引張強度5.4cN/dtex)。
(Specific Example 7)
Spinning under the same conditions as in Example 3 except that nylon 66 (PA66) having a relative viscosity of sulfuric acid (RV) of 2.7 is used as the core component resin and spinning is performed at a spinning temperature of 290 ° C. and a spinning fineness (composite nozzle 50H) of 128 dtex. 200 after stretching? Except for stretching 6 times under 6% relaxation with hot air, total denier 1,110 dtex in which filaments were fused with PE at the same time as stretching under the same conditions as in Example 3, nylon filament number: 50 filaments (theoretical PA66 single fiber denier : 14.2 dtex) obtained was a nylon 66 fiber bundle intermediate fused with a flat PE (tensile strength 5.4 cN / dtex).
これを21本集束し(トータルデニール23,310dtex)、1cm当たり1回の撚りを加えボビンに巻き取った。この中間体を定長下、140℃のオーブン中で加熱融着したものの引張強力は、1.22kN、見かけの直径は、約1.9mmであった。 Twenty-one of these were converged (total denier 23, 310 dtex), twisted once per cm, and wound on a bobbin. The intermediate was heated and fused in an oven at 140 ° C. under a constant length, the tensile strength was 1.22 kN, and the apparent diameter was about 1.9 mm.
本発明にかかる繊維強化合成樹脂製補強材は、腐食によるモルタル、コンクリートの剥離の問題や、分別処理に手間と費用を要する等の問題がなく、しかも、曲面へのフィット性も改良できるので、土木,建築分野のコンクリート構造物の補強や、盛土,法面補強用として有効に活用することができる。 The fiber-reinforced synthetic resin reinforcing material according to the present invention has no problems such as mortar due to corrosion, peeling of concrete, and problems such as requiring labor and cost for separation processing, and it can also improve the fit to curved surfaces, It can be effectively used for reinforcement of concrete structures in the civil engineering and construction fields, as well as for embankment and slope reinforcement.
1、1’ 複合繊維束中間線状体
1a 熱可塑性樹脂被覆
2 複合繊維
2a 低融点成分(鞘部)
2b 高融点成分(芯部)
3 メッシュ状体
4,40 ネット状物
1, 1 'composite fiber bundle intermediate
2
2b High melting point component (core)
3
Claims (20)
前記鞘部の融点が、前記芯部の融点より10℃以上低いことを特徴とする請求項1記載の繊維強化熱可塑性樹脂製補強材。 The conjugate fiber is a sheath-core type conjugate fiber comprising a sheath portion constituting the low-melting-point component and a core portion constituting the high-melting-point component,
The fiber-reinforced thermoplastic resin reinforcing material according to claim 1, wherein a melting point of the sheath part is lower by 10 ° C or more than a melting point of the core part.
複数本の前記複合繊維を収束した後に、前記低融点成分よりも高融点の熱可塑性樹脂により被覆して、被覆複合繊維束中間線状体を得、複数の前記被覆複合繊維束中間線状体を、10mm以上の目合いのメッシュ状体に編網し、しかる後、前記メッシュ状体を一定緊張状態で、前記複合繊維の低融点成分の融点以上、高融点成分、または、前記被覆複合繊維束中間線状体の被覆樹脂の融点以下に加熱して、前記低融点成分を溶融した後冷却して、前記補強繊維を前記低融点成分で一体的に結着したネット状物を形成することを特徴とする繊維強化熱可塑性樹脂製補強材の製造方法。 A method for producing a net-like reinforcing material comprising a composite fiber comprising a low melting point component comprising a thermoplastic resin constituting a matrix resin and a high melting point component comprising a thermoplastic resin constituting a reinforcing fiber,
After converging a plurality of the composite fibers, the composite fiber bundle intermediate linear body is obtained by coating with a thermoplastic resin having a melting point higher than that of the low melting point component, thereby obtaining a plurality of the coated composite fiber bundle intermediate linear bodies Is then knitted into a mesh-like body having a mesh size of 10 mm or more, and then the mesh-like body is in a constant tension state, the melting point of the low-melting-point component or higher, the high-melting-point component or the coated composite fiber Heating below the melting point of the coating resin of the bundle intermediate linear body to melt the low melting point component and then cooling to form a net-like material in which the reinforcing fibers are integrally bound with the low melting point component A method for producing a reinforcing material made of fiber-reinforced thermoplastic resin.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003359244A JP2005120547A (en) | 2003-10-20 | 2003-10-20 | Reinforcing material made from fiber-reinforced thermoplastic resin and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003359244A JP2005120547A (en) | 2003-10-20 | 2003-10-20 | Reinforcing material made from fiber-reinforced thermoplastic resin and method for producing the same |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2005120547A true JP2005120547A (en) | 2005-05-12 |
Family
ID=34615539
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003359244A Pending JP2005120547A (en) | 2003-10-20 | 2003-10-20 | Reinforcing material made from fiber-reinforced thermoplastic resin and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2005120547A (en) |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007092225A (en) * | 2005-09-28 | 2007-04-12 | Ube Nitto Kasei Co Ltd | Composite mesh-like article and engineering method for repairing or reinforcing concrete structure by using the same mesh-like article |
JP2008144294A (en) * | 2006-12-07 | 2008-06-26 | Ube Nitto Kasei Co Ltd | Mesh-like material made of polyolefin-based resin, and method for repairing or reinforcing concrete structure using this mesh-like material |
JP2009126731A (en) * | 2007-11-21 | 2009-06-11 | Taiheiyo Material Kk | Cement hardened body and manufacturing method thereof |
JP2010144376A (en) * | 2008-12-17 | 2010-07-01 | Ube Nitto Kasei Co Ltd | Net for preventing flaking of concrete, and method for preventing flaking of the concrete by using the same |
JP2011162913A (en) * | 2010-02-09 | 2011-08-25 | Nitto Seimo Co Ltd | Synthetic fiber net |
CN102943349A (en) * | 2012-11-29 | 2013-02-27 | 云南农业大学 | Degradable braided fabric and application thereof |
CN104294830A (en) * | 2014-09-30 | 2015-01-21 | 华中农业大学 | Side slope ecological protection and recovery method and arrangement structure |
KR101905555B1 (en) | 2015-12-16 | 2018-11-21 | 현대자동차 주식회사 | Thermoplastic resin composite and preparation method thereof |
JP2018188777A (en) * | 2017-05-10 | 2018-11-29 | 木下製網株式会社 | Hard net material for specific applications and method for manufacturing the same |
JP2019019440A (en) * | 2017-07-14 | 2019-02-07 | ユニチカ株式会社 | Plastic-like net fabric and method for manufacturing the same |
JP2019214862A (en) * | 2018-06-12 | 2019-12-19 | 前田工繊株式会社 | Composite fiber member manufacturing method, square member, and box-shaped member |
CN111206334A (en) * | 2020-03-18 | 2020-05-29 | 殷石 | High-performance synthetic fiber net |
JP2020111866A (en) * | 2017-05-10 | 2020-07-27 | 木下製網株式会社 | Hard net material in specific use |
JP2020124918A (en) * | 2020-03-25 | 2020-08-20 | 帝人株式会社 | Concrete reinforcement material, concrete structure having concrete reinforcement material, and method for producing the same |
JP7288134B1 (en) | 2022-12-12 | 2023-06-06 | 前田工繊株式会社 | Spray base material |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62250243A (en) * | 1987-04-15 | 1987-10-31 | 平岡織染株式会社 | Air permeable sheet |
JPH03234841A (en) * | 1990-09-29 | 1991-10-18 | Hiraoka & Co Ltd | Ventilating sheet |
JPH06264560A (en) * | 1993-03-15 | 1994-09-20 | Osaka Gas Co Ltd | Concrete structure body and manufacture thereof |
JPH0823796A (en) * | 1994-07-08 | 1996-01-30 | Chisso Corp | Netlike fibrous molded article and its production |
JP2001328160A (en) * | 2000-05-18 | 2001-11-27 | Bridgestone Corp | Method for producing resin net |
JP2002069969A (en) * | 2000-08-31 | 2002-03-08 | Unitica Fibers Ltd | Gabion for civil engineering work |
JP2002194640A (en) * | 2000-12-19 | 2002-07-10 | Nippon Mitsubishi Oil Corp | Reinforcing mesh fabric and method for reinforcing material |
JP2002371458A (en) * | 2001-06-08 | 2002-12-26 | Chisso Corp | Net having irregularity |
JP2003184048A (en) * | 2001-12-20 | 2003-07-03 | Tomen Corp | Fiber reinforced resin made cage mat for civil engineering work and its manufacturing method |
JP2003310090A (en) * | 2002-04-19 | 2003-11-05 | Ube Nitto Kasei Co Ltd | Netlike article made of fiber-reinforced thermoplastic resin and method for producing the same |
-
2003
- 2003-10-20 JP JP2003359244A patent/JP2005120547A/en active Pending
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62250243A (en) * | 1987-04-15 | 1987-10-31 | 平岡織染株式会社 | Air permeable sheet |
JPH03234841A (en) * | 1990-09-29 | 1991-10-18 | Hiraoka & Co Ltd | Ventilating sheet |
JPH06264560A (en) * | 1993-03-15 | 1994-09-20 | Osaka Gas Co Ltd | Concrete structure body and manufacture thereof |
JPH0823796A (en) * | 1994-07-08 | 1996-01-30 | Chisso Corp | Netlike fibrous molded article and its production |
JP2001328160A (en) * | 2000-05-18 | 2001-11-27 | Bridgestone Corp | Method for producing resin net |
JP2002069969A (en) * | 2000-08-31 | 2002-03-08 | Unitica Fibers Ltd | Gabion for civil engineering work |
JP2002194640A (en) * | 2000-12-19 | 2002-07-10 | Nippon Mitsubishi Oil Corp | Reinforcing mesh fabric and method for reinforcing material |
JP2002371458A (en) * | 2001-06-08 | 2002-12-26 | Chisso Corp | Net having irregularity |
JP2003184048A (en) * | 2001-12-20 | 2003-07-03 | Tomen Corp | Fiber reinforced resin made cage mat for civil engineering work and its manufacturing method |
JP2003310090A (en) * | 2002-04-19 | 2003-11-05 | Ube Nitto Kasei Co Ltd | Netlike article made of fiber-reinforced thermoplastic resin and method for producing the same |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007092225A (en) * | 2005-09-28 | 2007-04-12 | Ube Nitto Kasei Co Ltd | Composite mesh-like article and engineering method for repairing or reinforcing concrete structure by using the same mesh-like article |
JP2008144294A (en) * | 2006-12-07 | 2008-06-26 | Ube Nitto Kasei Co Ltd | Mesh-like material made of polyolefin-based resin, and method for repairing or reinforcing concrete structure using this mesh-like material |
JP2009126731A (en) * | 2007-11-21 | 2009-06-11 | Taiheiyo Material Kk | Cement hardened body and manufacturing method thereof |
JP2010144376A (en) * | 2008-12-17 | 2010-07-01 | Ube Nitto Kasei Co Ltd | Net for preventing flaking of concrete, and method for preventing flaking of the concrete by using the same |
JP2011162913A (en) * | 2010-02-09 | 2011-08-25 | Nitto Seimo Co Ltd | Synthetic fiber net |
CN102943349A (en) * | 2012-11-29 | 2013-02-27 | 云南农业大学 | Degradable braided fabric and application thereof |
CN104294830A (en) * | 2014-09-30 | 2015-01-21 | 华中农业大学 | Side slope ecological protection and recovery method and arrangement structure |
US10384400B2 (en) | 2015-12-16 | 2019-08-20 | Hyundai Motor Company | Thermoplastic resin composite and preparation method of thermoplastic resin composite |
KR101905555B1 (en) | 2015-12-16 | 2018-11-21 | 현대자동차 주식회사 | Thermoplastic resin composite and preparation method thereof |
JP2018188777A (en) * | 2017-05-10 | 2018-11-29 | 木下製網株式会社 | Hard net material for specific applications and method for manufacturing the same |
JP2020111866A (en) * | 2017-05-10 | 2020-07-27 | 木下製網株式会社 | Hard net material in specific use |
JP2019019440A (en) * | 2017-07-14 | 2019-02-07 | ユニチカ株式会社 | Plastic-like net fabric and method for manufacturing the same |
JP7056907B2 (en) | 2017-07-14 | 2022-04-19 | ユニチカ株式会社 | Manufacturing method of plastic-like mesh |
JP2019214862A (en) * | 2018-06-12 | 2019-12-19 | 前田工繊株式会社 | Composite fiber member manufacturing method, square member, and box-shaped member |
CN111206334A (en) * | 2020-03-18 | 2020-05-29 | 殷石 | High-performance synthetic fiber net |
JP2020124918A (en) * | 2020-03-25 | 2020-08-20 | 帝人株式会社 | Concrete reinforcement material, concrete structure having concrete reinforcement material, and method for producing the same |
JP7288134B1 (en) | 2022-12-12 | 2023-06-06 | 前田工繊株式会社 | Spray base material |
JP2024083801A (en) * | 2022-12-12 | 2024-06-24 | 前田工繊株式会社 | Spray substrate material |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2005120547A (en) | Reinforcing material made from fiber-reinforced thermoplastic resin and method for producing the same | |
US20030022579A1 (en) | Reinforcing structure for stiff composite articles | |
JP4007845B2 (en) | Fiber-reinforced thermoplastic resin net | |
JP4459680B2 (en) | Nonwoven fabric manufacturing method and nonwoven fabric | |
HUE035531T2 (en) | Steel fiber reinforced composites | |
US7892389B2 (en) | Reinforcing mat having thermally fused stitching | |
JP3976895B2 (en) | Irregular fiber | |
US7396496B2 (en) | Reinforcement element and method of producing a reinforcement element | |
JP2013011162A (en) | Anchorage tool and reinforcement material using the same | |
JP2011179197A (en) | Implement for fixing net for preventing exfoliation of concrete | |
KR101194309B1 (en) | Strip, matrix structure and strip manufacture method | |
JP4947847B2 (en) | Reinforced embankment sheet | |
JP4857443B2 (en) | Flexible tubular hollow water conduit and method for producing the same | |
GB2266322A (en) | Thermoplastic composite material | |
KR101105826B1 (en) | Rib for comprising crossing arrangement and using geogrid and method thereof | |
JPH04224154A (en) | Production of reinforcing member for concrete | |
KR102044399B1 (en) | Method for Manufacturing Vegetation Mat Structure for Reinforcing Slope | |
JPH0238038A (en) | Three-dimensional reticulated structure | |
WO1998044179A1 (en) | Long fiber-reinforced net | |
JP4511081B2 (en) | Civil engineering sheet | |
CN109263168A (en) | A kind of more structural composite material precast bodies and its combined shaping manufacturing method | |
US20230357994A1 (en) | Reinforced flexible polymer material strip, method of manufacturing same and three dimensional structure made using same | |
KR102213848B1 (en) | Durable Fiber-reinforced Polymer Strip And Lattice-shaped Geogrid | |
EP0989216B1 (en) | Manufacturing method of geogrid | |
JP2003137625A (en) | Sheet-shaped net for reinforcing concrete |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060831 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080519 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080527 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20081007 |