Nothing Special   »   [go: up one dir, main page]

JP2005114473A - Light detection method and biological light-measuring instrument - Google Patents

Light detection method and biological light-measuring instrument Download PDF

Info

Publication number
JP2005114473A
JP2005114473A JP2003347102A JP2003347102A JP2005114473A JP 2005114473 A JP2005114473 A JP 2005114473A JP 2003347102 A JP2003347102 A JP 2003347102A JP 2003347102 A JP2003347102 A JP 2003347102A JP 2005114473 A JP2005114473 A JP 2005114473A
Authority
JP
Japan
Prior art keywords
light
signal
measurement
photons
intensity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003347102A
Other languages
Japanese (ja)
Inventor
Fumio Kawaguchi
文男 川口
Manabu Sato
学 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Healthcare Manufacturing Ltd
Original Assignee
Hitachi Medical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Medical Corp filed Critical Hitachi Medical Corp
Priority to JP2003347102A priority Critical patent/JP2005114473A/en
Publication of JP2005114473A publication Critical patent/JP2005114473A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To realize a method for detecting a faint light signal, with high accuracy. <P>SOLUTION: In this light detection method, high wave surface selectivity of a heterodyne system is merged with a photon measurement method for measuring light on a photon level, by noticing that the behavior of light wave as photons is dominant in the range of faint light signals due to the particulate properties of light wave. The number of photons or the physical quantity correlating with the number of photons are measured of a heterodyne beat signal, obtained by causing signal light to interfere with reference light (1, 3). The intensity of the signal light is found by a calculation, based on its measurement value (4). The change with time of the faint light is measured with sufficient accuracy, without being limited by the Schottky noise of a photodetector or without lowering the time response of a measurement system. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、光検出方法及びその方法を用いた生体光計測装置に係り、特に、被検体に光を照射しその透過光又は散乱光を検出用いて生体の光学特性を計測して画像化する生体光計測装置に関する。   The present invention relates to a light detection method and a biological light measurement apparatus using the method, and in particular, irradiates a subject with light and detects the transmitted or scattered light to measure and image the optical characteristics of the living body. The present invention relates to a biological light measurement device.

人体などの被検体の内部を非破壊で観察できる画像診断装置として、X線CT、MRI、超音波診断など、主として生体組織の形態情報を画像化する種々の方式のものが実用化されている。また、生体の機能情報を計測して画像化することも種々提案されており、例えば、可視から近赤外の光によって生体代謝物質や血流などの機能情報を計測し、脳活動や各種疾患を簡便に計測する光イメージング装置が提案されている(特許文献1、2)。しかし、特許文献1、2に記載された装置は、空間的に広がる散乱光を利用しているため空間分解能が低く、組織の詳細や細胞内の構造を画像化することは困難である。   As an image diagnostic apparatus capable of observing the inside of a subject such as a human body in a non-destructive manner, various types such as X-ray CT, MRI, ultrasonic diagnosis, and the like that mainly image morphological information of living tissue have been put into practical use . In addition, various proposals have been made to measure and image biological function information. For example, functional information such as biological metabolites and blood flow is measured by visible to near-infrared light, and brain activity and various diseases An optical imaging apparatus has been proposed that simply measures the above (Patent Documents 1 and 2). However, since the devices described in Patent Documents 1 and 2 use scattered light that spreads spatially, the spatial resolution is low, and it is difficult to image the details of tissues and structures in cells.

そこで、被検体の透過光のうちの非散乱光を選択的に検出して画像化する光干渉トモグラフィ(OCT:Optical Coherence Tomography)装置の開発が進められている。例えば、生体にコヒーレントな光を照射し、被検体の透過光のうちの直進光のみを光ヘテロダイン法で検出して画像化するOCT装置が提案されている(特許文献3)。また、生体内からの反射光を光ヘテロダイン法で検出し、特定の深さの信号のみを選択して画像化するOCT装置が提案されている(特許文献4)。   In view of this, development of an optical coherence tomography (OCT) apparatus that selectively detects non-scattered light from the transmitted light of an object and forms an image is in progress. For example, an OCT apparatus has been proposed that irradiates a living body with coherent light, and detects and images only the straight light of the transmitted light of the subject using an optical heterodyne method (Patent Document 3). In addition, an OCT apparatus that detects reflected light from a living body by an optical heterodyne method and selects only a signal having a specific depth for imaging has been proposed (Patent Document 4).

しかし、計測可能な非散乱光の比率は非常に小さく、さらに安全上の観点から入射光強度が制限されるため、非散乱光で生じるヘテロダイン信号の強度は非常に小さい。このためこれら特許文献3、4に記載されたOCT装置は、高感度の光電子増倍管やアバランシェフオトダイオードが光検出に用いられる。また、光ヘテロダイン法は、照射光の一部を分岐して参照光とし、その参照光と被検体を透過又は反射した信号光との干渉現象を利用して信号光の強度を計測する。一般に、信号光と波長シフト(周波数変調)した参照光を検出器上で重ね合わせ、両者の干渉で生ずるビート信号を計測する。このビート信号強度は、信号光と参照光の強度の積となるため、参照光強度を高くすることによりビート信号を増幅してSNを改善するようにしている。   However, since the ratio of non-scattered light that can be measured is very small and the intensity of incident light is limited from the viewpoint of safety, the intensity of the heterodyne signal generated by the non-scattered light is very small. For this reason, in the OCT apparatus described in Patent Documents 3 and 4, a highly sensitive photomultiplier tube or avalanche photodiode is used for light detection. In the optical heterodyne method, a part of the irradiation light is branched into reference light, and the intensity of the signal light is measured using an interference phenomenon between the reference light and the signal light transmitted or reflected by the subject. In general, signal light and wavelength-shifted (frequency-modulated) reference light are superimposed on a detector, and a beat signal generated by interference between the two is measured. Since the beat signal intensity is a product of the intensity of the signal light and the reference light, the beat signal is amplified by increasing the reference light intensity to improve the SN.

特開昭57−115232号JP 57-115232 A 特開昭63−275323号JP-A 63-275323 特開平2−110345号JP-A-2-110345 特開平8−86745号JP-A-8-86745

しかしながら、OCT装置により被検体の透過光を計測する場合、被検体の厚みが増すと検出信号の強度が急激に減少する。例えば、約15cm程度の成人頭部を被検体とし、800nm付近の波長の近赤外光を用いて計測する場合、被検体を透過して対向面へ到達する透過光の割合は、検出器面積が1cmの場合、10−15程度に減衰する。つまり、入射光強度が1mWの場合、検出される光の強度は10−18Wになる。これを、光子数に換算すると約60カウント/秒となり、光子の粒子性が支配的になり、計測信号ノイズは統計ゆらぎ優位になる。この場合、まず検出器のショットノイズの影響を抑えるため、参照光レベルを上げる必要があるが、参照光レベルを上げてヘテロダインビート信号の増大を図っても、信号光の統計ゆらぎの影響でSN比は一定以上改善されない。特に、診断に有効な画像を得るためには一定以上のSNが必要であるから、被検体への照射光強度を増すか、又は時間帯域幅を狭くしてゆらぎを小さくする必要がある。 However, when the transmitted light of the subject is measured by the OCT apparatus, the intensity of the detection signal rapidly decreases as the thickness of the subject increases. For example, when an adult head of about 15 cm is used as a subject and measurement is performed using near-infrared light having a wavelength of about 800 nm, the ratio of transmitted light that passes through the subject and reaches the opposing surface is the detector area. Is 1 cm 2 , it attenuates to about 10 −15 . That is, when the incident light intensity is 1 mW, the detected light intensity is 10 −18 W. When this is converted into the number of photons, it becomes about 60 counts / second, the particle nature of the photons becomes dominant, and the measurement signal noise becomes statistical fluctuation dominant. In this case, in order to suppress the influence of the shot noise of the detector, it is necessary to increase the reference light level. However, even if the reference light level is increased and the heterodyne beat signal is increased, the SN fluctuation is caused by the influence of the statistical fluctuation of the signal light. The ratio is not improved beyond a certain level. In particular, in order to obtain an image effective for diagnosis, a certain SN or more is required. Therefore, it is necessary to increase the irradiation light intensity to the subject or to reduce the fluctuation by narrowing the time bandwidth.

一方、医療応用では照射光強度は安全のために一定レベル以下に制限されているから、検出光量を増すことは困難である。したがって、従来のヘテロダイン方式では時間応答を遅くして信号帯域幅を狭くする必要がある。例えば、参照周波数変調50Hzで光検出に光電子増倍管(像倍率10)を用いた場合、入射光子数が50カウント/秒の光子領域では定常的な電流は80pAで電気的には計測可能である。しかし、50Hzのビート信号を得るためには、回路の時定数を10ms程度以下にする必要がある。この場合、入力光子計数率が回路の応答時間と同程度になり、入射光子の時間ゆらぎのためにビート信号の精度が得られなくなる。そのため、このような低信号領域では、ヘテロダインの変調周波数を入射光子数がその周期内に十分入る程度に低くする必要があるが、変調周波数を低くすると計測応答時間がそれに応じて遅くなるから、臨床応用では生体の時間変化に十分追随できなくなるという問題がある。 On the other hand, in medical applications, the irradiation light intensity is limited to a certain level or less for safety, so it is difficult to increase the detected light amount. Therefore, in the conventional heterodyne system, it is necessary to slow down the time response and narrow the signal bandwidth. For example, when a photomultiplier tube (image magnification 10 7 ) is used for light detection at a reference frequency modulation of 50 Hz, a stationary current can be electrically measured at 80 pA in the photon region where the number of incident photons is 50 counts / second. It is. However, in order to obtain a 50 Hz beat signal, the time constant of the circuit needs to be about 10 ms or less. In this case, the input photon count rate becomes comparable to the response time of the circuit, and the accuracy of the beat signal cannot be obtained due to the time fluctuation of the incident photons. Therefore, in such a low signal region, it is necessary to lower the modulation frequency of the heterodyne so that the number of incident photons is sufficiently within the period, but if the modulation frequency is lowered, the measurement response time will be delayed accordingly. In clinical application, there is a problem that it cannot sufficiently follow the time change of the living body.

このように、従来のヘテロダイン方式では被検体サイズが大きいと、十分な光量の信号光を得ることができないから、有効な診断画像が得られないという問題がある。また、有効な診断画像を得ようとすると、被検体の大きさに応じて変調周波数及び回路時定数を適宜変更する必要があり、装置の構成が複雑で操作が煩雑になるという問題がある。   As described above, the conventional heterodyne method has a problem in that an effective diagnostic image cannot be obtained because a sufficient amount of signal light cannot be obtained if the subject size is large. In addition, in order to obtain an effective diagnostic image, it is necessary to appropriately change the modulation frequency and the circuit time constant according to the size of the subject, and there is a problem that the configuration of the apparatus is complicated and the operation becomes complicated.

また、参照光の変調周波数がある程度以上低くなると、光学的、電気的などの外乱ノイズの除去が困難になり精度の確保が難しくなる。また、反射方式のOCT装置の場合、計測深度を深く設定すると反射光の減衰が大きくなるため、光検出器への入射量が著しく減少し、透過方式と同様に信号精度が十分得られなくなるという問題点がある。   Further, if the modulation frequency of the reference light is lowered to a certain degree or more, it becomes difficult to remove optical and electrical disturbance noise, and it becomes difficult to ensure accuracy. In the case of a reflection type OCT apparatus, if the measurement depth is set deep, the attenuation of the reflected light increases, so that the amount of incident light on the photodetector is significantly reduced, and signal accuracy cannot be obtained sufficiently as in the transmission method. There is a problem.

本発明は、微弱な光信号を高精度で検出する方法を実現すること、及びその検出方法を用いて計測深度を増大させた生体光計測装置を提供することを課題とする。   An object of the present invention is to realize a method for detecting a weak optical signal with high accuracy, and to provide a biological optical measurement device with an increased measurement depth using the detection method.

上記の課題を解決する本発明の光検出方法の原理は、微弱な光信号の領域における光波は、光波の粒子性のために光子としての振る舞いが支配的になることに着目し、ヘテロダイン方式の高い波面選択性と、光子レベルで光を計測する光子計測法とを融合させたことを特徴とする。つまり、信号光と参照光のヘテロダインビート信号の振幅を光子計測法を用いて計測することにより、微弱ないし極微弱な光信号を高感度で計測することにより、微弱な光信号を高精度で検出可能にした。   The principle of the light detection method of the present invention that solves the above-mentioned problem is that the light wave in the weak light signal region has a dominant behavior as a photon due to the particle nature of the light wave. It is characterized by a combination of high wavefront selectivity and a photon measurement method that measures light at the photon level. In other words, by measuring the amplitude of the heterodyne beat signal of the signal light and the reference light using the photon measurement method, the weak or extremely weak optical signal is measured with high sensitivity, and the weak optical signal is detected with high accuracy. Made possible.

具体的には、信号光と参照光とを干渉させたヘテロダインビート信号の光子数又は光子数に相関する物理量を計測し、その計測値に基づいて信号光の強度を演算して求めることを特徴とする。これにより、光検出器のショットキーノイズに制限されることなく、かつ計測系の時間応答を低下させずに、微弱光の時間変化を十分な精度で計測することが可能となる。   Specifically, the number of photons of a heterodyne beat signal in which signal light and reference light interfere with each other or a physical quantity correlated with the number of photons is measured, and the intensity of the signal light is calculated based on the measured value. And As a result, it is possible to measure the temporal change of the weak light with sufficient accuracy without being limited by the Schottky noise of the photodetector and without reducing the time response of the measurement system.

また、計測対象に照射した照射光の透過光又は反射光を信号光とし、該信号光と前記照射光の周波数を変調した参照光とのヘテロダインビート信号を形成し、該ヘテロダインビート信号の光子数又は光子数に相関する物理量を計測し、その計測値に基づいて信号光の強度を演算により求めるようにすることもできる。   Further, the transmitted light or reflected light of the irradiation light irradiated to the measurement object is used as signal light, a heterodyne beat signal is formed between the signal light and the reference light whose frequency is modulated, and the number of photons of the heterodyne beat signal Alternatively, a physical quantity correlated with the number of photons can be measured, and the intensity of the signal light can be obtained by calculation based on the measured value.

これらの場合において、光子数を連続して計数してもよいが、連続して計数しても必ずしも計測精度が向上するものではない。そこで、時間軸方向に離散的に設定された一定時間幅の複数の計測ゲートごとに行うことが好ましい。この計測ゲートは、ヘテロダインビート信号の信号周期を複数を区間に分け、その区間ごとに一定時間のサンプリング時間を設定すればよい。例えば、計測ゲートは、ヘテロダインビート信号の信号周期の3以上の整数分の1とすることができる。   In these cases, the number of photons may be counted continuously, but even if counted continuously, the measurement accuracy does not necessarily improve. Therefore, it is preferable to perform the measurement for each of a plurality of measurement gates having a fixed time width set discretely in the time axis direction. This measurement gate may divide a plurality of signal periods of the heterodyne beat signal into sections and set a sampling time of a certain time for each section. For example, the measurement gate may be an integer of 3 or more of the signal period of the heterodyne beat signal.

上記の光検出法を用いた本発明の生体光計測装置は、計測対象に照射する光を発生する光源と、該光源の出射光を分岐して周波数変調した参照光を生成する変調手段と、前記計測対象の透過光又は反射光の信号光と前記参照光とを干渉させてなるヘテロダインビート信号を形成する光学手段と、前記ヘテロダインビート信号を入射して光子を電気パルスに変換する光電変換手段と、該光電変換手段で変換された電気パルスを設定時間幅ごとに計数する計数手段と、該計数手段により計数された電気パルス数に基づいて前記信号光の強度を求める演算手段と、該演算手段により求めた前記信号光の強度に基づいて画像を生成する画像生成手段を有して構成することができる。   The biological light measurement device of the present invention using the above-described light detection method includes a light source that generates light to be irradiated to a measurement target, a modulation unit that generates a reference light that is frequency-modulated by branching the light emitted from the light source, Optical means for forming a heterodyne beat signal obtained by interfering the signal light of the transmitted light or reflected light to be measured with the reference light, and photoelectric conversion means for entering the heterodyne beat signal and converting photons into electric pulses Counting means for counting the electric pulses converted by the photoelectric conversion means for each set time width, calculating means for obtaining the intensity of the signal light based on the number of electric pulses counted by the counting means, and the calculation An image generating means for generating an image based on the intensity of the signal light obtained by the means can be provided.

これによれば、計測対象の厚みのある被検体を透過した微弱な光、あるいは微弱な散乱光ないし非散乱光を高精度で計測することができるから、分解能を向上させた光計測画像を生成することができ、診断に寄与することができる。   According to this, it is possible to measure faint light that has passed through a thick subject to be measured, or faint scattered light or non-scattered light with high accuracy, so that an optical measurement image with improved resolution can be generated. Can contribute to diagnosis.

この場合において、光電変換手段から出力される電気パルスを検出時刻とともに記憶する記憶手段を備えることにより、事前に計測ゲートを設定することなく、計算機処理のみでビート信号強度を抽出することができる。   In this case, it is possible to extract the beat signal intensity only by computer processing without setting a measurement gate in advance by providing storage means for storing the electrical pulse output from the photoelectric conversion means together with the detection time.

なお、本発明の光検出方法を、従来レベルの光信号が得られるOCT装置に適用すれば、信号光の光子の直進成分の選択によりノイズを低減できるから、感度を著しく向上させて、空間分解能を一層向上させることができる。また、十分な強度の光信号を得られる場合は従来の光検出方式を適用し、微弱な光信号を計測する場合に本発明の光検出方法を切り替えて適用することにより、計測対象に応じた適切な分解能の診断画像を得ることができる。   Note that if the light detection method of the present invention is applied to an OCT apparatus that can obtain a conventional level optical signal, noise can be reduced by selecting the straight component of the photon of the signal light. Can be further improved. In addition, when a light signal with sufficient intensity can be obtained, a conventional light detection method is applied, and when a weak light signal is measured, the light detection method of the present invention is switched and applied, so that it corresponds to the measurement object. A diagnostic image with an appropriate resolution can be obtained.

本発明によれば、微弱な光信号を高精度で検出する方法を実現できる。また、本発明の光検出方法を用いることにより、計測深度を増大させた生体光計測装置を実現できる。   According to the present invention, it is possible to realize a method for detecting a weak optical signal with high accuracy. In addition, by using the light detection method of the present invention, it is possible to realize a biological light measurement device with an increased measurement depth.

以下、本発明を実施の形態に基づいて詳細に説明する。   Hereinafter, the present invention will be described in detail based on embodiments.

実施の形態1Embodiment 1

図1に、本発明の光検出方法を適用してなる光子計数検出装置の一実施形態のブロック構成図を示す。図示のように、光子計数検出装置は光検出器1を備え、この光検出器1には、計測対象の信号光と参照光とを干渉させたヘテロダインビート信号が入射される。この光検出器1は、入射されるヘテロダインビート信号の光子を検出して電気パルス(以下、単にパルスという。)に変換する光電変換手段であり、例えば高増倍率で高速応答の光電子増倍管を適用する。光検出器1から出力されるパルス列は、光検出器1に入射される光子数又は光子数に相関する物理量である。そのパルス列は波高弁別器2に入力されてショットキーノイズなどの非光子信号が除去される。これにより、波高弁別器2からは、各光子の入力時刻を示す定型のパルス列が出力される。この定型パルス列は、光検出器1に入射する光の強度に比例した時間密度を有するパルス列である。波高弁別器2から出力される定型パルス列は計数器3に入力され、ここにおいて設定された一定時間幅のサンプリングゲートごとにパルス数が計数され、設定時間幅ごとのヒストグラムに変換される。計数器3から出力されるパルス数のヒストグラムはコンピュータにより構成される演算処理装置4に入力される。演算処理装置は、パーソナルコンピュータ等のコンピュータを用いて構成され、演算結果を画像表示する表示モニタを備えている。演算処理装置4は、パルス数のヒストグラムに基づいてヘテロダインビート信号の強度を計算し、これに基づいて信号光の強度を求め、結果を表示モニタに出力表示する。   FIG. 1 shows a block configuration diagram of an embodiment of a photon counting detection apparatus to which the light detection method of the present invention is applied. As shown in the figure, the photon counting detector includes a photodetector 1, and a heterodyne beat signal obtained by interfering the signal light to be measured with the reference light is incident on the photodetector 1. The photodetector 1 is a photoelectric conversion means that detects photons of an incident heterodyne beat signal and converts them into electric pulses (hereinafter simply referred to as pulses). For example, the photomultiplier tube has a high multiplication factor and a high-speed response. Apply. The pulse train output from the photodetector 1 is the number of photons incident on the photodetector 1 or a physical quantity that correlates with the number of photons. The pulse train is input to the wave height discriminator 2 to remove non-photon signals such as Schottky noise. As a result, the pulse height discriminator 2 outputs a fixed pulse train indicating the input time of each photon. This regular pulse train is a pulse train having a time density proportional to the intensity of light incident on the photodetector 1. The fixed pulse train output from the pulse height discriminator 2 is input to the counter 3, where the number of pulses is counted for each sampling gate having a fixed time width set here, and converted into a histogram for each set time width. The histogram of the number of pulses output from the counter 3 is input to the arithmetic processing unit 4 constituted by a computer. The arithmetic processing unit is configured using a computer such as a personal computer, and includes a display monitor that displays an image of the calculation result. The arithmetic processing unit 4 calculates the intensity of the heterodyne beat signal based on the histogram of the number of pulses, obtains the intensity of the signal light based on this, and outputs and displays the result on the display monitor.

すなわち、図1の光子計数検出装置は、微弱な光信号の光波は光子としての振る舞いが支配的になることに着目し、ヘテロダイン方式の高い波面選択性と、光子レベルで光を計測する光子計測法とを融合させたことを特徴とする。つまり、信号光を周波数変調した参照光と信号光とを干渉させたヘテロダインビート信号の光子数の時間分布を計測して、ヘテロダインビート信号の振幅を計測することにより、微弱ないし極微弱な光信号を高感度で計測するようにしたのである。   That is, the photon counting detection apparatus of FIG. 1 pays attention to the fact that the light wave of a weak optical signal becomes dominant as a photon, and photon measurement that measures light at the photon level with high heterodyne wavefront selectivity. It is characterized by the fusion of law. In other words, by measuring the time distribution of the number of photons of the heterodyne beat signal obtained by interfering the signal light with the frequency-modulated reference light and the signal light, and measuring the amplitude of the heterodyne beat signal, the weak or extremely weak optical signal Was measured with high sensitivity.

以上は、光検出器1に入射されるヘテロダインビート信号に基づいて、リアルタイムで信号光の強度を検出する場合について説明したが、オフラインで信号光の強度を検出することもできる。この場合は、図1に示すように、光検出器1から出力されるパルス列を、時間判別器5に入力してパルス列の検出時刻を判別し、検出時刻とともにパルス列をメモリ6に記憶するようにする。これによれば、演算処理手段は、メモリ6からパルス列を読み出し、任意に定めた設定時間幅ごとのヒストグラムを求めてテロダインビート信号の強度を抽出することができる。   The case where the intensity of the signal light is detected in real time based on the heterodyne beat signal incident on the photodetector 1 has been described above, but the intensity of the signal light can also be detected off-line. In this case, as shown in FIG. 1, the pulse train output from the photodetector 1 is input to the time discriminator 5 to discriminate the detection time of the pulse train, and the pulse train is stored in the memory 6 together with the detection time. To do. According to this, the arithmetic processing means can read out the pulse train from the memory 6, obtain a histogram for each arbitrarily set time width, and extract the intensity of the telodyne beat signal.

以上説明したように、図1の実施の形態によれば、光検出器1のショットキーノイズに制限されることなく、かつ計測系の時間応答を低下させずに、微弱光ないし極微弱光の時間変化を十分な精度で計測できる。   As described above, according to the embodiment of FIG. 1, it is not limited to the Schottky noise of the photodetector 1 and the time response of the measurement system is not deteriorated. Time changes can be measured with sufficient accuracy.

実施の形態2Embodiment 2

図2に、図1の光子計数検出装置を適用した生体光計測装置の一実施の形態の概念構成図を示す。光源7から射出される周波数foの照射光は、ビームスプリッター8に入射され、設定された割合で分割されて被検体9に照射されるようになっている。この分岐の比率は、例えば被検体9を通過することによる減衰を考慮し、被検体9である生体への許容照射量を超えない光量に設定すれば良好なSNが得られる。そして、被検体9を透過した信号光はハーフミラー10を透過して光子計数検出装置11の光検出器1に入射されるようになっている。一方、ビームスプリッター8により分岐された参照光は光変調器12に入射されて、変調周波数fsによる変調(エネルギーシフト)を受ける。これにより、照射光と参照光は同一光源から出力されながら、fsの周波数差をもつことになる。この周波数シフト、例えば超音波を利用したAOM素子を用いることで実現できる。周波数変調された参照光は、可動ミラー13を介してミラー14に導かれ、さらにミラー15を介してハーフミラー10に導かれ、信号光と重ね合わされて光検出器1に入射されるようになっている。このとき,信号光と参照光との間で干渉が生ずるように、可動ミラー13、ミラー14,15及びハーフミラー10の位置が調整される。   FIG. 2 shows a conceptual configuration diagram of an embodiment of a biological light measurement device to which the photon counting detection device of FIG. 1 is applied. Irradiation light having a frequency fo emitted from the light source 7 is incident on the beam splitter 8, divided at a set ratio, and irradiated onto the subject 9. If the ratio of this branching is set to a light amount that does not exceed the allowable irradiation amount to the living body that is the subject 9 in consideration of attenuation due to passing through the subject 9, for example, a good SN can be obtained. The signal light that has passed through the subject 9 passes through the half mirror 10 and enters the photodetector 1 of the photon counting detector 11. On the other hand, the reference light branched by the beam splitter 8 enters the optical modulator 12 and undergoes modulation (energy shift) by the modulation frequency fs. Thereby, the irradiation light and the reference light have a frequency difference of fs while being output from the same light source. This frequency shift, for example, can be realized by using an AOM element using ultrasonic waves. The frequency-modulated reference light is guided to the mirror 14 via the movable mirror 13, further guided to the half mirror 10 via the mirror 15, and superimposed on the signal light to be incident on the photodetector 1. ing. At this time, the positions of the movable mirror 13, the mirrors 14, 15 and the half mirror 10 are adjusted so that interference occurs between the signal light and the reference light.

光源7は、可視から赤外の波長領域中の光(例えば、830nm付近)を放射する半導体レーザで構成することができる。なお、照射光の波長は計測物質の光学特性に適した光波長を選択する。例えば、血流計測を目的とした血中ヘモグロビンによる吸収変化の大きい波長として830nmを選択できるが、これに限定されるものではなく、さらには2以上の波長を選択してもよい。   The light source 7 can be composed of a semiconductor laser that emits light (for example, around 830 nm) in the visible to infrared wavelength region. In addition, the wavelength of irradiation light selects the light wavelength suitable for the optical characteristic of a measurement substance. For example, although 830 nm can be selected as a wavelength having a large absorption change by blood hemoglobin for blood flow measurement, the wavelength is not limited to this, and two or more wavelengths may be selected.

このように構成される本実施の形態の動作を次に説明する。被検体9を通過した信号光の強度をIs(t)、参照光の強度をIr(t)とすると、両者は次式の数1、2により表せる。ここで、Is、Irは波高値、δは両者の位相差である。   Next, the operation of this embodiment configured as described above will be described. If the intensity of the signal light that has passed through the subject 9 is Is (t) and the intensity of the reference light is Ir (t), both can be expressed by the following equations (1) and (2). Here, Is and Ir are peak values, and δ is a phase difference between them.

(数1)
Is(t)=Is・cos{2πfo・t+δ}
(Equation 1)
Is (t) = Is · cos {2πfo · t + δ}

(数2)
Ir(t)=Ir・cos{2π(fo+fs)t}
光検出器1に入射されるヘテロダインビート信号の光強度Ihb(t)は、次式の数3になり、図3(a)に示す波形となる。
(Equation 2)
Ir (t) = Ir · cos {2π (fo + fs) t}
The light intensity Ihb (t) of the heterodyne beat signal incident on the photodetector 1 is expressed by the following equation (3) and has the waveform shown in FIG.

(数3)
Ihb(t)=Ir+Is+2√(Ir・Is)・cos2π(fs・t+δ)
ここで、光検出器1の検出効率をαとすると、光検出器1により検出される光子のパルス数Nhb(t)は、次式の数4で表せ、図3(b)に示すパルス列となる。
(Equation 3)
Ihb (t) = Ir + Is + 2√ (Ir · Is) · cos2π (fs · t + δ)
Here, if the detection efficiency of the photodetector 1 is α, the number of photon pulses Nhb (t) detected by the photodetector 1 can be expressed by the following equation 4, and the pulse train shown in FIG. Become.

(数4)
Nhb(t)=α(Ir+Is)+2α√(Ir・Is)・cos2π(fs・t+δ)
このように計測されるパルス列に基づいて、ヘテロダインビート信号の時間変化を検出すれば、簡便に信号光の強度を計測できる。そこで、図3(c)に示すように、変調周波数fsの位相に同期させて時間軸方向に離散させて複数の計測ゲートτi(i=0,1,2)を設定し、その各計測ゲートにおけるパルス数を計数器3で計数する。この計測ゲートτiは、時間幅は同一で、変調周波数fsの位相を基準として、例えば3個の時間幅τ0、τ1、τ2を変調波の周期を元に図3(c)のように設定する。図示のように、各計測ゲートの位相遅れφi(i=0,1,2)の間隔は、2π/3・fsであり、それぞれφ1=0、φ2=2π/3・fs、φ3=4π/3・fsである。位相遅れφiを時間軸tiで表すと、ti=φi/2πfsとなり、t1=0、t2=1/3fs、t3=2/3fsとなる。
(Equation 4)
Nhb (t) = α (Ir + Is) + 2α√ (Ir · Is) · cos2π (fs · t + δ)
If the time change of the heterodyne beat signal is detected based on the pulse train thus measured, the intensity of the signal light can be easily measured. Therefore, as shown in FIG. 3 (c), a plurality of measurement gates τi (i = 0, 1, 2) are set in synchronization with the phase of the modulation frequency fs so as to be discrete in the time axis direction. The number of pulses is counted by the counter 3. This measurement gate τi has the same time width, and for example, three time widths τ0, τ1, and τ2 are set as shown in FIG. 3C based on the period of the modulation wave with reference to the phase of the modulation frequency fs. . As shown in the figure, the interval between the phase delays φi (i = 0, 1, 2) of each measurement gate is 2π / 3 · fs, and φ1 = 0, φ2 = 2π / 3 · fs, and φ3 = 4π /, respectively. 3 · fs. When the phase delay φi is represented by the time axis ti, ti = φi / 2πfs, and t1 = 0, t2 = 1 / 3fs, and t3 = 2 / 3fs.

このように設定された計測ゲートτiに合わせて計数器3によりパルス列のパルス数を計数することにより、パルス数の時間密度の変化を表すヒストグラムが得られる。各計測ゲートτiにおける計数値Si(i=0,1,2)は、次式の数5になる。   By counting the number of pulses in the pulse train by the counter 3 in accordance with the measurement gate τi set in this way, a histogram representing a change in the time density of the number of pulses is obtained. The count value Si (i = 0, 1, 2) at each measurement gate τi is expressed by the following equation (5).

(数5)

Figure 2005114473
この計数値Siに基づいてヘテロダインビートの各周期におけるビート振幅を、ビート各周期でのビート振幅を容易に求めることができる。そして、求めたビート強度に基づいて、次式の数6により信号光の強度Isを求める。 (Equation 5)
Figure 2005114473
Based on this count value Si, the beat amplitude in each cycle of the heterodyne beat and the beat amplitude in each beat cycle can be easily obtained. Then, based on the obtained beat intensity, the intensity Is of the signal light is obtained by the following equation (6).

(数6)

Figure 2005114473
演算処理装置4は、計数器3から出力される計数値Siに基づいてオンライン処理により信号光の強度Isを求めてもよいが、演算処理装置4内のメモリにパルス数のヒストグラムを格納しておき、オフラインで信号光の強度Isを求めてもよい。特に、オンライン処理する場合は、専用のソフトを組み込んだDSP(ディジタル・シグナル・プロセッサ)を用いることで、高速処理を並行して行えることから、安価なPC(パーソナル・コンピュータ)を用いて小型安価な装置を構成することができる。 (Equation 6)
Figure 2005114473
The arithmetic processing unit 4 may obtain the signal light intensity Is by online processing based on the count value Si output from the counter 3, but stores a histogram of the number of pulses in a memory in the arithmetic processing unit 4. Alternatively, the signal light intensity Is may be obtained offline. Especially for online processing, high-speed processing can be performed in parallel by using a DSP (digital signal processor) incorporating dedicated software, so it is small and inexpensive using an inexpensive PC (personal computer). Can be configured.

このようにして被検体9を通過する信号光強度の2次元分布を求めて画像化し、あるいは信号光強度の3次元分布を求めて画像化し、その画像を表示モニタに表示する。これにより、被検体9内の例えば特定物質の濃度を計測して、濃度分布の画像を得ることができる。   In this way, the two-dimensional distribution of the signal light intensity passing through the subject 9 is obtained and imaged, or the three-dimensional distribution of the signal light intensity is obtained and imaged, and the image is displayed on the display monitor. Thereby, the density | concentration of the specific substance in the subject 9 can be measured and the image of density | concentration distribution can be obtained.

なお、パルス数の計測は、変調周波数fsの全てのサイクルで行う必要はなく、必要な応答時間に合わせて例えばN周期(N=2,3、・・・)ごとに行ってもよい。また、各周期内の計測ゲートτiの設定数iは、図3(c)の3個より大きく設定することもできる。各周期内の計測ゲートの設定数を多くすれば、ビート振幅計測の精度を向上することができる。ただし、計測ゲートの設定数が多ければ多いほど精度が向上するものではなく、計測信号の光子計測数の時間密度との関係から、最適数を勘案することによって効率のよい計測を実現できる。   The number of pulses need not be measured in every cycle of the modulation frequency fs, and may be measured, for example, every N periods (N = 2, 3,...) According to the required response time. Further, the number i of measurement gates τi in each cycle can be set to be larger than three in FIG. If the set number of measurement gates in each cycle is increased, the accuracy of beat amplitude measurement can be improved. However, as the number of measurement gates set increases, the accuracy does not improve. Efficient measurement can be realized by considering the optimum number from the relationship with the time density of the number of photon measurements of the measurement signal.

また、本実施の形態では、パルス計数を実時間(リアルタイム)で実施しているが、必ずしも実時間でおこなう必要はなく、十分高速な時間計測回路を用いれば各光子パルスごとの入力時刻を計測して計数値を記憶したリストを作成しておくことによって、オフラインで任意の計測ゲートを設定して計測を実行することができる。これにより、入力光子の時間密度に応じた最適な計測ゲート幅や位相を任意に設定できる。また、リスト方式で得たデータを用いれば計測ゲートごとの計数値ヒストグラムを用いることなく、適当なビート波形のモデル関数との最適フィッティングからビート信号の振幅を求めることが可能になる。   In this embodiment, pulse counting is performed in real time (real time), but it is not always necessary to perform in real time. If a sufficiently fast time measurement circuit is used, the input time for each photon pulse is measured. By creating a list storing the count values, it is possible to set an arbitrary measurement gate and perform measurement offline. Thereby, the optimal measurement gate width and phase according to the time density of the input photons can be arbitrarily set. If the data obtained by the list method is used, the amplitude of the beat signal can be obtained from the optimum fitting with the model function of an appropriate beat waveform without using the count value histogram for each measurement gate.

ここで、光検出器1に入射される光子の時間密度が高くなると、例えば光電子増倍管のアノード出力において電気パルスが重なり、計数器3においていわゆる数え落としが生ずるおそれがある。また、一般に、計測信号の強度が大きくなるにつれて計数効率αが小さくなる傾向がある。この点、本実施の形態のように、ほぼ一様の時間密度で光子が入力する場合、光子の入力時間間隔は統計的な分布となり、パルス波形から数えおとしを推定できる。そこで、パルスの計測密度に応じて計数率を補正する計算処理を加えることにより、広い計数範囲で精度のよい計測を可能にできる。   Here, when the time density of photons incident on the photodetector 1 increases, for example, electric pulses overlap at the anode output of the photomultiplier tube, and so-called counting down may occur in the counter 3. In general, the counting efficiency α tends to decrease as the intensity of the measurement signal increases. In this regard, when photons are input at a substantially uniform time density as in the present embodiment, the photon input time interval has a statistical distribution, and the count can be estimated from the pulse waveform. Therefore, by adding a calculation process for correcting the count rate in accordance with the pulse measurement density, it is possible to perform accurate measurement over a wide count range.

また、さらに光量が増加し計数効率が低下した場合は、光源7の強度を低下するか、あるいは光検出器1の入力部に適当な減衰率を有する光学フィルタを挿入することで対処できる。また、装置構成が大型になるが、高い光量時は従来方式のアナログヘテロダイン方式を用いて計測し、光子計測に適した微弱光になった場合に本実施の形態の光子計数検出装置に切える構成にしてもよい。これにより、ダイナミックレンジの大きなヘテロダイン式光計測装置が実現できるため、以下で示す断層画像装置(OCT装置)に適用することが容易になる。   Further, when the amount of light further increases and the counting efficiency decreases, it can be dealt with by reducing the intensity of the light source 7 or inserting an optical filter having an appropriate attenuation factor into the input part of the photodetector 1. In addition, although the device configuration is large, when the light intensity is high, measurement is performed using a conventional analog heterodyne method, and the photon counting detection device according to the present embodiment can be switched when weak light suitable for photon measurement is obtained. It may be configured. As a result, a heterodyne optical measurement device with a large dynamic range can be realized, and therefore it can be easily applied to a tomographic image device (OCT device) described below.

実施の形態3Embodiment 3

図4に、本発明の光子計数検出装置と従来のナログヘテロダイン方式の光検出装置を適用した生体光計測装置の実施の形態を示す。本実施の形態は、散乱体中の任意断層における光学特性分布を計測し、これに基づいて3次元画像を得るOCT装置であり、例えば皮膚や眼の網膜の断層画像化に適用できる。図において、図1,2の実施の形態と同一符号を付したものは同一の機能構成を有するものとする。   FIG. 4 shows an embodiment of a biological light measurement device to which the photon counting detection device of the present invention and a conventional analog heterodyne detection device are applied. The present embodiment is an OCT apparatus that measures an optical characteristic distribution in an arbitrary slice in a scatterer and obtains a three-dimensional image based on the measured distribution, and can be applied to, for example, tomographic imaging of the skin or eye retina. In the figure, components having the same reference numerals as those in the embodiment of FIGS. 1 and 2 have the same functional configuration.

光源7は、コヒーレント時間が非常に短くかつ波面の揃ったSLD(Super Luminescence Diode)が用いられている。光源7から射出される照射光は光ファイバ21を介してマイケルソン型の光干渉器(OC:Optical Coupler)22に導かれる。この光干渉器22において光源1からの照射光は被検体9への照射光と参照光に分岐される。被検体9への照射光は光ファイバ23を介してコリメータ24に導かれ、レンズ25を介して被検体9に照射されるようになっている。被検体9に照射された光は、被検体9の深度位置に応じて一部がコヒーレントな反射を受け、その反射光がファイバ23を介して光干渉器22に再度入射する。   As the light source 7, an SLD (Super Luminescence Diode) having a very short coherent time and a uniform wavefront is used. Irradiation light emitted from the light source 7 is guided to a Michelson type optical interferometer (OC: Optical Coupler) 22 through an optical fiber 21. In this optical interferometer 22, the irradiation light from the light source 1 is branched into irradiation light for the subject 9 and reference light. Irradiation light to the subject 9 is guided to the collimator 24 via the optical fiber 23 and is irradiated to the subject 9 via the lens 25. A part of the light irradiated to the subject 9 undergoes coherent reflection according to the depth position of the subject 9, and the reflected light is incident on the optical interferometer 22 again via the fiber 23.

一方、光干渉器22で分岐された参照光は、光ファイバ26を介して光変調器12に導かれて周波数変調を受けた後、レンズ27を介して可動ミラー28に照射されるようになっている。可動ミラー28は、参照光に適当な時間遅れを持たせて光干渉器22に戻すためのもので、レンズ27との間隔を調整することができるようになっている。可動ミラー28により反射された参照光は、レンズ27、光変調器12及び光ファイバ26を通って光干渉器22に再度入射する。   On the other hand, the reference light branched by the optical interferometer 22 is guided to the optical modulator 12 via the optical fiber 26 and subjected to frequency modulation, and then irradiated to the movable mirror 28 via the lens 27. ing. The movable mirror 28 is for returning the reference light to the optical interferometer 22 with an appropriate time delay, and the distance from the lens 27 can be adjusted. The reference light reflected by the movable mirror 28 enters the optical interferometer 22 again through the lens 27, the optical modulator 12, and the optical fiber 26.

ここで、被検体9の計測位置の深さをdとし、被検体中の光速をcとすると、被検体9への照射光に対して2dcの時間遅れを持った信号光が光干渉器22に戻る。この信号光と参照光が光干渉器22で重ね合わされ、光ファイバ29を介して光検出器1に入射する。このとき、光源7のコヒーレント時間が非常に短いため、信号光と参照光の位相が一致する範囲で干渉が起こり、参照光の変調周波数fsでビートが生ずる。また、可動ミラー28の位置を走査することにより、ミラー位置に対応した深さの異なる層からの後方散乱光が干渉しビート信号を発生させる。   Here, assuming that the depth of the measurement position of the subject 9 is d and the speed of light in the subject is c, the signal light having a time delay of 2 dc with respect to the irradiation light to the subject 9 is the optical interferometer 22. Return to. The signal light and the reference light are overlapped by the optical interferometer 22 and enter the photodetector 1 through the optical fiber 29. At this time, since the coherent time of the light source 7 is very short, interference occurs in a range where the phase of the signal light and the reference light coincide with each other, and a beat occurs at the modulation frequency fs of the reference light. Further, by scanning the position of the movable mirror 28, backscattered light from layers having different depths corresponding to the mirror position interferes to generate a beat signal.

光検出器1から出力されるビート信号は、信号線30を介してスイッチ31に導かれる。光スイッチ31は、光検出器1の出力を信号線32を介して波高弁別器2に導くか、信号線33を介して復調器34に導くかを、切り替えるようになっている。波高弁別器2から出力されるビート信号は、計数器3に入力されてパルス数が計数され、その計数値はスイッチ35を介して演算処理装置4に入力される。一方、復調器34に入力されたビート信号は、従来のアナログヘテロダイン方式のとおり、復調器34と低域通過フィルタ(LPF)36により選択されビート信号がロックイン方式でアナログディジタル(A/D)変換器37に出力され、ディジタル信号に変換されたビート信号がスイッチ35を介して演算処理装置4に入力される。   The beat signal output from the photodetector 1 is guided to the switch 31 via the signal line 30. The optical switch 31 switches whether the output of the photodetector 1 is guided to the wave height discriminator 2 via the signal line 32 or to the demodulator 34 via the signal line 33. The beat signal output from the wave height discriminator 2 is input to the counter 3 to count the number of pulses, and the count value is input to the arithmetic processing unit 4 via the switch 35. On the other hand, the beat signal input to the demodulator 34 is selected by the demodulator 34 and the low-pass filter (LPF) 36 as in the conventional analog heterodyne system, and the beat signal is analog-digital (A / D) by the lock-in system. The beat signal output to the converter 37 and converted into a digital signal is input to the arithmetic processing unit 4 via the switch 35.

また、光変調器12には、発信器38から変調周波数fsが可変入力されている。また、変調周波数fsは、計数器3及び復調器34に入力され、それぞれパルス数の計測ゲートのタイミング信号又は復調器34の同期信号として用いられる。   Further, the modulation frequency fs is variably input from the transmitter 38 to the optical modulator 12. The modulation frequency fs is input to the counter 3 and the demodulator 34, and is used as a timing signal for the pulse number measurement gate or a synchronization signal for the demodulator 34, respectively.

このように、本実施の形態は、本発明に係る光子計数検出装置と、従来のアナログヘテロダイン方式の光検出装置の2つの系統を組み合わせてなり、信号光強度に応じて計測モードを切り替える構成となっている。つまり、光検出器1に入射される信号光の光量が十分多い場合は、スイッチ31,35を従来型の復調器34、LPF36、A/D変換器37の系統を介して演算処理装置4に入力される。一方、信号光の強度が所定のレベル以下の場合はスイッチ31,35を波高弁別器2、計数器3の系統を介して演算処理装置4に入力される。演算処理装置4では、それぞれの系統から入力されるビート信号の強度に基づいて信号光の強度を求め、図2の実施の形態と同様に、被検体9の計測対象部位における機能情報を画像化する。   As described above, the present embodiment is a combination of the two systems of the photon counting detector according to the present invention and the conventional analog heterodyne photodetector, and switches the measurement mode according to the signal light intensity. It has become. That is, when the amount of signal light incident on the photodetector 1 is sufficiently large, the switches 31 and 35 are connected to the arithmetic processing unit 4 via the system of the conventional demodulator 34, LPF 36, and A / D converter 37. Entered. On the other hand, when the intensity of the signal light is below a predetermined level, the switches 31 and 35 are input to the arithmetic processing unit 4 through the system of the wave height discriminator 2 and the counter 3. In the arithmetic processing unit 4, the intensity of the signal light is obtained based on the intensity of the beat signal input from each system, and the function information in the measurement target part of the subject 9 is imaged as in the embodiment of FIG. To do.

また、本実施の形態によれば、被検体9に照射する照射光を2次元走査し、かつ可動ミラー28を移動して計測深度を走査することにより、被検体9内部の3次元画像を構成できる。   In addition, according to the present embodiment, the three-dimensional image inside the subject 9 is formed by two-dimensionally scanning the irradiation light with which the subject 9 is irradiated and moving the movable mirror 28 to scan the measurement depth. it can.

上述した本実施の形態によれば、断層面から表面に到達する可干渉な光の量は深さの増大につれて大きく減少するため、SLDを用いたとしても従来型のアナログヘテロダイン方式の光検出装置では、光検出器のショットキーノイズにより十分なSN比が得られないため、100μm程度の深さしか計測できない。これに対して本実施の形態によれば、本発明に係る光子計数検出装置を組み合わせて設けたことから、微弱な光の計測が可能となるため計測可能な深度を大きくして、OCTの臨床適用範囲を広げることができる。   According to the above-described embodiment, the amount of coherent light reaching the surface from the tomographic plane greatly decreases as the depth increases, so that even if an SLD is used, a conventional analog heterodyne photodetection device Then, since a sufficient S / N ratio cannot be obtained due to Schottky noise of the photodetector, only a depth of about 100 μm can be measured. On the other hand, according to the present embodiment, since the photon counting detection device according to the present invention is provided in combination, it is possible to measure weak light. The application range can be expanded.

実施の形態4Embodiment 4

図5に、本発明の光子計数検出装置を適用したOCT装置の他の実施の形態の構成図を示す。図において、図1,2の実施の形態と同一符号を付したものは同一の機能構成を有するものとする。図示のように、光源7から放射された照射光はレンズ41によって平行光に拡大され、ハーフミラー42を介して被検体9に照射されるようになっている。被検体9から反射された信号光はハーフミラー42で反射されて光検出器43に入射されている。一方、ハーフミラー42によって反射されて分岐された参照光は可動ミラーによって入射方向に反射され、ハーフミラー42を透過して、信号光に重ね合わされて光検出器43に入射されるようになっている。可動ミラー44は、常に−定速度Vで参照光の光軸方向に移動走査されており、これによって参照光が一定周波数の周波数変調を受けるようになっている。   FIG. 5 shows a configuration diagram of another embodiment of an OCT apparatus to which the photon counting detection apparatus of the present invention is applied. In the figure, components having the same reference numerals as those in the embodiment of FIGS. 1 and 2 have the same functional configuration. As shown in the figure, the irradiation light emitted from the light source 7 is expanded into parallel light by the lens 41 and is irradiated onto the subject 9 through the half mirror 42. The signal light reflected from the subject 9 is reflected by the half mirror 42 and is incident on the photodetector 43. On the other hand, the reference light reflected and branched by the half mirror 42 is reflected in the incident direction by the movable mirror, passes through the half mirror 42, is superimposed on the signal light, and enters the photodetector 43. Yes. The movable mirror 44 is constantly moved and scanned in the direction of the optical axis of the reference light at a constant speed V, so that the reference light is subjected to frequency modulation at a constant frequency.

ここで、本実施の形態の光検出器43は、信号光を2次元で同時に計測の可能な2次元のイメージインテンシファイアが適用されている。このイメージインテンシファイアは、2次元の光入力を検出する2次元機能を有するフォトダイオードアレイやリニアイメージセンサ等のCCDカメラ等の2次元イメージセンサであり(特許文献4の段落番号0012参照)、2次元の光入力を検出して増倍することができるものである。   Here, a two-dimensional image intensifier capable of simultaneously measuring signal light in two dimensions is applied to the photodetector 43 of the present embodiment. This image intensifier is a two-dimensional image sensor such as a photodiode array having a two-dimensional function for detecting a two-dimensional light input or a CCD camera such as a linear image sensor (see paragraph number 0012 of Patent Document 4). A two-dimensional light input can be detected and multiplied.

光検出器43において、前述した実施の形態と同様、参照光と信号光のうち位相差の等しい光が干渉を起こす。ここで、可動ミラー44は常に一定速度で走査されているため、走査速度に相当する周波数のビートが生じている。そして、可動ミラー44の走査位置が、被検体9の計測深度を決定する。光検出器43から出力される2次元のヘテロダインビート信号光は、レンズ45を介してCCDカメラ46に投影されるようになっている。CCDカメラ46はゲート制御部47によって信号光の撮影が制御される。このゲート制御部47は、図3(c)で説明したとおり、変調周波数の周期の1/M(M=2,3、・・・)ごとに、計測ゲートτiの時間幅に入力される信号光の光子分布を計数する。この計測ゲートτiの時間幅は、CCDカメラ46の各画素への入力光子数が1を超えない程度に設定される。つまり、tw=1/(M・fs)とし、CCDカメラ46の1画素あたりの単位時間当たりの光子入力数をNpとすると、tw×Np≒1に設定する。この結果、各画像フレームでは各画素には1光子以上の入力は無いと仮定できるので、所定の闇値を用いて画像への光子入力数をカウントできる。なお、闇値を複数設けて2個以上の光子入力を識別することにより、さらに高速な計測に対応することも可能である。ここで、変調周波数の周期fsのサイクル内で十分なフレーム数を設定できれば、これを基に、ビート信号強度の2次元画像を計測できる。   In the photodetector 43, light having the same phase difference between the reference light and the signal light causes interference, as in the above-described embodiment. Here, since the movable mirror 44 is always scanned at a constant speed, a beat having a frequency corresponding to the scanning speed is generated. Then, the scanning position of the movable mirror 44 determines the measurement depth of the subject 9. The two-dimensional heterodyne beat signal light output from the photodetector 43 is projected onto the CCD camera 46 via the lens 45. The CCD camera 46 is controlled by the gate controller 47 to capture the signal light. As described with reference to FIG. 3C, the gate control unit 47 is a signal input to the time width of the measurement gate τi every 1 / M (M = 2, 3,...) Of the modulation frequency period. Count the photon distribution of light. The time width of the measurement gate τi is set so that the number of input photons to each pixel of the CCD camera 46 does not exceed 1. That is, when tw = 1 / (M · fs) and the number of photon inputs per unit time of the CCD camera 46 is Np, tw × Np≈1 is set. As a result, since it can be assumed that each pixel has no input of one photon or more in each image frame, the number of photon inputs to the image can be counted using a predetermined dark value. It is also possible to cope with higher-speed measurement by providing a plurality of dark values and identifying two or more photon inputs. Here, if a sufficient number of frames can be set within the cycle of the modulation frequency period fs, a two-dimensional image of the beat signal intensity can be measured based on this.

本実施の形態によれば、上述した実施の形態の効果に加えて、2次元計測を同時に行えることから、光トポグラフィを高速で行うことができる。また、本実施の形態においても、図4の実施の形態と同様に、信号光の光量に応じて従来型のアナログヘテロダイン方式の光検出装置を併用して、切り替えて計測することができる。   According to the present embodiment, in addition to the effects of the above-described embodiments, two-dimensional measurement can be performed simultaneously, so that optical topography can be performed at high speed. Also in the present embodiment, similarly to the embodiment of FIG. 4, it is possible to switch and measure by using a conventional analog heterodyne type photodetector in accordance with the amount of signal light.

実施の形態5Embodiment 5

図6に、本発明の光子計数検出装置を適用したOCT装置の他の実施の形態の構成図を示す。図において、図1,2の実施の形態と同一符号を付したものは同一の機能構成を有するものとする。図示のように、光源7から出射された照射光(例えば、波長800nmの近赤外レーザ)は光変調器12に入射され、変調周波数fsにより変調を受ける。光変調器12の出力光はレンズ48で並行光になり、2つの近接した光ビームとして変調光と非変調光が発生する。この光ビームを被検体9に照射し、その透過光をコリメータ49,50で絞り込んで光検出器1に入力する。ここで、各コリメータ49、50の径dl、d2は、非散乱光を選択的に透過させる条件としてピンホール間隔R、計測波長λに対して、 R>dl・d2/λの条件を満たすように設定する。これにより、光検出器1上に直進性のよい光のみが到達する。その結果、被検体9の特定線上の光学吸収が計測できる。そのため、これに多方向からの投影象を得るためのt方向及びθ方向の走査を加えれば、X線CT等に用いられている逆投影法により断層画像を構成できる。   FIG. 6 shows a configuration diagram of another embodiment of an OCT apparatus to which the photon counting detection apparatus of the present invention is applied. In the figure, components having the same reference numerals as those in the embodiment of FIGS. 1 and 2 have the same functional configuration. As shown in the figure, the irradiation light emitted from the light source 7 (for example, a near-infrared laser having a wavelength of 800 nm) enters the optical modulator 12 and is modulated by the modulation frequency fs. The output light of the light modulator 12 is converted into parallel light by the lens 48, and modulated light and non-modulated light are generated as two adjacent light beams. The object 9 is irradiated with this light beam, and the transmitted light is narrowed down by collimators 49 and 50 and input to the photodetector 1. Here, the diameters dl and d2 of the collimators 49 and 50 satisfy the condition of R> dl · d2 / λ with respect to the pinhole interval R and the measurement wavelength λ as conditions for selectively transmitting non-scattered light. Set to. Thereby, only light with good straightness reaches the photodetector 1. As a result, the optical absorption on the specific line of the subject 9 can be measured. Therefore, if a scan in the t direction and the θ direction for obtaining projection ellipses from multiple directions is added to this, a tomographic image can be constructed by the back projection method used in X-ray CT or the like.

光検出器1により検出されたビート信号のパルスは、図1又は図2実施の形態と同様に、波高弁別器2、計数器3及び演算処理装置4の処理により画像化される。   The pulse of the beat signal detected by the photodetector 1 is imaged by the processing of the wave height discriminator 2, the counter 3, and the arithmetic processing unit 4 as in the embodiment of FIG. 1 or FIG.

本実施の形態によれば、近接して入射した周波数fsの周波数差を持つ光のビートを高精度で計測できる。また、画像化のための走査法として、本実施の形態のように、被検体9を走査するほか、光学系が被検体9の周囲に移動回転する構成にすることも可能である。さらに、画像化法としてはX線CTに広く用いられているファンビーム方式を用いれば高速な計測が可能になる。 また、本実施の形態では、周波数差のある2本の光ビームをほぼ同軸で近接させてビートを検出しているため、図2,3,4に示した実施の形態のように、強い参照光による信号増倍が利用できないから、本発明の光検出方法の効果が大きい。また、本実施の形態においても、図4の実施の形態と同様に、信号光の光量に応じて従来型のアナログヘテロダイン方式の光検出装置を併用して、切り替えて計測することができる。   According to the present embodiment, it is possible to measure a beat of light having a frequency difference of the frequency fs incident in the vicinity with high accuracy. In addition to scanning the subject 9 as a scanning method for imaging, the optical system may be configured to move and rotate around the subject 9. Furthermore, high-speed measurement is possible by using a fan beam method widely used for X-ray CT as an imaging method. In this embodiment, since the beat is detected by making two optical beams having a frequency difference close to each other on the same axis, strong reference is made as in the embodiment shown in FIGS. Since signal multiplication by light cannot be used, the effect of the light detection method of the present invention is great. Also in the present embodiment, similarly to the embodiment of FIG. 4, it is possible to switch and measure by using a conventional analog heterodyne type photodetector in accordance with the amount of signal light.

本発明の光検出法を適用した一実施の形態の光子計数検出装置の構成図である。It is a block diagram of the photon counting detection apparatus of one Embodiment to which the photon detection method of this invention is applied. 図1の光子計数検出装置を適用した生体光計測装置の一実施の形態の概念構成図である。It is a conceptual block diagram of one Embodiment of the biological light measuring device to which the photon counting detection apparatus of FIG. 1 is applied. 図2の実施の形態の動作を説明する各部の波形図である。It is a wave form diagram of each part explaining operation | movement of embodiment of FIG. 本発明の光子計数検出装置を適用した生体光計測装置の他の実施の形態の概念構成図である。It is a conceptual block diagram of other embodiment of the biological light measuring device to which the photon counting detection apparatus of this invention is applied. 本発明の光子計数検出装置を適用した2次元型の生体光計測装置の実施の形態の概念構成図である。It is a conceptual lineblock diagram of an embodiment of a two-dimensional type biological light measuring device to which a photon counting detection device of the present invention is applied. 本発明の光子計数検出装置を適用した生体光計測装置の他の実施の形態の概念構成図である。It is a conceptual block diagram of other embodiment of the biological light measuring device to which the photon counting detection apparatus of this invention is applied.

符号の説明Explanation of symbols

1 光検出器
2 波高弁別器
3 計数器
4 演算処理装置
5 時間判別器
6 メモリ
7 光源
8 ビームスプリッター
9 被検体
10 ハーフミラー
11 光子計数検出装置
12 光変調器
13、14、15 ミラー
1 Photodetector 2 Wave height discriminator 3 Counter 4 Arithmetic processing device 5 Time discriminator 6 Memory 7 Light source 8 Beam splitter 9 Subject 10 Half mirror 11 Photon counting detector 12 Optical modulator 13, 14, 15 Mirror

Claims (5)

信号光と参照光とを干渉させたヘテロダインビート信号の光子数又は光子数に相関する物理量を計測し、該計測値に基づいて信号光の強度を演算して求める光検出方法。   A photodetection method in which the number of photons of a heterodyne beat signal in which signal light and reference light interfere with each other or a physical quantity correlated with the number of photons is measured, and the intensity of the signal light is calculated based on the measured value. 計測対象に照射した照射光の透過光又は反射光を信号光とし、該信号光と前記照射光の周波数を変調した参照光とを干渉させてヘテロダインビート信号を形成し、該ヘテロダインビート信号の光子数又は光子数に相関する物理量を計測し、該計測値に基づいて信号光の強度を演算して求める光検出方法。   The transmitted light or reflected light of the irradiation light irradiated to the measurement object is used as signal light, the signal light and reference light whose frequency of the irradiation light is modulated are formed to form a heterodyne beat signal, and the photon of the heterodyne beat signal The light detection method which calculates | requires the physical quantity correlated with the number or the number of photons and calculates | requires the intensity | strength of signal light based on this measured value. 前記光子数又は光子数に相関する物理量の計測は、時間軸方向に離散的に設定された一定時間幅の複数の計測ゲートごとに行うことを特徴とする請求項1又は2に記載の光検出方法。   3. The photodetection according to claim 1, wherein the measurement of the number of photons or the physical quantity correlated with the number of photons is performed for each of a plurality of measurement gates having a fixed time width discretely set in a time axis direction. Method. 計測対象に照射する光を発生する光源と、該光源の出射光を分岐して周波数変調した参照光を生成する変調手段と、前記計測対象の透過光又は反射光の信号光と前記参照光とを干渉させてヘテロダインビート信号を形成する光学手段と、前記ヘテロダインビート信号を入射して光子を電気パルスに変換する光電変換手段と、該光電変換手段で変換された電気パルスを設定時間幅ごとに計数する計数手段と、該計数手段により計数された電気パルス数に基づいて前記信号光の強度を求める演算手段と、該演算手段により求めた前記信号光の強度に基づいて画像を生成する画像生成手段を有してなる生体光計測装置。   A light source that generates light to irradiate the measurement target, a modulation unit that generates a reference light that is frequency-modulated by branching the light emitted from the light source, a signal light that is transmitted or reflected from the measurement target, and the reference light. Optical means for forming a heterodyne beat signal by interfering with each other, photoelectric conversion means for entering the heterodyne beat signal to convert photons into electric pulses, and electric pulses converted by the photoelectric conversion means for each set time width Counting means for counting, computing means for obtaining the intensity of the signal light based on the number of electric pulses counted by the counting means, and image generation for generating an image based on the intensity of the signal light obtained by the computing means A biological light measuring device having means. 前記光電変換手段から出力される前記電気パルスを検出時刻とともに記憶する記憶手段を有することを特徴とする請求項4に記載の生体光計測装置。   The living body light measurement apparatus according to claim 4, further comprising a storage unit that stores the electric pulse output from the photoelectric conversion unit together with a detection time.
JP2003347102A 2003-10-06 2003-10-06 Light detection method and biological light-measuring instrument Pending JP2005114473A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003347102A JP2005114473A (en) 2003-10-06 2003-10-06 Light detection method and biological light-measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003347102A JP2005114473A (en) 2003-10-06 2003-10-06 Light detection method and biological light-measuring instrument

Publications (1)

Publication Number Publication Date
JP2005114473A true JP2005114473A (en) 2005-04-28

Family

ID=34539805

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003347102A Pending JP2005114473A (en) 2003-10-06 2003-10-06 Light detection method and biological light-measuring instrument

Country Status (1)

Country Link
JP (1) JP2005114473A (en)

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007183106A (en) * 2006-01-04 2007-07-19 Univ Of Tsukuba Heterodyne beat probe scanning probe microscope and measuring method of microsignal supperposed on tunnel current using it
JP2009250983A (en) * 2008-04-02 2009-10-29 Polytec Gmbh Vibration meter and object optically measuring method
JP2010151839A (en) * 2010-03-23 2010-07-08 Univ Of Tsukuba Heterodyne beat probe scanning probe tunnel microscope and method of measuring micro signal superimposed thereby on tunnel current
JP2012528342A (en) * 2009-05-28 2012-11-12 アビンガー・インコーポレイテッド Optical coherence tomography for bioimaging
JP2014008237A (en) * 2012-06-29 2014-01-20 Fujifilm Corp Optical simulation device, method and program
US9125562B2 (en) 2009-07-01 2015-09-08 Avinger, Inc. Catheter-based off-axis optical coherence tomography imaging system
US9345406B2 (en) 2011-11-11 2016-05-24 Avinger, Inc. Occlusion-crossing devices, atherectomy devices, and imaging
US9345510B2 (en) 2010-07-01 2016-05-24 Avinger, Inc. Atherectomy catheters with longitudinally displaceable drive shafts
US9345398B2 (en) 2012-05-14 2016-05-24 Avinger, Inc. Atherectomy catheter drive assemblies
US9498247B2 (en) 2014-02-06 2016-11-22 Avinger, Inc. Atherectomy catheters and occlusion crossing devices
US9498600B2 (en) 2009-07-01 2016-11-22 Avinger, Inc. Atherectomy catheter with laterally-displaceable tip
US9557156B2 (en) 2012-05-14 2017-01-31 Avinger, Inc. Optical coherence tomography with graded index fiber for biological imaging
US9572492B2 (en) 2008-04-23 2017-02-21 Avinger, Inc. Occlusion-crossing devices, imaging, and atherectomy devices
US9592075B2 (en) 2014-02-06 2017-03-14 Avinger, Inc. Atherectomy catheters devices having multi-channel bushings
US9642646B2 (en) 2009-04-28 2017-05-09 Avinger, Inc. Guidewire positioning catheter
US9854979B2 (en) 2013-03-15 2018-01-02 Avinger, Inc. Chronic total occlusion crossing devices with imaging
US9918734B2 (en) 2008-04-23 2018-03-20 Avinger, Inc. Catheter system and method for boring through blocked vascular passages
US9949754B2 (en) 2011-03-28 2018-04-24 Avinger, Inc. Occlusion-crossing devices
US10130386B2 (en) 2013-07-08 2018-11-20 Avinger, Inc. Identification of elastic lamina to guide interventional therapy
WO2019017392A1 (en) * 2017-07-19 2019-01-24 宏 小川 Tomographic image imaging device
US10335173B2 (en) 2012-09-06 2019-07-02 Avinger, Inc. Re-entry stylet for catheter
US10357277B2 (en) 2014-07-08 2019-07-23 Avinger, Inc. High speed chronic total occlusion crossing devices
US10363062B2 (en) 2011-10-17 2019-07-30 Avinger, Inc. Atherectomy catheters and non-contact actuation mechanism for catheters
US10548478B2 (en) 2010-07-01 2020-02-04 Avinger, Inc. Balloon atherectomy catheters with imaging
US10568520B2 (en) 2015-07-13 2020-02-25 Avinger, Inc. Micro-molded anamorphic reflector lens for image guided therapeutic/diagnostic catheters
CN110887793A (en) * 2018-09-10 2020-03-17 中国石油化工股份有限公司 Modulation wave driving type precision photoelectric detector
US10932670B2 (en) 2013-03-15 2021-03-02 Avinger, Inc. Optical pressure sensor assembly
US11096717B2 (en) 2013-03-15 2021-08-24 Avinger, Inc. Tissue collection device for catheter
US11224459B2 (en) 2016-06-30 2022-01-18 Avinger, Inc. Atherectomy catheter with shapeable distal tip
US11278248B2 (en) 2016-01-25 2022-03-22 Avinger, Inc. OCT imaging catheter with lag correction
US11284916B2 (en) 2012-09-06 2022-03-29 Avinger, Inc. Atherectomy catheters and occlusion crossing devices
US11344327B2 (en) 2016-06-03 2022-05-31 Avinger, Inc. Catheter device with detachable distal end
US11382653B2 (en) 2010-07-01 2022-07-12 Avinger, Inc. Atherectomy catheter
US11399863B2 (en) 2016-04-01 2022-08-02 Avinger, Inc. Atherectomy catheter with serrated cutter
US11406412B2 (en) 2012-05-14 2022-08-09 Avinger, Inc. Atherectomy catheters with imaging
US11793400B2 (en) 2019-10-18 2023-10-24 Avinger, Inc. Occlusion-crossing devices

Cited By (73)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4534045B2 (en) * 2006-01-04 2010-09-01 国立大学法人 筑波大学 Heterodyne beat probe scanning probe tunneling microscope and method for measuring minute signal superimposed on tunneling current by this
JP2007183106A (en) * 2006-01-04 2007-07-19 Univ Of Tsukuba Heterodyne beat probe scanning probe microscope and measuring method of microsignal supperposed on tunnel current using it
JP2009250983A (en) * 2008-04-02 2009-10-29 Polytec Gmbh Vibration meter and object optically measuring method
US9918734B2 (en) 2008-04-23 2018-03-20 Avinger, Inc. Catheter system and method for boring through blocked vascular passages
US10869685B2 (en) 2008-04-23 2020-12-22 Avinger, Inc. Catheter system and method for boring through blocked vascular passages
US9572492B2 (en) 2008-04-23 2017-02-21 Avinger, Inc. Occlusion-crossing devices, imaging, and atherectomy devices
US11076773B2 (en) 2009-04-28 2021-08-03 Avinger, Inc. Guidewire positioning catheter
US9642646B2 (en) 2009-04-28 2017-05-09 Avinger, Inc. Guidewire positioning catheter
US11998311B2 (en) 2009-04-28 2024-06-04 Avinger, Inc. Guidewire positioning catheter
US10342491B2 (en) 2009-05-28 2019-07-09 Avinger, Inc. Optical coherence tomography for biological imaging
US11839493B2 (en) 2009-05-28 2023-12-12 Avinger, Inc. Optical coherence tomography for biological imaging
US11284839B2 (en) 2009-05-28 2022-03-29 Avinger, Inc. Optical coherence tomography for biological imaging
US9788790B2 (en) 2009-05-28 2017-10-17 Avinger, Inc. Optical coherence tomography for biological imaging
JP2012528342A (en) * 2009-05-28 2012-11-12 アビンガー・インコーポレイテッド Optical coherence tomography for bioimaging
US10052125B2 (en) 2009-07-01 2018-08-21 Avinger, Inc. Atherectomy catheter with laterally-displaceable tip
US12053260B2 (en) 2009-07-01 2024-08-06 Avinger, Inc. Catheter-based off-axis optical coherence tomography imaging system
US9498600B2 (en) 2009-07-01 2016-11-22 Avinger, Inc. Atherectomy catheter with laterally-displaceable tip
US12089868B2 (en) 2009-07-01 2024-09-17 Avinger, Inc. Methods of using atherectomy catheter with deflectable distal tip
US10729326B2 (en) 2009-07-01 2020-08-04 Avinger, Inc. Catheter-based off-axis optical coherence tomography imaging system
US9125562B2 (en) 2009-07-01 2015-09-08 Avinger, Inc. Catheter-based off-axis optical coherence tomography imaging system
US11717314B2 (en) 2009-07-01 2023-08-08 Avinger, Inc. Atherectomy catheter with laterally-displaceable tip
JP2010151839A (en) * 2010-03-23 2010-07-08 Univ Of Tsukuba Heterodyne beat probe scanning probe tunnel microscope and method of measuring micro signal superimposed thereby on tunnel current
US9345510B2 (en) 2010-07-01 2016-05-24 Avinger, Inc. Atherectomy catheters with longitudinally displaceable drive shafts
US10349974B2 (en) 2010-07-01 2019-07-16 Avinger, Inc. Atherectomy catheters with longitudinally displaceable drive shafts
US10548478B2 (en) 2010-07-01 2020-02-04 Avinger, Inc. Balloon atherectomy catheters with imaging
US11382653B2 (en) 2010-07-01 2022-07-12 Avinger, Inc. Atherectomy catheter
US9949754B2 (en) 2011-03-28 2018-04-24 Avinger, Inc. Occlusion-crossing devices
US11134849B2 (en) 2011-03-28 2021-10-05 Avinger, Inc. Occlusion-crossing devices, imaging, and atherectomy devices
US11903677B2 (en) 2011-03-28 2024-02-20 Avinger, Inc. Occlusion-crossing devices, imaging, and atherectomy devices
US10952763B2 (en) 2011-03-28 2021-03-23 Avinger, Inc. Occlusion-crossing devices
US10363062B2 (en) 2011-10-17 2019-07-30 Avinger, Inc. Atherectomy catheters and non-contact actuation mechanism for catheters
US9345406B2 (en) 2011-11-11 2016-05-24 Avinger, Inc. Occlusion-crossing devices, atherectomy devices, and imaging
US11135019B2 (en) 2011-11-11 2021-10-05 Avinger, Inc. Occlusion-crossing devices, atherectomy devices, and imaging
US9557156B2 (en) 2012-05-14 2017-01-31 Avinger, Inc. Optical coherence tomography with graded index fiber for biological imaging
US9345398B2 (en) 2012-05-14 2016-05-24 Avinger, Inc. Atherectomy catheter drive assemblies
US11206975B2 (en) 2012-05-14 2021-12-28 Avinger, Inc. Atherectomy catheter drive assemblies
US10244934B2 (en) 2012-05-14 2019-04-02 Avinger, Inc. Atherectomy catheter drive assemblies
US11406412B2 (en) 2012-05-14 2022-08-09 Avinger, Inc. Atherectomy catheters with imaging
US11647905B2 (en) 2012-05-14 2023-05-16 Avinger, Inc. Optical coherence tomography with graded index fiber for biological imaging
US10952615B2 (en) 2012-05-14 2021-03-23 Avinger, Inc. Optical coherence tomography with graded index fiber for biological imaging
JP2014008237A (en) * 2012-06-29 2014-01-20 Fujifilm Corp Optical simulation device, method and program
US11284916B2 (en) 2012-09-06 2022-03-29 Avinger, Inc. Atherectomy catheters and occlusion crossing devices
US10335173B2 (en) 2012-09-06 2019-07-02 Avinger, Inc. Re-entry stylet for catheter
US10722121B2 (en) 2013-03-15 2020-07-28 Avinger, Inc. Chronic total occlusion crossing devices with imaging
US11980386B2 (en) 2013-03-15 2024-05-14 Avinger, Inc. Tissue collection device for catheter
US11723538B2 (en) 2013-03-15 2023-08-15 Avinger, Inc. Optical pressure sensor assembly
US10932670B2 (en) 2013-03-15 2021-03-02 Avinger, Inc. Optical pressure sensor assembly
US11890076B2 (en) 2013-03-15 2024-02-06 Avinger, Inc. Chronic total occlusion crossing devices with imaging
US11096717B2 (en) 2013-03-15 2021-08-24 Avinger, Inc. Tissue collection device for catheter
US9854979B2 (en) 2013-03-15 2018-01-02 Avinger, Inc. Chronic total occlusion crossing devices with imaging
US10130386B2 (en) 2013-07-08 2018-11-20 Avinger, Inc. Identification of elastic lamina to guide interventional therapy
US11944342B2 (en) 2013-07-08 2024-04-02 Avinger, Inc. Identification of elastic lamina to guide interventional therapy
US10806484B2 (en) 2013-07-08 2020-10-20 Avinger, Inc. Identification of elastic lamina to guide interventional therapy
US10470795B2 (en) 2014-02-06 2019-11-12 Avinger, Inc. Atherectomy catheters and occlusion crossing devices
US10568655B2 (en) 2014-02-06 2020-02-25 Avinger, Inc. Atherectomy catheters devices having multi-channel bushings
US9592075B2 (en) 2014-02-06 2017-03-14 Avinger, Inc. Atherectomy catheters devices having multi-channel bushings
US9498247B2 (en) 2014-02-06 2016-11-22 Avinger, Inc. Atherectomy catheters and occlusion crossing devices
US11931061B2 (en) 2014-07-08 2024-03-19 Avinger, Inc. High speed chronic total occlusion crossing devices
US10357277B2 (en) 2014-07-08 2019-07-23 Avinger, Inc. High speed chronic total occlusion crossing devices
US11147583B2 (en) 2014-07-08 2021-10-19 Avinger, Inc. High speed chronic total occlusion crossing devices
US10568520B2 (en) 2015-07-13 2020-02-25 Avinger, Inc. Micro-molded anamorphic reflector lens for image guided therapeutic/diagnostic catheters
US11033190B2 (en) 2015-07-13 2021-06-15 Avinger, Inc. Micro-molded anamorphic reflector lens for image guided therapeutic/diagnostic catheters
US11627881B2 (en) 2015-07-13 2023-04-18 Avinger, Inc. Micro-molded anamorphic reflector lens for image guided therapeutic/diagnostic catheters
US11974830B2 (en) 2015-07-13 2024-05-07 Avinger, Inc. Micro-molded anamorphic reflector lens for image guided therapeutic/diagnostic catheters
US11278248B2 (en) 2016-01-25 2022-03-22 Avinger, Inc. OCT imaging catheter with lag correction
US11957376B2 (en) 2016-04-01 2024-04-16 Avinger, Inc. Atherectomy catheter with serrated cutter
US11399863B2 (en) 2016-04-01 2022-08-02 Avinger, Inc. Atherectomy catheter with serrated cutter
US11344327B2 (en) 2016-06-03 2022-05-31 Avinger, Inc. Catheter device with detachable distal end
US11224459B2 (en) 2016-06-30 2022-01-18 Avinger, Inc. Atherectomy catheter with shapeable distal tip
JPWO2019017392A1 (en) * 2017-07-19 2020-05-28 宏 小川 Tomographic imager
WO2019017392A1 (en) * 2017-07-19 2019-01-24 宏 小川 Tomographic image imaging device
CN110887793A (en) * 2018-09-10 2020-03-17 中国石油化工股份有限公司 Modulation wave driving type precision photoelectric detector
US11793400B2 (en) 2019-10-18 2023-10-24 Avinger, Inc. Occlusion-crossing devices

Similar Documents

Publication Publication Date Title
JP2005114473A (en) Light detection method and biological light-measuring instrument
US7245383B2 (en) Optical image measuring apparatus for obtaining a signal intensity and spatial phase distribution of interference light
EP0904011B1 (en) Apparatus for imaging microvascular blood flow
US7548320B2 (en) Optical image measuring apparatus
US7268885B2 (en) Optical image measuring apparatus for forming an image of an object to be measured based on interference light
JP4409332B2 (en) Optical image measuring device
US8289502B2 (en) Measurement apparatus and measurement method
US6738653B1 (en) Metabolism monitoring of body organs
US8280494B2 (en) Apparatus and method to measure a spectroscopic characteristic in an object
US10194803B2 (en) Control apparatus, measurement apparatus, control method, and storage medium
US20130296715A1 (en) Instrument and method for high-speed perfusion imaging
JP2005515818A (en) Laser Doppler perfusion imaging using multiple beams
JP2016209201A (en) Image generation apparatus, image generation method, and program
KR20130088777A (en) Object information acquiring apparatus
JPH01113672A (en) Measuring apparatus of velocity distribution
JP2009293998A (en) Interference tomographic photographing apparatus
EP2732756B1 (en) Object information acquisition apparatus
US20190343377A1 (en) 3d intraoral camera using frequency modulation
WO2021192117A1 (en) Optical interference tomographic imaging device
JP2009119153A (en) Optical coherent tomography system
JP2022191495A (en) Light interference tomographic imaging apparatus, imaging method, and imaging program
JP2013244343A (en) Biological information presentation device and biological information presentation method
JPH10246697A (en) Optical inspection method and device
RU91517U1 (en) DEVICE FOR DIFFUSION OPTICAL TOMOGRAPHY
KR101917479B1 (en) Method of performing oct imaging using a surgical microscope and hybrid beam scanning, and apparatuses for performing the same