JP2005199554A - Thermal recording medium - Google Patents
Thermal recording medium Download PDFInfo
- Publication number
- JP2005199554A JP2005199554A JP2004007927A JP2004007927A JP2005199554A JP 2005199554 A JP2005199554 A JP 2005199554A JP 2004007927 A JP2004007927 A JP 2004007927A JP 2004007927 A JP2004007927 A JP 2004007927A JP 2005199554 A JP2005199554 A JP 2005199554A
- Authority
- JP
- Japan
- Prior art keywords
- heat
- sensitive recording
- amorphous silica
- recording material
- recording layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Heat Sensitive Colour Forming Recording (AREA)
Abstract
Description
本発明は、ロイコ染料と呈色剤との発色反応を利用した感熱記録体に関するものである。 The present invention relates to a heat-sensitive recording material utilizing a color development reaction between a leuco dye and a colorant.
従来、ロイコ染料と呈色剤との呈色反応を利用し、熱により両発色物質を接触させて記録像を得るようにした感熱記録体はよく知られている。最近のニーズの多様化に伴い、感熱記録層面へのオフセット印刷適性にも優れた感熱記録体が広く使用されている。 2. Description of the Related Art Conventionally, a heat-sensitive recording material that uses a color reaction between a leuco dye and a colorant to obtain a recorded image by bringing both coloring materials into contact with each other by heat is well known. With the recent diversification of needs, thermal recording media having excellent offset printability on the thermal recording layer surface are widely used.
感熱記録体のサーマルヘッドマッチング性を高めるために、感熱記録層中に二次粒子を含む平均粒径が2.5〜15μm程度の無定形シリカを含有させた感熱記録体は公知である(特許文献1、特許文献2参照)が、無定形シリカの含有比率が高くなると均一な感熱記録層面が得られ難くなり、記録画質と記録濃度が著しく低下する問題がある。 In order to improve the thermal head matching property of the heat-sensitive recording material, a heat-sensitive recording material containing amorphous silica having an average particle size of about 2.5 to 15 μm including secondary particles in the heat-sensitive recording layer is known (patent). However, when the content ratio of amorphous silica is increased, it is difficult to obtain a uniform heat-sensitive recording layer surface, and there is a problem that recording image quality and recording density are remarkably lowered.
また、感熱記録体の記録感度とサーマルヘッドマッチング性を高めるために、感熱記録層中に比表面積が20〜70m2/g、細孔径が7.5μm以下の細孔容積が1.5〜2.5ml/gの無定形シリカを含有させた感熱記録体は公知である(特許文献3参照)が、感熱記録層面へのオフセット印刷適性に問題がある。 Further, in order to increase the recording sensitivity and thermal head matching property of the thermal recording material, the thermal recording layer has a specific surface area of 20 to 70 m 2 / g and a pore volume of 1.5 to 2 μm. A heat-sensitive recording material containing amorphous silica of 0.5 ml / g is known (see Patent Document 3), but there is a problem in suitability for offset printing on the surface of the heat-sensitive recording layer.
ところで、シャウカステン用の医療画像やOHP用の記録媒体に使用されている感熱記録体は、その透明性を高めるために、支持体として透明フイルムが用いられ、さらに感熱記録層の透明性を高めるために、感熱記録層中にコロイダルシリカを含有させた感熱記録体が知られている(特許文献4、特許文献5参照)が、サーマルヘッドマッチング性などに問題がある。 By the way, in order to increase the transparency of the thermal recording material used in the medical image for Saucusten and the recording medium for OHP, a transparent film is used as a support, and in order to further increase the transparency of the thermal recording layer. In addition, there is known a heat-sensitive recording material in which colloidal silica is contained in the heat-sensitive recording layer (see Patent Document 4 and Patent Document 5), but there is a problem in thermal head matching properties and the like.
本発明の課題は、サーマルヘッドマッチング性、記録感度、記録濃度およびオフセット印刷適性に優れた感熱記録体を提供するものである。 An object of the present invention is to provide a thermal recording material excellent in thermal head matching property, recording sensitivity, recording density, and offset printing suitability.
支持体上に、ロイコ染料と呈色剤を含有する感熱記録層を有する感熱記録体において、上記課題を解決するための一つの手段として、感熱記録層中に、比表面積が50〜500m2/g、細孔径100nm以下の細孔容積が0.4〜2.0ml/gの無定形シリカ(以下、特定の無定形シリカと称する)を含有させるものである。 In a thermal recording body having a thermal recording layer containing a leuco dye and a colorant on a support, as one means for solving the above-mentioned problems, the specific surface area of the thermal recording layer is 50 to 500 m 2 / g, Amorphous silica having a pore diameter of 100 nm or less and a pore volume of 0.4 to 2.0 ml / g (hereinafter referred to as specific amorphous silica) is contained.
さらに、二次粒子を含む平均粒径が50〜1000nm(本発明における平均粒径とは、動的光散乱法により検出された無定形シリカ粒子に起因する散乱強度分布を正規分布に当てはめて、平均粒径を算出するキュムラント解析法により求めた値である。)の特定の無定形シリカを用いることにより、記録画質と記録濃度をより高める効果が得られる。 Furthermore, the average particle size including secondary particles is 50 to 1000 nm (the average particle size in the present invention is applied to the normal distribution of the scattering intensity distribution caused by the amorphous silica particles detected by the dynamic light scattering method, By using a specific amorphous silica (which is a value obtained by a cumulant analysis method for calculating an average particle diameter), an effect of further improving the recording image quality and the recording density can be obtained.
特定の無定形シリカは、感熱記録層中に、感熱記録層に対して5〜40質量%含有させるものである。 The specific amorphous silica is contained in the thermosensitive recording layer in an amount of 5 to 40% by mass with respect to the thermosensitive recording layer.
支持体として、透明フイルムを用いることにより、緻密な記録画質とシャウカステン適性に優れた感熱記録体が得られる。 By using a transparent film as the support, it is possible to obtain a heat-sensitive recording material excellent in precise recording image quality and suitability for Saucusten.
本発明の感熱記録体は、サーマルヘッドマッチング性、記録感度、記録濃度およびオフセット印刷適性に優れた効果を有するものであり、特に支持体として、透明フイルムを用いることにより、緻密な記録画質とシャウカステン適性に優れた効果が得られる。 The heat-sensitive recording material of the present invention has excellent effects in thermal head matching, recording sensitivity, recording density, and offset printing suitability. In particular, by using a transparent film as a support, a precise recording image quality and a shaw An effect excellent in aptitude is obtained.
感熱記録層中に含有される特定の無定形シリカは、例えば第1の活性ケイ酸水溶液を加熱して生成させたシリカシード粒子を有する分散液にアルカリを添加した後、さらに第2の活性ケイ酸水溶液を添加してシリカシード粒子を成長させることにより得られる。なお、第1の活性ケイ酸水溶液および第2の活性ケイ酸水溶液は同一であってもよい。 The specific amorphous silica contained in the heat-sensitive recording layer is obtained by, for example, adding an alkali to a dispersion having silica seed particles formed by heating the first active silicic acid aqueous solution, and then adding the second active silica. It is obtained by adding an acid aqueous solution to grow silica seed particles. The first active silicic acid aqueous solution and the second active silicic acid aqueous solution may be the same.
シリカシード粒子は、70℃以上の熱水中に第1の活性ケイ酸水溶液を滴下させて生成させる方法で得てもよい。 The silica seed particles may be obtained by a method in which the first active silicic acid aqueous solution is dropped into hot water at 70 ° C. or higher.
第2の活性ケイ酸水溶液を添加する速度としては特に限定されないが、シリカシード粒子に含まれるSiO21モルに対してSiO2に換算して0.001〜0.2モル/分が好ましい。 No particular limitation is imposed on the rate of addition of the second active silicic acid aqueous solution, with respect to SiO 2 1 mole contained in the silica seed particles in terms of SiO 2 0.001 to 0.2 mol / min are preferred.
第1の活性ケイ酸水溶液および第2の活性ケイ酸水溶液は、例えばSiO2/Na2O(但し、Mはアルカリ金属原子を表す。)モル比が2〜4程度のケイ酸ナトリウム水溶液を水素型陽イオン交換樹脂でイオン交換処理して得られるpH2〜4程度のケイ酸水溶液が挙げられる。 The first active silicic acid aqueous solution and the second active silicic acid aqueous solution are, for example, a sodium silicate aqueous solution having a molar ratio of about 2 to 4 of SiO 2 / Na 2 O (where M represents an alkali metal atom). An aqueous silicic acid solution having a pH of about 2 to 4 obtained by ion exchange treatment with a type cation exchange resin can be mentioned.
第1の活性ケイ酸水溶液および第2の活性ケイ酸水溶液は、SiO2濃度として1〜6質量%が好ましく、より好ましくは2〜5質量%である。 The first active silicic acid aqueous solution and the second active silicic acid aqueous solution are preferably 1 to 6% by mass, more preferably 2 to 5% by mass as the SiO 2 concentration.
シード粒子の濃度は、シリカ換算濃度で0.05〜10.0質量%であることが望ましい。 The concentration of the seed particles is preferably 0.05 to 10.0% by mass in terms of silica.
シリカシード粒子を有する分散液に添加されるアルカリの添加量については特に限定されないが、分散液のpHを6.5以上、より好ましくはpH8以上にするために必要なアルカリ量、より詳しくはシリカシード粒子におけるシリカ成分(SiO2)1モルに対して1×10−3〜1.0モル、より好ましくは、0.01〜0.1モルのアルカリ量とすることが望ましい。 The amount of alkali added to the dispersion having silica seed particles is not particularly limited, but the amount of alkali necessary to make the pH of the dispersion 6.5 or more, more preferably pH 8 or more, more specifically silica. It is desirable that the amount of alkali is 1 × 10 −3 to 1.0 mol, more preferably 0.01 to 0.1 mol with respect to 1 mol of the silica component (SiO 2 ) in the seed particles.
かかるアルカリとしては、例えば水酸化ナトリウム、水酸化カリウム、水酸化アンモニウムなどが挙げられる。なかでも、水酸化アンモニウムが、記録部の濃度低下が少なく、好ましい。 Examples of the alkali include sodium hydroxide, potassium hydroxide, ammonium hydroxide and the like. Of these, ammonium hydroxide is preferable because it causes little decrease in the density of the recording area.
特定の無定形シリカの比表面積は50〜500m2/g(窒素吸着法による)であり、その比表面積が50m2/g未満になると光散乱が強くなり、感熱記録層の透明性が低下し、記録濃度が低下する恐れがある。また、500m2/gを越えると、感熱記録層の強度が著しく低下して、記録時にヘッドカスが発生したり、オフセット印刷性に問題が生じる恐れがある。比表面積は、より好ましくは200〜400m2/gである。 Specific amorphous silica has a specific surface area of 50 to 500 m 2 / g (according to the nitrogen adsorption method). When the specific surface area is less than 50 m 2 / g, light scattering becomes strong and the transparency of the heat-sensitive recording layer decreases. The recording density may be reduced. On the other hand, if it exceeds 500 m 2 / g, the strength of the heat-sensitive recording layer is remarkably lowered, and there is a possibility that head debris may occur during recording or a problem may occur in offset printability. The specific surface area is more preferably 200 to 400 m 2 / g.
また、特定の無定形シリカは、細孔径100nm以下の細孔容積が0.4〜2.0ml/gであり、細孔容積が0.4ml/g未満の場合、吸油性が劣り、ヘッドマッチング性が低下して印字障害や印字ムラが発生する恐れがある。細孔容積が2.0ml/gを超えると、塗膜の密度が小さ過ぎて機械的強度に劣り、オフセット印刷性に問題が生じる恐れがある。この細孔容積、及び細孔径の測定には窒素吸着法を用いた。 In addition, the specific amorphous silica has a pore volume of 0.4 to 2.0 ml / g with a pore diameter of 100 nm or less. When the pore volume is less than 0.4 ml / g, the oil absorption is inferior and head matching The printability and print unevenness may occur. When the pore volume exceeds 2.0 ml / g, the density of the coating film is too small and the mechanical strength is inferior, which may cause a problem in offset printability. A nitrogen adsorption method was used to measure the pore volume and pore diameter.
特定の無定形シリカの一次粒径については特に限定されないが、好ましくは直径5〜60nmである。ただし、該無定形シリカは一次粒子が化学結合して二次粒子を形成しているため、一次粒子の直径を正確に求めることは困難である。このため本発明では一次粒子の平均粒径の尺度として窒素吸着法による比表面積を採用する。 The primary particle size of the specific amorphous silica is not particularly limited but is preferably 5 to 60 nm in diameter. However, in the amorphous silica, primary particles are chemically bonded to form secondary particles, and therefore it is difficult to accurately determine the diameter of the primary particles. Therefore, in the present invention, the specific surface area by the nitrogen adsorption method is adopted as a measure of the average particle diameter of the primary particles.
特定の無定形シリカは、主に一次粒子が不規則に結合した二次粒子の構造をしており、一次粒子を含む無定形シリカの平均粒径は特に限定されないが、50〜1000nmが好ましい。 The specific amorphous silica mainly has a secondary particle structure in which primary particles are irregularly bonded, and the average particle size of the amorphous silica containing the primary particles is not particularly limited, but is preferably 50 to 1000 nm.
無定形シリカの平均粒径が50nm未満になるとシリカの細孔容積が減少し、記録感度とヘッドマチッング性が低下し、また1000nmを超えると、光の乱反射が多くなり感熱記録層に用いた場合、記録画質が低下するおそれがある。 When the average particle size of the amorphous silica is less than 50 nm, the pore volume of the silica is reduced, the recording sensitivity and the head mating property are lowered, and when it exceeds 1000 nm, the irregular reflection of light is increased and used in the heat-sensitive recording layer. There is a risk that the recording image quality will deteriorate.
感熱記録層中の特定の無定形シリカの含有比率は特に限定されないが、感熱記録層に対して5〜40質量%が好ましい。5質量%未満になるとオフセット印刷性が低下する恐れがあり、まて40質量%を越えると記録濃度が低下する恐れがある。 The content ratio of the specific amorphous silica in the heat-sensitive recording layer is not particularly limited, but is preferably 5 to 40% by mass with respect to the heat-sensitive recording layer. If it is less than 5% by mass, the offset printability may be lowered, and if it exceeds 40% by mass, the recording density may be lowered.
感熱記録層に用いられるロイコ染料としては各種のものが公知であり、例えば3−ジエチルアミノ−7−クロロフルオラン、3−(N−エチル−N−p−トリルアミノ)−7−メチルフルオラン、3−ジエチルアミノ−6−メチル−7−クロロフルオラン、3−(N−エチル−N−イソアミルアミノ)−7−フェノキシフルオラン、3−ジエチルアミノ−6,8−ジメチルフルオラン、3−ジ(n−ブチル)アミノ−6−メチル−7−ブロモフルオラン、3,3−ビス(1−n−アミル−2−メチルインドール−3−イル)フタリド、3−ジ(n−ブチル)アミノ−7−クロロフルオラン等の赤色発色性ロイコ染料、 Various leuco dyes used in the heat-sensitive recording layer are known, such as 3-diethylamino-7-chlorofluorane, 3- (N-ethyl-Np-tolylamino) -7-methylfluorane, 3 -Diethylamino-6-methyl-7-chlorofluorane, 3- (N-ethyl-N-isoamylamino) -7-phenoxyfluorane, 3-diethylamino-6,8-dimethylfluorane, 3-di (n- Butyl) amino-6-methyl-7-bromofluorane, 3,3-bis (1-n-amyl-2-methylindol-3-yl) phthalide, 3-di (n-butyl) amino-7-chloro Red color developing leuco dyes such as fluorane,
3,3−ビス(4−ジエチルアミノ−2−エトキシフェニル)−4−アザフタリド、3,3−ビス(p−ジメチルアミノフェニル)−6−ジメチルアミノフタリド、3−(4−ジエチルアミノ−2−メチルフェニル)−3−(4−ジメチルアミノフェニル)−6−ジメチルアミノフタリド、3−(4−ジエチルアミノ−2−エトキシフェニル)−3−(1−エチル−2−メチルインドール−3−イル)−4−アザフタリド、3−ジフェニルアミノ−6−ジフェニルアミノフルオラン、3−(2−メチル−1−n−オクチルインドール−3−イル)−3−(4−ジエチルアミノ−2−エトキシフェニル)−4−アザフタリド等の青色発色性ロイコ染料、 3,3-bis (4-diethylamino-2-ethoxyphenyl) -4-azaphthalide, 3,3-bis (p-dimethylaminophenyl) -6-dimethylaminophthalide, 3- (4-diethylamino-2-methyl) Phenyl) -3- (4-dimethylaminophenyl) -6-dimethylaminophthalide, 3- (4-diethylamino-2-ethoxyphenyl) -3- (1-ethyl-2-methylindol-3-yl)- 4-Azaphthalide, 3-diphenylamino-6-diphenylaminofluorane, 3- (2-methyl-1-n-octylindol-3-yl) -3- (4-diethylamino-2-ethoxyphenyl) -4- Blue color-forming leuco dyes such as azaphthalide,
3−(N−エチル−N−p−トリルアミノ)−7−(N−フェニル−N−メチルアミノ)フルオラン、3−(N−エチル−N−n−ヘキシルアミノ)−7−アニリノフルオラン、3−ジエチルアミノ−7−ジベンジルアミノフルオラン、3−ジエチルアミノ−7−(o−クロロアニリノ)フルオラン等の緑色発色性ロイコ染料、3,6−ジメトキシフルオラン、1−(4−n−ドデシルオキシ−3−メトキシフェニル)−2−(2−キノリル)エチレン、1,3,3−トリメチルインドリン−2,2’−スピロ−6’−ニトロ−8’−メトキシベンゾピラン等の黄色発色性ロイコ染料、 3- (N-ethyl-Np-tolylamino) -7- (N-phenyl-N-methylamino) fluorane, 3- (N-ethyl-Nn-hexylamino) -7-anilinofluorane, Green coloring leuco dyes such as 3-diethylamino-7-dibenzylaminofluorane, 3-diethylamino-7- (o-chloroanilino) fluorane, 3,6-dimethoxyfluorane, 1- (4-n-dodecyloxy- Yellow color-forming leuco dyes such as 3-methoxyphenyl) -2- (2-quinolyl) ethylene, 1,3,3-trimethylindoline-2,2′-spiro-6′-nitro-8′-methoxybenzopyran,
および3−ピロリジノ−6−メチル−7−アニリノフルオラン、3−ジエチルアミノ−7−(m−トリフルオロメチルアニリノ)フルオラン、3−(N−イソアミル−N−エチルアミノ)−7−(o−クロロアニリノ)フルオラン、3−(N−エチル−p−トルイジノ)−6−メチル−7−アニリノフルオラン、3−(N−エチル−N−2−テトラヒドロフルフリルアミノ)−6−メチル−7−アニリノフルオラン、3−ジエチルアミノ−6−クロロ−7−アニリノフルオラン、3−ジ(n−ブチル)アミノ−6−メチル−7−アニリノフルオラン、3−ジ(n−アミル)アミノ−6−メチル−7−アニリノフルオラン、3−(N−イソアミル−N−エチルアミノ)−6−メチル−7−アニリノフルオラン、3−(N−n−ヘキシル−N−エチルアミノ)−6−メチル−7−アニリノフルオラン、3−ジ(n−ブチル)アミノ−(2−クロロアニリノ)フルオラン、3−ジエチルアミノ−6−メチル−7−アニリノフルオラン、3−ジエチルアミノ−6−メチル−7−(2,6−ジメチルアニリノ)フルオラン、3−ジエチルアミノ−6−メチル−7−(2,4−ジメチルアニリノ)フルオラン等の黒色発色性ロイコ染料等が挙げられる。 And 3-pyrrolidino-6-methyl-7-anilinofluorane, 3-diethylamino-7- (m-trifluoromethylanilino) fluorane, 3- (N-isoamyl-N-ethylamino) -7- (o -Chloroanilino) fluorane, 3- (N-ethyl-p-toluidino) -6-methyl-7-anilinofluorane, 3- (N-ethyl-N-2-tetrahydrofurfurylamino) -6-methyl-7 -Anilinofluorane, 3-diethylamino-6-chloro-7-anilinofluorane, 3-di (n-butyl) amino-6-methyl-7-anilinofluorane, 3-di (n-amyl) Amino-6-methyl-7-anilinofluorane, 3- (N-isoamyl-N-ethylamino) -6-methyl-7-anilinofluorane, 3- (Nn-hexyl-N-ethylene Ruamino) -6-methyl-7-anilinofluorane, 3-di (n-butyl) amino- (2-chloroanilino) fluorane, 3-diethylamino-6-methyl-7-anilinofluorane, 3-diethylamino- Examples thereof include black color-forming leuco dyes such as 6-methyl-7- (2,6-dimethylanilino) fluorane and 3-diethylamino-6-methyl-7- (2,4-dimethylanilino) fluorane.
ロイコ染料の使用量としては特に限定されないが、感熱記録層に対して5〜30質量%程度が好ましい。 The amount of the leuco dye used is not particularly limited, but is preferably about 5 to 30% by mass with respect to the heat-sensitive recording layer.
ロイコ染料と共に感熱記録層中に含有される呈色剤としては、例えば4,4’−イソプロピリデンジフェノール、4,4’−シクロヘキシリデンジフェノール、2,2−ビス(4−ヒドロキシフェニル)−4−メチルペンタン、2,4’−ジヒドロキシジフェニルスルホン、4,4’−ジヒドロキシジフェニルスルホン、4−ヒドロキシ−4’−イソプロポキシジフェニルスルホン、3,3’−ジアリル−4,4’−ジヒドロキシジフェニルスルホン、4−ヒドロキシ−4’−メチルジフェニルスルホン、ビス(p−ヒドロキシフェニル)酢酸ブチル、ビス(p−ヒドロキシフェニル)酢酸メチル、1,1−ビス(4−ヒドロキシフェニル)−1−フェニルエタン、1,4−ビス〔α−メチル−α−(4’−ヒドロキシフェニル)エチル〕ベンゼンなどのフェノール性化合物、N−p−トリルスルホニル−N’−フェニルウレア、4,4’−ビス〔(4−メチル−3−フェノキシカルボニルアミノフェニル)ウレイド〕ジフェニルメタン、N−p−トリルスルホニル−N’−p−ブトキシフエニルウレアなどの分子内にスルホニル基とウレイド基を有する化合物、4−〔2−(p−メトキシフェノキシ)エチルオキシ〕サリチル酸亜鉛、4−〔3−(p−トリルスルホニル)プロピルオキシ〕サリチル酸亜鉛、5−〔p−(2−p−メトキシフェノキシエトキシ)クミル〕サリチル酸などの芳香族カルボン酸の亜鉛塩化合物などが挙げられる。 Examples of the colorant contained in the heat-sensitive recording layer together with the leuco dye include 4,4′-isopropylidenediphenol, 4,4′-cyclohexylidenediphenol, 2,2-bis (4-hydroxyphenyl)- 4-methylpentane, 2,4′-dihydroxydiphenylsulfone, 4,4′-dihydroxydiphenylsulfone, 4-hydroxy-4′-isopropoxydiphenylsulfone, 3,3′-diallyl-4,4′-dihydroxydiphenylsulfone 4-hydroxy-4′-methyldiphenylsulfone, butyl bis (p-hydroxyphenyl) acetate, methyl bis (p-hydroxyphenyl) acetate, 1,1-bis (4-hydroxyphenyl) -1-phenylethane, , 4-Bis [α-methyl-α- (4′-hydroxyphenyl) ethyl] ben Zen and other phenolic compounds, Np-tolylsulfonyl-N′-phenylurea, 4,4′-bis [(4-methyl-3-phenoxycarbonylaminophenyl) ureido] diphenylmethane, Np-tolylsulfonyl- Compounds having a sulfonyl group and a ureido group in the molecule such as N′-p-butoxyphenyl urea, zinc 4- [2- (p-methoxyphenoxy) ethyloxy] salicylate, 4- [3- (p-tolylsulfonyl) Zinc salts of aromatic carboxylic acids such as propyloxy] zinc salicylate and 5- [p- (2-p-methoxyphenoxyethoxy) cumyl] salicylic acid.
本発明において、記録層中のロイコ染料と呈色剤の使用比率は用いるロイコ染料と呈色剤の種類に応じて適宜選択すべきもので、特に限定するものではないが、例えばロイコ染料と呈色剤を用いる場合には、一般にロイコ染料1重量部に対して1〜7重量部、好ましくは1〜4重量部程度の酸性物質が使用される。 In the present invention, the use ratio of the leuco dye and the colorant in the recording layer should be appropriately selected according to the type of the leuco dye and the colorant to be used, and is not particularly limited. When the agent is used, generally 1 to 7 parts by weight, preferably 1 to 4 parts by weight of an acidic substance is used with respect to 1 part by weight of the leuco dye.
更に、感熱記録層には記録部の保存性を高めるための保存性改良剤や記録感度を高めるための増感剤を含有させることもできる。保存性改良剤の具体例としては、例えば4,4’−ブチリデンビス(6−tert−ブチル−3−メチルフェノール)、2,2’−メチレンビス(4−エチル−6−tert−ブチルフェノール)、2,4−ジ(tert−ブチル)−3−メチルフェノール、1,1,3−トリス(2−メチル−4−ヒドロキシ−5−tert−ブチルフェニル)ブタン、1,1,3−トリス(2−メチル−4−ヒドロキシ−5−シクロヘキシルフェニル)ブタン、1,3,5−トリス(5−tert−ブチル−3−ヒドロキシ−2、6−ジメチルベンジル)イソシアヌル酸等のヒンダードフェノール類;4−(2−メチル−1,2−エポキシエチル)ジフェニルスルホン、4−(2−エチル−1,2−エポキシエチル)ジフェニルスルホン、4−ベンジルオキシ−4’−(2,3−グリシジルオキシ)ジフェニルスルホン等のジフェニルスルホン系エポキシ化合物類;2−(2’−ヒドロキシ−5’−メチルフェニル)ベンゾトリアゾール、2−ヒドロキシ−4−ベンジルオキシベンゾフェノン等の紫外線吸収剤等が挙げられる。 Further, the heat-sensitive recording layer may contain a storability improving agent for enhancing the storability of the recording part and a sensitizer for enhancing the recording sensitivity. Specific examples of the storage stability improver include, for example, 4,4′-butylidenebis (6-tert-butyl-3-methylphenol), 2,2′-methylenebis (4-ethyl-6-tert-butylphenol), 2, 4-di (tert-butyl) -3-methylphenol, 1,1,3-tris (2-methyl-4-hydroxy-5-tert-butylphenyl) butane, 1,1,3-tris (2-methyl) Hindered phenols such as -4-hydroxy-5-cyclohexylphenyl) butane and 1,3,5-tris (5-tert-butyl-3-hydroxy-2,6-dimethylbenzyl) isocyanuric acid; 4- (2 -Methyl-1,2-epoxyethyl) diphenylsulfone, 4- (2-ethyl-1,2-epoxyethyl) diphenylsulfone, 4-benzyloxy-4 '-(2,3-glycol Jiruokishi) diphenylsulfone epoxy compounds such as diphenyl sulfone; 2- (2'-hydroxy-5'-methylphenyl) benzotriazole, ultraviolet absorbers such as 2-hydroxy-4-benzyloxy-benzophenone.
増感剤の具体例としては、例えばステアリン酸アミド、ステアリン酸メチレンビスアミド、ステアリン酸エチレンビスアミド、p−ベンジルビフェニル、1,2−ジフェノキシエタン、1,2−ジ(3−メチルフェノキシ)エタン、1−(2−メチルフェノキシ)−2−(4−メトキシフェノキシ)エタン、ナフチルベンジルエーテル、m−ターフェニル、ベンジル−4−メチルチオフェニルエーテル、シュウ酸ジベンジルエステル、シュウ酸ジ−p−メチル−ベンジルエステル、シュウ酸ジ−p−クロルベンジルエステル、テレフタル酸ジブチルエステル、テレフタル酸ジベンジルエステル、1−ヒドロキシナフトエ酸フェニルエステル、ベンジル−4−メチルチオフェニルエーテル等が挙げられる。 Specific examples of the sensitizer include, for example, stearic acid amide, stearic acid methylene bisamide, stearic acid ethylene bisamide, p-benzylbiphenyl, 1,2-diphenoxyethane, 1,2-di (3-methylphenoxy) ethane, 1- (2-methylphenoxy) -2- (4-methoxyphenoxy) ethane, naphthyl benzyl ether, m-terphenyl, benzyl-4-methylthiophenyl ether, oxalic acid dibenzyl ester, oxalic acid di-p-methyl- Examples include benzyl ester, oxalic acid di-p-chlorobenzyl ester, terephthalic acid dibutyl ester, terephthalic acid dibenzyl ester, 1-hydroxynaphthoic acid phenyl ester, benzyl-4-methylthiophenyl ether, and the like.
感熱記録層は、水または有機溶剤を分散媒体とし、例えば平均粒径が0.2〜1.0μm程度に微粉砕されたロイコ染料および呈色剤と、接着剤、並びに必要により保存性改良剤、増感剤および下記の助剤とを混合して調製された感熱記録層用塗液を支持体上に乾燥後の塗布量が3〜30g/m2程度となるように塗布乾燥して形成される。 The heat-sensitive recording layer uses water or an organic solvent as a dispersion medium, for example, a leuco dye and a colorant finely pulverized to an average particle size of about 0.2 to 1.0 μm, an adhesive, and, if necessary, a storage stability improver. A coating solution for a heat-sensitive recording layer prepared by mixing a sensitizer and the following auxiliary agent is applied and dried on a support so that the coating amount after drying is about 3 to 30 g / m 2. Is done.
接着剤としては、例えば酸化デンプン、ヒドロキシメチルセルロース、ヒドロキシプロピルセルロース、メチルセルロース、ポリビニルアルコール、カルボキシ変性ポリビニルアルコール、ケイ素変性ポリビニルアルコール、スチレン−無水マレイン酸共重合体、イソブチレン−無水マレイン酸共重合体およびカゼイン等の水溶性接着剤、並びに、ポリエステル系樹脂、酢酸ビニル系樹脂、ウレタン系樹脂、アクリル系樹脂、スチレン−ブタジエン系樹脂等の疎水性接着剤等が挙げられる。 Examples of the adhesive include oxidized starch, hydroxymethyl cellulose, hydroxypropyl cellulose, methyl cellulose, polyvinyl alcohol, carboxy-modified polyvinyl alcohol, silicon-modified polyvinyl alcohol, styrene-maleic anhydride copolymer, isobutylene-maleic anhydride copolymer, and casein. And water-soluble adhesives such as polyester resins, vinyl acetate resins, urethane resins, acrylic resins, styrene-butadiene resins, and the like.
接着剤の使用量としては特に限定されないが、感熱記録層の全固形量に対して5〜40質量%程度が好ましい。なお、感熱記録層用塗液の媒体が水の場合は、疎水性接着剤はラテックスの形態で使用される。 The amount of the adhesive used is not particularly limited, but is preferably about 5 to 40% by mass with respect to the total solid content of the heat-sensitive recording layer. When the medium for the thermal recording layer coating liquid is water, the hydrophobic adhesive is used in the form of latex.
助剤としては、例えばジ(2−エチルヘキシル)スルホコハク酸ナトリウム、ドデシルベンゼンスルホン酸ナトリウム、ラウリルアルコール硫酸エステルナトリウム等の界面活性剤、ステアリン酸亜鉛、ステアリン酸カルシウムなどの滑剤、ポリエチレンワックス、カルナバロウ、パラフィンワックス、エステルワックス等のワックス類、カオリン、クレー、タルク、炭酸カルシウム、焼成カオリン、酸化チタン、水酸化アルミニウム等の顔料、その他消泡剤、蛍光増白染料、架橋剤等が挙げられる。 Examples of auxiliary agents include surfactants such as sodium di (2-ethylhexyl) sulfosuccinate, sodium dodecylbenzenesulfonate, sodium lauryl alcohol sulfate, lubricants such as zinc stearate and calcium stearate, polyethylene wax, carnauba wax, and paraffin wax. And waxes such as ester wax, pigments such as kaolin, clay, talc, calcium carbonate, calcined kaolin, titanium oxide and aluminum hydroxide, other antifoaming agents, fluorescent whitening dyes, crosslinking agents and the like.
感熱記録層が形成される支持体としては、例えば厚さ40〜250μm程度の酸性抄紙または中性抄紙された上質紙、コート紙、合成紙、透明フイルムなどが挙げられる。特に、特定の無定形シリカを含有する感熱記録層は透明性が高く、そのため支持体としてヘイズ値が5以下の透明フイルムを用いることにより、透明性の高い感熱記録体が容易に得られる効果がある。 Examples of the support on which the heat-sensitive recording layer is formed include high-quality paper, coated paper, synthetic paper, transparent film, and the like, which are acidic paper or neutral paper having a thickness of about 40 to 250 μm. In particular, a heat-sensitive recording layer containing a specific amorphous silica has high transparency. Therefore, by using a transparent film having a haze value of 5 or less as a support, a highly transparent heat-sensitive recording material can be easily obtained. is there.
なお、透明フイルムは、例えば青色に着色されていてもよいポリエチレンフイルム、ポリプロピレンフイルム、ポリスチレンフイルムなどが挙げられる。 Examples of the transparent film include a polyethylene film, a polypropylene film, and a polystyrene film which may be colored blue.
なお、感熱記録層上には記録走行性、記録部の保存性を高めるための保護層を設けることもできる。 A protective layer can be provided on the heat-sensitive recording layer to improve the recording runnability and the storage stability of the recording part.
保護層は、水性樹脂を主成分として構成されるが、かかる水性樹脂の具体例としては、例えば完全(又は部分)ケン化ポリビニルアルコール、カルボキシ変性ポリビニルアルコール、アセトアセチル変性ポリビニルアルコール,ケイ素変性ポリビニルアルコール等のポリビニルアルコール類、ポリアクリルアミド、アクリル酸アミド・アクリル酸エステル共重合体、アクリル酸アミド・アクリル酸エステル・メタクリル酸共重合体、スチレン・無水マレイン酸共重合体アルカリ塩、イソブチレン・無水マレイン酸共重合体アルカリ塩、ゼラチン、カゼイン等の水溶性樹脂、ウレタン系樹脂、アクリル酸エステル系樹脂、スチレン・ブタジエン共重合系樹脂などの疎水性樹脂が挙げられる。なお、疎水性樹脂はラテックスの形態で使用される。 The protective layer is composed mainly of an aqueous resin. Specific examples of the aqueous resin include, for example, complete (or partially) saponified polyvinyl alcohol, carboxy-modified polyvinyl alcohol, acetoacetyl-modified polyvinyl alcohol, and silicon-modified polyvinyl alcohol. Polyvinyl alcohol such as polyacrylamide, acrylic acid amide / acrylic acid ester copolymer, acrylic acid amide / acrylic acid ester / methacrylic acid copolymer, styrene / maleic anhydride copolymer alkali salt, isobutylene / maleic anhydride Water-soluble resins such as copolymer alkali salts, gelatin, and casein, and hydrophobic resins such as urethane resins, acrylic ester resins, and styrene / butadiene copolymer resins. The hydrophobic resin is used in the form of latex.
保護層用の塗液は、水を分散媒体とし、水溶性樹脂を混合・攪拌して調製される。かかる塗液中には、必要に応じて上記感熱記録層用塗液中に添加される助剤を使用することもできる。 The coating liquid for the protective layer is prepared by mixing and stirring water-soluble resin using water as a dispersion medium. In such a coating liquid, an auxiliary agent added to the above-mentioned thermal recording layer coating liquid can be used as necessary.
感熱記録層および保護層の形成方法については特に限定するものではなく、例えばエヤーナイフコーティング、バリバーブレードコーティング、ピュアーブレードコーティング、ロッドブレードコーティング、ショートドウェルコーティング、カーテンコーティング、ダイコーティング等の適当な塗布方法により塗液を支持体上に塗布・乾燥する等の方法により形成される。 The method for forming the heat-sensitive recording layer and the protective layer is not particularly limited. For example, air knife coating, varibar blade coating, pure blade coating, rod blade coating, short dwell coating, curtain coating, die coating, etc. The coating liquid is formed by a method such as coating and drying on a support by a method.
なお、必要に応じて感熱記録体の支持体の裏面側にも保護層を設けたり、支持体と感熱記録層の間に吸油量が70ml/100g以上の顔料、あるいは有機中空粒子を主成分とした下塗り層を設けたり、各層形成した後にスーパーカレンダー掛け等の平滑化処理を施すことなども可能である。また、感熱記録体の支持体のおよび裏面側(おもて面側)に粘着剤層、磁気記録層を設けるなどの感熱記録体製造分野における各種の公知技術が必要に応じて付加し得るものである。 If necessary, a protective layer is also provided on the back side of the support of the heat-sensitive recording material, or a pigment having an oil absorption of 70 ml / 100 g or more or organic hollow particles as a main component between the support and the heat-sensitive recording layer. It is also possible to provide an undercoat layer or to perform a smoothing process such as supercalendering after each layer is formed. In addition, various known techniques in the heat-sensitive recording body manufacturing field, such as providing an adhesive layer and a magnetic recording layer on the support and back side (front side) of the heat-sensitive recording body, can be added as necessary. It is.
以下に実施例を示し、本発明をより具体的に説明するが、勿論これらに限定されるものではない。また、特に断らない限り例中の部および%はそれぞれ重量部及び重量%を示す。 The present invention will be described more specifically with reference to the following examples. However, the present invention is not limited to these examples. Moreover, unless otherwise indicated, the part and% in an example show a weight part and weight%, respectively.
[無定形シリカの比表面積、細孔容積、細孔径測定法]
無定形シリカ分散液を105℃にて乾燥し、得られた粉体試料の比表面積、細孔容積、細孔径分布を、ガス吸着法比表面積・細孔分布測定装置〔Coulter社製のSA3100plus型〕を用い、前処理として200℃で2時間真空脱気した後に測定した。吸着ガスとしては窒素を用いた。比表面積はBET法により求めた値を使用し、細孔容積は細孔径100nm以下の範囲の細孔の全細孔容積の値を使用した。細孔径は、脱着等温線のBJH法による解析から求められた細孔分布曲線における最大体積分率の細孔径とした。
[Specific surface area, pore volume, pore diameter measurement method of amorphous silica]
The amorphous silica dispersion was dried at 105 ° C., and the specific surface area, pore volume, and pore size distribution of the obtained powder sample were measured using a gas adsorption specific surface area / pore distribution measuring device [SA3100 plus type manufactured by Coulter. ] And was measured after vacuum degassing at 200 ° C. for 2 hours as a pretreatment. Nitrogen was used as the adsorption gas. The value obtained by the BET method was used as the specific surface area, and the value of the total pore volume of pores having a pore diameter of 100 nm or less was used as the pore volume. The pore diameter was defined as the pore diameter of the maximum volume fraction in the pore distribution curve obtained from the analysis of the desorption isotherm by the BJH method.
[無定形シリカの平均粒径測定方法]
動的光散乱法によるレーザー粒度分布計(大塚電子株式会社製、商標LPA3000/3100)を用いて無定形シリカ分散液を十分に蒸留水で希釈した状態で測定した。平均粒径はキュムラント法を用いた解析から算出される値を用いた。
[Measuring method of average particle diameter of amorphous silica]
The measurement was performed using a laser particle size distribution meter (trade name: LPA3000 / 3100, manufactured by Otsuka Electronics Co., Ltd.) by a dynamic light scattering method in a state where the amorphous silica dispersion was sufficiently diluted with distilled water. The average particle size used was a value calculated from analysis using the cumulant method.
[無定形シリカ(イ)]
(第1の活性ケイ酸水溶液の調製)
SiO2濃度30質量%、SiO2/Na2Oモル比3.1のケイ酸ソーダ溶液〔(株)トクヤマ製、三号ケイ酸ソーダ〕に蒸留水を混合し、SiO2濃度4.0質量%の希ケイ酸ソーダ水溶液を調製した。この水溶液を、水素型陽イオン交換樹脂〔三菱化学(株)製、ダイヤイオンSK−1BH〕が充填されたカラムに通じて第1の活性ケイ酸水溶液を調製した。第1の活性ケイ酸水溶液中のSiO2濃度は4.0質量%、pHは2.9であった。
なお、下記の無定形シリカ分散液(イ)の調製において、使用される第2の活性ケイ酸水溶液は第1の活性ケイ酸水溶液と同じものである。
[Amorphous silica (I)]
(Preparation of first active silicic acid aqueous solution)
Distilled water was mixed with a sodium silicate solution (No. 3 sodium silicate, manufactured by Tokuyama Corporation) having a SiO 2 concentration of 30 mass% and a SiO 2 / Na 2 O molar ratio of 3.1, and a SiO 2 concentration of 4.0 mass. % Dilute aqueous sodium silicate solution was prepared. This aqueous solution was passed through a column packed with a hydrogen-type cation exchange resin [manufactured by Mitsubishi Chemical Corporation, Diaion SK-1BH] to prepare a first active silicic acid aqueous solution. The SiO 2 concentration in the first active silicic acid aqueous solution was 4.0% by mass, and the pH was 2.9.
In the preparation of the amorphous silica dispersion (A) below, the second active silicic acid aqueous solution used is the same as the first active silicic acid aqueous solution.
(シード液の調製)
還流器、攪拌機、温度計を備えた5リットルのガラス製反応容器中で、500gの蒸留水を100℃に加温した。この熱水を100℃に保ちながら、上記の第1の活性ケイ酸水溶液を1.5g/分の速度で合計450g添加し、シード液を調製した。このシード液中のシード粒子凝集体の物性は、平均粒径184nm、比表面積832m2/g、細孔容積0.60ml/g、細孔径4nmであった。
(Preparation of seed solution)
In a 5 liter glass reaction vessel equipped with a reflux, a stirrer, and a thermometer, 500 g of distilled water was heated to 100 ° C. While maintaining this hot water at 100 ° C., a total of 450 g of the first active silicic acid aqueous solution was added at a rate of 1.5 g / min to prepare a seed solution. The physical properties of the seed particle aggregate in this seed solution were an average particle size of 184 nm, a specific surface area of 832 m 2 / g, a pore volume of 0.60 ml / g, and a pore size of 4 nm.
(無定形シリカ分散液(イ)の調製)
上記のガラス製反応容器中で、950gの上記シード液に対しアンモニアを0.015モル添加し安定化させ、100℃に加温した。このシード液に対して、上記の第2の活性ケイ酸水溶液を1.5g/分の速度で合計550g添加した。第2の活性ケイ酸水溶液の添加終了後、そのまま溶液を100℃に保って9時間加熱還流を行い、無定形シリカ分散液(イ)を得た。分散液は青みを帯びた透明溶液であり、pHは7.2であった。この無定形シリカ分散液の性状は、平均粒径130nm、比表面積257m2/g、細孔容積1.01ml/g、細孔径16nmであった。この分散液をエバポレーターでシリカ濃度10%に濃縮して感熱記録体の製造に用いた。
(Preparation of amorphous silica dispersion (I))
In the glass reaction vessel, 0.015 mol of ammonia was added to 950 g of the seed solution to stabilize it, and the mixture was heated to 100 ° C. A total of 550 g of the second active silicic acid aqueous solution was added to the seed solution at a rate of 1.5 g / min. After completion of the addition of the second aqueous active silicic acid solution, the solution was kept at 100 ° C. and heated to reflux for 9 hours to obtain an amorphous silica dispersion (I). The dispersion was a bluish clear solution with a pH of 7.2. The amorphous silica dispersion had an average particle size of 130 nm, a specific surface area of 257 m 2 / g, a pore volume of 1.01 ml / g, and a pore size of 16 nm. This dispersion was concentrated to a silica concentration of 10% by an evaporator and used for the production of a heat-sensitive recording material.
[無定形シリカ(ロ)]
(シード液の調製)
無定形シリカ分散液(イ)と同一反応容器中で、400gの第1の活性ケイ酸水溶液を2℃/分の速度で100℃まで昇温し、その後40分間100℃で保持し、シード液を調製した。このシード液中のシード粒子凝集体の物性は、平均粒径113nm、比表面積480m2/g、細孔容積0.91ml/g、細孔径7nmであった。
[Amorphous silica (b)]
(Preparation of seed solution)
In the same reaction vessel as the amorphous silica dispersion (i), 400 g of the first active silicic acid aqueous solution is heated to 100 ° C. at a rate of 2 ° C./min, and then kept at 100 ° C. for 40 minutes, and the seed solution Was prepared. The physical properties of the seed particle aggregate in the seed solution were an average particle size of 113 nm, a specific surface area of 480 m 2 / g, a pore volume of 0.91 ml / g, and a pore size of 7 nm.
(無定形シリカ分散液(ロ)の調製)
無定形シリカ分散液(イ)と同一反応容器中で、400gの上記シード液に対しアンモニアを0.1モル添加して安定化させ、100℃に加温した。このシード液に対して、上記の活性ケイ酸水溶液を1.5g/分の速度で合計600g添加した。活性ケイ酸の添加終了後、そのまま溶液を100℃に保って9時間加熱還流を行い、無定形シリカ分散液(ロ)を得た。分散液のpHは6.7であった。この無定形シリカ分散液(ロ)の性状は、平均粒径106nm、比表面積268m2/g、細孔容積0.76ml/g、細孔径12nmであった。この分散液をエバポレーターでシリカ濃度14%に濃縮して感熱記録体の製造に用いた。
(Preparation of amorphous silica dispersion (b))
In the same reaction vessel as the amorphous silica dispersion (I), 0.1 mol of ammonia was added to 400 g of the seed solution to stabilize it, and the mixture was heated to 100 ° C. A total of 600 g of the above active silicic acid aqueous solution was added to the seed solution at a rate of 1.5 g / min. After the addition of the active silicic acid was completed, the solution was kept as it was at 100 ° C. and heated to reflux for 9 hours to obtain an amorphous silica dispersion (B). The pH of the dispersion was 6.7. The properties of this amorphous silica dispersion (b) were an average particle size of 106 nm, a specific surface area of 268 m 2 / g, a pore volume of 0.76 ml / g, and a pore size of 12 nm. This dispersion was concentrated to a silica concentration of 14% by an evaporator and used for the production of a thermal recording material.
[無定形シリカ(ハ)]
(シード液の調製)
無定形シリカ分散液(イ)と同一反応容器中で、200gの蒸留水を100℃に加温した。この熱水を100℃に保ちながら、上記の第1の活性ケイ酸水溶液を4.3g/分の速度で合計256g添加し、シード液を調製した。
[Amorphous silica (C)]
(Preparation of seed solution)
In the same reaction vessel as the amorphous silica dispersion (I), 200 g of distilled water was heated to 100 ° C. While maintaining the hot water at 100 ° C., a total of 256 g of the first active silicic acid aqueous solution was added at a rate of 4.3 g / min to prepare a seed solution.
(無定形シリカ分散液(ハ)の調製)
上記のガラス製反応容器中で、456gの上記シード液に対しアンモニアを0.025モル添加し安定化させ、100℃に加温した。このシード液に対して、上記の第2の活性ケイ酸水溶液を4.3g/分の速度で合計1044g添加した。第2の活性ケイ酸水溶液の添加終了後、そのまま溶液を100℃に保って6時間加熱還流を行い、無定形シリカ分散液(ハ)を得た。分散液は青みを帯びた透明溶液であり、pHは8.5であった。この無定形シリカ分散液の性状は、平均粒径110nm、比表面積170m2/g、細孔容積0.65ml/g、細孔径14nmであった。この分散液をエバポレーターでシリカ濃度22%に濃縮して感熱記録体の製造に用いた。
(Preparation of amorphous silica dispersion (c))
In the glass reaction vessel, 0.025 mol of ammonia was added to 456 g of the seed solution, stabilized, and heated to 100 ° C. A total of 1044 g of the second active silicic acid aqueous solution was added to the seed solution at a rate of 4.3 g / min. After the addition of the second active silicic acid aqueous solution was completed, the solution was kept at 100 ° C. and heated to reflux for 6 hours to obtain an amorphous silica dispersion (C). The dispersion was a bluish clear solution with a pH of 8.5. The amorphous silica dispersion had an average particle size of 110 nm, a specific surface area of 170 m 2 / g, a pore volume of 0.65 ml / g, and a pore size of 14 nm. This dispersion was concentrated to a silica concentration of 22% by an evaporator and used for the production of a heat-sensitive recording material.
[無定形シリカ(ニ)]
(シード液の調製)
無定形シリカ分散液(イ)と同一反応容器中で、250gの蒸留水を90℃に加温した。この熱水を90℃に保ちながら、上記の第1の活性ケイ酸水溶液を5.0g/分の速度で合計300g添加し、シード液を調製した。
[Amorphous silica (d)]
(Preparation of seed solution)
In the same reaction vessel as the amorphous silica dispersion (i), 250 g of distilled water was heated to 90 ° C. While maintaining this hot water at 90 ° C., a total of 300 g of the first active silicic acid aqueous solution was added at a rate of 5.0 g / min to prepare a seed solution.
(無定形シリカ分散液(ニ)の調製)
上記のガラス製反応容器中で、550gの上記シード液に対しアンモニアを0.025モル添加し安定化させ、90℃に加温した。このシード液に対して、上記の第2の活性ケイ酸水溶液を5.0g/分の速度で合計950g添加した。第2の活性ケイ酸水溶液の添加終了後、そのまま溶液を90℃に保って6時間加熱還流を行い、無定形シリカ分散液(ニ)を得た。分散液は青みを帯びた透明溶液であり、pHは8.6であった。この無定形シリカ分散液の性状は、平均粒径101nm、比表面積203m2/g、細孔容積0.51ml/g、細孔径13nmであった。この分散液をエバポレーターでシリカ濃度24%に濃縮して感熱記録体の製造に用いた。
(Preparation of amorphous silica dispersion (d))
In the glass reaction vessel, 0.025 mol of ammonia was added to 550 g of the seed solution to stabilize, and the mixture was heated to 90 ° C. A total of 950 g of the second active silicic acid aqueous solution was added to the seed solution at a rate of 5.0 g / min. After completion of the addition of the second active silicic acid aqueous solution, the solution was kept at 90 ° C. and heated to reflux for 6 hours to obtain an amorphous silica dispersion (d). The dispersion was a bluish clear solution with a pH of 8.6. The amorphous silica dispersion had an average particle size of 101 nm, a specific surface area of 203 m 2 / g, a pore volume of 0.51 ml / g, and a pore size of 13 nm. This dispersion was concentrated to a silica concentration of 24% with an evaporator and used for the production of a heat-sensitive recording material.
[無定形シリカ(ホ)]
(シード液の調製)
無定形シリカ分散液(イ)と同一反応容器中で、250gの蒸留水を100℃に加温した。この熱水を100℃に保ちながら、上記の第1の活性ケイ酸水溶液を4.0g/分の速度で合計500g添加し、シード液を調製した。
[Amorphous silica (e)]
(Preparation of seed solution)
In the same reaction vessel as the amorphous silica dispersion (i), 250 g of distilled water was heated to 100 ° C. While maintaining this hot water at 100 ° C., a total of 500 g of the first active silicic acid aqueous solution was added at a rate of 4.0 g / min to prepare a seed solution.
(無定形シリカ分散液(ホ)の調製)
上記のガラス製反応容器中で、750gの上記シード液に対しアンモニアを0.020モル添加し安定化させ、100℃に加温した。このシード液に対して、上記の第2の活性ケイ酸水溶液を4.0g/分の速度で合計750g添加した。第2の活性ケイ酸水溶液の添加終了後、そのまま溶液を100℃に保って5時間加熱還流を行い、無定形シリカ分散液(ホ)を得た。分散液は青みを帯びた透明溶液であり、pHは8.4であった。この無定形シリカ分散液の性状は、平均粒径197nm、比表面積312m2/g、細孔容積1.41ml/g、細孔径11nmであった。この分散液をエバポレーターでシリカ濃度10%に濃縮して感熱記録体の製造に用いた。
(Preparation of amorphous silica dispersion (e))
In the glass reaction vessel, 0.020 mol of ammonia was added to 750 g of the seed solution to stabilize, and the mixture was heated to 100 ° C. A total of 750 g of the second active silicic acid aqueous solution was added to the seed solution at a rate of 4.0 g / min. After completion of the addition of the second aqueous active silicic acid solution, the solution was kept at 100 ° C. and heated to reflux for 5 hours to obtain an amorphous silica dispersion (e). The dispersion was a bluish clear solution with a pH of 8.4. The amorphous silica dispersion had an average particle diameter of 197 nm, a specific surface area of 312 m 2 / g, a pore volume of 1.41 ml / g, and a pore diameter of 11 nm. This dispersion was concentrated to a silica concentration of 10% by an evaporator and used for the production of a heat-sensitive recording material.
[無定形シリカ(ヘ)]
(無定形シリカ分散液(ヘ)の調製)
湿式法シリカの合成非晶質シリカ(トクヤマ社製、商品名:ファインシールX−45、二次粒径4.5μm、一次粒径15nm)の水分散液を用い、圧力式ホモジナイザー(SMT社製、商品名:超高圧式ホモジナイザーGM−1)を用いて粉砕の操作を繰り返した(加圧500kgf/cm2)。処理後の無定形シリカ分散液(ヘ)中のシリカの平均粒径は148nm、比表面積286m2/g、細孔容積1.60ml/g、細孔径23nm、固形分濃度は12%であった。この分散液を感熱記録体の製造に用いた。
[Amorphous silica (F)]
(Preparation of amorphous silica dispersion (f))
Synthetic amorphous silica of wet method silica (trade name: Fine Seal X-45, secondary particle size 4.5 μm, primary particle size 15 nm, manufactured by Tokuyama Co., Ltd.), and pressure homogenizer (manufactured by SMT) The product was pulverized by using an ultra-high pressure homogenizer GM-1) (pressure 500 kgf / cm 2 ). The average particle size of silica in the amorphous silica dispersion (f) after the treatment was 148 nm, the specific surface area was 286 m 2 / g, the pore volume was 1.60 ml / g, the pore size was 23 nm, and the solid content concentration was 12%. . This dispersion was used for the production of a heat-sensitive recording material.
[無定形シリカ(ト)]
(無定形シリカ分散液(ト)の調製)
湿式法シリカの合成非晶質シリカ(日本シリカ工業社製、商品名:Nipsil HD−2、二次粒径3μm、一次粒径11nm)の水分散液を用い、圧力式ホモジナイザー(SMT社製、商品名:超高圧式ホモジナイザーGM−1)を用いて粉砕の操作を繰り返した(加圧500kgf/cm2)。処理後の無定形シリカ分散液(ト)中のシリカの平均粒径は205nm、比表面積260m2/g、細孔容積1.15ml/g、細孔径19nm、固形分濃度は12%であった。この分散液を感熱記録体の製造に用いた。
[Amorphous silica (g)]
(Preparation of amorphous silica dispersion (g))
Synthetic amorphous silica (manufactured by Nippon Silica Kogyo Co., Ltd., trade name: Nipsil HD-2, secondary particle size 3 μm, primary particle size 11 nm) in an aqueous dispersion using a pressure homogenizer (manufactured by SMT, The operation of pulverization was repeated using a product name: ultrahigh pressure homogenizer GM-1) (pressure 500 kgf / cm 2 ). The average particle diameter of the silica in the amorphous silica dispersion (G) after the treatment was 205 nm, the specific surface area was 260 m 2 / g, the pore volume was 1.15 ml / g, the pore diameter was 19 nm, and the solid content concentration was 12%. . This dispersion was used for the production of a heat-sensitive recording material.
[無定形シリカ(チ)]
(無定形シリカ分散液(チ)の調製)
湿式法シリカの合成非晶質シリカ(シオノギ製薬社製、商品名:カープレックスBS−304N、二次粒径9μm、一次粒径16nm)の水分散液を用い、圧力式ホモジナイザー(SMT社製、商品名:超高圧式ホモジナイザーGM−1)を用いて粉砕の操作を繰り返した(加圧500kgf/cm2)。処理後の無定形シリカ分散液(チ)中のシリカの平均粒径は610nm、比表面積418m2/g、細孔容積1.08ml/g、細孔径10nm、固形分濃度は12%であった。この分散液を感熱記録体の製造に用いた。
[Amorphous silica (H)]
(Preparation of amorphous silica dispersion (H))
Synthetic amorphous silica of wet method silica (manufactured by Shionogi Pharmaceutical Co., Ltd., trade name: Carplex BS-304N, secondary particle size 9 μm, primary particle size 16 nm) using an aqueous dispersion, pressure homogenizer (manufactured by SMT, The operation of pulverization was repeated using a product name: ultrahigh pressure homogenizer GM-1) (pressure 500 kgf / cm 2 ). The average particle diameter of the silica in the amorphous silica dispersion (H) after the treatment was 610 nm, the specific surface area was 418 m 2 / g, the pore volume was 1.08 ml / g, the pore diameter was 10 nm, and the solid content concentration was 12%. . This dispersion was used for the production of a heat-sensitive recording material.
〔実施例1〕
(下塗り層用塗液の調製)
焼成クレー〔吸油量:110ml/100g〕100部、ポリアクリル酸ナトリウムの40%水溶液1部、固形濃度48%のスチレン-ブタジエン系ラテックス14部、ポリビニルアルコール(重合度1000、ケン化度88モル%)の10%水溶液50部および水100部からなる組成物を混合攪拌して下塗り層用塗液を得た。
[Example 1]
(Preparation of coating solution for undercoat layer)
100 parts of calcined clay (oil absorption: 110 ml / 100 g), 1 part of 40% aqueous solution of sodium polyacrylate, 14 parts of styrene-butadiene latex with a solid concentration of 48%, polyvinyl alcohol (polymerization degree 1000, saponification degree 88 mol% A composition comprising 50 parts of a 10% aqueous solution and 100 parts of water was mixed and stirred to obtain an undercoat layer coating solution.
(C液調製)
3−ジ(n−ブチル)アミノ−6−メチル−7−フェニルアミノフルオラン10部、1,2−ジ(3−メチルフェノキシ)エタン20部、マレイン酸変性ポリビニルアルコール(重合度100、マレイン酸変性度5モル%)の5%水溶液20部、および水50部からなる組成物をサンドミルで平均粒径が0.5μmになるまで粉砕して、C液を得た。
(C liquid preparation)
3-di (n-butyl) amino-6-methyl-7-phenylaminofluorane 10 parts, 1,2-di (3-methylphenoxy) ethane 20 parts, maleic acid-modified polyvinyl alcohol (degree of polymerization 100, maleic acid) A composition consisting of 20 parts of a 5% aqueous solution having a degree of modification (5 mol%) and 50 parts of water was pulverized with a sand mill until the average particle size became 0.5 μm to obtain a liquid C.
(D液調製)
4−ヒドロキシ−4’−イソプロポキシジフェニルスルフォン30部、マレイン酸変性ポリビニルアルコール(重合度100、マレイン酸変性度5モル%)の5%水溶液20部、および水50部からなる組成物をサンドミルで平均粒径が0.5μmになるまで粉砕して、D液を得た。
(Preparation of solution D)
A composition comprising 30 parts of 4-hydroxy-4′-isopropoxydiphenyl sulfone, 20 parts of a 5% aqueous solution of maleic acid-modified polyvinyl alcohol (polymerization degree 100, maleic acid modification degree 5 mol%), and 50 parts of water was obtained with a sand mill. The liquid D was obtained by pulverizing until the average particle size became 0.5 μm.
(感熱記録層用塗液の調製)
C液100部、D液100部、固形濃度10%の無定形シリカ分散液(イ)210部、固形濃度50%のスチレン・ブタジエン系ラテックス58部、ジオクチルスルホコハク酸ソーダの10%水溶液1部からなる組成物を混合攪拌して感熱記録層用塗液を得た。
(Preparation of thermal recording layer coating solution)
From 100 parts of liquid C, 100 parts of liquid D, 210 parts of amorphous silica dispersion (a) having a solid concentration of 10%, 58 parts of styrene / butadiene latex having a solid concentration of 50%, and 1 part of a 10% aqueous solution of sodium dioctylsulfosuccinate The resulting composition was mixed and stirred to obtain a thermal recording layer coating solution.
(感熱記録体の作製)
厚さ80μm、坪量65g/m2の中性抄紙された上質紙(脱墨処理された古紙パルプ30%含有)の片面に、下塗り層用塗液および感熱記録層用塗液をそれぞれ乾燥後の塗布量が9g/m2、3g/m2となるように順次、塗布乾燥して下塗り層、感熱記録層を設け、感熱記録体を得た。なお、各層を設けた後、スーパーカレンダーにより平滑化処理した。
(Preparation of thermal recording material)
After drying the undercoat layer coating solution and the thermal recording layer coating solution on one side of neutral paper (containing 30% deinked waste paper pulp) with a thickness of 80 μm and a basis weight of 65 g / m 2 The coating amount was 9 g / m 2 and 3 g / m 2, and the coating layer was sequentially dried to provide an undercoat layer and a heat-sensitive recording layer to obtain a heat-sensitive recording material. In addition, after providing each layer, it smoothed by the super calendar.
〔実施例2〕
実施例1の感熱記録層用塗液の調製において、固形濃度10%の無定形シリカ分散液(イ)210部の代わりに固形濃度14%の無定形シリカ分散液(ロ)150部、および水60部を用いた以外は、実施例1と同様にして感熱記録体を得た。
[Example 2]
In the preparation of the thermal recording layer coating liquid of Example 1, 150 parts of an amorphous silica dispersion (b) having a solid concentration of 14% instead of 210 parts of an amorphous silica dispersion (a) having a solid concentration of 10%, and water A heat-sensitive recording material was obtained in the same manner as in Example 1 except that 60 parts were used.
〔実施例3〕
実施例1の感熱記録層用塗液の調製において、固形濃度10%の無定形シリカ分散液(イ)210部の代わりに固形濃度22%の無定形シリカ分散液(ハ)95部、および水115を用いた以外は、実施例1と同様にして感熱記録体を得た。
〔実施例4〕
実施例1の感熱記録層用塗液の調製において、固形濃度10%の無定形シリカ分散液(イ)210部の代わりに固形濃度24%の無定形シリカ分散液(ニ)88部、および水122部を用いた以外は、実施例1と同様にして感熱記録体を得た。
〔実施例5〕
実施例1の感熱記録層用塗液の調製において、固形濃度10%の無定形シリカ分散液(イ)210部の代わりに固形濃度10%の無定形シリカ分散液(ホ)210部を用いた以外は、実施例1と同様にして感熱記録体を得た。
〔実施例6〕
実施例1の感熱記録層用塗液の調製において、固形濃度10%の無定形シリカ分散液(イ)210部の代わりに固形濃度12%の無定形シリカ分散液(ヘ)175部と水35部を用いた以外は、実施例1と同様にして感熱記録体を得た。
Example 3
In the preparation of the heat-sensitive recording layer coating liquid of Example 1, 95 parts of amorphous silica dispersion (c) having a solid concentration of 22% instead of 210 parts of amorphous silica dispersion (a) having a solid concentration of 10%, and water A heat-sensitive recording material was obtained in the same manner as in Example 1 except that 115 was used.
Example 4
In the preparation of the heat-sensitive recording layer coating liquid of Example 1, in place of 210 parts of the amorphous silica dispersion (a) having a solid concentration of 10%, 88 parts of the amorphous silica dispersion (d) having a solid concentration of 24%, and water A thermal recording material was obtained in the same manner as in Example 1 except that 122 parts were used.
Example 5
In the preparation of the thermal recording layer coating liquid of Example 1, 210 parts of an amorphous silica dispersion (e) having a solid concentration of 10% was used instead of 210 parts of an amorphous silica dispersion (a) having a solid concentration of 10%. Except for the above, a heat-sensitive recording material was obtained in the same manner as in Example 1.
Example 6
In the preparation of the thermal recording layer coating liquid of Example 1, 175 parts of an amorphous silica dispersion (f) having a solid concentration of 12% and water 35 instead of 210 parts of the amorphous silica dispersion (a) having a solid concentration of 10%. A heat-sensitive recording material was obtained in the same manner as in Example 1 except that the parts were used.
〔実施例7〕
実施例1の感熱記録層用塗液の調製において、固形濃度10%の無定形シリカ分散液(イ)210部の代わりに固形濃度12%の無定形シリカ分散液(ト)175部と水35部を用いた以外は、実施例1と同様にして感熱記録体を得た。
Example 7
In the preparation of the thermal recording layer coating liquid of Example 1, 175 parts of amorphous silica dispersion (g) having a solid concentration of 12% and water 35 instead of 210 parts of amorphous silica dispersion (a) having a solid concentration of 10%. A heat-sensitive recording material was obtained in the same manner as in Example 1 except that the parts were used.
〔実施例8〕
実施例1の感熱記録層用塗液の調製において、固形濃度10%の無定形シリカ分散液(イ)210部の代わりに固形濃度12%の無定形シリカ分散液(チ)175部と水35部を用いた以外は、実施例1と同様にして感熱記録体を得た。
Example 8
In the preparation of the heat-sensitive recording layer coating liquid of Example 1, 175 parts of an amorphous silica dispersion (h) having a solid concentration of 12% and water 35 instead of 210 parts of the amorphous silica dispersion (a) having a solid concentration of 10%. A heat-sensitive recording material was obtained in the same manner as in Example 1 except that the parts were used.
〔実施例9〕
実施例1の感熱記録層用塗液の調製において、固形濃度10%の無定形シリカ分散液(イ)210部の代わりに、同分散液を90部を用いた以外は、実施例1と同様にして感熱記録体を得た。
Example 9
In the preparation of the heat-sensitive recording layer coating liquid of Example 1, the same procedure as in Example 1 was performed except that 90 parts of the dispersion liquid was used instead of 210 parts of the amorphous silica dispersion liquid (a) having a solid concentration of 10%. A heat-sensitive recording material was obtained.
〔実施例10〕
実施例1の感熱記録層用塗液の調製において、固形濃度10%の無定形シリカ分散液(イ)210部の代わりに、同分散液を450部を用いた以外は、実施例1と同様にして感熱記録体を得た。
Example 10
In the preparation of the heat-sensitive recording layer coating liquid of Example 1, the same procedure as in Example 1 was performed except that 450 parts of the dispersion liquid was used instead of 210 parts of the amorphous silica dispersion liquid (a) having a solid concentration of 10%. A heat-sensitive recording material was obtained.
〔実施例11〕
(保護層用塗液の調製)
アセトアセチル変性ポリビニルアルコールの10%水溶液150部、ジオクチルスルホコハク酸ソーダの10%水溶液1部、固形濃度30%のエポキシ変性シリコーンエマルジョン8部からなる組成物を混合攪拌して保護層用塗液を得た。
Example 11
(Preparation of coating solution for protective layer)
A composition comprising 150 parts of a 10% aqueous solution of acetoacetyl-modified polyvinyl alcohol, 1 part of a 10% aqueous solution of sodium dioctylsulfosuccinate, and 8 parts of an epoxy-modified silicone emulsion having a solid concentration of 30% is mixed and stirred to obtain a coating solution for a protective layer. It was.
(感熱記録体の作製)
アンカーコート処理された透明PETフィルム〔商品名:A−7300、厚み100μm、東洋紡(株)製〕上に、実施例1で用いた感熱記録層用塗液および上記の保護層用塗液を乾燥後の塗布量がそれぞれ10g/m2、3g/m2となるように順次塗布乾燥し、感熱記録体を得た。
(Preparation of thermal recording material)
On the transparent PET film [trade name: A-7300, thickness 100 μm, manufactured by Toyobo Co., Ltd.] treated with anchor coating, the thermal recording layer coating liquid and the protective layer coating liquid used in Example 1 were dried. coating amount after successively coating and drying so that each becomes a 10g / m 2, 3g / m 2, to obtain a heat-sensitive recording material.
〔比較例1〕
実施例1の感熱記録層用塗液の調製において、固形濃度10%の無定形シリカ分散液(イ)210部の代わりに無定形シリカ〔商品名:ミズカシルP−527、平均粒径は2.1μm、比表面積55m2/g、細孔容積0.08ml/g、細孔径7nm、水沢化学工業社製〕21部と水189部を用いた以外は、実施例1と同様にして感熱記録体を得た。
[Comparative Example 1]
In the preparation of the heat-sensitive recording layer coating liquid of Example 1, amorphous silica (trade name: Mizukasil P-527, average particle size of 2.1) was used instead of 210 parts of the amorphous silica dispersion (i) having a solid concentration of 10%. 1 μm, specific surface area 55 m 2 / g, pore volume 0.08 ml / g, pore diameter 7 nm, manufactured by Mizusawa Chemical Co., Ltd.] Except for using 21 parts and water 189 parts, a heat-sensitive recording material was used in the same manner as Example 1. Got.
〔比較例2〕
実施例11で用いた感熱記録層用塗液の代わりに、比較例1で用いた感熱記録層用塗液を用いた以外は、実施例11と同様にして感熱記録体を得た。
[Comparative Example 2]
A thermal recording material was obtained in the same manner as in Example 11 except that the thermal recording layer coating liquid used in Comparative Example 1 was used instead of the thermal recording layer coating liquid used in Example 11.
かくして得られた感熱記録体について以下の評価試験を行い、その結果を〔表1〕に記載した。 The following evaluation test was performed on the heat-sensitive recording material thus obtained, and the results are shown in [Table 1].
(1).記録濃度および記録感度
感熱印字試験装置TH−PMD(大倉電機社製)を用いて、印加エネルギー0.25mJ/dot、0.45mJ/dot記録した。未記録部および記録部の濃度はマクベス濃度計(商品名:TR−927J型マクベス社製)のビジュアルモードで濃度を測定した。なお、支持体として透明なPETフィルムを用いた感熱記録体については、透過濃度を測定し、支持体として上質紙を用いた感熱記録体については、反射濃度を測定した。
(1). Recording Density and Recording Sensitivity Recording was performed on applied energy of 0.25 mJ / dot and 0.45 mJ / dot using a thermal printing test apparatus TH-PMD (manufactured by Okura Electric Co., Ltd.). The density of the unrecorded part and the recorded part was measured in a visual mode of a Macbeth densitometer (trade name: TR-927J type Macbeth). In addition, the transmission density was measured for the thermal recording material using a transparent PET film as the support, and the reflection density was measured for the thermal recording material using high-quality paper as the support.
(2).オフセット印刷適性
実施例1〜10および比較例1で得られた感熱記録体をオフリン用インキ(タック値:13)を0.4cc用い、RI型印刷試験機において水ロールを通したあとインキの付いたロールで印刷を行い、インキの定着性を評価した。
◎─インキの定着が非常に良い。
○─インキの定着が良い。
×─インキが定着しない。
(2). Offset printing suitability The thermal recording materials obtained in Examples 1 to 10 and Comparative Example 1 were 0.4 cc of ink for off-line (tack value: 13) and passed through a water roll in an RI type printing tester. After that, printing was performed with a roll with ink, and the fixing property of the ink was evaluated.
◎ ─Ink fixing is very good.
○ ─Ink fixing is good.
× ─ Ink does not fix.
(3).透明性
実施例11および比較例1で得られた感熱記録体の未記録部の透明性(ヘイズ値)をヘイズメーター〔商品名:TC−H IV 、東京電色社製〕を用いて測定した。
(3) Transparency Haze meter [trade name: TC-HIV, manufactured by Tokyo Denshoku Co., Ltd.] was used to determine the transparency (haze value) of the unrecorded portion of the thermal recording material obtained in Example 11 and Comparative Example 1. And measured.
Claims (6)
Thermal recording of claim 5, wherein 0.001 to 0.2 mol / min in terms of SiO 2 with respect to SiO 2 1 mole of rate of addition of the second active silicic acid solution is included in the silica seed particles body.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004007927A JP2005199554A (en) | 2004-01-15 | 2004-01-15 | Thermal recording medium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004007927A JP2005199554A (en) | 2004-01-15 | 2004-01-15 | Thermal recording medium |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2005199554A true JP2005199554A (en) | 2005-07-28 |
Family
ID=34821436
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004007927A Pending JP2005199554A (en) | 2004-01-15 | 2004-01-15 | Thermal recording medium |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2005199554A (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008254436A (en) * | 2007-03-13 | 2008-10-23 | Ricoh Co Ltd | Thermal recording material |
WO2009028118A1 (en) | 2007-08-29 | 2009-03-05 | Nippon Paper Industries Co., Ltd. | Thermal recording medium |
US8247347B2 (en) | 2007-03-29 | 2012-08-21 | Nippon Paper Industries Co., Ltd. | Thermosensitive recording medium |
US8283284B2 (en) | 2007-05-10 | 2012-10-09 | Nippon Paper Industries Co., Ltd. | Thermosensitive recording medium |
US8492308B2 (en) | 2007-08-21 | 2013-07-23 | Nippon Paper Industries Co., Ltd. | Thermosensitive recording medium |
US8609582B2 (en) | 2009-03-24 | 2013-12-17 | Nippon Paper Industries Co., Ltd. | Thermosensitive recording medium |
US8673812B2 (en) | 2009-06-05 | 2014-03-18 | Nippon Paper Industries Co., Ltd. | Thermosensitive recording medium |
US8871678B2 (en) | 2010-03-15 | 2014-10-28 | Nippon Paper Industries Co., Ltd. | Thermosensitive recording medium |
US11555099B2 (en) | 2020-08-14 | 2023-01-17 | Toshiba Tec Kabushiki Kaisha | Method for producing colorable material |
-
2004
- 2004-01-15 JP JP2004007927A patent/JP2005199554A/en active Pending
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008254436A (en) * | 2007-03-13 | 2008-10-23 | Ricoh Co Ltd | Thermal recording material |
US8247347B2 (en) | 2007-03-29 | 2012-08-21 | Nippon Paper Industries Co., Ltd. | Thermosensitive recording medium |
US8283284B2 (en) | 2007-05-10 | 2012-10-09 | Nippon Paper Industries Co., Ltd. | Thermosensitive recording medium |
US8492308B2 (en) | 2007-08-21 | 2013-07-23 | Nippon Paper Industries Co., Ltd. | Thermosensitive recording medium |
WO2009028118A1 (en) | 2007-08-29 | 2009-03-05 | Nippon Paper Industries Co., Ltd. | Thermal recording medium |
US8466085B2 (en) | 2007-08-29 | 2013-06-18 | Nippon Paper Industries Co., Ltd. | Thermosensitive recording medium |
US8609582B2 (en) | 2009-03-24 | 2013-12-17 | Nippon Paper Industries Co., Ltd. | Thermosensitive recording medium |
US8673812B2 (en) | 2009-06-05 | 2014-03-18 | Nippon Paper Industries Co., Ltd. | Thermosensitive recording medium |
US8871678B2 (en) | 2010-03-15 | 2014-10-28 | Nippon Paper Industries Co., Ltd. | Thermosensitive recording medium |
US11555099B2 (en) | 2020-08-14 | 2023-01-17 | Toshiba Tec Kabushiki Kaisha | Method for producing colorable material |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6211744B2 (en) | Thermal recording material | |
JP5878271B1 (en) | Thermal recording material | |
JP4484827B2 (en) | Thermal recording material | |
WO2023100900A1 (en) | Thermal recording composition | |
JP2005199554A (en) | Thermal recording medium | |
JP2000168242A (en) | Thermosensible recording body | |
JPWO2010097895A1 (en) | Thermal recording material | |
JP2002160462A (en) | Heat-sensitive recording medium | |
WO2019172098A1 (en) | Heat-sensitive recording body | |
JP4674770B2 (en) | Thermal recording material | |
WO2022050404A1 (en) | Thermosensitive recording body | |
JPH11291633A (en) | Heat-sensitive recording body | |
JP2008149460A (en) | Thermosensitive recording medium | |
JP2008183745A (en) | Thermal recording medium | |
JP2005205610A (en) | Thermal recording body | |
JP2003054137A (en) | Heat-sensitive recording medium | |
JP4350707B2 (en) | Thermal recording material | |
JP3750611B2 (en) | Thermal recording material | |
JP3758494B2 (en) | Thermal recording material | |
JP2008068554A (en) | Heat-sensitive recording medium | |
JP2018094796A (en) | Thermosensitive recording body | |
JP3821003B2 (en) | Thermal recording material | |
JP3879841B2 (en) | Thermal recording material | |
JP2004358762A (en) | Thermal recording body | |
JPH0939390A (en) | Two-color heat-sensitive recording material |