Nothing Special   »   [go: up one dir, main page]

JP2005187275A - Fire-resisting and heat-resisting concrete and its manufacturing method - Google Patents

Fire-resisting and heat-resisting concrete and its manufacturing method Download PDF

Info

Publication number
JP2005187275A
JP2005187275A JP2003432316A JP2003432316A JP2005187275A JP 2005187275 A JP2005187275 A JP 2005187275A JP 2003432316 A JP2003432316 A JP 2003432316A JP 2003432316 A JP2003432316 A JP 2003432316A JP 2005187275 A JP2005187275 A JP 2005187275A
Authority
JP
Japan
Prior art keywords
heat
mass
parts
concrete
aggregate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003432316A
Other languages
Japanese (ja)
Inventor
Takashi Ishikawa
隆司 石川
Hiroshi Tokuda
浩 徳田
Noritoshi Kawai
規利 河合
Shinichi Sugawara
進一 菅原
Kiyotoshi Okawachi
清利 大川内
Haruo Aoki
治雄 青木
Itsuo Tsubouchi
逸生 坪内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KASEIHIN SHOJI KK
Nippon High Strength Concrete Co Ltd
Suruga Kogyo KK
Original Assignee
KASEIHIN SHOJI KK
Nippon High Strength Concrete Co Ltd
Suruga Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KASEIHIN SHOJI KK, Nippon High Strength Concrete Co Ltd, Suruga Kogyo KK filed Critical KASEIHIN SHOJI KK
Priority to JP2003432316A priority Critical patent/JP2005187275A/en
Publication of JP2005187275A publication Critical patent/JP2005187275A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/04Silica-rich materials; Silicates
    • C04B14/045Alkali-metal containing silicates, e.g. petalite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/20Resistance against chemical, physical or biological attack
    • C04B2111/28Fire resistance, i.e. materials resistant to accidental fires or high temperatures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Civil Engineering (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fire-resisting and heat-resisting concrete which is not explosively broken even being exposed to a flame, of which thermal conductivity is made low so that main reinforcing bars are not to be at a high temperature, and to which a fire-resisting function in construction is given in a usual manufacturing process. <P>SOLUTION: To 100 pts.mass of the fire-resisting and heat-resisting concrete, one or more of 0.01 to 3.5 pts.mass of a lithium siliceous or a lithium silicate modified solution, 0.1 to 6 pts.mass of a siliceous porous body, 0.04 to 1.1 pts.mass of a sodium silicate modified solution, and also, 0.05 to 2.5 pts.mass of an inorganic fibrous substance, and 0.02 to 1.0 pt.mass of an organic long fiber, are blended. A testing body 20 was heated with a gas burner 11 and its surface temperature reached 1,000°C after 6 minutes. No damages were found when the testing body was observed after 2 hour-heating, and 24 hour-standing still in the air. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、1000℃以上にも及ぶ耐火性能及び耐熱性能を有する耐火耐熱コンクリート及びその製造方法に関する。   The present invention relates to a refractory and heat resistant concrete having a refractory performance and a heat resistance performance as high as 1000 ° C. or more and a method for producing the same.

土木および建築ではコンクリートの高強度化が進み、部材厚みを出来るだけ薄く設計する傾向にある。ところが、コンクリート構造物が一度火災に見舞われると、火炎に晒されたコンクリート表面は急激な温度上昇を生じ爆裂する。このような火災時に生ずる爆裂現象は高強度なコンクリートほど激しく起き、かぶりコンクリートが剥落して主鉄筋が直接火炎に晒される。1000℃以上の高温域では鋼材の強度は極度に低下し、コンクリート構造物は構造破壊に至る。   In civil engineering and construction, the strength of concrete is increasing, and there is a tendency to design the member as thin as possible. However, once a concrete structure hits a fire, the surface of the concrete exposed to the flame suddenly rises in temperature and explodes. The explosion phenomenon that occurs during such a fire occurs more severely in high-strength concrete, and the cover concrete peels off and the main rebar is directly exposed to the flame. In a high temperature range of 1000 ° C. or higher, the strength of the steel material is extremely reduced, and the concrete structure is structurally destroyed.

このような火災によるコンクリート構造物の破壊を防止するため、建築物の内装材として耐火機能を付与した耐火板を用いたり、耐火吹き付け材等を施工して直接コンクリートに火炎が当らないようにしている。しかし、このような施策は多大な費用と時間を要し、一方、火災規模の増大、火災物質の変化や増加に対応することができず、耐火板や耐火材が反ったり剥離したりして、火炎および熱を十分に遮断できないという問題がある。   In order to prevent destruction of concrete structures due to such fires, use fireproof plates with fireproofing function as interior materials of buildings, or install fireproofing materials etc. so that flames do not hit directly on concrete Yes. However, such measures are costly and time consuming. On the other hand, they cannot cope with the increase in the scale of fire and the change or increase in fire materials, and the fire plate and fire material are warped or peeled off. There is a problem that the flame and heat cannot be sufficiently cut off.

従って、これらの対策は十分な耐火機能を発揮していない。   Therefore, these measures do not exhibit a sufficient fire resistance function.

従来の耐熱性部材としては、耐火レンガ、キャスタブル、耐火ボード、耐火吹付材等があるが、構造物として強度が十分でなく、容積当りの価格は高価である。   Conventional heat-resistant members include fire-resistant bricks, castables, fire-resistant boards, fire-resistant spray materials, etc., but the structure is not strong enough and the price per volume is expensive.

トンネルライナ用セグメントの内面側に耐火、断熱、防音、防汚等の機能材を一体に成層し、機能材の厚さを鉄筋の有効かぶりとして算入した複合セグメントがある(例えば特許文献1参照。)。   There is a composite segment in which functional materials such as fireproof, heat insulating, soundproofing, and antifouling are integrally formed on the inner surface side of the tunnel liner segment, and the thickness of the functional material is counted as an effective cover of the reinforcing bar (see, for example, Patent Document 1). ).

この技術は高性能セグメントとして優れ、腐食により損耗せず、ひび割れを生ずることなく、火災の場合にも剥落しない機能材を用いるものである。しかし、機能材は高強度コンクリートと一体密着させるものであるがコンクリートとは別のものである。   This technology is excellent as a high-performance segment, and uses a functional material that does not wear due to corrosion, does not crack, and does not peel off in the event of a fire. However, the functional material is integrally adhered to the high-strength concrete, but is different from the concrete.

また、焼き物の業界で割れ防止に珪酸リチウムを使用する技術がある。
特開2003−138894号公報(第2−3頁、図1)
There is also a technology that uses lithium silicate to prevent cracking in the pottery industry.
JP 2003-138894 A (page 2-3, FIG. 1)

本発明は上記問題点に鑑み、コンクリートを改質して、火炎に晒されても爆裂せず、また、内部の主鉄筋が高温にならないように熱伝導度を低くした耐火耐熱コンクリート及びその製造方法を提供することを目的とするものである。また、この耐火耐熱コンクリートは構造物を製作する通常の工程で製造することができ、製造工程中においても施工時から耐火機能を保有する改質材を配合したものであり、かつ比較的安価に製作できる。   In view of the above problems, the present invention modifies concrete so that it does not explode even when exposed to a flame, and the heat-resistant and heat-resistant concrete having a low thermal conductivity so that the internal main reinforcement does not become high temperature and its production It is intended to provide a method. In addition, this refractory and heat-resistant concrete can be manufactured in the normal process of manufacturing a structure, and is blended with a modifier that has a refractory function from the time of construction even during the manufacturing process, and is relatively inexpensive. Can be produced.

本発明は、通常時は、普通コンクリート又は高強度コンクリートの強度を持ち、施工時に特別な配慮や養生を必要とせず、火災時には、すぐれた耐火性能を発揮する画期的な構造用コンクリートを提供する。   The present invention provides a groundbreaking structural concrete that has the strength of ordinary concrete or high-strength concrete during normal times, does not require special consideration or curing during construction, and exhibits excellent fire resistance in the event of a fire. To do.

本発明は、上記問題点を解決するためになされたもので、次の技術手段を講じたことを特徴とする耐火耐熱コンクリートである。すなわち、本発明は、珪酸リチウムを含有することを特徴とする耐火耐熱コンクリートである。   The present invention has been made to solve the above-described problems, and is a refractory heat-resistant concrete characterized by taking the following technical means. That is, the present invention is a refractory and heat-resistant concrete containing lithium silicate.

骨材が天然重量骨材、天然軽量骨材、人口軽量骨材からなる群から選ばれた1種又は2種以上であると好ましい。また、前記天然軽量骨材又は及び人口軽量骨材の一部又は全部が比重1.0未満の軽量骨材とすれば断熱性のすぐれた耐火耐熱コンクリートとなる。   Preferably, the aggregate is one or more selected from the group consisting of natural weight aggregate, natural lightweight aggregate, and artificial lightweight aggregate. Further, if a part or all of the natural lightweight aggregate or the artificial lightweight aggregate is a lightweight aggregate having a specific gravity of less than 1.0, a fire-resistant and heat-resistant concrete having excellent heat insulation is obtained.

さらに無機質の繊維状物質及び/又は有機長繊維を含有すると靱性が高く、また火災時に有機繊維が消失し、ガスが逃げやすくなり、好適である。   Furthermore, when an inorganic fibrous substance and / or organic long fiber is contained, the toughness is high, and the organic fiber disappears in the event of a fire, and the gas easily escapes.

本発明は、構造物を通常の製作工程で製造する場合に、施工時に耐火機能を持たせ、比較的安価な改質材を配合した耐火耐熱コンクリートである。この耐火耐熱コンクリートは、さらに無機質の繊維状物質を配合すると、ひび割れに対して抵抗力が向上し断熱性が向上する。また有機長繊維を混入すると、常温時のコンクリートの靱性を高め、高温時には消失してガスの逃げ道を形成する。   The present invention is a refractory and heat-resistant concrete that is provided with a fireproof function during construction and is blended with a relatively inexpensive modifier when a structure is manufactured by a normal manufacturing process. When the inorganic fiber material is further blended in the refractory heat resistant concrete, the resistance to cracking is improved and the heat insulation is improved. In addition, when organic long fibers are mixed, the toughness of the concrete at normal temperature is increased and disappears at high temperature to form a gas escape route.

上記本発明の耐火耐熱コンクリートを好適に製造することができる本発明方法は、特定の水硬性物質、骨材、水及び混和剤に、珪酸質多孔質体、リチウム珪酸質もしくは珪酸リチウム変性液を配合してコンクリートを製造することを特徴とする耐火耐熱コンクリートの製造方法である。   The method of the present invention capable of suitably producing the above refractory and heat-resistant concrete of the present invention includes a specific silicic material, aggregate, water and admixture with a siliceous porous material, a lithium siliceous material or a lithium silicate modified solution. A method for producing fire-resistant and heat-resistant concrete, comprising blending to produce concrete.

前記特定の水硬性物質が、普通ポルトランドセメント、早強セメント、高炉セメント、アルミナセメント、もしくはこれらの混合セメント、又は成分を調整したセメントであると好ましい。   It is preferable that the specific hydraulic substance is ordinary Portland cement, early-strength cement, blast furnace cement, alumina cement, or a mixed cement thereof, or a cement whose components are adjusted.

無機添加物として、シリカフューム、高炉スラグ微粉末、天然岩石の微粉末、人口セラミックの微粉末及びフライアッシュ微粉末からなる群から選ばれた1種又は2種以上を配合すると、長期強度の増大を図ることができる。   Addition of one or more selected from the group consisting of silica fume, blast furnace slag fine powder, natural rock fine powder, artificial ceramic fine powder and fly ash fine powder as an inorganic additive increases long-term strength. Can be planned.

さらに、この製造方法において、耐火耐熱コンクリート100質量部に対し、前記特定の水硬性物質として低熱ポルトランドセメント8〜35質量部、普通ポルトランドセメント3〜31質量部と高炉スラグ微粉末0.5〜31質量部、又は普通ポルトランドセメント3〜31質量部とフライアッシュ0.5〜10質量部;前記骨材が普通骨材または軽量骨材20〜85質量部及び前記水及び混和剤3〜27質量部を配合するとよい。   Furthermore, in this manufacturing method, 8 to 35 parts by mass of low heat Portland cement, 3 to 31 parts by mass of ordinary Portland cement, and 0.5 to 31 fine powder of blast furnace slag are used as the specific hydraulic substance with respect to 100 parts by mass of refractory and heat-resistant concrete. 3 parts by mass or ordinary Portland cement and 0.5 to 10 parts by mass of fly ash; 20 to 85 parts by mass of normal aggregate or lightweight aggregate and 3 to 27 parts by mass of water and admixture It is good to mix.

またこの場合に、耐火耐熱コンクリート100質量部に対し、前記リチウム珪酸質もしくは珪酸リチウム変性液0.01〜3.5質量部、珪酸質多孔質体0.1〜6質量部、珪酸ナトリウム変性液0.04〜1.1質量部;さらに無機質の繊維状物質0.05〜2.5質量部及び有機長繊維0.02〜1.0質量部のうちの1以上を配合すると好適である。   In this case, the lithium siliceous or lithium silicate modified solution 0.01 to 3.5 parts by mass, the silicic porous material 0.1 to 6 parts by mass, and the sodium silicate modified solution with respect to 100 parts by mass of the refractory and heat resistant concrete. 0.04 to 1.1 parts by mass; Furthermore, it is preferable to mix one or more of 0.05 to 2.5 parts by mass of an inorganic fibrous substance and 0.02 to 1.0 parts by mass of organic long fibers.

前記骨材として用いる天然軽量骨材又は人口軽量骨材を絶乾状態又は該骨材固有の吸水率の2分の1以下の吸水状態で配合すると、熱絶縁性にすぐれた耐熱コンクリートを得ることができる。   When the natural lightweight aggregate or artificial lightweight aggregate used as the aggregate is blended in a completely dry state or a water absorption state less than half of the water absorption rate specific to the aggregate, a heat-resistant concrete having excellent thermal insulation is obtained. Can do.

前記混合材料としてさらに無機質の繊維状物質;及び又はポリプロピレン、アクリル樹脂、塩化ビニル樹脂、及びポリアミド樹脂(商品名ナイロン)からなる群から選ばれた1又は複数の有機長繊維を配合すると好ましい。前記無機質の繊維状物質0.05〜2.5質量部及び前記有機長繊維0.02〜1.0質量部のうちの1以上を配合することを特徴とするとよい。   It is preferable that the mixed material further contains an inorganic fibrous substance; and / or one or more organic long fibers selected from the group consisting of polypropylene, acrylic resin, vinyl chloride resin, and polyamide resin (trade name nylon). One or more of 0.05 to 2.5 parts by mass of the inorganic fibrous substance and 0.02 to 1.0 parts by mass of the organic long fiber may be blended.

本発明によれば、火炎に晒されても爆裂せず、また、内部の主鉄筋が高温にならないように熱伝導度を低くした耐火耐熱コンクリート得ることができる。この耐火耐熱コンクリートは、構造物を製作する通常の工程においても耐火機能を有するものである。   According to the present invention, it is possible to obtain a refractory and heat-resistant concrete that does not explode even when exposed to a flame and that has a low thermal conductivity so that the internal main reinforcement does not reach a high temperature. This refractory heat-resistant concrete has a refractory function even in a normal process of manufacturing a structure.

本発明は、通常時は、普通コンクリート又は高強度コンクリートの強度を持ち、施工時に特別な配慮や養生を必要とせず、火災時には、すぐれた耐火性能を発揮するという優れた効果を奏する画期的な構造用コンクリートである。   The present invention has a groundbreaking effect in that it has the strength of ordinary concrete or high-strength concrete at normal times, does not require special consideration or curing during construction, and exhibits excellent fire resistance in the event of a fire. Concrete for concrete.

本発明の耐火耐熱コンクリートは耐火壁、防火扉、柱、壁部材のコンクリート打放し工法、可燃物貯蔵建屋、道路トンネル、重要構造物の防火対策、高層煙突、公共集会場の構造体、防災避難所等に用いることができる。   The fire-resistant and heat-resistant concrete of the present invention is a fire wall, fire doors, pillars, and concrete member construction methods, flammable storage buildings, road tunnels, fire prevention measures for important structures, high-rise chimneys, public hall structures, disaster shelters Etc. can be used.

本発明によれば、火災時の急激な高温に対し爆裂を起こさない、安全で、強度低下の恐れがない耐火耐熱コンクリートが得られる。   ADVANTAGE OF THE INVENTION According to this invention, the fireproof heat-resistant concrete which does not raise | generate an explosion with respect to the rapid high temperature at the time of a fire, and does not have a possibility of a strength fall is obtained.

本発明による水硬性複合物は重複する高温・炎の火災に対しても爆裂の恐れがない。   The hydraulic composite according to the present invention has no risk of explosion against overlapping high temperature / flame fires.

本発明の水硬性複合物は従来の耐火被覆・耐熱被覆を施す場合に比べると、より経済的であり、より安全性が高く、実用的である。   The hydraulic composite of the present invention is more economical, safer and more practical than conventional fireproof coatings and heat-resistant coatings.

本発明の耐熱コンクリートを製造するには、従来の機器をそのまま用いることができ特殊な設備を必要としない。   In order to produce the heat-resistant concrete of the present invention, conventional equipment can be used as it is, and no special equipment is required.

以下本発明の実施の形態を説明する。   Embodiments of the present invention will be described below.

本発明の耐火耐熱コンクリートは、珪酸リチウムを含有することを特徴とする耐火耐熱コンクリートであり、さらに無機質の繊維状物質及び/又は有機長繊維を配合すると好ましい。   The refractory and heat-resistant concrete of the present invention is a refractory and heat-resistant concrete containing lithium silicate, and preferably contains an inorganic fibrous material and / or organic long fiber.

コンクリートの爆裂は
(1)コンクリート内の水分が急激に気化して高温高圧の水蒸気となり、コンクリートを破壊する現象、
(2)骨材の珪酸分が中温域および高温域で骨材周辺のモルタルとの熱膨張率の差異を生じ、コンクリートの組織を破壊する現象、
(3)コンクリート中のカルシウム分が熱分解し、それによって生じた水がコンクリートの組織を破壊する現象、
(4)コンクリートと鉄筋の熱膨張率の差異によりコンクリートを破壊する現象
等によって起ると言われているが、それらの複合系現象によって爆裂するものと考えられる。
The explosion of concrete (1) is a phenomenon in which the moisture in the concrete rapidly vaporizes and becomes high-temperature and high-pressure steam, destroying the concrete,
(2) A phenomenon in which the silicic acid content of the aggregate causes a difference in the coefficient of thermal expansion from the mortar around the aggregate in the middle temperature range and the high temperature range, destroying the concrete structure,
(3) Phenomenon in which the calcium content in concrete is thermally decomposed and the water generated thereby destroys the concrete structure,
(4) It is said that it is caused by the phenomenon of destroying concrete due to the difference in thermal expansion coefficient between concrete and reinforcing bars, but it is considered that the explosion occurs due to the composite system phenomenon.

コンクリート内部の水は乾燥により時間と共に減少する。また、水硬性材料の水和反応が進行することにより、自由水は減少する。しかし、セメント硬化体の主要な部分を占める水酸化カルシウムは500℃近辺で炭酸カルシウムと水とに分解し、水は瞬時に高温高圧の水蒸気に変わる。従って、出来るだけ水酸化カルシウムの生成の少ない配合にすると、コンクリートは爆裂を生じにくい。   The water inside the concrete decreases with time due to drying. Further, free water decreases as the hydration reaction of the hydraulic material proceeds. However, calcium hydroxide, which occupies the main part of the hardened cement body, decomposes into calcium carbonate and water at around 500 ° C., and the water instantly changes to high-temperature and high-pressure steam. Therefore, if the composition is such that calcium hydroxide is generated as little as possible, the concrete is less likely to explode.

そのために、普通ポルトランドセメントよりカルシウム分の少ないアルミナセメントを用いたコンクリートの方が爆裂しにくいが、アルミナセメントは30℃近傍での転移現象があり強度管理が難しく構造材としては実用的でない。そこで本発明は水硬性物質として次の(A)、(B)、(C)のいずれかを用いる。
(A)低熱ポルトランドセメント。
(B)普通ポルトランドセメントに5〜70質量%の高炉スラグ微粉末を添加したもの。
(C)普通ポルトランドセメントに5〜30質量%のフライアッシュを添加したもの。
Therefore, concrete using alumina cement with less calcium than normal Portland cement is less likely to explode, but alumina cement has a transition phenomenon near 30 ° C. and is difficult to control strength and is not practical as a structural material. Therefore, the present invention uses any of the following (A), (B), and (C) as the hydraulic substance.
(A) Low heat Portland cement.
(B) What added 5-70 mass% blast furnace slag fine powder to normal Portland cement.
(C) What added 5-30 mass% fly ash to normal Portland cement.

これらのは水硬性物質は長期間に亘って水和反応を継続し、内部水分の減少、長期強度の向上に寄与する。   These hydraulic substances continue the hydration reaction over a long period of time, contributing to the reduction of internal moisture and the improvement of long-term strength.

さらにリチウム珪酸質を添加剤として用い、水酸化カルシウムと反応させて不溶性の珪酸三石灰複合物を形成させ、水酸化カルシウムを減少させる。   Further, lithium silicic acid is used as an additive to react with calcium hydroxide to form an insoluble tricalcium silicate composite, thereby reducing calcium hydroxide.

また、リチウム珪酸質は1000℃を超える高温域で固溶体に転移しコンクリートの熱膨張率が極めて小さくなる。以上の手段及び理由により、改質された爆裂抵抗性の高いコンクリートを製造することができる。   Moreover, lithium siliceous material is transformed into a solid solution in a high temperature range exceeding 1000 ° C., and the thermal expansion coefficient of concrete becomes extremely small. Due to the above means and reasons, a modified explosion-resistant concrete can be produced.

リチウム珪酸質もしくはリチウム珪酸変性液の添加量は耐火耐熱コンクリート100質量部に対して0.01〜3.5質量部とする。0.01質量部未満では爆裂抵抗性の向上を図ることができず、3.5質量部を越えると高価となり実用的でない。さらに好ましくは0.1〜1.0質量部である。   The addition amount of the lithium siliceous or lithium silicic acid modified liquid is 0.01 to 3.5 parts by mass with respect to 100 parts by mass of the refractory heat resistant concrete. If it is less than 0.01 parts by mass, the explosion resistance cannot be improved, and if it exceeds 3.5 parts by mass, it becomes expensive and impractical. More preferably, it is 0.1-1.0 mass part.

リチウム珪酸質としては駿河工業(株)製「ペントラシール」(商品名)、キンセイマテック(株)製「KF#400」(商品名)などを用いるとよい。   As the lithium siliceous material, “Pentola Seal” (trade name) manufactured by Suruga Kogyo Co., Ltd., “KF # 400” (trade name) manufactured by Kinsei Matec Co., Ltd. may be used.

リチウム珪酸質は、コンクリートの強度低下を招来せず、強度向上に寄与する。図2はその1例を示すもので、ある配合の圧縮強度51.50N/mm2のコンクリートにリチウム珪酸質の例として上記「ペントラシール」(商品名)を加え、元のコンクリートと同条件で製造したコンクリートの圧縮強度を示すグラフである。コンクリート100質量部に対してリチウム珪酸質を1〜3質量部加えると、強度が10%以上向上し、57〜58N/mm2になっている。 Lithium silicic acid does not cause a decrease in the strength of concrete and contributes to an improvement in strength. FIG. 2 shows an example of the above, and the above-mentioned “Pentola Seal” (trade name) is added as an example of lithium silicic acid to concrete having a compression strength of 51.50 N / mm 2 , and the same conditions as the original concrete. It is a graph which shows the compressive strength of the concrete manufactured by. When 1 to 3 parts by mass of lithium silicic acid is added to 100 parts by mass of concrete, the strength is improved by 10% or more, which is 57 to 58 N / mm 2 .

本発明の耐火耐熱コンクリートは、珪酸質多孔質体を加えることにより、コンクリートの熱伝導度を低下させると同時に高温履歴による網目状のひび割れを少なくすることができ、高温による強度劣化を緩和することができる。珪酸質多孔質体としては、例えば、火山灰を焼成した美瑛白土工業(株)製「タイセツバルーン」(商品名)、シラスバルーン、黒曜石を焼成したパーライトまたはバーミュキライト、天然および合成ゼオライト等を用いるとよい。   The refractory and heat-resistant concrete of the present invention can reduce the thermal conductivity of the concrete by adding a siliceous porous body, and at the same time, can reduce network-like cracks due to high temperature history, and alleviate strength deterioration due to high temperature. Can do. Examples of siliceous porous materials include “Taisetsu Balloon” (trade name) manufactured by Biei Shirachi Kogyo Co., Ltd., calcined volcanic ash, shirasu balloon, perlite or vermiculite calcined obsidian, natural and synthetic zeolite, etc. Use it.

珪酸質多孔質体の添加量は耐火耐熱コンクリート100質量部当り0.1〜6.0質量部とする。0.1質量部未満では熱伝導度を低下させる効果が少なく、6.0質量部を越えると強度低下が大きく実用的でない。さらに、好ましくは耐火耐熱コンクリート100質量部に対し0.3〜1.5質量部である。   The addition amount of the siliceous porous body is 0.1 to 6.0 parts by mass per 100 parts by mass of the refractory and heat-resistant concrete. If the amount is less than 0.1 parts by mass, the effect of lowering the thermal conductivity is small, and if it exceeds 6.0 parts by mass, the strength is greatly reduced and is not practical. Furthermore, it is preferably 0.3 to 1.5 parts by mass with respect to 100 parts by mass of the refractory heat resistant concrete.

また、珪酸ナトリウム変性液、例えば、KKクリスタライザー製「クリスタライザーGW」(商品名)等を適量添加することにより、高温履歴後の強度低下率を小さく抑え、逆に向上させることが出来る。珪酸ナトリウム変性液の添加量は耐火耐熱コンクリート100質量部に対し0.04〜1.1質量部とする。0.04質量部未満では高温履歴後の強度の向上を図ることができず、1.1質量部を越えると高価となり実用的でない。さらに好ましい添加量は0.1〜0.4質量部である。   Further, by adding an appropriate amount of a sodium silicate modified solution, for example, “Crystalizer GW” (trade name) manufactured by KK Crystallizer, the strength reduction rate after a high temperature history can be suppressed to be small and can be improved. The addition amount of the sodium silicate modified solution is 0.04 to 1.1 parts by mass with respect to 100 parts by mass of the refractory and heat-resistant concrete. If the amount is less than 0.04 parts by mass, the strength cannot be improved after a high temperature history. If the amount exceeds 1.1 parts by mass, the cost increases and is not practical. A more preferable addition amount is 0.1 to 0.4 part by mass.

無機質の繊維状物質として、人造鉱物繊維(ロックウール)、非晶質無機繊維(石綿代替品)等を加えて断熱性、水分移動性の向上、熱伝導率の低下、及びマイクロクラックの減少を図る。無機質の繊維状物質の添加量は耐火耐熱コンクリート100質量部に対し0.05〜2.5質量部である。0.05質量部未満では高温履歴後のマイクロクラックの減少を図ることができず、2.5質量部を越えると混練性が悪く実用的でない。さらに好ましい添加量は0.3〜1.5質量部である。   Addition of artificial mineral fibers (rock wool), amorphous inorganic fibers (asbestos substitutes), etc. as inorganic fibrous materials to improve heat insulation, moisture mobility, lower thermal conductivity, and reduce microcracks Plan. The addition amount of the inorganic fibrous substance is 0.05 to 2.5 parts by mass with respect to 100 parts by mass of the refractory and heat-resistant concrete. If it is less than 0.05 part by mass, the reduction of microcracks after high temperature history cannot be achieved, and if it exceeds 2.5 parts by mass, the kneadability is poor and impractical. A more preferable addition amount is 0.3 to 1.5 parts by mass.

その上、有機長繊維、例えば、ポリプロピレン、ビニロン等を混入するとよい。有機長繊維は常温時にはコンクリートの靱性を向上させ、200℃前後に昇温したとき溶融気化してコンクリート中に細孔を生じ、熱膨張した気体の逃げ道を作る。有機長繊維は径10μm〜0.3mm、長さ3mm〜30mmとするとよい。さらに好ましくは径50μm〜150μm、長さ5mm〜20mmがよい。有機長繊維の添加量は耐火耐熱コンクリート100質量部に対し0.02〜1.0質量部とする。0.02質量部未満では気体を逃がす効果が少なく、1.0質量部を越えると高温履歴後のコンクリートの強度低下が大きく、また混練性にも難点があるので制限される。さらに好ましくは0.1〜0.5質量部である。   In addition, organic long fibers such as polypropylene and vinylon may be mixed. Organic long fibers improve the toughness of concrete at room temperature, and when it is heated to around 200 ° C., it melts and vaporizes to form pores in the concrete, creating a escape path for thermally expanded gas. The organic long fiber may have a diameter of 10 μm to 0.3 mm and a length of 3 mm to 30 mm. More preferably, the diameter is 50 μm to 150 μm and the length is 5 mm to 20 mm. The addition amount of the organic long fiber is 0.02 to 1.0 part by mass with respect to 100 parts by mass of the refractory heat-resistant concrete. If the amount is less than 0.02 parts by mass, the effect of escaping the gas is small. If the amount exceeds 1.0 parts by mass, the strength of the concrete is greatly reduced after a high temperature history, and the kneadability is also limited, which is limited. More preferably, it is 0.1-0.5 mass part.

骨材は天然骨材でもよいが人工軽量焼成骨材がさらに好ましく、耐火耐熱コンクリートの熱伝導率の低下に貢献する。人工軽量骨材としては、メサライト工業(株)製「メサライト」(商品名)、太平洋セメント(株)製「アサノスーパーライト」(商品名)等を用いるとよく、含水率2%以下に調整して用いることにより、コンクリートの熱伝導率を低下させることができ、また骨材の異常膨張を抑えることが出来るという知見を得た。   The aggregate may be a natural aggregate, but an artificial lightweight fired aggregate is more preferable, which contributes to a decrease in the thermal conductivity of the refractory and heat-resistant concrete. As artificial lightweight aggregates, “Mesalite” (trade name) manufactured by Mesalite Industry Co., Ltd., “Asano Superlite” (trade name) manufactured by Taiheiyo Cement Co., Ltd. may be used, and the moisture content is adjusted to 2% or less. As a result, it was found that the thermal conductivity of the concrete can be lowered and the abnormal expansion of the aggregate can be suppressed.

本発明では上記耐火耐熱コンクリートの原料を型枠内に打設する。なお、部分的な打設またはコンクリートの構造材への注入又は吹付によって、複合した耐火耐熱コンクリートを製造することもできる。   In the present invention, the raw material of the above refractory and heat-resistant concrete is placed in a mold. It is also possible to produce a composite fire-resistant and heat-resistant concrete by partially placing or pouring or spraying concrete into a structural material.

(実施例1)
表1に示す配合により本発明の実施例の耐火耐熱コンクリート供試体を製造した。供試体の寸法は、長さ300mm×幅200っm×厚さ150mmである。表1中、供試体No.1及びNo.2は比較例で珪酸リチウムを含んでいない。供試体No.1は普通セメントに高炉スラグ微粉末を加えた水硬性物質を用い、細骨材として皆野産硬質砂岩、粗骨材として秩父産硬質砂岩を用いたものであり、供試体No.2は人工軽量細骨材及び人工軽量粗骨材を用いたものである。
(Example 1)
Refractory and heat-resistant concrete specimens of the examples of the present invention were produced according to the formulation shown in Table 1. The dimensions of the specimen are 300 mm long × 200 mm wide × 150 mm thick. In Table 1, specimen No. 1 and no. 2 is a comparative example and does not contain lithium silicate. Specimen No. No. 1 is a hydraulic material obtained by adding blast furnace slag fine powder to ordinary cement, using Minano hard sandstone as fine aggregate and Chichibu hard sandstone as coarse aggregate. No. 2 uses an artificial lightweight fine aggregate and an artificial lightweight coarse aggregate.

供試体No.3〜No.9は本発明の実施例を示すもので、供試体No.3は供試体No.1と同様の水硬性物質及び細骨材、粗骨材を用い、さらに珪酸リチウムを含有したものである。供試体No.4は供試体No.3にさらに人工軽量骨材として美瑛白土工業(株)製「タイセツバルーンK」(商品名)と有機長繊維を加えたもの、供試体No.5はNo.4にさらにKKクリスタライザー製「クリスタライザGW」(商品名)及びロックウールを加えたものである。   Specimen No. 3-No. 9 shows an example of the present invention. 3 is a specimen No. 3. The same hydraulic substance, fine aggregate and coarse aggregate as in No. 1 were used, and lithium silicate was further contained. Specimen No. 4 is a specimen No. 4; No. 3 was further added with “Taisetsu Balloon K” (trade name) manufactured by Biei Shirachi Kogyo Co., Ltd. and organic long fibers as an artificial lightweight aggregate. 5 is No.5. 4 to which “Crystallizer GW” (trade name) manufactured by KK Crystallizer and rock wool are added.

供試体No.6は供試体2と同様の普通セメントと高炉スラグ微粉末とから成る水硬性物質に、供試体No.1と同様の天然骨材と供試体No.2と同様の人工軽量骨材とを混合した骨材を用い、珪酸リチウムや無機繊維及び有機繊維を加えたものである。   Specimen No. 6 is a hydraulic material composed of ordinary cement and blast furnace slag fine powder similar to those of Specimen 2; No. 1 natural aggregate and specimen No. 1 2 is a mixture of artificial lightweight aggregates similar to 2, and lithium silicate, inorganic fibers and organic fibers are added.

供試体No.7は、供試体No.6の天然骨材を人工軽量骨材に置換したもの、供試体No.8は水硬性物質として低熱セメントを用い、骨材として人工軽量骨材を用いた実施例、供試体No.9は供試体No.8の水硬性物質を普通セメントとフライアッシュから成るものに置き替えた例である。   Specimen No. 7 is a specimen No. 7. No. 6 natural aggregate replaced with artificial lightweight aggregate, specimen no. No. 8 is an example in which low heat cement is used as the hydraulic material and artificial lightweight aggregate is used as the aggregate. 9 is a specimen No. 9; This is an example in which the hydraulic material 8 is replaced with a material composed of ordinary cement and fly ash.

これらの供試体No.1〜No.9を加熱した試験を行った。加熱試験曲線は、RABT曲線に従った。RABT曲線は5分で1200℃に上昇させて保持し、60分後より110分かけて常温まで下降させる試験曲線である。表1中に試験結果を併せて示した。供試体No.1及びNo.2(比較例)は全面爆裂したが、本発明の実施例である供試体No.3〜No.9はいずれも爆裂しなかった。   These specimen Nos. 1-No. The test which heated 9 was done. The heating test curve followed a RABT curve. The RABT curve is a test curve that is raised to 1200 ° C. in 5 minutes and held, and then lowered to room temperature over 110 minutes after 60 minutes. Table 1 also shows the test results. Specimen No. 1 and no. 2 (Comparative Example) was completely exploded, but specimen No. 2 which is an example of the present invention. 3-No. None of the 9s exploded.

また、表1中に示す鉄筋位置温度は鉄筋が配置される深さ位置で試験中に示した最高温度である。最高温度に達する時間は個々に違うが、大略加熱開始後75分〜110分経過後である。鉄筋コンクリート構造物としては主鉄筋温度が200℃以下であることが望ましく、耐火性能は供試体No.6〜No.9が極めてすぐれている。   Moreover, the reinforcing bar position temperature shown in Table 1 is the highest temperature shown during the test at the depth position where the reinforcing bar is arranged. Although the time to reach the maximum temperature is different for each, it is approximately 75 minutes to 110 minutes after the start of heating. As for the reinforced concrete structure, it is desirable that the main rebar temperature is 200 ° C. or less, and the fire resistance performance of the specimen No. 6-No. 9 is very good.

また、表1中に示す耐火試験前圧縮強度は同時に採取した径10cm×20cmのシリンダー強度、耐火試験後圧縮強度は供試体側面から表面より中心で50mm下がった位置にて径45mmのコアーボーリングで採取したコアの強度である。耐火試験の前後の強度変化は供試体No.6〜No.9では変化がなく、供試体No.3〜No.5でも供試体No.1及びNo.2に比べてすぐれた成績を示している。   The compressive strength before the fire resistance test shown in Table 1 is the cylinder strength of 10 cm × 20 cm diameter collected at the same time, and the compressive strength after the fire resistance test is the core boring with a diameter of 45 mm at a position 50 mm lower than the surface from the side of the specimen. It is the intensity | strength of the extract | collected core. The strength change before and after the fire resistance test is the specimen No. 6-No. No change was observed in specimen 9, and specimen no. 3-No. Specimen No. 5 1 and no. The result is superior to 2.

混練時には無機質の繊維状物質ならびに有機長繊維は、練り混ぜ水に事前に混合撹拌しておくことが均一な分散と練り混ぜを確実にし、好ましい。   It is preferable to mix and stir the inorganic fibrous substance and the organic long fiber in the kneading water in advance at the time of kneading, so as to ensure uniform dispersion and kneading.

また本発明の耐火耐熱コンクリートはコンクリート表層を耐火耐熱コンクリートとし、内部を普通コンクリートとして、内部と表層とを使い分け、経済性を高めることもできる。   In addition, the fire-resistant and heat-resistant concrete of the present invention can also be economically improved by using a concrete surface layer as a fire-resistant and heat-resistant concrete and an inside as ordinary concrete so that the inside and the surface layer are properly used.

Figure 2005187275
Figure 2005187275

(実施例2)
表2に示す配合に従って本発明の実施例を製造した。表2において、細骨材及び粗骨材は富士川産川砂利と川砂であり、リチウム系混和剤は駿河工業(株)社製「ペントラシール」(商品名)である。セメントは日本セメント(株)社製の高炉セメントB種を用いた。減水剤はポリカルボン酸系であり、日本シーカ(株)社製「シーカメント2200」(商品名)である。
(Example 2)
Examples of the present invention were prepared according to the formulations shown in Table 2. In Table 2, the fine aggregate and coarse aggregate are Fujikawa-produced river gravel and river sand, and the lithium-based admixture is “Pentola Seal” (trade name) manufactured by Suruga Kogyo Co., Ltd. As the cement, a type B blast furnace cement manufactured by Nippon Cement Co., Ltd. was used. The water reducing agent is a polycarboxylic acid type, and is “Sea Kament 2200” (trade name) manufactured by Nippon Seika Co., Ltd.

上記配合に従って、各材料をミキサー中に投入して空練りを行い、配合水と減水剤、リチウム系混和剤を投入し、本練りを行った。排出10分後における生コンクリートの物性を測定したその結果を表3に示す。   In accordance with the above formulation, each material was put into a mixer and kneaded, and then mixed water, a water reducing agent, and a lithium-based admixture were added and main kneading was performed. Table 3 shows the results of measuring the physical properties of the ready-mixed concrete after 10 minutes of discharge.

さらに、上記の生コンクリートを規定の型枠に打設し、10cmφ×20cmLの寸法の供試体を作成した。その圧縮強度を測定した、その結果を表4に示す。   Further, the above-mentioned ready-mixed concrete was placed in a prescribed form to prepare a specimen having a size of 10 cmφ × 20 cmL. The compressive strength was measured and the results are shown in Table 4.

さらに、上記の生コンクリートを17cm×140cm×140cm寸法の型枠に打設し、平板の試験体を製作した。この試験体は気中養生28日後、耐火試験に用いた。   Furthermore, the above-mentioned ready-mixed concrete was placed in a mold having a size of 17 cm × 140 cm × 140 cm, and a flat specimen was manufactured. This test body was used for the fire resistance test after 28 days in the air.

図1は耐火試験の実施形態を示す説明図である。耐火試験装置10は、ガスバーナ11を備えた炉内に、ガスバーナ11から上方に120cm離して上記140cm角の平板状の試験体20を置き、その平面を炎12にさらして加熱する装置を用いた。   FIG. 1 is an explanatory view showing an embodiment of a fire resistance test. The fire resistance test apparatus 10 is a furnace equipped with a gas burner 11, in which a 140 cm square plate-shaped test body 20 is placed 120 cm upward from the gas burner 11, and the plane is exposed to the flame 12 and heated. .

ガスバーナ11からの炎12が当たる試験体20のコンクリート表面は、6分後1,000℃に達した。加熱時間は2時間とし、炎12が当たる部分の試験体の表層部、表層部から深さ3cmの位置及び深さ7cmの位置の3点の温度の経時変化を測定した。結果を表5に示した。表層部の温度は1350℃にも達したが深さ7cmの位置では温度上昇は僅かであった。   The concrete surface of the test body 20 to which the flame 12 from the gas burner 11 hits reached 1,000 ° C. after 6 minutes. The heating time was 2 hours, and the surface layer portion of the test body where the flame 12 hits, the temperature change at three points at a position 3 cm deep from the surface layer portion and a position 7 cm deep were measured. The results are shown in Table 5. The temperature of the surface layer portion reached 1350 ° C., but the temperature rise was slight at a depth of 7 cm.

2時間加熱後、24時間気中放置し、外観を観察したが、何ら損傷は認められなかった。試験体はコアボウリングし、表面観察後、圧縮試験に用いた。炎が当った表層部には、深さ1mm程度までの白い変色が認められたが、他は何ら変化がなかった。なおこの表層部の強度低下は認められなかった。   After heating for 2 hours, it was left in the air for 24 hours and the appearance was observed, but no damage was observed. The test body was core-bowled and used for the compression test after surface observation. A white discoloration up to a depth of about 1 mm was observed in the surface layer portion where the flame hit, but there was no change in the others. In addition, the strength reduction of this surface layer part was not recognized.

Figure 2005187275
Figure 2005187275

Figure 2005187275
Figure 2005187275

Figure 2005187275
Figure 2005187275

Figure 2005187275
Figure 2005187275

(比較例1)
表6に示す配合に従って、人工軽量骨材を用いた生コンクリートを調製した。なお表6において、セメントは太平洋セメント(株)社製の高炉セメントB種を用いた。人工軽量細骨材及び人工軽量粗骨材は日本メサライト工業(株)社製「メサライト」(商品名)であり、絶乾状態で用いた。減水剤はポリカルホン酸系であり、日本シーカ(株)社製「シーカメント2200」(商品名)である。
(Comparative Example 1)
According to the formulation shown in Table 6, ready-mixed concrete using artificial lightweight aggregate was prepared. In Table 6, blast furnace cement type B manufactured by Taiheiyo Cement Co., Ltd. was used as the cement. The artificial lightweight fine aggregate and the artificial lightweight coarse aggregate were “Mesalite” (trade name) manufactured by Nippon Mesalite Industry Co., Ltd., and used in an absolutely dry state. The water reducing agent is a polycarboxylic acid type, and is “Sea Kament 2200” (trade name) manufactured by Nippon Seika Co., Ltd.

上記配合に従って、各材料をミキサ中に投入して空練りを行い、配合水と減水剤を投入して本練りを行って、生コンクリートを製造し、排出10分後における物性を測定した。その結果を表7に示す。   According to the above composition, each material was put into a mixer and kneaded, and mixed water and a water reducing agent were added and main kneading was performed to produce ready-mixed concrete, and the physical properties after 10 minutes of discharge were measured. The results are shown in Table 7.

空気量は単位容積重量より計算した。さらに、上記の生コンクリートを規定の型枠に打設し、10cmφ×20cmL寸法の供試体を製作した。その圧縮強度を測定した。その結果を表8に示す。   The amount of air was calculated from the unit volume weight. Furthermore, the above-mentioned ready-mixed concrete was placed in a prescribed form to produce a specimen having a size of 10 cmφ × 20 cmL. The compressive strength was measured. The results are shown in Table 8.

さらに上記の生コンクリートを17cm×140cm×140cm寸法の型伜に打設し、平板の試験体を製作した、気中養生28日後の試験体を実施例2と同様に、耐火試験に供したところ、加熱開始10分後に、巨大な音響と共に、試験体は爆裂した。   Furthermore, when the above-mentioned ready-mixed concrete was placed in a mold of 17 cm × 140 cm × 140 cm to produce a flat test piece, the test piece after 28 days of air curing was subjected to a fire resistance test in the same manner as in Example 2. After 10 minutes from the start of heating, the test specimen exploded with a huge sound.

Figure 2005187275
Figure 2005187275

Figure 2005187275
Figure 2005187275

Figure 2005187275
Figure 2005187275

(実施例3)
表9に示す配合に従って、本発明の耐火耐熱コンクリートを製造した。
(Example 3)
According to the composition shown in Table 9, the fire-resistant and heat-resistant concrete of the present invention was produced.

セメントは住友大阪セメント(株)社製の早強セメントを用いた。人工軽量細骨材及び人工軽量粗骨材は、日本メサライト工業(株)社製「メサライト」(商品名)であり、減水剤は、ポリカルボン酸系減水剤であり、花王(株)社製「マイティ2000WHZ」(商品名)である。骨材は吸水量の半分まで吸水している状態で用いた。リチウム系混和剤は駿河工業(株)社製「ペントラシール」(商品名)である。   The cement used was a high-strength cement manufactured by Sumitomo Osaka Cement Co., Ltd. The artificial lightweight fine aggregate and the artificial lightweight coarse aggregate are “Mesalite” (trade name) manufactured by Nippon Mesalite Industry Co., Ltd., and the water reducing agent is a polycarboxylic acid-based water reducing agent manufactured by Kao Corporation. “Mighty 2000WHZ” (trade name). The aggregate was used in a state of absorbing water up to half of the water absorption. The lithium-based admixture is “Pentola Seal” (trade name) manufactured by Suruga Industries Co., Ltd.

上記配合に従って、各材料をミキサー中に投入して空練りを行い、配合水と減水剤を投入し、本練りを行い、得られた生コンクリートに対し、排出10分後における物性を測定した。その結果を表10に示す。   In accordance with the above composition, each material was put into a mixer and kneaded, and then mixed water and a water reducing agent were added and main kneading was performed. The physical properties of the obtained ready-mixed concrete after 10 minutes of discharge were measured. The results are shown in Table 10.

空気量は単位容積重量より計算した。さらに、上記の生コンクリートを規定の型枠に打設し、10cmφ×20cmL寸法の供試体を得て、その圧縮強度を測定した。その結果を表11に示す。   The amount of air was calculated from the unit volume weight. Furthermore, the above-mentioned ready-mixed concrete was placed in a prescribed form, a specimen having a size of 10 cmφ × 20 cmL was obtained, and the compressive strength was measured. The results are shown in Table 11.

さらに、上記の生コンクリートを、17cm×140cm×140cm寸法の型枠に打設し、平板の試験体を製作した。この試験体は気中養生28日後耐火試験に供した。   Furthermore, the above-mentioned ready-mixed concrete was placed in a mold having a size of 17 cm × 140 cm × 140 cm, and a flat specimen was manufactured. This test body was subjected to a fire resistance test after 28 days in the air.

耐火試験は実施例2と同様に行った。加熱時間は1時間とし、炎が当たる部分から、試験体の表層部、深さ5cmの位置及び深さ10cmの位置の3点の温度の経時変化を測定し、表12に示した。表層部は1360℃に達したが深さ10cmの位置では温度上昇は僅かであった。   The fire resistance test was conducted in the same manner as in Example 2. The heating time was 1 hour, and the time-dependent changes in temperature at three points, the surface layer portion of the test specimen, the position at a depth of 5 cm, and the position at a depth of 10 cm, were measured from the portion exposed to the flame. The surface layer portion reached 1360 ° C., but the temperature rise was slight at a depth of 10 cm.

1時間加熱後、24時間気中放置し、外観を観察したが、炎が当たる面(表層部)中央に微細なひび割れが少し見えるだけで、その他は何ら損傷が認められなかった。試験体はコアボウリングし、表面観察後、圧縮試験に供した。表層部には、深さ1〜2mm程度の白い変色が認められた。他は何ら変化がなかった。また強度の低下は認められなかった。   After heating for 1 hour, it was allowed to stand in the air for 24 hours and the appearance was observed, but only a small crack was visible at the center of the surface (surface layer) to which the flame hit, and no other damage was observed. The test body was core-bowled and subjected to a compression test after surface observation. White discoloration with a depth of about 1 to 2 mm was observed in the surface layer portion. There were no other changes. Further, no decrease in strength was observed.

Figure 2005187275
Figure 2005187275

Figure 2005187275
Figure 2005187275

Figure 2005187275
Figure 2005187275

Figure 2005187275
Figure 2005187275

(実施例4)
表13に示す配合に従って、本発明の耐火耐熱コンクリートを調製した。
Example 4
According to the formulation shown in Table 13, the refractory heat resistant concrete of the present invention was prepared.

セメントは太平洋セメント(株)社製の高炉セメントB種を用いた。細骨材として(株)夏目砕石の硬質岩石(石英片岩)を1450℃前後で発泡させたものを用い、粗骨材として九電産業(株)製のフライアッシュを原料とする「FAライト」(商品名)を用いた。骨材は絶乾状態で用いた。減水剤はナフタリンスルホン酸・ホルマリン高縮合物塩が主成分である花王(株)製「マイティ150」(商品名)を用いた。繊維は萩原工業(株)製「パルチップM」(商品名)であり、ポリプロビレン系である。リチウム系混和剤は駿河工業(株)社製「ペントラシール」(商品名)を用いた。   Blast furnace cement type B manufactured by Taiheiyo Cement Co., Ltd. was used as the cement. “FA Light” is a fine aggregate made of Natsume crushed hard rock (quartz schist) foamed at around 1450 ° C., and coarse aggregate made from Kyuden Sangyo fly ash. (Trade name) was used. The aggregate was used in an absolutely dry state. As the water reducing agent, “Mighty 150” (trade name) manufactured by Kao Co., Ltd., which is mainly composed of a naphthalenesulfonic acid / formalin high condensate salt, was used. The fiber is “Palchip M” (trade name) manufactured by Sugawara Kogyo Co., Ltd., and is a polypropylene type. As the lithium-based admixture, “Pentola Seal” (trade name) manufactured by Suruga Industries Co., Ltd. was used.

上記配合に従って、各材料をミキサー中に投入して空練りを行い、配合水と減水剤を投入して本練りを行い、得られた生コンクリートに対し、排出10分後における物性を測定した。その結果を表14に示す。   In accordance with the above formulation, each material was put into a mixer and kneaded, and then mixed water and a water reducing agent were added and main kneading was performed. The physical properties of the obtained ready-mixed concrete after 10 minutes of discharge were measured. The results are shown in Table 14.

空気量は単位容積重量より計算した。さらに、上記の生コンクリートを規定の型枠に打設し、10cmφ×20cmLの寸法の供試体を得て、その圧縮強度を測定した。その結果を表15に示す。   The amount of air was calculated from the unit volume weight. Furthermore, the above-mentioned ready-mixed concrete was placed in a prescribed mold, a specimen having a size of 10 cmφ × 20 cmL was obtained, and the compressive strength was measured. The results are shown in Table 15.

さらに、上記の水硬性複合物を、17cm×140cm×140cm寸法の型枠内に打設し、平板の試験体を製作し、気中養生28日後、耐火試験に供した。   Furthermore, the above hydraulic composite was placed in a mold having a size of 17 cm × 140 cm × 140 cm to produce a flat specimen, and subjected to a fire resistance test after 28 days of air curing.

耐火試験は図1に示す耐火試験装置10を用い、実施例2と同様に行った。加熱時間は2時間とし、炎が当たる部分から、試験体の表層部、深さ5cmの位置、深さ10cmの位置の3点の温度の経時変化を測定した。結果を表16に示した。   The fire resistance test was performed in the same manner as in Example 2 using the fire resistance test apparatus 10 shown in FIG. The heating time was 2 hours, and the change with time of temperature at three points of the surface layer portion of the test specimen, the position of 5 cm depth, and the position of 10 cm depth was measured from the portion exposed to the flame. The results are shown in Table 16.

2時間加熱後、48時間気中放置し、外観を観察したが、炎が当たる面の中央に、微細なヘアクラックが少し見えるだけで、何ら損傷は認められなかった。試験体はコアボウリングし表面観察後、圧縮試験に用いた。表層部には、深さ1mm程度の白い変色が認められたが、他は何ら変化がなく、なおこの部分の強度低下は認められなかった。   After heating for 2 hours and leaving it in the air for 48 hours and observing the appearance, only a slight hair crack was seen in the center of the surface to which the flame hit, and no damage was observed. The test body was core-bowed and the surface was observed, and then used for the compression test. In the surface layer portion, a white discoloration with a depth of about 1 mm was observed, but there was no other change, and no strength reduction was observed in this portion.

Figure 2005187275
Figure 2005187275

Figure 2005187275
Figure 2005187275

Figure 2005187275
Figure 2005187275

Figure 2005187275
Figure 2005187275

(実施例5)
表17に示す配合に従って、比重が1.0未満の骨材、及びセメント粒子より小さい特殊無機添加材を含む本発明の耐火耐熱コンクリートを調製した。セメントは太平洋セメント(株)社製の早強セメントを用いた。人工軽量細骨材及び人工軽量粗骨材は、日本メサライト工業(株)社製「メサライト」(商品名)であり、減水剤はポリカルボン酸系減水剤であり、花王(株)社製「マイティTH」(商品名)である。「メサライト」の絶乾比重は1.3未満である。比重1.0未満の骨材としては、秩父小野田セメント(株)杜製「マイクロセルズ」(商品名)を用いた。無機材の微粒粉としてはエルケムジャパン(株)社製「マイクロシリカ」(商品名)を用いた。骨材及び無機材は、絶乾状態で用いた。リチウム系混和剤は駿河工業(株)社製「ペントラシール」(商品名)を用いた。繊維は大日本インキ化学工業(株)社製「ブラストロン」(商品名)を用いた。
(Example 5)
According to the composition shown in Table 17, the fire-resistant and heat-resistant concrete of the present invention containing an aggregate having a specific gravity of less than 1.0 and a special inorganic additive smaller than cement particles was prepared. As the cement, an early strong cement manufactured by Taiheiyo Cement Co., Ltd. was used. The artificial lightweight fine aggregate and the artificial lightweight coarse aggregate are “Mesalite” (trade name) manufactured by Nippon Mesalite Industry Co., Ltd., and the water reducing agent is a polycarboxylic acid-based water reducing agent. “Mighty TH” (trade name). The absolute dry specific gravity of “Mesalite” is less than 1.3. As an aggregate having a specific gravity of less than 1.0, “Microcells” (trade name) manufactured by Chichibu Onoda Cement Co., Ltd. was used. “Microsilica” (trade name) manufactured by Elchem Japan Co., Ltd. was used as the fine powder of the inorganic material. Aggregates and inorganic materials were used in an absolutely dry state. As the lithium-based admixture, “Pentola Seal” (trade name) manufactured by Suruga Industries Co., Ltd. was used. As the fiber, “Brasstron” (trade name) manufactured by Dainippon Ink & Chemicals, Inc. was used.

上記配合に従って、各材料をミキサー中に投入して空練りを行い、配合水及び減水剤を投入して本練りを行った。得られた生コンクリートは、排出30分後にスランプの変化を生じたが、作業性は十分であった。排出後10分後における物性を表18に示す。   In accordance with the above composition, each material was put into a mixer to perform kneading, and then mixed water and a water reducing agent were added to perform main kneading. The obtained ready-mixed concrete had a slump change after 30 minutes of discharge, but the workability was sufficient. Table 18 shows the physical properties 10 minutes after the discharge.

空気量は単位容積重量より計算した。上記配合の水硬性複合物を規定の型枠に打設し、10cmφ×20cmLの寸法の供試体を得て、その圧縮強度を測定した。その結果を表19に示す。   The amount of air was calculated from the unit volume weight. The hydraulic composite having the above composition was placed in a specified mold, a specimen having a size of 10 cmφ × 20 cmL was obtained, and the compressive strength was measured. The results are shown in Table 19.

さらに、上記生コンクリートを、20cm×200cm×200cm寸法の型枠に打設し、平板の試験体を製作した。この試験体は気中養生91日後、耐火試験に供した。   Further, the ready-mixed concrete was placed in a mold having a size of 20 cm × 200 cm × 200 cm to produce a flat specimen. This specimen was subjected to a fire resistance test after 91 days of air curing.

耐火試験は図1に示す装置を用いて実施例2と同様に行った。加熱時間は2時間とし、炎が当たる部分から、試験体表層部、深さ5cm、深さ10cm、裏面の4点の温度の経時変化を測定した。その結果を表20に示した。   The fire resistance test was conducted in the same manner as in Example 2 using the apparatus shown in FIG. The heating time was 2 hours, and the change with time of the temperature at the four points on the surface of the test specimen, depth 5 cm, depth 10 cm, and back surface was measured from the portion where the flame hits. The results are shown in Table 20.

2時間加熱後、72時間気中放置し、外観を観察したが、炎が当たる面の中央部と端部の2箇所に微細なひびわれと、若干の凹凸が見られるだけであり、何ら損傷は認められなかった。試験体はコアボウリングし、表面観察後圧縮試験に用いた。表層部には、深さ2mm程度の変色が認められたが、他は何ら変化がなく、なおこの部分の強度低下は認められなかった。   After heating for 2 hours, left in the air for 72 hours and observed the appearance, but there are only small cracks and slight irregularities at the center and end of the surface where the flame hits. I was not able to admit. The specimen was core-bowed and used for the compression test after surface observation. In the surface layer portion, discoloration with a depth of about 2 mm was observed, but no other changes were observed, and no strength reduction was observed in this portion.

Figure 2005187275
Figure 2005187275

Figure 2005187275
Figure 2005187275

Figure 2005187275
Figure 2005187275

Figure 2005187275
Figure 2005187275

(実施例6)
表17に示す配合に対し、繊維はCEMFIBER社製の「クラックストップ」(商品名)と、大和紡績(株)製「大和紡PP繊維」(商品名)を1:1(重量比)で混ぜて用いた。さらにAE剤として(株)エヌエムビー社製「775S」(商品名)、気泡剤として(株)セルフォーム技術研究所杜製「セルフォームL−50」(商品名)を用い、気泡発生装置は(株)セルフォーム技術研究所社製「セルエース」(商品名)を用いた。
(Example 6)
For the formulation shown in Table 17, the fibers were mixed with CEMFIBER “crack stop” (trade name) and Daiwa Boseki Co., Ltd. “Daiwabo PP fiber” (trade name) in a 1: 1 (weight ratio). Used. Furthermore, “775S” (trade name) manufactured by NM Co., Ltd. is used as the AE agent, and “Cell Foam L-50” (trade name) manufactured by Cellfoam Technology Laboratory Co., Ltd. is used as the foaming agent. “Cell Ace” (trade name) manufactured by Cellform Technology Laboratory Co., Ltd. was used.

各材料をミキサー中へ投入して空練りを行い、配合水及び減水剤、AE剤を加えて本練りを行いながら、空気量230リットル/m3を投入し気泡コンクリートとした。得られた生コンクリートは排出後40分までコンシステンシーが変わらなかった。排出10分後の物性を表21に示す。 Each material was put into a mixer and kneaded, and while adding the blended water, water reducing agent and AE agent and carrying out the main kneading, an air amount of 230 liters / m 3 was added to make cellular concrete. The consistency of the obtained ready-mixed concrete did not change until 40 minutes after discharging. Table 21 shows the physical properties after 10 minutes of discharge.

空気量は単位容積重量より計算した。さらに、上記の水硬性複合物を規定の型枠に打設し、10cmφ×20cmLの寸法の供試体を得て、その圧縮強度を測定した。その結果を表22に示す。   The amount of air was calculated from the unit volume weight. Furthermore, the above hydraulic composite was cast into a prescribed mold, a specimen having a size of 10 cmφ × 20 cmL was obtained, and the compressive strength was measured. The results are shown in Table 22.

さらに、上記生コンクリートを、20cm×200cm×200cm寸法の型枠に打設し、平板の試験体を製作した、この試験体は気中養牛91日後、耐火試験に供した。   Further, the above-mentioned ready-mixed concrete was placed in a mold having a size of 20 cm × 200 cm × 200 cm, and a flat test piece was produced. This test piece was subjected to a fire resistance test 91 days after in-air cattle raising.

耐火試験は図1に示す耐火試験装置10を用い実施例2と同様に行った。加熱時間は2時間とし、炎が当たる部分から、試験体表層部、深さ5cm、深さ10cm、裏面の4点の温度の経時変化を測定した。結果を表23に示した。   The fire resistance test was performed in the same manner as in Example 2 using the fire resistance test apparatus 10 shown in FIG. The heating time was 2 hours, and the change with time of the temperature at the four points on the surface of the test specimen, depth 5 cm, depth 10 cm, and back surface was measured from the portion where the flame hits. The results are shown in Table 23.

2時間加熱後、72時間気中放置し外観を観察した。炎が当たる面の中央部と端部の4箇所に微細なひびわれと、若干の凹凸が見られた他に損傷は認められなかった。試験体はコアボウリングし、表面観察後圧縮試験に用いた。表層部には、深さ4mm程度まで不規則な変色が認められたが、他は何ら変化がなく、なおこの部分の強度低下は認められなかった。   After heating for 2 hours, it was left in the air for 72 hours and the appearance was observed. In addition to the fine cracks and slight irregularities that were observed at the center and end of the flame-struck surface, no damage was observed. The specimen was core-bowed and used for the compression test after surface observation. In the surface layer portion, irregular discoloration was observed up to a depth of about 4 mm, but no other changes were observed, and no strength reduction was observed in this portion.

実施例6で用いた試験体を、気中保管し、耐火実験の72日後再び同様の耐火試験を行った。加熱時間は2時間で、気中放置48時間後の試験体は観察結果、何ら損傷は認められなかった。加熱中は、過熱後30分程度まで、前回コアボウリングした部分からの水蒸気の噴出が見られた。   The test body used in Example 6 was stored in the air, and a similar fire resistance test was performed again 72 days after the fire resistance test. The heating time was 2 hours, and the specimen after 48 hours in the air was observed and no damage was observed. During heating, steam was ejected from the previously cored portion until about 30 minutes after overheating.

Figure 2005187275
Figure 2005187275

Figure 2005187275
Figure 2005187275

Figure 2005187275
Figure 2005187275

(実施例7)
実施例4の配合に対し、繊維の半分を京都繊維資材(有)のレーヨン繊維に置換し、実施例4と同様の試験を行った。耐火実験結果は実施例4と大同小異であった。
(Example 7)
For the formulation of Example 4, half of the fibers were replaced with rayon fibers of Kyoto fiber material (existing), and the same test as in Example 4 was performed. The results of the refractory experiment were almost the same as in Example 4.

耐火試験装置の説明図である。It is explanatory drawing of a fireproof test apparatus. リチウム系混和剤のコンクリート強度に及ぼす影響を示すグラフである。It is a graph which shows the influence which acts on the concrete strength of a lithium-type admixture.

符号の説明Explanation of symbols

10 耐火試験装置
11 ガスバーナ
12 炎
20 試験体
10 Fire Resistance Test Equipment 11 Gas Burner 12 Flame 20 Specimen

Claims (12)

珪酸リチウムを含有することを特徴とする耐火耐熱コンクリート。   A refractory and heat-resistant concrete containing lithium silicate. 骨材が天然重量骨材、天然軽量骨材、人口軽量骨材からなる群から選ばれた1種又は2種以上であることを特徴とする請求項1記載の耐火耐熱コンクリート。   The fire-resistant and heat-resistant concrete according to claim 1, wherein the aggregate is one or more selected from the group consisting of natural weight aggregate, natural lightweight aggregate, and artificial lightweight aggregate. 前記天然軽量骨材又は及び人口軽量骨材の一部又は全部が比重1.0未満の軽量骨材でることを特徴とする請求項2記載の耐火耐熱コンクリート。   The fireproof and heat-resistant concrete according to claim 2, wherein a part or all of the natural lightweight aggregate and the artificial lightweight aggregate is a lightweight aggregate having a specific gravity of less than 1.0. さらに無機質の繊維状物質及び/又は有機長繊維を含有することを特徴とする請求項1〜3の何れかに記載の耐火耐熱コンクリート。   Furthermore, an inorganic fibrous substance and / or an organic long fiber are contained, The fireproof heat-resistant concrete in any one of Claims 1-3 characterized by the above-mentioned. 特定の水硬性物質、骨材、水及び混和剤に珪酸質多孔質体、リチウム珪酸質もしくは珪酸リチウム変性液を配合してコンクリートを製造することを特徴とする耐火耐熱コンクリートの製造方法。   A method for producing refractory and heat-resistant concrete, comprising producing a concrete by mixing a siliceous porous material, lithium silicic acid or lithium silicate modified liquid with a specific hydraulic substance, aggregate, water and an admixture. 前記特定の水硬性物質が、普通ポルトランドセメント、早強セメント、高炉セメント、アルミナセメント、もしくはこれらの混合セメント、又は成分を調整したセメントであることを特徴とする請求項5記載の耐火耐熱コンクリートの製造方法。   6. The refractory and heat-resistant concrete according to claim 5, wherein the specific hydraulic material is ordinary Portland cement, early-strength cement, blast furnace cement, alumina cement, or a mixed cement thereof, or a cement in which components are adjusted. Production method. 無機添加物として、シリカフューム、高炉スラグ微粉末、天然岩石の微粉末、人口セラミックの微粉末及びフライアッシュ微粉末からなる群から選ばれた1種又は2種以上を配合することを特徴とする請求項5又は6記載の耐火耐熱コンクリートの製造方法。   As the inorganic additive, one or more selected from the group consisting of silica fume, blast furnace slag fine powder, natural rock fine powder, artificial ceramic fine powder and fly ash fine powder are blended. Item 7. A method for producing a refractory and heat-resistant concrete according to Item 5 or 6. 耐火耐熱コンクリート100質量部に対し、前記特定の水硬性物質として低熱ポルトランドセメント8〜35質量部、普通ポルトランドセメント3〜31質量部と高炉スラグ微粉末0.5〜31質量部、又は普通ポルトランドセメント3〜31質量部とフライアッシュ0.5〜10質量部;前記骨材として普通骨材または軽量骨材20〜85質量部;及び、前記水及び混和剤3〜27質量部を配合することを特徴とする請求項5〜7の何れかに記載の耐火耐熱コンクリートの製造方法。   For 100 parts by weight of refractory and heat-resistant concrete, 8 to 35 parts by weight of low heat Portland cement, 3 to 31 parts by weight of ordinary Portland cement and 0.5 to 31 parts by weight of blast furnace slag fine powder, or ordinary Portland cement as the specific hydraulic substance. 3 to 31 parts by mass and 0.5 to 10 parts by mass of fly ash; 20 to 85 parts by mass of normal or lightweight aggregate as the aggregate; and 3 to 27 parts by mass of the water and the admixture. The method for producing a refractory and heat-resistant concrete according to any one of claims 5 to 7. 耐火耐熱コンクリート100質量部に対し、前記リチウム珪酸質もしくは珪酸リチウム変性液0.01〜3.5質量部、珪酸質多孔質体0.1〜6質量部、珪酸ナトリウム変性液0.04〜1.1質量部を配合することを特徴とする請求項5〜8の何れかに記載の耐火耐熱コンクリートの製造方法。   The lithium siliceous or lithium silicate modified solution 0.01 to 3.5 parts by mass, the silicic porous material 0.1 to 6 parts by mass, and the sodium silicate modified solution 0.04 to 1 with respect to 100 parts by mass of the refractory heat resistant concrete. .1 part by mass is blended, The method for producing a refractory and heat-resistant concrete according to any one of claims 5 to 8. 前記骨材として用いる天然軽量骨材又は人口軽量骨材を絶乾状態又は該骨材の吸水率の2分の1以下の給水状態で配合することを特徴とする請求項5〜9の何れかに記載の耐火耐熱コンクリートの製造方法。   The natural lightweight aggregate or artificial lightweight aggregate used as the aggregate is blended in a completely dry state or in a water supply state of half or less of the water absorption rate of the aggregate. The manufacturing method of fireproof heat-resistant concrete as described in 2. 前記混合材料としてさらに無機質の繊維状物質;及び又はポリプロピレン、アクリル樹脂、塩化ビニル樹脂、及びポリアミド樹脂からなる群から選ばれた1又は複数の有機長繊維を配合することを特徴とする請求項5〜10の何れかに記載の耐火耐熱コンクリートの製造方法。   6. The mixed material further comprises an inorganic fibrous substance; and / or one or more organic long fibers selected from the group consisting of polypropylene, acrylic resin, vinyl chloride resin, and polyamide resin. The manufacturing method of the fire-resistant heat-resistant concrete in any one of -10. 前記無機質の繊維状物質0.05〜2.5質量部及び前記有機長繊維0.02〜1.0質量部のうちの1以上を配合することを特徴とする請求項11記載の耐火耐熱コンクリートの製造方法。   The fire-resistant and heat-resistant concrete according to claim 11, wherein at least one of 0.05 to 2.5 parts by mass of the inorganic fibrous substance and 0.02 to 1.0 parts by mass of the organic long fiber is blended. Manufacturing method.
JP2003432316A 2003-12-26 2003-12-26 Fire-resisting and heat-resisting concrete and its manufacturing method Withdrawn JP2005187275A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003432316A JP2005187275A (en) 2003-12-26 2003-12-26 Fire-resisting and heat-resisting concrete and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003432316A JP2005187275A (en) 2003-12-26 2003-12-26 Fire-resisting and heat-resisting concrete and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2005187275A true JP2005187275A (en) 2005-07-14

Family

ID=34790051

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003432316A Withdrawn JP2005187275A (en) 2003-12-26 2003-12-26 Fire-resisting and heat-resisting concrete and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2005187275A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008286593A (en) * 2007-05-16 2008-11-27 Shimizu Corp Method and device for testing fire resistance of lining segment, and method of designing lining segment
EP2032799A1 (en) * 2006-06-12 2009-03-11 Hallvar Eide Method for coating a matrix with fire, water and frost-proof barrier layer as well as layer prepared by the method
JP2010120839A (en) * 2008-10-24 2010-06-03 Ohbayashi Corp Fireproof concrete
JP2011045330A (en) * 2009-08-28 2011-03-10 Taiheiyo Cement Corp Method for collecting seed and seedling of shellfishes
JP2016179917A (en) * 2015-03-24 2016-10-13 株式会社トクヤマ Fiber-reinforced lightweight concrete composition
CN114605130A (en) * 2022-04-07 2022-06-10 武汉质高环保科技有限公司 Fireproof thermal insulation facing mortar and preparation method and application thereof
CN114634320A (en) * 2022-02-28 2022-06-17 青岛中建富兴商砼有限公司 Heat-resistant and wear-resistant concrete and preparation method thereof
JP7538649B2 (en) 2020-08-07 2024-08-22 太平洋マテリアル株式会社 Inorganic lightweight coating material and method for forming inorganic lightweight coating material layer

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2032799A1 (en) * 2006-06-12 2009-03-11 Hallvar Eide Method for coating a matrix with fire, water and frost-proof barrier layer as well as layer prepared by the method
EP2032799A4 (en) * 2006-06-12 2011-09-28 Hallvar Eide Method for coating a matrix with fire, water and frost-proof barrier layer as well as layer prepared by the method
JP2008286593A (en) * 2007-05-16 2008-11-27 Shimizu Corp Method and device for testing fire resistance of lining segment, and method of designing lining segment
JP2010120839A (en) * 2008-10-24 2010-06-03 Ohbayashi Corp Fireproof concrete
JP2011045330A (en) * 2009-08-28 2011-03-10 Taiheiyo Cement Corp Method for collecting seed and seedling of shellfishes
JP2016179917A (en) * 2015-03-24 2016-10-13 株式会社トクヤマ Fiber-reinforced lightweight concrete composition
JP7538649B2 (en) 2020-08-07 2024-08-22 太平洋マテリアル株式会社 Inorganic lightweight coating material and method for forming inorganic lightweight coating material layer
CN114634320A (en) * 2022-02-28 2022-06-17 青岛中建富兴商砼有限公司 Heat-resistant and wear-resistant concrete and preparation method thereof
CN114634320B (en) * 2022-02-28 2023-06-20 青岛中建富兴商砼有限公司 Heat-resistant and wear-resistant concrete and preparation method thereof
CN114605130A (en) * 2022-04-07 2022-06-10 武汉质高环保科技有限公司 Fireproof thermal insulation facing mortar and preparation method and application thereof

Similar Documents

Publication Publication Date Title
Lahoti et al. A critical review of geopolymer properties for structural fire-resistance applications
JP6332988B2 (en) Refractory mortar
Uygunoğlu et al. Effect of plaster thickness on performance of external thermal insulation cladding systems (ETICS) in buildings
Ayudhya et al. Compressive and splitting tensile strength of autoclaved aerated concrete (AAC) containing perlite aggregate and polypropylene fiber subjected to high temperatures.
Won et al. Eco-friendly fireproof high-strength polymer cementitious composites
Bayraktar et al. Basalt fiber reinforced foam concrete with marble waste and calcium aluminate cement
KR100326614B1 (en) Fire-resistant insulation materials
JP6681272B2 (en) Composition and non-combustible material
Carabba et al. Acoustic emission study of heat-induced cracking in fly ash-based alkali-activated pastes and lightweight mortars
Kiran et al. Performance evaluation of lightweight insulating plaster for enhancing the fire endurance of high strength structural concrete
Li et al. Experimental study on the effect of fireproof coating and cooling methods on the mechanical properties of concrete exposed to high temperature
KR101668631B1 (en) Lightweight and fireproof mortar using processed dry bottom ash lightweight aggregate
AU2017207810A1 (en) Magnesium phosphate cement
JP2005187275A (en) Fire-resisting and heat-resisting concrete and its manufacturing method
KR20180007647A (en) Composition and construction method of nonflammable surface finishing materials for preventing fire spread on exterior insulation layer
Choi et al. Mix proportion of eco-friendly fireproof high-strength concrete
KR101165666B1 (en) Heat insulating material for building used the lightweight aggregates that is produced by bottom ash and waste glass
JPH0656497A (en) Alumina cement composite material
RU2372314C1 (en) Fireproof raw mix
Nazri et al. Fire resistance of ultra-high performance fibre reinforced concrete due to heating and cooling
Singh et al. Lightweight geopolymer concrete with EPS beads
WO2020236515A1 (en) Fire retardant cementitious composition
Kim et al. New approach for delaying the internal temperature rise of fire resistant mortar made with coated aggregate
Aziz et al. Predicting thermal properties and temperature rise in geopolymer concrete structures
KR100671352B1 (en) The mortar composition with bottom-ash for refractory lining

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070306