Nothing Special   »   [go: up one dir, main page]

JP2005187244A - Method for manufacturing single crystal and single crystal - Google Patents

Method for manufacturing single crystal and single crystal Download PDF

Info

Publication number
JP2005187244A
JP2005187244A JP2003428839A JP2003428839A JP2005187244A JP 2005187244 A JP2005187244 A JP 2005187244A JP 2003428839 A JP2003428839 A JP 2003428839A JP 2003428839 A JP2003428839 A JP 2003428839A JP 2005187244 A JP2005187244 A JP 2005187244A
Authority
JP
Japan
Prior art keywords
single crystal
crystal
raw material
pulling
material melt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003428839A
Other languages
Japanese (ja)
Other versions
JP4569103B2 (en
Inventor
Susumu Sonokawa
将 園川
Naoki Nagai
直樹 永井
Izumi Fusegawa
泉 布施川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Handotai Co Ltd
Original Assignee
Shin Etsu Handotai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Handotai Co Ltd filed Critical Shin Etsu Handotai Co Ltd
Priority to JP2003428839A priority Critical patent/JP4569103B2/en
Publication of JP2005187244A publication Critical patent/JP2005187244A/en
Application granted granted Critical
Publication of JP4569103B2 publication Critical patent/JP4569103B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing single crystals, by which a plurality of single crystals, each having a respectively desired crystal quality, can be manufactured without changing structures in a chamber of a single crystal production apparatus when the plurality of single crystals are grown in the production of the single crystals by a CZ method. <P>SOLUTION: In the method for manufacturing at least two or more single crystals by pulling the single crystals from a raw material melt in a chamber by the CZ method, when at least two or more single crystals are grown, at least two or more single crystals, each having a respectively desired crystal quality, are manufactured by regulating the distance between the surface of the raw material melt and a heat shielding member arranged opposite to the surface of the raw material melt in the chamber to a value at which the quality of a relevant single crystal becomes within a target crystal standard, every time when the growth of each single crystal is started, then adjusting crystal temperature gradient G, and controlling the pulling speed V to a value at which the quality of a relevant single crystal becomes within a target crystal standard, depending on the growth of respective single crystals. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、チョクラルスキー法(Czochralski Method、以下CZ法と略称する)による単結晶の製造方法に関するものであり、特に、複数の単結晶をそれぞれの単結晶毎に所望の結晶品質を有するように製造することのできる単結晶の製造方法に関するものである。   The present invention relates to a method for producing a single crystal by the Czochralski method (hereinafter abbreviated as CZ method), and in particular, a plurality of single crystals have a desired crystal quality for each single crystal. The present invention relates to a method for producing a single crystal that can be produced.

半導体デバイスの基板として用いられる単結晶には、例えばシリコン単結晶等があり、主にチョクラルスキー法により製造されている。近年、半導体デバイスでは高集積化が促進され、素子の微細化が進んでいる。それに伴い、単結晶の結晶成長中に導入されるグローンイン(Grown−in)欠陥の問題がより重要となっている。   As a single crystal used as a substrate of a semiconductor device, for example, there is a silicon single crystal or the like, which is mainly manufactured by the Czochralski method. In recent years, high integration has been promoted in semiconductor devices, and miniaturization of elements has progressed. Accordingly, the problem of grown-in defects introduced during single crystal growth has become more important.

ここで、グローンイン欠陥について図9を参照しながら説明する。
一般に、シリコン単結晶を成長させるときに、結晶成長速度V(結晶引上げ速度)が比較的高速の場合には、空孔型の点欠陥が集合したボイド起因とされているFPD(Flow Pattern Defect)やCOP(Crystal Originated Particle)等のグローンイン欠陥が結晶径方向全域に高密度に存在する。これらのボイド起因の欠陥が存在する領域はV(Vacancy)領域と呼ばれている。
Here, the grow-in defect will be described with reference to FIG.
In general, when a silicon single crystal is grown, if the crystal growth rate V (crystal pulling rate) is relatively high, FPD (Flow Pattern Defect), which is caused by voids in which hole-type point defects are gathered, is assumed. Grown-in defects such as COP (Crystal Originated Particle) and the like exist in high density throughout the crystal diameter direction. A region where defects due to these voids exist is called a V (vacancy) region.

また、結晶引上げ速度を低くしていくと成長速度の低下に伴いOSF(酸化誘起積層欠陥、Oxidation Induced Stacking Fault)領域が結晶の周辺からリング状に発生し、さらに成長速度を低速にすると、OSFリングがウエーハの中心に収縮して消滅する。一方、さらに成長速度を低速にすると格子間シリコンが集合した転位ループ起因と考えられているLSEPD(Large Secco Etch Pit Defect)、LFPD(Large Flow Pattern Defect)等の欠陥が低密度に存在し、これらの欠陥が存在する領域はI(Interstitial)領域と呼ばれている。   Further, when the crystal pulling rate is lowered, an OSF (Oxidation Induced Stacking Fault) region is generated in a ring shape from the periphery of the crystal as the growth rate is lowered, and when the growth rate is further lowered, the OSF is reduced. The ring shrinks to the center of the wafer and disappears. On the other hand, when the growth rate is further reduced, defects such as LSEPD (Large Secco Etch Pit Defect) and LFPD (Large Flow Pattern Defect), which are considered to be caused by dislocation loops in which interstitial silicon has gathered, exist at low density. The region where the defect exists is called an I (Interstitial) region.

近年、V領域とI領域の中間でOSFリングの外側に、ボイド起因のFPD、COP等の欠陥も、格子間シリコン起因のLSEPD、LFPD等の欠陥も存在しない領域の存在が発見されている。この領域はN(ニュートラル、Neutral)領域と呼ばれる。また、このN領域をさらに分類すると、OSFリングの外側に隣接するNv領域(空孔の多い領域)とI領域に隣接するNi領域(格子間シリコンが多い領域)とがあり、Nv領域では、熱酸化処理をした際に酸素析出量が多く、Ni領域では酸素析出が殆ど無いことがわかっている。   In recent years, it has been discovered that there is an area outside the OSF ring between the V region and the I region, where there are no defects such as FPD and COP caused by voids and no defects such as LSEPD and LFPD caused by interstitial silicon. This region is called an N (neutral) region. Further, this N region is further classified into an Nv region (region with many vacancies) adjacent to the outside of the OSF ring and a Ni region (region with a lot of interstitial silicon) adjacent to the I region. In the Nv region, It is known that the amount of precipitated oxygen is large when the thermal oxidation treatment is performed, and there is almost no oxygen precipitation in the Ni region.

さらに、熱酸化処理後、酸素析出が発生し易いNv領域の一部に、Cuデポジション処理で検出される欠陥が著しく発生するCuデポ欠陥領域があることが見出されており、これは酸化膜耐圧特性のような電気特性を劣化させる原因になることがわかっている。   Furthermore, it has been found that a part of the Nv region where oxygen precipitation is likely to occur after thermal oxidation treatment is a Cu deposition defect region in which defects detected by the Cu deposition treatment are remarkably generated. It has been found that it causes deterioration of electrical characteristics such as film withstand voltage characteristics.

一般に、CZ法により単結晶を製造する際には、例えば図8に示すような単結晶製造装置30を用いて単結晶の製造が行われる。
この単結晶製造装置30は、例えばシリコンのような原料多結晶を収容して溶融するための部材や、熱を遮断するための断熱材などを有しており、これらは、メインチャンバ1内に収容されている。メインチャンバ1の上部には育成した単結晶3を収容し、取り出すための引上げチャンバ2が連接されており、この上部に単結晶3をワイヤー14で引上げる引上げ機構(不図示)が設けられている。
In general, when a single crystal is manufactured by the CZ method, a single crystal is manufactured using a single crystal manufacturing apparatus 30 as shown in FIG. 8, for example.
The single crystal manufacturing apparatus 30 includes a member for containing and melting a raw material polycrystal such as silicon, a heat insulating material for cutting off heat, and the like. Contained. A pulling chamber 2 for accommodating and taking out the grown single crystal 3 is connected to the upper part of the main chamber 1, and a pulling mechanism (not shown) for pulling the single crystal 3 with a wire 14 is provided on the upper part. Yes.

メインチャンバ1内には、溶融された原料融液4を収容する石英ルツボ5とその石英ルツボ5を支持する黒鉛ルツボ6が設けられ、これらのルツボ5、6は駆動機構(不図示)によって回転昇降自在に保持軸13で支持されている。このルツボ5、6の駆動機構は、単結晶3の引上げに伴う原料融液4の液面低下を補償すべく、ルツボ5、6を液面低下分だけ上昇させるようにしている。   A quartz crucible 5 for containing the melted raw material melt 4 and a graphite crucible 6 for supporting the quartz crucible 5 are provided in the main chamber 1, and these crucibles 5 and 6 are rotated by a drive mechanism (not shown). It is supported by the holding shaft 13 so as to be movable up and down. The driving mechanism of the crucibles 5 and 6 raises the crucibles 5 and 6 by the amount corresponding to the liquid level drop in order to compensate for the liquid level drop of the raw material melt 4 accompanying the pulling of the single crystal 3.

そして、ルツボ5、6を囲繞するように、円筒形状の加熱ヒーター7が配置されている。この加熱ヒーター7の外側には、加熱ヒーター7からの熱がメインチャンバ1に直接輻射されるのを防止するために、断熱材8がその周囲を取り囲むように設けられている。   A cylindrical heater 7 is arranged so as to surround the crucibles 5 and 6. In order to prevent heat from the heater 7 from being directly radiated to the main chamber 1, a heat insulating material 8 is provided outside the heater 7 so as to surround the periphery thereof.

また、メインチャンバ1の内部には、単結晶3の冷却の制御を目的とした円筒状のガス整流筒31が設けられており、このガス整流筒31の下端には逆円錐形の遮熱部材32が設置されている。さらに、引上げチャンバ2の上部にはガス導入口10が設けられており、このガス導入口10からアルゴンガス等の不活性ガスを導入でき、引上げ中の単結晶3とガス整流筒31との間を通過させた後、原料融液4の融液面上を通過させ、ガス流出口9から排出することができる。   A cylindrical gas rectifying cylinder 31 for controlling the cooling of the single crystal 3 is provided inside the main chamber 1, and an inverted conical heat shield member is provided at the lower end of the gas rectifying cylinder 31. 32 is installed. Further, a gas introduction port 10 is provided in the upper part of the pulling chamber 2, and an inert gas such as argon gas can be introduced from the gas introduction port 10. Between the single crystal 3 being pulled and the gas rectifying cylinder 31. Can be passed through the melt surface of the raw material melt 4 and discharged from the gas outlet 9.

そして、上記の単結晶製造装置30を用いて、CZ法により単結晶を育成する場合、先ず、石英ルツボ5に原料多結晶を収容し、加熱ヒーター7により石英ルツボ5内の多結晶原料を加熱し、溶融する。次に、この原料融液4に種ホルダー15に固定された種結晶16を着液させ、その後、回転させながら静かに引上げることによって略円柱状のシリコン単結晶3を成長させることができる。   When a single crystal is grown by the CZ method using the single crystal manufacturing apparatus 30 described above, first, the raw material polycrystal is accommodated in the quartz crucible 5, and the polycrystalline raw material in the quartz crucible 5 is heated by the heater 7. And melt. Next, the seed crystal 16 fixed to the seed holder 15 is deposited on the raw material melt 4, and then pulled up gently while rotating, whereby the substantially cylindrical silicon single crystal 3 can be grown.

このようなCZ法による単結晶の製造において、上記で説明したグローンイン欠陥は、単結晶を成長させるときの引上げ速度V(mm/min)と固液界面近傍のシリコンの融点から1400℃の間の引上げ軸方向の結晶温度勾配G(℃/mm)の比であるV/G(mm/℃・min)というパラメーターにより、その導入量が決定されると考えられている(例えば、非特許文献1参照)。したがって、例えば、単結晶を育成する際の結晶引き上げ速度を変化させたり、また上記単結晶製造装置のメインチャンバ内でホットゾーンンを構成している加熱ヒーターや遮熱部材等の構造を変更して結晶温度勾配Gを変化させたりすることにより、様々な品質特性を有する単結晶を製造することが可能となっている。 In the production of a single crystal by such a CZ method, the grown-in defects described above are between 1400 ° C. from the pulling rate V (mm / min) when the single crystal is grown and the melting point of silicon near the solid-liquid interface. The amount of introduction is considered to be determined by a parameter V / G (mm 2 / ° C./min), which is the ratio of the crystal temperature gradient G (° C./mm) in the pulling axis direction (for example, non-patent literature) 1). Therefore, for example, the crystal pulling rate when growing a single crystal is changed, or the structure of a heater, a heat shield member, etc. constituting a hot zone in the main chamber of the single crystal manufacturing apparatus is changed. By changing the crystal temperature gradient G, it is possible to produce single crystals having various quality characteristics.

例えば特許文献1では、シリコン単結晶を育成する際に、結晶中心でのV/G値を所定の範囲内(例えば、0.112〜0.142mm/℃・min)に制御して単結晶を引上げることによって、ボイド起因の欠陥及び転位ループ起因の欠陥が存在しないシリコン単結晶ウエーハを得ることができることが示されている。 For example, in Patent Document 1, when a silicon single crystal is grown, the V / G value at the crystal center is controlled within a predetermined range (for example, 0.112 to 0.142 mm 2 / ° C./min), and the single crystal It has been shown that a silicon single crystal wafer free from defects caused by voids and defects caused by dislocation loops can be obtained by pulling up.

さらに、特許文献2では、育成する単結晶の周囲に置かれる引き上げ軸と同軸の熱遮蔽体が単結晶に面する内面が上方ほど内径の大きくなる逆円錐台面であり、引き上げる単結晶に対して所定の寸法を有し、下端部の融液面からの高さHを50〜130mmとして配置されているシリコン単結晶製造装置を開示しており、この装置を用いて引き上げ速度を適宜選ぶことにより、グローンイン欠陥の極めて少ない単結晶を容易に製造し得るとしている。   Furthermore, in Patent Document 2, the inner surface facing the single crystal of the heat shield coaxial with the pulling shaft placed around the single crystal to be grown is an inverted frustoconical surface whose inner diameter increases toward the upper side. Disclosed is a silicon single crystal manufacturing apparatus having a predetermined dimension and having a height H from the melt surface of the lower end portion of 50 to 130 mm. By using this apparatus, the pulling speed is appropriately selected. It is said that a single crystal with extremely few grow-in defects can be easily manufactured.

しかしながら、上記のように、所望の結晶品質を有する単結晶を製造する場合、特に、生産性の向上等の理由から引き上げ速度を速くできるV領域を含む領域で単結晶の育成が行われる場合は、欠陥発生領域を制御する方法と、欠陥発生領域内の欠陥密度を制御する方法の2つの方法での制御が要求される。通常、欠陥発生領域は、上記のように結晶引上げ速度V及び固液界面近傍の結晶温度勾配Gにより制御可能であり、また欠陥発生領域内の欠陥密度は、単結晶製造装置における炉内の温度分布と結晶引上げ速度によって決まる熱履歴により制御可能である。そして、固液界面近傍の結晶温度勾配及び炉内の温度分布は、炉内構造によってきまり、製造条件としての結晶引上げ速度を制御することにより、所望の欠陥発生領域と欠陥密度を有する単結晶が得られる。   However, as described above, when a single crystal having a desired crystal quality is manufactured, particularly when a single crystal is grown in a region including a V region where the pulling rate can be increased for reasons such as improvement in productivity. Control by two methods, that is, a method for controlling the defect occurrence region and a method for controlling the defect density in the defect occurrence region are required. Usually, the defect generation region can be controlled by the crystal pulling rate V and the crystal temperature gradient G near the solid-liquid interface as described above, and the defect density in the defect generation region is the temperature in the furnace in the single crystal manufacturing apparatus. It can be controlled by the thermal history determined by the distribution and the crystal pulling rate. The crystal temperature gradient in the vicinity of the solid-liquid interface and the temperature distribution in the furnace are determined by the structure in the furnace, and by controlling the crystal pulling speed as a manufacturing condition, a single crystal having a desired defect occurrence region and defect density can be obtained. can get.

そのため、例えば複数の単結晶を製造する場合に、各単結晶がそれぞれ異なる所望の欠陥領域及び所望の欠陥密度を有するようにするためには、それぞれの結晶品質で要求される炉内構造物を設計して単結晶製造を行う必要があり、例えば、欠陥発生領域を変えずに欠陥密度を変更することや、欠陥密度を変えずに欠陥発生領域を変えることは単結晶製造装置の炉内構造を変更しない限り実現できないという問題があった。   Therefore, for example, when manufacturing a plurality of single crystals, in order to make each single crystal have a different desired defect region and a desired defect density, the in-furnace structure required for each crystal quality is reduced. It is necessary to design and manufacture a single crystal.For example, changing the defect density without changing the defect generation area, or changing the defect generation area without changing the defect density is the in-furnace structure of the single crystal manufacturing apparatus. There was a problem that it could not be realized unless it was changed.

したがって、従来の単結晶製造では、単結晶の育成を行う度に例えばユーザーからの要求等に応じてそれぞれの結晶品質に合った炉内構造を設計して製造を行なっているため、様々な結晶品質に対してそれぞれの炉内構造物を準備し、構造物の交換・取り替え等の作業を行わなければならなかった。そのため、単結晶の品質要求における多様化が進むにつれて、製造コストアップや生産性の低下といった問題が生じ、さらに作業者に対する負担も増えるという問題もあった。そこで従来では、その対策として、ヒーターの寸法や設置位置を変更することにより熱履歴を制御するという技術も提案されているが、これも設備コストが増加し、さらに炉内構造物の構成が複雑になるなどのデメリットがあることから、より有効な技術の開発が望まれている。   Therefore, in the conventional single crystal manufacturing, every time a single crystal is grown, for example, a furnace structure suitable for each crystal quality is designed and manufactured according to the user's request, etc. Each in-furnace structure had to be prepared for quality and work such as replacement / replacement of the structure had to be performed. For this reason, as diversification in quality requirements for single crystals progresses, problems such as an increase in manufacturing cost and a decrease in productivity occur, and there is also a problem that the burden on the worker increases. Therefore, in the past, as a countermeasure, a technique of controlling the thermal history by changing the dimensions and installation position of the heater has been proposed, but this also increases the equipment cost and makes the structure of the internal structure of the furnace complicated. Therefore, the development of more effective technology is desired.

特開平11−147786号公報JP-A-11-147786 特開2001−261493号公報JP 2001-261493 A V.V.Voronkov,Journal of Crystal Growth,vol.59(1982),pp.625〜643V. V. Voronkov, Journal of Crystal Growth, vol. 59 (1982), pp. 625 to 643

そこで、本発明は上記問題点に鑑みてなされたものであって、本発明の目的は、チョクラルスキー法による単結晶の製造において、複数の単結晶を育成する際に、単結晶製造装置のチャンバ内の構造物(ホットゾーンパーツ)を取り替えることなく、各単結晶がそれぞれ所望の結晶品質を有するように単結晶を製造することのできる単結晶の製造方法を提供することにある。   Therefore, the present invention has been made in view of the above problems, and the object of the present invention is to provide a single crystal manufacturing apparatus for growing a plurality of single crystals in the manufacture of a single crystal by the Czochralski method. An object of the present invention is to provide a method for producing a single crystal, which can produce a single crystal so that each single crystal has a desired crystal quality without replacing a structure (hot zone part) in a chamber.

上記目的を達成するために、本発明によれば、チョクラルスキー法によってチャンバ内で単結晶を原料融液から引上げて、少なくとも2本以上の単結晶を製造する方法において、前記単結晶の直胴部を成長させるときの引上げ速度をV(mm/min)、固液界面近傍の引上げ軸方向の結晶温度勾配をG(℃/mm)で表したとき、前記少なくとも2本以上の単結晶を育成する際に、前記原料融液の融液面と前記チャンバ内で原料融液面に対向配置された遮熱部材との距離を個々の単結晶の育成を開始する毎に当該単結晶が目的の結晶規格となる大きさに調節して前記結晶温度勾配Gを調整し、さらに前記引上げ速度Vを個々の単結晶の育成に応じて当該単結晶が目的の結晶規格となる値に制御することによって、前記少なくとも2本以上の単結晶が各単結晶毎に所望の結晶品質を有するようにして単結晶の製造を行うことを特徴とする単結晶の製造方法が提供される(請求項1)。   In order to achieve the above object, according to the present invention, in a method for producing at least two or more single crystals by pulling a single crystal from a raw material melt in a chamber by a Czochralski method, When the pulling speed when growing the body portion is represented by V (mm / min) and the crystal temperature gradient in the pulling axis direction near the solid-liquid interface is represented by G (° C./mm), the at least two single crystals are When growing, the distance between the melt surface of the raw material melt and the heat shielding member disposed opposite to the raw material melt surface in the chamber is increased each time the single crystal is started to grow. The crystal temperature gradient G is adjusted by adjusting the size to be a crystal standard of the crystal, and the pulling speed V is controlled to a value at which the single crystal becomes a target crystal standard according to the growth of each single crystal. The at least two or more Method for producing a single crystal, characterized in that the crystal to manufacture the desired so as to have a crystal quality single crystal for each single crystal is provided (claim 1).

このように、CZ法により少なくとも2本以上の単結晶を製造する際に、原料融液面と遮熱部材との距離を個々の単結晶の育成を開始する毎に所定の大きさに調節して結晶温度勾配Gを調整し、さらに引上げ速度Vを個々の単結晶の育成に応じて所定値に制御して単結晶の製造を行うことにより、チャンバ内の構造物を取り替えることなく、各単結晶がそれぞれ所望の結晶品質を有するようにして複数の単結晶を容易にかつ低コスト・高生産性で製造することができるし、さらに作業者への負担も大幅に軽減することができる。   Thus, when manufacturing at least two or more single crystals by the CZ method, the distance between the raw material melt surface and the heat shielding member is adjusted to a predetermined size each time the growth of each single crystal is started. By adjusting the crystal temperature gradient G and controlling the pulling rate V to a predetermined value according to the growth of each single crystal, the single crystal is manufactured. A plurality of single crystals can be easily manufactured at low cost and high productivity so that each crystal has a desired crystal quality, and the burden on the operator can be greatly reduced.

このとき、前記少なくとも2本以上の単結晶を、各単結晶毎に異なる欠陥領域及び/または異なる欠陥密度を有するように製造することができる(請求項2)。
本発明の単結晶の製造方法は、前記のような特徴を有することにより、少なくとも2本以上の単結晶を製造する際に、各単結晶毎に異なる欠陥領域及び/または異なる欠陥密度を有するようにして複数の単結晶を非常に容易にかつ低コストで製造することができる。
At this time, the at least two single crystals can be manufactured so as to have different defect regions and / or different defect densities for each single crystal.
The method for producing a single crystal of the present invention has the above-described characteristics, so that when producing at least two or more single crystals, each single crystal has different defect regions and / or different defect densities. Thus, a plurality of single crystals can be manufactured very easily and at low cost.

この場合、前記少なくとも2本以上の単結晶を同一のルツボから育成することが好ましい(請求項3)。
このように少なくとも2本以上の単結晶を同一のルツボから例えば1製造バッチ内で連続的に育成することにより、チャンバ内の構造物を取り替えることなく、各単結晶がそれぞれ所望の結晶品質を有するように複数の単結晶を製造して所望品質の結晶を所望の量だけ製造することができ、多品種生産に十分に対応できるとともに、単結晶製造における製造時間の短縮やより一層のコストダウンを図ることができる。
In this case, it is preferable to grow the at least two single crystals from the same crucible.
In this way, by continuously growing at least two single crystals from the same crucible, for example, in one production batch, each single crystal has a desired crystal quality without changing the structure in the chamber. In this way, it is possible to manufacture a plurality of single crystals to produce a desired amount of crystals of a desired quality, which is sufficient for multi-product production, and shortens manufacturing time and further reduces costs in single crystal manufacturing. Can be planned.

また、前記単結晶をV領域で育成する際に、該単結晶に形成される欠陥が所望のサイズとなるようにすることができる(請求項4)。
本発明では、特に単結晶をV領域で育成する際に、所望の欠陥密度にすることができるだけでなく、単結晶に形成される欠陥のサイズを所望のサイズとなるようにすることができるため、様々な結晶品質を有する単結晶を容易に作り分けることができ、ユーザーからの要求を確実に満たすような高品質の単結晶を低コストで安定して製造することが可能となる。
In addition, when the single crystal is grown in the V region, defects formed in the single crystal can have a desired size.
In the present invention, particularly when a single crystal is grown in the V region, not only can a desired defect density be achieved, but also the size of defects formed in the single crystal can be set to a desired size. Thus, single crystals having various crystal qualities can be easily made and high-quality single crystals that reliably satisfy the user's requirements can be stably manufactured at low cost.

さらに、前記原料融液面と遮熱部材との距離を、予め試験を行って求めた変更条件に従って自動的に調節することが好ましい(請求項5)。
原料融液面と遮熱部材との距離を各単結晶の育成毎に調節する際に、例えば実際に単結晶の製造が行われる製造環境での結晶温度勾配Gの分布を予めシミュレーション解析、あるいは実生産等の試験を行って明らかにし、そこで得られた情報を基に各単結晶が目的の結晶規格となるようにして原料融液面と遮熱部材との距離を変更する変更条件を求めておく。そして、その求めた変更条件に従って原料融液面と遮熱部材との距離を単結晶の育成を開始する毎に自動的に調節することによって、結晶温度勾配Gを高精度に自動調整することが可能となるので、各単結晶がそれぞれ所望の結晶品質を高精度に有する複数の単結晶を一層安定して製造することができる。
Furthermore, it is preferable that the distance between the raw material melt surface and the heat shield member is automatically adjusted according to a change condition obtained by conducting a test in advance.
When adjusting the distance between the raw material melt surface and the heat shield member for each growth of each single crystal, for example, a simulation analysis of the distribution of the crystal temperature gradient G in a manufacturing environment where the single crystal is actually manufactured, or Based on the information obtained from the actual production and other tests, the change conditions for changing the distance between the raw material melt surface and the heat shield member are determined so that each single crystal has the target crystal specification. Keep it. Then, the crystal temperature gradient G can be automatically adjusted with high accuracy by automatically adjusting the distance between the raw material melt surface and the heat shield member every time the growth of the single crystal is started according to the obtained change condition. Therefore, it is possible to more stably manufacture a plurality of single crystals in which each single crystal has a desired crystal quality with high accuracy.

加えて、前記単結晶の直胴部の引上げ中に原料融液面と遮熱部材との距離を制御することが好ましい(請求項6)。
このように、単結晶直胴部の引上げ中に原料融液面と遮熱部材との距離を制御することにより、単結晶育成中に結晶温度勾配Gを非常に高精度に制御することができるようになるので、所望の結晶品質を有する単結晶を非常に安定して製造することができる。
In addition, it is preferable to control the distance between the raw material melt surface and the heat shield member during the pulling of the straight body portion of the single crystal.
In this way, by controlling the distance between the raw material melt surface and the heat shield member during the pulling of the single crystal straight body portion, the crystal temperature gradient G can be controlled with very high accuracy during single crystal growth. Therefore, a single crystal having a desired crystal quality can be manufactured very stably.

また、本発明の製造方法では、前記チャンバ内に、冷却媒体で強制冷却される冷却筒と、該冷却筒の下方に設置される冷却補助部材とを前記育成する単結晶を取り囲むように配置しておくことが好ましい(請求項7)。
このように、チャンバ内に冷却筒と冷却補助部材とを育成する単結晶を取り囲むように配置しておくことにより、単結晶を引上げる際に、例えば点欠陥が凝集する温度帯を所望の冷却速度で急冷することが可能となり、所望の結晶品質を高精度に有する単結晶をより確実に育成することができる。
In the manufacturing method of the present invention, a cooling cylinder forcedly cooled with a cooling medium and a cooling auxiliary member installed below the cooling cylinder are arranged in the chamber so as to surround the single crystal to be grown. (Claim 7).
In this way, by placing the cooling cylinder and the cooling auxiliary member in the chamber so as to surround the single crystal, when the single crystal is pulled up, for example, a temperature zone where point defects are aggregated is cooled to a desired level. It becomes possible to rapidly cool at a speed, and a single crystal having a desired crystal quality with high accuracy can be grown more reliably.

さらに、前記単結晶の引上げを、中心磁場強度が300ガウス以上6000ガウス以下の範囲となる磁場を印加しながら行うことが好ましい(請求項8)。
このように、単結晶を引上げる際に中心磁場強度が300ガウス以上6000ガウス以下となる磁場を印加することにより、ルツボ内の原料融液の対流を制御し、融液対流が安定していて結晶成長界面形状が良好な状態で単結晶を育成することができるため、所望の結晶品質を有する高品質の単結晶を、より高い製造歩留り、より高い生産性で製造することができる。
Furthermore, it is preferable that the single crystal is pulled while applying a magnetic field having a central magnetic field strength in the range of 300 gauss to 6000 gauss (claim 8).
Thus, by applying a magnetic field having a central magnetic field strength of 300 to 6000 gauss when pulling up the single crystal, the convection of the raw material melt in the crucible is controlled, and the melt convection is stable. Since a single crystal can be grown in a state where the crystal growth interface shape is good, a high-quality single crystal having a desired crystal quality can be manufactured with higher production yield and higher productivity.

また、前記製造する単結晶をシリコン単結晶とすることができ(請求項9)、さらに、前記単結晶の直胴部の直径を150mm以上とすることができる(請求項10)。
本発明は、シリコン単結晶を製造する場合や、また直胴部の直径が150mm以上の大口径となる場合に特に好適に用いることができる。それにより、それぞれが所望の結晶品質を有する複数のシリコン単結晶を、チャンバ内の構造物を取り替えることなく容易にかつ低コストで製造することができる。また、結晶径方向面内の温度分布が大きくなりやすかった直径150mm以上となる大口径の単結晶を複数製造する場合でも、チャンバ内の構造物を取り替えることなく、各単結晶がそれぞれ所望の結晶品質を有するように容易にかつ低コストで製造を行うことができる。
The single crystal to be manufactured can be a silicon single crystal (Claim 9), and the diameter of the straight body of the single crystal can be 150 mm or more (Claim 10).
The present invention can be particularly suitably used when a silicon single crystal is manufactured or when the diameter of the straight body portion is a large diameter of 150 mm or more. Thereby, a plurality of silicon single crystals each having a desired crystal quality can be manufactured easily and at low cost without replacing the structure in the chamber. In addition, even when manufacturing a plurality of large-diameter single crystals having a diameter of 150 mm or more, in which the temperature distribution in the crystal diameter direction plane is likely to be large, each single crystal has a desired crystal without changing the structure in the chamber. Manufacturing can be performed easily and at low cost so as to have quality.

そして、本発明によれば、前記単結晶の製造方法により製造された単結晶が提供される(請求項11)。
このように本発明により製造された単結晶は、チャンバ内の構造物を取り替えることなく、各単結晶がそれぞれ所望の結晶品質を有するようにして製造された高品質で低コストの単結晶とすることができる。
And according to this invention, the single crystal manufactured by the manufacturing method of the said single crystal is provided (Claim 11).
Thus, the single crystal manufactured according to the present invention is a high-quality and low-cost single crystal manufactured so that each single crystal has a desired crystal quality without replacing the structure in the chamber. be able to.

以上のように、本発明によれば、CZ法により少なくとも2本以上の単結晶を製造する際に、チャンバ内の構造物を取り替えることなく、各単結晶がそれぞれ所望の結晶品質を有するようにして複数の単結晶を容易にかつ低コスト・高生産性で製造することができる。   As described above, according to the present invention, when manufacturing at least two or more single crystals by the CZ method, each single crystal has a desired crystal quality without replacing the structure in the chamber. Thus, a plurality of single crystals can be easily manufactured at low cost and high productivity.

以下、本発明について実施の形態を説明するが、本発明はこれらに限定されるものではない。
本発明者等は、CZ法により少なくとも2本以上の単結晶を製造する際に、従来のようにチャンバ内の構造物の交換・取り替え作業を行うことなく、各単結晶がそれぞれ所望の結晶品質を有するようにして単結晶の製造を行うことのできる製造方法について鋭意実験及び検討を重ねた。その結果、単結晶を育成する際の原料融液の融液面とチャンバ内に設けられた遮熱部材との距離に注目し、この原料融液面と遮熱部材間の距離を個々の単結晶育成を開始する毎に調節することによって、固液界面近傍のシリコンの融点から1400℃の間の引上げ軸方向の結晶温度勾配Gを調整できるため、それぞれが所望の結晶品質を有する複数の単結晶を炉内構造物の取り替えを行わずに製造可能であると考えた。
Hereinafter, although an embodiment is described about the present invention, the present invention is not limited to these.
When manufacturing at least two or more single crystals by the CZ method, the present inventors do not replace / replace the structure in the chamber as in the prior art, and each single crystal has a desired crystal quality. As a result, diligent experiments and studies were conducted on a production method capable of producing a single crystal so as to have the above. As a result, attention is paid to the distance between the melt surface of the raw material melt when the single crystal is grown and the heat shield member provided in the chamber, and the distance between the raw material melt surface and the heat shield member is determined for each individual unit. By adjusting each time crystal growth is started, the crystal temperature gradient G in the pulling axis direction between 1400 ° C. and the melting point of silicon in the vicinity of the solid-liquid interface can be adjusted, so that a plurality of single crystals each having a desired crystal quality can be obtained. It was considered that crystals could be manufactured without replacing the furnace structure.

ここで、総合伝熱解析ソフトFEMAG(F.Dupret, P.Nicodeme, Y.Ryckmans, P.Wouters, and M.J.Crochet, Int.J.Heat Mass Transfer,33,1849(1990))を用いて、原料融液の融液面とチャンバ内に設けた遮熱部材間の距離を様々な大きさに調節して単結晶の引上げを行った場合の引上げ軸方向の結晶温度勾配Gについてシミュレーション解析した結果の一例を図1に示す。   Here, comprehensive heat transfer analysis software FEMAG (F. Dupret, P. Nicodeme, Y. Ryckmans, P. Waterers, and M. J. Crochet, Int. J. Heat Mass Transfer, 33, 1849 (1990)) was used. Simulation analysis of the crystal temperature gradient G in the pulling axis direction when the single crystal is pulled by adjusting the distance between the melt surface of the raw material melt and the heat shielding member provided in the chamber to various sizes An example of the results is shown in FIG.

図1に示したように、シミュレーション解析の結果から、原料融液面と遮熱部材間の距離を変えることによって結晶温度勾配Gを変化させることができることがわかる。そこで、本発明者等は、上記のシミュレーション解析の結果を踏まえて、単結晶の育成を開始する際に原料融液面と遮熱部材間の距離を種々の大きさに調整し、さらに単結晶の直胴部を成長させるときの引上げ速度Vを様々な値に制御して単結晶の製造を行い、それぞれの条件で得られた単結晶の結晶品質を調べる実験を行った。   As shown in FIG. 1, it can be seen from the results of the simulation analysis that the crystal temperature gradient G can be changed by changing the distance between the raw material melt surface and the heat shield member. Therefore, the inventors adjusted the distance between the raw material melt surface and the heat shielding member to various sizes when starting the growth of the single crystal based on the result of the simulation analysis described above, A single crystal was produced by controlling the pulling speed V when growing the straight body of the film to various values, and an experiment was conducted to examine the crystal quality of the single crystal obtained under each condition.

(実験)
図8に示した従来の単結晶製造装置30を用いて、直径32インチ(800mm)の石英ルツボ5に原料多結晶シリコンを300kgチャージし、CZ法により直径300mmのシリコン単結晶を育成した。尚、このとき、原料融液4の融液面と遮熱部材32との最短距離が、単結晶の育成を開始する際に30、50、または70mmとなるように調節し、また単結晶直胴部を成長させるときの引上げ速度Vを0.9〜0.3mm/minの範囲で制御して、種々のシリコン単結晶を製造した。そして、得られた種々のシリコン単結晶の直胴部からそれぞれウエーハを切り出した後、平面研削及び研磨を行って検査用のサンプルを作製し、そのサンプルウエーハの欠陥領域の分布を異物検査装置(KLAテンコール社製、SP−1)で検査した。この欠陥領域検査で得られた検査結果を図2に示す。
(Experiment)
Using the conventional single crystal manufacturing apparatus 30 shown in FIG. 8, 300 kg of raw polycrystalline silicon was charged into a quartz crucible 5 having a diameter of 32 inches (800 mm), and a silicon single crystal having a diameter of 300 mm was grown by the CZ method. At this time, the shortest distance between the melt surface of the raw material melt 4 and the heat shield member 32 is adjusted to be 30, 50, or 70 mm when starting the growth of the single crystal. Various silicon single crystals were manufactured by controlling the pulling speed V when growing the body part in a range of 0.9 to 0.3 mm / min. Then, after each wafer was cut out from the obtained straight body portions of various silicon single crystals, surface grinding and polishing were performed to prepare samples for inspection, and the distribution of defect areas on the sample wafer was measured with a foreign substance inspection device ( Inspected by SP-1), manufactured by KLA Tencor. The inspection result obtained by this defect area inspection is shown in FIG.

図2に示したように、原料融液面と遮熱部材との距離を変化させたり、また引上げ速度Vの値を変化させることによって、育成する単結晶の欠陥領域も変化することがわかる。この結果から、単結晶を育成する際に調節する原料融液面と遮熱部材との距離の大きさ、及び単結晶直胴部の引上げ中に制御する引上げ速度Vの値の組み合わせを適宜選択することにより、チャンバ内の構造物の交換・取り替えを行わなくても所望の欠陥領域を有する単結晶を容易に製造できることがわかる。   As shown in FIG. 2, it can be seen that the defect region of the single crystal to be grown also changes by changing the distance between the raw material melt surface and the heat shielding member or by changing the pulling speed V. From this result, a combination of the magnitude of the distance between the raw material melt surface and the heat shield member that is adjusted when growing the single crystal and the value of the pulling speed V that is controlled during pulling of the single crystal straight body portion is appropriately selected. By doing so, it can be seen that a single crystal having a desired defect region can be easily manufactured without replacement / replacement of the structure in the chamber.

さらに、本発明者等は、上記で製造した単結晶のうちで同じ欠陥領域を有する単結晶について、すなわち、図2のA1、B1、C1の単結晶、またA2、B2、C2の単結晶について、欠陥密度及び欠陥サイズの分布について調査した。その結果を図3及び図4に示す。   Further, the present inventors have made a single crystal having the same defect region among the single crystals produced above, that is, a single crystal of A1, B1, and C1, and a single crystal of A2, B2, and C2 in FIG. The defect density and defect size distribution were investigated. The results are shown in FIGS.

図3及び図4に示したように、同じ欠陥領域を示すA1、B1、C1の単結晶や、またA2、B2、C2の単結晶であっても、それらの単結晶の欠陥密度を調べてみると、それぞれが互いに異なる欠陥密度(欠陥の個数)を有していることがわかる。さらに、図3及び図4に示したように、V領域で育成した単結晶の場合は、同じ欠陥領域を有する単結晶であっても、形成される欠陥のサイズの分布も異なることが確認できる。例えば、同じ欠陥領域を有する単結晶A1と単結晶C1を比較すると、C1の単結晶の方が0.12μm以上のサイズを有する欠陥の数は少ないものの、0.16μm以上の欠陥についてはA1の単結晶の方が少なくなる。すなわち、単結晶C1は、単結晶A1に比べて、欠陥密度は低いものの、一つ一つの欠陥のサイズがより大きなものであることがわかる。   As shown in FIGS. 3 and 4, even if the single crystal of A1, B1, and C1 showing the same defect region, or the single crystal of A2, B2, and C2, the defect density of these single crystals is investigated. As can be seen, each has a different defect density (number of defects). Furthermore, as shown in FIG. 3 and FIG. 4, in the case of a single crystal grown in the V region, it can be confirmed that even if the single crystal has the same defect region, the distribution of the size of defects formed is different. . For example, when the single crystal A1 having the same defect region and the single crystal C1 are compared, the single crystal of C1 has a smaller number of defects having a size of 0.12 μm or more, but a defect of 0.11 μm or more is A1. Single crystal is less. That is, it can be seen that the single crystal C1 has a lower defect density than the single crystal A1, but has a larger size of each defect.

これは、原料融液面と遮熱部材間の距離を変えることにより、単結晶を所望の欠陥領域で育成するために選択する最適な結晶引上げ速度の値が変化し、それによって結晶育成中に単結晶が受ける熱履歴が変わることによると思われる。つまり、原料融液面と遮熱部材との距離が変化すると、最適な結晶引上げ速度も変化するため、その結果、図5に示すように、欠陥の凝集が進む特定の温度帯(例えば、1150〜1080℃帯)での単結晶の通過時間が変化し、例えば結晶引上げ速度が遅くなるほど、1150〜1080℃帯の通過時間も長くなることから欠陥の凝集が進むので、小さいサイズの欠陥が減少し、大きいサイズの欠陥が増加するようになる。   This is because, by changing the distance between the raw material melt surface and the heat shield member, the optimum crystal pulling speed value selected for growing a single crystal in a desired defect region changes, and thereby, during crystal growth. This seems to be due to the change in the thermal history of the single crystal. That is, when the distance between the raw material melt surface and the heat shield member changes, the optimum crystal pulling rate also changes. As a result, as shown in FIG. The passage time of the single crystal in the (-1080 ° C. band) changes. For example, the slower the crystal pulling rate, the longer the transit time in the 1150-1080 ° band, so that the agglomeration of defects proceeds, so that small size defects are reduced However, defects of large size will increase.

本発明は、原料融液面と遮熱部材間の距離、及び引上げ速度Vを変化させることにより、上記のように育成する単結晶の欠陥領域や欠陥密度を変化させることができることを利用して見出されたものである。   The present invention utilizes the fact that the defect region and defect density of the single crystal grown as described above can be changed by changing the distance between the raw material melt surface and the heat shield member and the pulling speed V. It has been found.

すなわち、本発明の単結晶の製造方法は、CZ法によってチャンバ内で単結晶を原料融液から引上げて、少なくとも2本以上の単結晶を製造する方法において、少なくとも2本以上の単結晶を育成する際に、原料融液面とチャンバ内で原料融液面に対向配置された遮熱部材との距離を個々の単結晶の育成を開始する毎に当該単結晶が目的の結晶規格となる大きさに調節して結晶温度勾配Gを調整し、さらに引上げ速度Vを個々の単結晶の育成に応じて当該単結晶が目的の結晶規格となる値に制御することによって、少なくとも2本以上の単結晶が各単結晶毎に所望の結晶品質を有するようにして単結晶の製造を行うことに特徴を有するものである。   That is, in the method for producing a single crystal of the present invention, at least two or more single crystals are grown in the method for producing at least two or more single crystals by pulling the single crystal from the raw material melt in the chamber by the CZ method. When the growth of individual single crystals is started, the distance between the raw material melt surface and the heat shielding member disposed opposite to the raw material melt surface in the chamber is such that the single crystal becomes the target crystal standard. The crystal temperature gradient G is adjusted by adjusting the thickness, and the pulling rate V is controlled to a value at which the single crystal becomes a target crystal standard according to the growth of each single crystal, whereby at least two or more single crystals are obtained. This is characterized in that the single crystal is manufactured so that the crystal has a desired crystal quality for each single crystal.

以下、本発明の単結晶の製造方法について図面を参照しながら詳細に説明するが、本発明はこれに限定されるものではない。
本発明の単結晶の製造方法で用いられる単結晶引上げ装置は、チャンバ内に原料融液面に対向して配置された遮熱部材を具備し、単結晶の育成を開始する際に原料融液面と遮熱部材間の距離を調節・変更できるものであれば特に限定されないが、例えば図6に示すような単結晶引上げ装置を用いることができる。先ず、図6を参照しながら、本発明の単結晶の製造方法を実施する際に使用することのできる単結晶引上げ装置について説明する。
Hereinafter, although the manufacturing method of the single crystal of this invention is demonstrated in detail, referring drawings, this invention is not limited to this.
The single crystal pulling apparatus used in the method for producing a single crystal of the present invention includes a heat shield member disposed in the chamber so as to face the surface of the raw material melt, and starts the growth of the single crystal. Although it will not specifically limit if the distance between a surface and a heat-shielding member can be adjusted and changed, For example, a single crystal pulling apparatus as shown in FIG. 6 can be used. First, a single crystal pulling apparatus that can be used when carrying out the method for producing a single crystal of the present invention will be described with reference to FIG.

図6に示した単結晶引上げ装置20は、メインチャンバ1内に、原料融液4を収容する石英ルツボ5と、この石英ルツボ5を保護する黒鉛ルツボ6とがルツボ駆動機構21によって回転・昇降自在に保持軸13で支持されており、またこれらのルツボ5、6を取り囲むようにして原料融液を加熱するための加熱ヒーター7と断熱材8が配置されている。   In the single crystal pulling apparatus 20 shown in FIG. 6, a quartz crucible 5 that accommodates a raw material melt 4 and a graphite crucible 6 that protects the quartz crucible 5 are rotated and moved up and down by a crucible drive mechanism 21 in a main chamber 1. A heater 7 and a heat insulating material 8 for heating the raw material melt are disposed so as to surround the crucibles 5, 6.

メインチャンバ1の上部には育成した単結晶3を収容し、取り出すための引上げチャンバ2が連接されており、引上げチャンバ2の上部には単結晶3をワイヤー14で回転させながら引上げる引上げ機構17が設けられている。
さらに、メインチャンバ1の内部には、引上げ中の単結晶3を取り囲むように冷却筒22が設置されており、冷媒導入口23から冷却媒体を流して冷却筒22内を循環させることによって単結晶3を強制冷却できるようになっている。この場合、冷却筒22内に流す冷却媒体の流量や温度を調節することにより、冷却筒22の除去熱量を変化させることができる。これにより、所望の冷却雰囲気を作りだすことが可能となり、単結晶引上げ中に特定の温度帯を所望の冷却速度で急冷するように制御することができる。
A pulling chamber 2 for accommodating and taking out the grown single crystal 3 is connected to the upper part of the main chamber 1, and a pulling mechanism 17 for pulling up the single crystal 3 while rotating it with a wire 14 is connected to the upper part of the pulling chamber 2. Is provided.
Further, a cooling cylinder 22 is installed inside the main chamber 1 so as to surround the single crystal 3 being pulled, and the single crystal is circulated through the cooling cylinder 22 by flowing a cooling medium from the refrigerant inlet 23. 3 can be forcibly cooled. In this case, the amount of heat removed from the cooling cylinder 22 can be changed by adjusting the flow rate and temperature of the cooling medium flowing in the cooling cylinder 22. As a result, a desired cooling atmosphere can be created, and control can be performed so that a specific temperature zone is rapidly cooled at a desired cooling rate during pulling of the single crystal.

また、冷却筒22の下方部から原料融液4の表面近傍に延伸する円筒状の冷却補助部材11が設けられている。この冷却補助部材11は、引上げられた直後の高温の単結晶3の周囲を囲んでおり、加熱ヒーター7あるいは原料融液4等からの輻射熱を遮って単結晶3を冷却する効果を有する。尚、冷却補助部材の形状は、円筒状に限られず、他には、例えば下方に向かって縮径された形状のものが挙げられる。この冷却補助部材の配置位置、形状等を変更することによっても、単結晶引上げの際に、各温度帯を所望の冷却速度で急冷するように制御することが可能である。   Further, a cylindrical cooling auxiliary member 11 extending from the lower part of the cooling cylinder 22 to the vicinity of the surface of the raw material melt 4 is provided. This cooling auxiliary member 11 surrounds the periphery of the high-temperature single crystal 3 immediately after being pulled up, and has an effect of cooling the single crystal 3 by blocking radiant heat from the heater 7 or the raw material melt 4. The shape of the cooling auxiliary member is not limited to a cylindrical shape, and other examples include a shape whose diameter is reduced downward. By changing the arrangement position, shape, and the like of this cooling auxiliary member, it is possible to control each temperature zone to be rapidly cooled at a desired cooling rate when pulling the single crystal.

さらに、冷却筒22の外側には、保護部材24が設けられている。保護部材24は、メインチャンバ1の天井部から延伸し、メインチャンバ1内の冷却筒22の下端面を含む外周面を覆うようにして配置されている。このように保護部材24を設けることで、原料多結晶の溶融時などに飛散する恐れのある原料融液が冷却筒22に付着することを防ぐことができるし、また、加熱ヒーター7等からの輻射熱が直接冷却筒22にあたるのを防ぐことができるので、冷却筒22の損傷の防止や除熱効果の向上を図ることができる。   Further, a protective member 24 is provided outside the cooling cylinder 22. The protection member 24 extends from the ceiling portion of the main chamber 1 and is disposed so as to cover the outer peripheral surface including the lower end surface of the cooling cylinder 22 in the main chamber 1. By providing the protective member 24 in this way, it is possible to prevent the raw material melt that may be scattered when the raw material polycrystal is melted from adhering to the cooling cylinder 22, and from the heater 7 and the like. Since it is possible to prevent the radiant heat from directly hitting the cooling cylinder 22, it is possible to prevent damage to the cooling cylinder 22 and improve the heat removal effect.

そして、上記冷却補助部材11の下部には原料融液4と対向するように遮熱部材12を設置して、原料融液4の表面からの輻射をカットするとともに原料融液4の表面を保温するようにしている。また、本発明では、例えば冷却補助部材11を昇降させて遮熱部材12の位置を上下に調節できる遮熱部材駆動手段(不図示)を設置することも可能である。尚、本発明において、遮熱部材12の形状や材質等は特に限定されるものではなく、必要に応じて適宜変更することができる。また、この遮熱部材12は、融液面に対向配置されたものであれば良く、必ずしも上記のように冷却補助部材11の下部に設置されているものに限定されず、例えば図7(a)に示すように、ガス整流筒26の下端に逆円錐形の遮熱部材12aを設置したり、また図7(b)に示すように、断熱材8に設置されている保持部材27の先端から遮熱部材12bを傾斜させて設置することもできる。   A heat shield member 12 is installed below the cooling auxiliary member 11 so as to face the raw material melt 4 to cut off radiation from the surface of the raw material melt 4 and to keep the surface of the raw material melt 4 warm. Like to do. In the present invention, it is also possible to install a heat shield member driving means (not shown) that can move the cooling auxiliary member 11 up and down to adjust the position of the heat shield member 12 up and down. In the present invention, the shape, material, and the like of the heat shield member 12 are not particularly limited, and can be changed as appropriate. Further, the heat shield member 12 only needs to be disposed so as to face the melt surface, and is not necessarily limited to the one installed below the cooling auxiliary member 11 as described above. For example, FIG. As shown in FIG. 7, an inverted conical heat shield member 12 a is installed at the lower end of the gas rectifying cylinder 26, and the tip of the holding member 27 installed in the heat insulating material 8 as shown in FIG. The heat shield member 12b can also be installed inclined.

また、引上げチャンバ2の上部に設けられたガス導入口10からはアルゴンガス等の不活性ガスを導入でき、引上げ中の単結晶3と冷却筒22及び冷却補助部材11との間を通過させた後、遮熱部材12と原料融液4の融液面との間を通過させ、ガス流出口9から排出することができる。   In addition, an inert gas such as argon gas can be introduced from the gas inlet 10 provided in the upper part of the pulling chamber 2, and is passed between the single crystal 3 being pulled, the cooling cylinder 22, and the cooling auxiliary member 11. Then, it can pass through between the heat shield member 12 and the melt surface of the raw material melt 4, and can be discharged from the gas outlet 9.

さらに、上記のルツボ駆動機構21や遮熱部材駆動手段(不図示)はそれぞれ駆動制御手段18に接続されている。そして、例えばこの駆動制御手段18に、ルツボ5、6の位置、遮熱部材12の位置、CCDカメラ19で測定した原料融液4の融液面の位置等の情報がフィードバックされることにより、駆動制御手段18でルツボ駆動機構21及び/または遮熱部材駆動手段を調節してルツボ5、6の位置及び/または遮熱部材12の位置を変えることができ、それによって、原料融液4の融液面と遮熱部材12間の距離Lを調節できるようになっている。尚、本発明では、上記の遮熱部材駆動手段は必ずしも設置されている必要はなく、例えばルツボ駆動機構21によって原料融液面と遮熱部材の距離を調節することができれば良く、このような単結晶引上げ装置は、従来用いられている装置に大幅な改造を加えることなく対応することが可能となるという利点がある。   Further, the crucible drive mechanism 21 and the heat shield member drive means (not shown) are connected to the drive control means 18, respectively. For example, information such as the position of the crucibles 5 and 6, the position of the heat shield member 12, the position of the melt surface of the raw material melt 4 measured by the CCD camera 19 is fed back to the drive control unit 18. The position of the crucibles 5 and 6 and / or the position of the heat shield member 12 can be changed by adjusting the crucible drive mechanism 21 and / or the heat shield member drive means with the drive control means 18. The distance L between the melt surface and the heat shield member 12 can be adjusted. In the present invention, the heat shield member driving means is not necessarily installed. For example, the distance between the raw material melt surface and the heat shield member may be adjusted by the crucible drive mechanism 21. The single crystal pulling apparatus has an advantage that it can be applied to a conventionally used apparatus without significant modification.

加えて、図6に示した単結晶引上げ装置20は、メインチャンバ1の外側に磁場発生装置25を配置することができ、原料融液に例えば中心磁場強度が300ガウス以上6000ガウス以下となる磁場を印加することができるようになっている。   In addition, the single crystal pulling apparatus 20 shown in FIG. 6 can arrange the magnetic field generator 25 outside the main chamber 1, and the magnetic field intensity of the raw material melt is, for example, 300 gauss or more and 6000 gauss or less. Can be applied.

このような単結晶引上げ装置20を用いて、CZ法により例えばシリコン単結晶を育成する場合、種ホルダー15に固定された種結晶16を石英ルツボ5中の原料融液(シリコン融液)4に浸漬し、その後回転させながら静かに引上げて種絞りを形成した後所望の直径まで拡径して、略円柱形状の直胴部を有するシリコン単結晶3を成長させることができる。   When, for example, a silicon single crystal is grown by the CZ method using such a single crystal pulling apparatus 20, the seed crystal 16 fixed to the seed holder 15 is used as the raw material melt (silicon melt) 4 in the quartz crucible 5. The silicon single crystal 3 having a substantially cylindrical straight body portion can be grown by immersing and then gently pulling up while rotating to form a seed drawing and then expanding to a desired diameter.

本発明は、このようにCZ法によってシリコン単結晶を原料融液から引上げて、少なくとも2本以上の単結晶を製造する際に、原料融液面と遮熱部材との距離Lを個々のシリコン単結晶の育成を開始する毎に当該単結晶が目的の結晶規格となる大きさに調節して結晶温度勾配Gを調整し、さらに単結晶直胴部を育成する際の引上げ速度Vを個々の単結晶の育成に応じて当該単結晶が目的の結晶規格となる値に制御して単結晶の製造を行うものである。   In the present invention, when the silicon single crystal is pulled up from the raw material melt by the CZ method in this way to produce at least two single crystals, the distance L between the raw material melt surface and the heat shielding member is set to each individual silicon. Each time the growth of a single crystal is started, the crystal temperature gradient G is adjusted by adjusting the size of the single crystal to the target crystal standard, and the pulling speed V when growing the single crystal straight body portion is set to each individual crystal. According to the growth of the single crystal, the single crystal is controlled to a value that satisfies the target crystal standard.

具体的に説明すると、先ず1本目のシリコン単結晶の引上げを開始する際に、この1本目のシリコン単結晶が目的の結晶規格となるように、ルツボ駆動機構21でルツボ5、6の位置を移動させたり、また遮熱部材駆動手段で遮熱部材12の位置を移動させることによって原料融液面と遮熱部材との距離Lを調節して結晶温度勾配Gの調整を行う。   More specifically, when starting the pulling of the first silicon single crystal, the crucible driving mechanism 21 positions the crucibles 5 and 6 so that the first silicon single crystal becomes the target crystal standard. The crystal temperature gradient G is adjusted by adjusting the distance L between the raw material melt surface and the heat shield member by moving or by moving the position of the heat shield member 12 by the heat shield member driving means.

そして上記のように原料融液面と遮熱部材との距離Lを調節した後、単結晶の引上げを開始し、単結晶の直胴部を成長させる際にシリコン単結晶が目的の結晶規格となるように引上げ速度Vを制御しながら単結晶の育成を行う。   Then, after adjusting the distance L between the raw material melt surface and the heat shield member as described above, the pulling of the single crystal is started, and when the straight body of the single crystal is grown, the silicon single crystal has the target crystal standard. The single crystal is grown while controlling the pulling speed V so that

このように、1本目のシリコン単結晶の育成を開始するときに原料融液面と遮熱部材間の距離Lを所定の大きさに調節して結晶温度勾配Gを調整し、さらに引上げ速度Vを所定値に制御しながらシリコン単結晶を育成することによって、当該1本目の単結晶が所望の結晶品質を有するように単結晶の製造を行うことができる。   In this way, when the growth of the first silicon single crystal is started, the crystal temperature gradient G is adjusted by adjusting the distance L between the raw material melt surface and the heat shield member to a predetermined size, and the pulling speed V By growing the silicon single crystal while controlling the value to a predetermined value, the single crystal can be manufactured so that the first single crystal has a desired crystal quality.

このとき、例えば単結晶製造に用いる単結晶引上げ装置について予めシミュレーション解析あるいは実測等の試験を行って、原料融液面と遮熱部材間の距離L及び引上げ速度Vの条件と育成される単結晶の結晶品質との関係を調べてデータ化しておくことにより、育成する単結晶が所望の結晶品質となるように上記原料融液面と遮熱部材との距離Lの大きさ、及び直胴部を育成する際の引上げ速度Vの値を適切に設定することができる。   At this time, for example, a single crystal pulling apparatus used for manufacturing a single crystal is subjected to tests such as simulation analysis or actual measurement in advance, and a single crystal grown under conditions of the distance L between the raw material melt surface and the heat shield member and the pulling speed V By investigating the relationship with the crystal quality of the material and making it into data, the size of the distance L between the raw material melt surface and the heat shield member, and the straight body part so that the single crystal to be grown has the desired crystal quality The value of the pulling speed V when growing can be appropriately set.

特にこの場合、予め調べた原料融液面と遮熱部材間の距離L及び引上げ速度Vの条件と、育成される単結晶の結晶品質との関係、さらに育成する単結晶の目的とする結晶品質を例えば上記駆動制御手段18に入力しておき、そして単結晶の育成を開始する際に、例えばルツボ5、6の位置、遮熱部材12の位置、CCDカメラ19で測定した原料融液4の融液面の位置等の情報が駆動制御手段18にフィードバックされることにより、原料融液面と遮熱部材との距離を単結晶が目的の結晶規格となる大きさに自動的に変更することができる。このように原料融液面と遮熱部材との距離を予め試験を行って求めた変更条件に従って自動的に調節することにより、結晶温度勾配Gを高精度に調整することが可能となるので、所望の結晶品質を高精度に有する単結晶を非常に安定して製造することができる。   In particular, in this case, the relationship between the condition of the distance L between the raw material melt surface and the heat shield member and the pulling speed V examined in advance and the crystal quality of the single crystal to be grown, and the target crystal quality of the single crystal to be grown Is input to the drive control means 18 and when the growth of the single crystal is started, for example, the position of the crucibles 5 and 6, the position of the heat shield member 12, and the raw material melt 4 measured by the CCD camera 19. Information such as the position of the melt surface is fed back to the drive control means 18 so that the distance between the raw material melt surface and the heat shield member is automatically changed to a size in which the single crystal becomes the target crystal standard. Can do. Thus, by automatically adjusting the distance between the raw material melt surface and the heat shield member according to the change condition obtained by conducting a test in advance, the crystal temperature gradient G can be adjusted with high accuracy. A single crystal having a desired crystal quality with high accuracy can be manufactured very stably.

また、上記のようにしてシリコン単結晶の製造を行う場合、シリコン単結晶の直胴部を引上げている間は、原料融液面と遮熱部材との距離Lを制御することが好ましい。一般に、結晶温度勾配Gは単結晶の成長が進むにつれて低下する傾向にあることが知られており、単結晶直胴部の成長開始時より成長終了時の方が小さくなる。したがって、単結晶直胴部の引上げ中に、上記のように引上げ速度Vを制御するだけでなく、例えばルツボ駆動機構や遮熱部材駆動手段でルツボ5、6の位置や遮熱部材12の位置を調節して原料融液面と遮熱部材との距離Lを制御することによって、結晶温度勾配Gを例えば一定の値となるように非常に高精度に制御することができるようになるので、所望の結晶品質を有する単結晶を非常に安定して製造することができる。   Further, when the silicon single crystal is manufactured as described above, it is preferable to control the distance L between the raw material melt surface and the heat shield member while the straight body portion of the silicon single crystal is pulled up. In general, it is known that the crystal temperature gradient G tends to decrease as the growth of the single crystal proceeds, and becomes smaller at the end of growth than at the start of growth of the single crystal straight body. Therefore, during the pulling of the single crystal straight body portion, not only the pulling speed V is controlled as described above, but also the position of the crucibles 5 and 6 and the position of the heat shield member 12 by the crucible drive mechanism or the heat shield member drive means, for example. By adjusting the distance L between the raw material melt surface and the heat shield member, the crystal temperature gradient G can be controlled with a very high precision so as to have a constant value, for example. A single crystal having a desired crystal quality can be manufactured very stably.

さらに、単結晶引上げ装置20のチャンバ内には、前述のように、冷却筒22と冷却補助部材11とがシリコン単結晶を取り囲むように配置されているので、冷却筒22内に流す冷却媒体の流量や温度を調節することにより、単結晶引上げ中の所定の温度帯、例えば点欠陥が凝集する温度帯(およそ、1150〜1080℃帯)を所望の冷却速度で急冷することが可能となるので、所望の結晶品質を高精度に有する単結晶をより確実に育成することができる。   Further, as described above, the cooling cylinder 22 and the cooling auxiliary member 11 are disposed in the chamber of the single crystal pulling apparatus 20 so as to surround the silicon single crystal. By adjusting the flow rate and temperature, it becomes possible to rapidly cool a predetermined temperature zone during pulling of the single crystal, for example, a temperature zone where point defects are aggregated (approximately 1150 to 1080 ° C.) at a desired cooling rate. A single crystal having a desired crystal quality with high accuracy can be grown more reliably.

また、上記のように単結晶の引上げを行う際には、前記磁場発生装置25から中心磁場強度が300ガウス以上6000ガウス以下の範囲となる磁場を印加することが好ましい。このように、単結晶を引上げる際に中心磁場強度が300ガウス以上6000ガウス以下となる磁場を印加することにより、石英ルツボ内の原料融液の対流を制御し、融液対流が安定していて結晶成長界面形状が良好な状態で単結晶を育成することができる。したがって、高品質の単結晶を、より高い製造歩留り、より高い生産性で製造することができる。   Moreover, when pulling up the single crystal as described above, it is preferable to apply a magnetic field having a central magnetic field strength in the range of 300 gauss to 6000 gauss from the magnetic field generator 25. Thus, when pulling up the single crystal, by applying a magnetic field having a central magnetic field strength of 300 to 6000 gauss, the convection of the raw material melt in the quartz crucible is controlled, and the melt convection is stable. Thus, it is possible to grow a single crystal with a good crystal growth interface shape. Therefore, a high-quality single crystal can be produced with a higher production yield and higher productivity.

そして、本発明では、上記のようにして1本目の単結晶を育成した後、2本目の単結晶の育成を開始する際に、2本目の単結晶が目的の結晶規格となるように原料融液面と遮熱部材との距離Lを再度調節して結晶温度勾配Gを調整する。その後、2本目の単結晶の引上げを開始し、単結晶の直胴部を成長させる際に2本目の単結晶が目的の結晶規格となるように引上げ速度Vを制御しながら、上記1本目の単結晶を育成するときと同様にして単結晶の育成を行う。このようにして2本目の単結晶を育成することにより、所望の結晶品質を有する単結晶を安定して製造することができる。この場合、本発明では、例え1本目と2本目の結晶規格が異なっていても、炉内部品を取り替える等の作業をすることなく、原料融液面と遮熱部材との距離Lを調節して結晶温度勾配Gを調整し、その後単結晶の直胴部を成長させる際に当該単結晶が目的の結晶規格となるように引上げ速度Vを制御しさえすれば、連続して異なる規格の単結晶を育成できることが最大の利点である。   In the present invention, after growing the first single crystal as described above, when starting the growth of the second single crystal, the raw material fusion is performed so that the second single crystal becomes the target crystal specification. The crystal temperature gradient G is adjusted by adjusting the distance L between the liquid surface and the heat shield member again. Thereafter, the pulling of the second single crystal is started, and when the straight body portion of the single crystal is grown, the pulling speed V is controlled so that the second single crystal becomes the target crystal standard, A single crystal is grown in the same manner as when a single crystal is grown. By growing the second single crystal in this manner, a single crystal having a desired crystal quality can be stably produced. In this case, in the present invention, even if the first and second crystal specifications are different, the distance L between the raw material melt surface and the heat shield member is adjusted without performing work such as replacing the in-furnace parts. As long as the crystal temperature gradient G is adjusted and then the straight body portion of the single crystal is grown, the pulling speed V is controlled so that the single crystal becomes the target crystal standard. The greatest advantage is that crystals can be grown.

その後、例えば3本目、4本目の単結晶を育成する場合は、上記1本目及び2本目と同様に、各単結晶の育成を開始する毎に当該単結晶が目的の結晶規格となるように原料融液面と遮熱部材との距離Lを調節して結晶温度勾配Gを調整し、その後単結晶の直胴部を成長させる際に当該単結晶が目的の結晶規格となるように引上げ速度Vを制御しながら単結晶の育成を行うことにより、各単結晶がそれぞれ所望の結晶品質を有するようにして単結晶製造を行うことができる。この場合も、3本目、4本目の結晶の品質規格が、1、2本目と異なるものであっても良い。   After that, for example, when the third and fourth single crystals are grown, as in the case of the first and second, the raw material is set so that the single crystal becomes the target crystal standard every time the growth of each single crystal is started. The crystal temperature gradient G is adjusted by adjusting the distance L between the melt surface and the heat shield member, and then when the straight body of the single crystal is grown, the pulling speed V is set so that the single crystal becomes the target crystal standard. By controlling the growth of the single crystal, the single crystal can be manufactured so that each single crystal has a desired crystal quality. Also in this case, the quality standards of the third and fourth crystals may be different from those of the first and second crystals.

以上のようにして少なくとも2本以上の単結晶を製造することによって、チャンバ内の構造物(ホットゾーンパーツ)を取り替えることなく、1種類のホットゾーンで各単結晶がそれぞれ所望の結晶品質を有するようにして複数の単結晶を容易にかつ低コスト・高生産性で製造することができる。また、このように単結晶の製造を行えば、チャンバ内の構造物を取り替える必要がないので、従来のように様々な構造物を購入・保管する必要がなく、大幅なコストダウンを図ることが可能となる。さらに、このようにして製造された複数の単結晶は、各単結晶がそれぞれ所望の結晶品質を有する高品質で非常に安価な単結晶とすることができる。   By producing at least two or more single crystals as described above, each single crystal has a desired crystal quality in one kind of hot zone without replacing the structure (hot zone part) in the chamber. Thus, a plurality of single crystals can be easily manufactured at low cost and high productivity. In addition, if a single crystal is manufactured in this way, it is not necessary to replace the structure in the chamber, so there is no need to purchase and store various structures as in the prior art, and a significant cost reduction can be achieved. It becomes possible. Furthermore, the plurality of single crystals produced in this way can be made into high-quality and very inexpensive single crystals in which each single crystal has a desired crystal quality.

特に本発明では、欠陥領域は原料融液面と遮熱部材間の距離で制御し、欠陥密度は引上げ速度で単結晶の熱履歴を制御するといったようにそれぞれの制御を独立して行うことが可能となり、それによって、例えば、各単結晶毎に目的や要求に応じて、欠陥領域が結晶全面がV領域であるもの、OSFリングが存在する領域であるもの、結晶全面がN領域であるもの、結晶全面がI領域であるもの等や、さらに欠陥領域としてV領域やI領域を含むような単結晶であれば、所定の欠陥密度を有するものとなるような、各単結晶毎に異なる欠陥領域及び/または異なる欠陥密度を有するようにして複数の単結晶をチャンバ内の構造物を取り替えることなく製造することができる。したがって、例えば、従来ではチャンバ内の構造物を取り替えなければ実現できないような欠陥発生領域を変えずに欠陥密度を変更することや、欠陥密度を変えずに欠陥発生領域を変えることを容易に行うことができるようになり、各単結晶毎に異なる結晶品質を有する複数の単結晶を非常に容易に、また作業者への負担を大幅に軽減して製造することができる。   In particular, in the present invention, the defect region is controlled by the distance between the raw material melt surface and the heat shielding member, and the defect density is controlled independently such that the thermal history of the single crystal is controlled by the pulling rate. For example, depending on the purpose and requirement of each single crystal, the defect region is a region where the entire crystal surface is a V region, a region where an OSF ring is present, or the entire crystal surface is an N region. Different defects for each single crystal that have a predetermined defect density if the entire surface of the crystal is an I region, or if the single crystal includes a V region or an I region as a defect region. A plurality of single crystals can be produced with regions and / or different defect densities without replacing the structure in the chamber. Therefore, for example, it is easy to change the defect density without changing the defect occurrence area, which cannot be realized without replacing the structure in the chamber in the past, or to change the defect occurrence area without changing the defect density. Thus, a plurality of single crystals having different crystal qualities for each single crystal can be manufactured very easily and the burden on the operator can be greatly reduced.

さらに、本発明の製造方法で単結晶をV領域で育成する場合には、前述の実験結果でも示したように、単結晶に形成される欠陥が所望の欠陥密度となるようにすることができるだけでなく、欠陥のサイズも所望の大きさとなるようにすることができる。そのため、様々な結晶品質を有する単結晶を容易に作り分けることができ、ユーザーからの要求を確実に満たすような高品質の単結晶を低コストで安定して製造することが可能となる。   Furthermore, when the single crystal is grown in the V region by the manufacturing method of the present invention, as shown in the above experimental results, the defects formed in the single crystal can only have a desired defect density. In addition, the defect size can be set to a desired size. For this reason, single crystals having various crystal qualities can be easily made and high-quality single crystals that reliably satisfy the user's requirements can be stably manufactured at low cost.

また、本発明の単結晶の製造方法では、従来一般的に行われているように、1製造バッチで1つの石英ルツボを用いて単結晶を1本ずつ育成して、少なくとも2本以上の単結晶を複数の製造バッチで製造することができるし、また、同一の石英ルツボから少なくとも2本以上の単結晶を1製造バッチ内で連続的に育成することもできる。特に、2本以上の単結晶を同一のルツボで、原料の充填・単結晶の育成を繰り返したり、また原料を充填・補充しつつ1製造バッチ内で連続的に育成することにより、チャンバ内の構造物を取り替えることなく、各単結晶がそれぞれ所望の結晶品質を有するように単結晶の製造を行うことができる。こうして、製造時間の短縮やより一層のコストダウンを図ることが可能となる。   In the method for producing a single crystal according to the present invention, as is conventionally performed, single crystals are grown one by one using one quartz crucible in one production batch, and at least two or more single crystals are produced. Crystals can be produced in a plurality of production batches, and at least two single crystals can be continuously grown in one production batch from the same quartz crucible. In particular, two or more single crystals in the same crucible are repeatedly filled with raw materials and grown single crystals, or are continuously grown in one production batch while filling and replenishing raw materials. Single crystals can be manufactured so that each single crystal has a desired crystal quality without changing the structure. In this way, it is possible to shorten the manufacturing time and further reduce the cost.

そして、このような本発明の単結晶の製造方法は、半導体デバイス用基板の材料となるシリコン単結晶や、近年需要が増加している直胴部の直径が150mm以上、特には、200mm以上、300mm以上となる大口径の単結晶を製造する場合に特に好適に用いることができる。それによって、例えばそれぞれが所望の結晶品質を有する複数のシリコン単結晶を、チャンバ内の構造物を取り替えることなく容易にかつ低コストで製造することができるし、また、直径150mm以上となる大口径の単結晶を複数製造する場合でも、チャンバ内の構造物を取り替えることなく、各単結晶がそれぞれ所望の結晶品質を有するように容易にかつ低コストで製造することができる。   And the manufacturing method of such a single crystal of this invention is 150 mm or more in diameter of the silicon single crystal used as the material of the substrate for semiconductor devices, and the straight body part which demand is increasing in recent years, in particular, 200 mm or more, It can be particularly preferably used when producing a single crystal having a large diameter of 300 mm or more. Thereby, for example, a plurality of silicon single crystals each having a desired crystal quality can be manufactured easily and at low cost without replacing the structure in the chamber, and a large diameter having a diameter of 150 mm or more. Even when a plurality of single crystals are manufactured, each single crystal can be manufactured easily and at low cost so that each single crystal has a desired crystal quality without replacing the structure in the chamber.

以下、実施例を示して本発明をより具体的に説明するが、本発明はこれらに限定されるものではない。
(実施例)
図6に示した単結晶引上げ装置20を用いて、直径32インチ(800mm)の石英ルツボ5に原料多結晶シリコンを300kgチャージし、中心磁場強度が4000ガウスの水平磁場を印加しながら直径300mmのシリコン単結晶を4本育成した。
EXAMPLES Hereinafter, although an Example is shown and this invention is demonstrated more concretely, this invention is not limited to these.
(Example)
Using the single crystal pulling apparatus 20 shown in FIG. 6, 300 kg of raw material polycrystalline silicon is charged into a quartz crucible 5 having a diameter of 32 inches (800 mm), and a horizontal magnetic field having a central magnetic field strength of 4000 gauss is applied and a diameter of 300 mm is applied. Four silicon single crystals were grown.

このとき、1本目及び2本目のシリコン単結晶では欠陥領域が径方向全域でV領域となるように、また3本目及び4本目のシリコン単結晶では欠陥領域がOSFリングが存在するV領域となるようにするとともに、1本目及び4本目のシリコン単結晶がそれぞれ2本目及び3本目のシリコン単結晶に比べて欠陥密度が小さくなるような4種類のシリコン単結晶を製造するため、各単結晶の育成を行う毎に原料融液面と遮熱部材との距離、及び結晶引上げ速度が以下の表1に示す値となるよう調節・制御して、原料多結晶シリコンの充填・単結晶の育成を繰り返して同一の石英ルツボから4本の単結晶を連続的に育成した。尚、1本目〜4本目のシリコン単結晶の製造は同一バッチ内であるから、チャンバ内の構造物の取り替えは一切行われていない。   At this time, in the first and second silicon single crystals, the defect region becomes a V region in the entire radial direction, and in the third and fourth silicon single crystals, the defect region becomes a V region in which the OSF ring exists. In addition, in order to manufacture four types of silicon single crystals in which the first and fourth silicon single crystals have a defect density lower than that of the second and third silicon single crystals, respectively, Each time growth is performed, the distance between the raw material melt surface and the heat shield member and the crystal pulling speed are adjusted and controlled so as to have the values shown in Table 1 below. Repeatedly, four single crystals were continuously grown from the same quartz crucible. Since the first to fourth silicon single crystals are manufactured in the same batch, the structure in the chamber is not replaced at all.

Figure 2005187244
Figure 2005187244

そして、得られた4本のシリコン単結晶からそれぞれウエーハを切り出した後、平面研削及び研磨を行って検査用のサンプルウエーハを作製し、そのサンプルウエーハの欠陥領域を前記異物検査装置で検査した。その結果、1本目及び2本目のシリコン単結晶から作製したサンプルウエーハは、ウエーハ全面がV領域となるものであり、また3本目及び4本目のシリコン単結晶から作製したサンプルウエーハは、ウエーハの外周部にOSFリングが観察され、その内側部分がV領域となるものであることが確認された。   Then, after each wafer was cut out from the obtained four silicon single crystals, surface grinding and polishing were performed to produce a sample wafer for inspection, and the defect area of the sample wafer was inspected by the foreign substance inspection apparatus. As a result, the sample wafers produced from the first and second silicon single crystals have the entire surface of the wafer in the V region, and the sample wafers produced from the third and fourth silicon single crystals are the outer periphery of the wafer. An OSF ring was observed in the part, and it was confirmed that the inner part was a V region.

さらに、1本目〜4本目のシリコン単結晶から作製したサンプルウエーハに形成されているサイズが0.12μm以上となる欠陥の数を検査した。さらに、ウエーハに形成されている欠陥のサイズの分布を調べるために、サイズが0.20μm以上となる欠陥の数も検査した。その欠陥検査を行った結果を以下の表2に示す。   Further, the number of defects formed on the sample wafers made from the first to fourth silicon single crystals and having a size of 0.12 μm or more was inspected. Furthermore, in order to examine the distribution of the size of defects formed on the wafer, the number of defects having a size of 0.20 μm or more was also inspected. The results of the defect inspection are shown in Table 2 below.

Figure 2005187244
Figure 2005187244

表2に示したように、各シリコン単結晶から作製したサンプルウエーハの欠陥密度を測定した結果、1本目のシリコン単結晶では、サイズが0.20μm以上となる大きな欠陥が比較的多く観察されたものの、2本目のシリコン単結晶に比べて0.12μm以上のサイズとなる欠陥の数が大幅に減少しており、欠陥密度が低いものであることがわかった。また、3本目のシリコン単結晶と4本目のシリコン単結晶とを比較してみると、4本目のシリコン単結晶の方が欠陥密度が低いものであることがわかった。   As shown in Table 2, as a result of measuring the defect density of the sample wafer produced from each silicon single crystal, relatively large defects having a size of 0.20 μm or more were observed in the first silicon single crystal. However, it was found that the number of defects having a size of 0.12 μm or more was significantly reduced as compared with the second silicon single crystal, and the defect density was low. Further, comparing the third silicon single crystal with the fourth silicon single crystal, it was found that the fourth silicon single crystal has a lower defect density.

以上のように、本発明の単結晶の製造方法によって、チャンバ内の構造物を取り替えなくても、各単結晶がそれぞれ互いに異なる所望の結晶品質を有する複数の単結晶を製造できることが確認された。   As described above, it was confirmed that the single crystal manufacturing method of the present invention can manufacture a plurality of single crystals having different desired crystal qualities, without replacing the structure in the chamber. .

なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は単なる例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。   The present invention is not limited to the above embodiment. The above embodiment is merely an example, and the present invention has the same configuration as that of the technical idea described in the claims of the present invention, and any device that exhibits the same function and effect is the present invention. It is included in the technical scope of the invention.

例えば、上記では主にシリコン単結晶を製造する場合を例に挙げて説明を行っているが、本発明はこれに限定されるものではなく、CZ法によって化合物半導体単結晶等の単結晶を製造する場合にも同様に適用することができる。   For example, in the above description, a case where a silicon single crystal is mainly manufactured is described as an example. However, the present invention is not limited to this, and a single crystal such as a compound semiconductor single crystal is manufactured by the CZ method. The same can be applied to the case.

原料融液面と遮熱部材間の距離と結晶温度勾配Gとの関係の一例を示すグラフである。It is a graph which shows an example of the relationship between the distance between a raw material melt surface and a thermal insulation member, and the crystal temperature gradient G. 様々な条件の原料融液面と遮熱部材間の距離及び引上げ速度で製造した種々のシリコン単結晶の欠陥領域を検査した結果を示す図である。It is a figure which shows the result of having test | inspected the defect area | region of the various silicon single crystal manufactured with the distance between the raw material melt surface of various conditions, and the heat-shielding member, and the pulling speed. 図2に示したA1、B1、C1の単結晶の欠陥密度及び欠陥サイズを調査した結果を示すグラフである。It is a graph which shows the result of having investigated the defect density and defect size of the single crystal of A1, B1, and C1 shown in FIG. 図2に示したA2、B2、C2の単結晶の欠陥密度及び欠陥サイズを調査した結果を示すグラフである。It is a graph which shows the result of having investigated the defect density and defect size of the single crystal of A2, B2, C2 shown in FIG. 結晶引上げ速度と1150〜1080℃帯の通過時間との関係を示したグラフである。It is the graph which showed the relationship between the crystal pulling rate and the passage time of 1150-1080 degreeC band. 本発明の単結晶の製造方法を実施する際に使用することのできる単結晶引上げ装置の一例を示す構成概略図である。It is the structure schematic which shows an example of the single crystal pulling apparatus which can be used when implementing the manufacturing method of the single crystal of this invention. (a)及び(b)は、単結晶引上げ装置に設置される遮熱部材の他の形態を示す構成概略図である。(A) And (b) is the structure schematic which shows the other form of the heat-shielding member installed in a single crystal pulling apparatus. 従来の単結晶製造装置の一例を示す構成概略図である。It is the structure schematic which shows an example of the conventional single crystal manufacturing apparatus. V/Gと結晶欠陥分布の関係を表す説明図である。It is explanatory drawing showing the relationship between V / G and crystal defect distribution.

符号の説明Explanation of symbols

1…メインチャンバ、 2…引上げチャンバ、 3…単結晶(シリコン単結晶)、
4…原料融液(シリコン融液)、 5…石英ルツボ、
6…黒鉛ルツボ、 7…加熱ヒーター、 8…断熱材、
9…ガス流出口、 10…ガス導入口、 11…冷却補助部材、
12,12a,12b…遮熱部材、 13…保持軸、
14…ワイヤー、 15…種ホルダー、 16…種結晶、
17…引上げ機構、 18…駆動制御手段、 19…CCDカメラ、
20…単結晶引上げ装置、 21…ルツボ駆動機構、
22…冷却筒、 23…冷媒導入口、 24…保護部材、 25…磁場発生装置、
26…ガス整流筒、 27…保持部材、
30…単結晶製造装置、 31…ガス整流筒、 32…遮熱部材。
1 ... main chamber, 2 ... pulling chamber, 3 ... single crystal (silicon single crystal),
4 ... Raw material melt (silicon melt), 5 ... Quartz crucible,
6 ... Graphite crucible, 7 ... Heater, 8 ... Insulating material,
9 ... Gas outlet, 10 ... Gas inlet, 11 ... Cooling auxiliary member,
12, 12a, 12b ... heat shield member, 13 ... holding shaft,
14 ... Wire, 15 ... Seed holder, 16 ... Seed crystal,
17 ... Lifting mechanism, 18 ... Drive control means, 19 ... CCD camera,
20 ... Single crystal pulling device, 21 ... Crucible drive mechanism,
22 ... Cooling cylinder, 23 ... Refrigerant inlet, 24 ... Protection member, 25 ... Magnetic field generator,
26 ... Gas flow straightening cylinder, 27 ... Holding member,
30 ... Single crystal manufacturing apparatus, 31 ... Gas rectifier cylinder, 32 ... Heat insulation member.

Claims (11)

チョクラルスキー法によってチャンバ内で単結晶を原料融液から引上げて、少なくとも2本以上の単結晶を製造する方法において、前記単結晶の直胴部を成長させるときの引上げ速度をV(mm/min)、固液界面近傍の引上げ軸方向の結晶温度勾配をG(℃/mm)で表したとき、前記少なくとも2本以上の単結晶を育成する際に、前記原料融液の融液面と前記チャンバ内で原料融液面に対向配置された遮熱部材との距離を個々の単結晶の育成を開始する毎に当該単結晶が目的の結晶規格となる大きさに調節して前記結晶温度勾配Gを調整し、さらに前記引上げ速度Vを個々の単結晶の育成に応じて当該単結晶が目的の結晶規格となる値に制御することによって、前記少なくとも2本以上の単結晶が各単結晶毎に所望の結晶品質を有するようにして単結晶の製造を行うことを特徴とする単結晶の製造方法。   In a method of producing at least two single crystals by pulling a single crystal from a raw material melt in a chamber by the Czochralski method, the pulling speed when growing the straight body portion of the single crystal is V (mm / min), when the crystal temperature gradient in the pulling axis direction in the vicinity of the solid-liquid interface is expressed by G (° C./mm), when growing the at least two single crystals, the melt surface of the raw material melt The crystal temperature is adjusted by adjusting the distance from the heat shielding member disposed opposite to the raw material melt surface in the chamber so that the single crystal grows to a target crystal standard every time the growth of the single crystal is started. By adjusting the gradient G, and further controlling the pulling rate V to a value at which the single crystal becomes the target crystal standard in accordance with the growth of each single crystal, the at least two single crystals are converted into each single crystal. Each has the desired crystal quality Method for producing a single crystal, characterized in that to manufacture a single crystal Te Unishi. 前記少なくとも2本以上の単結晶を、各単結晶毎に異なる欠陥領域及び/または異なる欠陥密度を有するように製造することを特徴とする請求項1に記載の単結晶の製造方法。   2. The method for producing a single crystal according to claim 1, wherein the at least two or more single crystals are produced so as to have different defect regions and / or different defect densities for each single crystal. 前記少なくとも2本以上の単結晶を同一のルツボから育成することを特徴とする請求項1または請求項2に記載の単結晶の製造方法。   The method for producing a single crystal according to claim 1 or 2, wherein the at least two or more single crystals are grown from the same crucible. 前記単結晶をV領域で育成する際に、該単結晶に形成される欠陥が所望のサイズとなるようにすることを特徴とする請求項1ないし請求項3のいずれか一項に記載の単結晶の製造方法。   The single crystal according to any one of claims 1 to 3, wherein when the single crystal is grown in a V region, a defect formed in the single crystal has a desired size. Crystal production method. 前記原料融液面と遮熱部材との距離を、予め試験を行って求めた変更条件に従って自動的に調節することを特徴とする請求項1ないし請求項4のいずれか一項に記載の単結晶の製造方法。   5. The unit according to claim 1, wherein a distance between the raw material melt surface and the heat shielding member is automatically adjusted according to a change condition obtained by performing a test in advance. Crystal production method. 前記単結晶の直胴部の引上げ中に原料融液面と遮熱部材との距離を制御することを特徴とする請求項1ないし請求項5のいずれか一項に記載の単結晶の製造方法。   The method for producing a single crystal according to any one of claims 1 to 5, wherein a distance between the raw material melt surface and the heat shielding member is controlled during the pulling of the straight body portion of the single crystal. . 前記チャンバ内に、冷却媒体で強制冷却される冷却筒と、該冷却筒の下方に設置される冷却補助部材とを前記育成する単結晶を取り囲むように配置しておくことを特徴とする請求項1ないし請求項6のいずれか一項に記載の単結晶の製造方法。   The cooling chamber forcibly cooled with a cooling medium and a cooling auxiliary member installed below the cooling cylinder are disposed in the chamber so as to surround the growing single crystal. The method for producing a single crystal according to any one of claims 1 to 6. 前記単結晶の引上げを、中心磁場強度が300ガウス以上6000ガウス以下の範囲となる磁場を印加しながら行うことを特徴とする請求項1ないし請求項7のいずれか一項に記載の単結晶の製造方法。   The single crystal is pulled while applying a magnetic field having a central magnetic field strength in a range of 300 gauss to 6000 gauss. Production method. 前記製造する単結晶をシリコン単結晶とすることを特徴とする請求項1ないし請求項8のいずれか一項に記載の単結晶の製造方法。   9. The method for manufacturing a single crystal according to claim 1, wherein the single crystal to be manufactured is a silicon single crystal. 前記単結晶の直胴部の直径を150mm以上とすることを特徴とする請求項1ないし請求項9のいずれか一項に記載の単結晶の製造方法。   The method for producing a single crystal according to any one of claims 1 to 9, wherein the diameter of the straight body portion of the single crystal is 150 mm or more. 請求項1ないし請求項10のいずれか一項に記載の単結晶の製造方法により製造された単結晶。   The single crystal manufactured by the manufacturing method of the single crystal as described in any one of Claims 1 thru | or 10.
JP2003428839A 2003-12-25 2003-12-25 Single crystal manufacturing method Expired - Fee Related JP4569103B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003428839A JP4569103B2 (en) 2003-12-25 2003-12-25 Single crystal manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003428839A JP4569103B2 (en) 2003-12-25 2003-12-25 Single crystal manufacturing method

Publications (2)

Publication Number Publication Date
JP2005187244A true JP2005187244A (en) 2005-07-14
JP4569103B2 JP4569103B2 (en) 2010-10-27

Family

ID=34787674

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003428839A Expired - Fee Related JP4569103B2 (en) 2003-12-25 2003-12-25 Single crystal manufacturing method

Country Status (1)

Country Link
JP (1) JP4569103B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007284260A (en) * 2006-04-12 2007-11-01 Sumco Techxiv株式会社 Method for manufacturing silicon single crystal
WO2008050524A1 (en) * 2006-10-24 2008-05-02 Shin-Etsu Handotai Co., Ltd. Apparatus for producing single crystal and method for producing single crystal
JP2008127216A (en) * 2006-11-16 2008-06-05 Sumco Techxiv株式会社 Semiconductor single crystal manufacturing method
WO2008096518A1 (en) * 2007-02-08 2008-08-14 Shin-Etsu Handotai Co., Ltd. Method for measuring distance between lower end surface of heat shielding member and material melt surface, and method for controlling the distance
JP2008189529A (en) * 2007-02-06 2008-08-21 Sumco Techxiv株式会社 Method for producing semiconductor single crystal
JP2008222483A (en) * 2007-03-12 2008-09-25 Covalent Materials Corp Method for producing silicon single crystal
JP2010275170A (en) * 2009-06-01 2010-12-09 Sumco Corp Method of manufacturing silicon single crystal, and method of predicting temperature of silicon single crystal
WO2012098826A1 (en) * 2011-01-19 2012-07-26 信越半導体株式会社 Single crystal manufacturing device and single crystal manufacturing method
JP2016223976A (en) * 2015-06-02 2016-12-28 信越半導体株式会社 Impurity analysis method and silicon crystal evaluation method
JP2020172414A (en) * 2019-04-12 2020-10-22 株式会社Sumco Method of determining gap size in manufacturing silicon single crystal, and method of manufacturing silicon single crystal

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102104072B1 (en) * 2018-01-19 2020-04-23 에스케이실트론 주식회사 Method and apparatus for silicon single crystal growth

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06183876A (en) * 1992-12-16 1994-07-05 Komatsu Denshi Kinzoku Kk Device for lifting single crystal and method for lifting the same
JPH09221379A (en) * 1996-02-14 1997-08-26 Shin Etsu Handotai Co Ltd Device for producing crystal by czochralski method, production of crystal and crystal produced thereby
JP2000178099A (en) * 1998-12-14 2000-06-27 Shin Etsu Handotai Co Ltd Production of silicon single crystal, and silicon single crystal and silicon water produced with the same
JP2000313691A (en) * 1999-04-28 2000-11-14 Komatsu Electronic Metals Co Ltd Apparatus and method for producing single crystal ingot by czochralski method
JP2001342097A (en) * 2000-05-30 2001-12-11 Komatsu Electronic Metals Co Ltd Silicon monocrystal pulling device and pulling method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06183876A (en) * 1992-12-16 1994-07-05 Komatsu Denshi Kinzoku Kk Device for lifting single crystal and method for lifting the same
JPH09221379A (en) * 1996-02-14 1997-08-26 Shin Etsu Handotai Co Ltd Device for producing crystal by czochralski method, production of crystal and crystal produced thereby
JP2000178099A (en) * 1998-12-14 2000-06-27 Shin Etsu Handotai Co Ltd Production of silicon single crystal, and silicon single crystal and silicon water produced with the same
JP2000313691A (en) * 1999-04-28 2000-11-14 Komatsu Electronic Metals Co Ltd Apparatus and method for producing single crystal ingot by czochralski method
JP2001342097A (en) * 2000-05-30 2001-12-11 Komatsu Electronic Metals Co Ltd Silicon monocrystal pulling device and pulling method

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007284260A (en) * 2006-04-12 2007-11-01 Sumco Techxiv株式会社 Method for manufacturing silicon single crystal
JP4513798B2 (en) * 2006-10-24 2010-07-28 信越半導体株式会社 Single crystal manufacturing apparatus and single crystal manufacturing method
WO2008050524A1 (en) * 2006-10-24 2008-05-02 Shin-Etsu Handotai Co., Ltd. Apparatus for producing single crystal and method for producing single crystal
JP2008105873A (en) * 2006-10-24 2008-05-08 Shin Etsu Handotai Co Ltd Single crystal manufacturing apparatus and single crystal manufacturing method
US8764900B2 (en) 2006-10-24 2014-07-01 Shin-Etsu Handotai Co., Ltd. Apparatus and method for producing single crystals
KR101385997B1 (en) 2006-10-24 2014-04-16 신에쯔 한도타이 가부시키가이샤 Apparatus for producing single crystal and method for producing single crystal
JP2008127216A (en) * 2006-11-16 2008-06-05 Sumco Techxiv株式会社 Semiconductor single crystal manufacturing method
JP2008189529A (en) * 2007-02-06 2008-08-21 Sumco Techxiv株式会社 Method for producing semiconductor single crystal
US9260796B2 (en) 2007-02-08 2016-02-16 Shin-Etsu Handotai Co., Ltd. Method for measuring distance between lower end surface of heat insulating member and surface of raw material melt and method for controlling thereof
JP2008195545A (en) * 2007-02-08 2008-08-28 Shin Etsu Handotai Co Ltd Method for measuring distance between heat shield member lower end surface and raw material melt surface, and method for controlling the distance
KR101416093B1 (en) 2007-02-08 2014-07-08 신에쯔 한도타이 가부시키가이샤 A method for measuring the distance between the bottom surface of the heat insulating member and the surface of the raw material melt and a method for controlling the distance
WO2008096518A1 (en) * 2007-02-08 2008-08-14 Shin-Etsu Handotai Co., Ltd. Method for measuring distance between lower end surface of heat shielding member and material melt surface, and method for controlling the distance
JP2008222483A (en) * 2007-03-12 2008-09-25 Covalent Materials Corp Method for producing silicon single crystal
JP2010275170A (en) * 2009-06-01 2010-12-09 Sumco Corp Method of manufacturing silicon single crystal, and method of predicting temperature of silicon single crystal
WO2012098826A1 (en) * 2011-01-19 2012-07-26 信越半導体株式会社 Single crystal manufacturing device and single crystal manufacturing method
JP2012148918A (en) * 2011-01-19 2012-08-09 Shin Etsu Handotai Co Ltd Apparatus and method for producing single crystal
KR101756687B1 (en) 2011-01-19 2017-07-11 신에쯔 한도타이 가부시키가이샤 Single crystal manufacturing device and single crystal manufacturing method
JP2016223976A (en) * 2015-06-02 2016-12-28 信越半導体株式会社 Impurity analysis method and silicon crystal evaluation method
JP2020172414A (en) * 2019-04-12 2020-10-22 株式会社Sumco Method of determining gap size in manufacturing silicon single crystal, and method of manufacturing silicon single crystal
JP7040491B2 (en) 2019-04-12 2022-03-23 株式会社Sumco A method for determining the gap size at the time of manufacturing a silicon single crystal and a method for manufacturing a silicon single crystal.

Also Published As

Publication number Publication date
JP4569103B2 (en) 2010-10-27

Similar Documents

Publication Publication Date Title
JPH1179889A (en) Production of and production unit for silicon single crystal with few crystal defect, and silicon single crystal and silicon wafer produced thereby
JP4569103B2 (en) Single crystal manufacturing method
US7125608B2 (en) Single-crystal silicon ingot and wafer having homogeneous vacancy defects, and method and apparatus for making same
US7384477B2 (en) Method for producing a single crystal and a single crystal
US7226507B2 (en) Method for producing single crystal and single crystal
KR101213626B1 (en) Manufacturing method of single crystal
US7323048B2 (en) Method for producing a single crystal and a single crystal
JP4457584B2 (en) Method for producing single crystal and single crystal
EP1624094B1 (en) Method for producing single crystal
JPWO2006040878A1 (en) Single crystal manufacturing equipment
JP2005015290A (en) Method for manufacturing single crystal, and single crystal
JP4461776B2 (en) Method for producing silicon single crystal
JP4345597B2 (en) Single crystal manufacturing apparatus and single crystal manufacturing method
JP2005015287A (en) Method and apparatus for manufacturing single crystal
JP5136518B2 (en) Method for growing silicon single crystal
JP4881539B2 (en) Method for producing single crystal and single crystal
JP2005015297A (en) Method for manufacturing single crystal, and single crystal
JP2005015298A (en) Method for manufacturing single crystal, and single crystal
JP2005015288A (en) Method for manufacturing single crystal, and single crystal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060823

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100713

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100726

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130820

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4569103

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees