Nothing Special   »   [go: up one dir, main page]

JP2005184654A - Current mirror circuit - Google Patents

Current mirror circuit Download PDF

Info

Publication number
JP2005184654A
JP2005184654A JP2003425171A JP2003425171A JP2005184654A JP 2005184654 A JP2005184654 A JP 2005184654A JP 2003425171 A JP2003425171 A JP 2003425171A JP 2003425171 A JP2003425171 A JP 2003425171A JP 2005184654 A JP2005184654 A JP 2005184654A
Authority
JP
Japan
Prior art keywords
current
mirror circuit
current mirror
load resistor
power consumption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003425171A
Other languages
Japanese (ja)
Inventor
Yasuhiro Enomoto
康浩 榎本
Makoto Ikuma
誠 生熊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2003425171A priority Critical patent/JP2005184654A/en
Publication of JP2005184654A publication Critical patent/JP2005184654A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Amplifiers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a current mirror circuit whose operating speed can be increased while its power consumption is reduced. <P>SOLUTION: A current distribution circuit 1 for current distribution whose distribution factor can be arbitrarily set according to the resistance ratio with respect to a resistor of the current mirror circuit and which can be separated by a switch SW1 having a construction similar to a current receiving part of the current mirror circuit is connected with a connection point A between a current source and the current receiving part of the current mirror circuit. A load resistor R7 is constituted so that it can be separated by a SW2 for changing the resistance value of a load resistor R4 according to the current distribution ratio for maintaining a reference voltage Vref which is determined by the product of a current I3 mirrored by the current mirror circuit and the load resistor R4 constant in each mode where the current distribution circuit 1 is turned on or off. In this way, its high-speed recovery time can be realized while its power consumption is reduced. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、半導体集積回路において低消費電力モードを含むモード切り替え機能を有しモード切り替え時の高速動作回復時間(以下、高速リカバリ時間という)と低消費電力を備えた高速リカバリ時間に対応したカレントミラー回路に関するものである。   The present invention has a mode switching function including a low power consumption mode in a semiconductor integrated circuit, and a current corresponding to a fast recovery time (hereinafter referred to as a fast recovery time) at the time of mode switching and a fast recovery time with low power consumption. The present invention relates to a mirror circuit.

以下に、従来の低消費電力型のカレントミラー回路について説明する。   A conventional low power consumption current mirror circuit will be described below.

図3に従来の低消費電力機能付きのカレントミラー回路の構成図を示す。図3において、2は電流源、3はアンプ、C1はカレントミラー回路の発振防止またはそのノードにつく寄生容量を意味し、カレントミラー回路は一般的によく知られているものである。図3に示すように、電流源2、カレントミラー回路の電流受部、及び寄生容量C1が接続され、さらに低消費電力モード時にVCCからカレントミラー回路を介さず電流源2の電流を供給するためのSW(スイッチ)3の一端が接続され、SW3の他端はVCCに接続される。   FIG. 3 shows a configuration diagram of a conventional current mirror circuit with a low power consumption function. In FIG. 3, reference numeral 2 denotes a current source, 3 denotes an amplifier, C1 denotes oscillation prevention of the current mirror circuit or parasitic capacitance attached to its node, and the current mirror circuit is generally well known. As shown in FIG. 3, the current source 2, the current receiving part of the current mirror circuit, and the parasitic capacitor C1 are connected, and further, in the low power consumption mode, the current of the current source 2 is supplied from the VCC without going through the current mirror circuit. One end of the SW (switch) 3 is connected, and the other end of SW3 is connected to VCC.

ミラーされた電流を出力するトランジスタQ3のコレクタには対接地(GND)間に電流電圧変換のための負荷抵抗R6が接続され、この負荷抵抗R6で変換された電圧Vrefがアンプ3の基準電圧として利用される。   A load resistor R6 for current / voltage conversion is connected between the collector and the ground (GND) of the transistor Q3 that outputs the mirrored current, and the voltage Vref converted by the load resistor R6 is used as a reference voltage of the amplifier 3. Used.

以下にその動作を説明する。制御信号VctrlによってSW3のオン/オフ制御が行われ、SW3がオン時はカレントミラー回路の電流受部である図3中のA点の電位がVCCにショートされるため電流源2の電流I0はすべてカレントミラー回路を介さずVCCから供給されることになる。   The operation will be described below. SW3 is turned on / off by the control signal Vctrl. When SW3 is on, the potential at point A in FIG. 3 which is the current receiving part of the current mirror circuit is shorted to VCC, so that the current I0 of the current source 2 is All are supplied from VCC without going through the current mirror circuit.

すなわち、I1=0でSW3の部分において電流はI2=I0である。このとき、カレントミラー回路のミラー電流I3はゼロとなるため、アンプ3の入力の基準となる電圧はVref=I3×R6であり、I3=0であるためVref=0であると同時にアンプ3も非動作状態となる。   That is, I1 = 0 and the current in the SW3 portion is I2 = I0. At this time, since the mirror current I3 of the current mirror circuit becomes zero, the reference voltage of the input of the amplifier 3 is Vref = I3 × R6, and since I3 = 0, Vref = 0 and at the same time the amplifier 3 It becomes a non-operation state.

次に、SW3がオフにモード変化した時、SW3の部分で電流がゼロとなり、カレントミラー回路の電流がI0となりミラー比を1で考えるとI3=I0となってVref=I3×R6に回復し、アンプ3も通常アンプとしての動作をする。   Next, when SW3 changes to OFF mode, the current becomes zero at SW3, the current of the current mirror circuit becomes I0, and when the mirror ratio is considered as 1, I3 = I0 and Vref = I3 × R6 is restored. The amplifier 3 also operates as a normal amplifier.

しかしながら、このような従来の構成では、モード切り替え時のリカバリ時間(動作回復時間)の高速性が要求される場合などは、リカバリ時間が遅いという欠点を有していた。以下にその動作を説明する。   However, such a conventional configuration has a drawback in that the recovery time is slow when high speed recovery time (operation recovery time) at the time of mode switching is required. The operation will be described below.

図4は従来の図3に示す低消費電力型のカレントミラー回路の動作(a)〜(g)を示すタイミングチャートである。ここでは動作説明の簡単化のためトランジスタQ1及びQ2はスイッチング動作(すなわち、A点の電圧VAが一定値に達してはじめて電流が流れる)と仮定している。   FIG. 4 is a timing chart showing the operations (a) to (g) of the conventional low power consumption type current mirror circuit shown in FIG. Here, for simplification of the operation description, it is assumed that the transistors Q1 and Q2 perform a switching operation (that is, a current flows only when the voltage VA at the point A reaches a certain value).

まず、図4(a)はSW3の制御信号VctrlでありSW3がオン→オフの切り替え入力をしている。図4(b)に示すように、SW3がオン→オフに切り替わったあとI1がゼロからI0に切り替わる。また、図3中のA点の電位はVCCからスタートして寄生容量C1に蓄えられた電荷は電流I1によって放電される。このA点の電位が一定値になるところまでの放電電圧、すなわち初期値と一定値との電圧差ΔVAは(数1)で表される。   First, FIG. 4A shows a control signal Vctrl of SW3, and SW3 inputs switching from on to off. As shown in FIG. 4B, after SW3 is switched from on to off, I1 is switched from zero to I0. Further, the potential at point A in FIG. 3 starts from VCC, and the charge stored in the parasitic capacitance C1 is discharged by the current I1. The discharge voltage until the potential at the point A becomes a constant value, that is, the voltage difference ΔVA between the initial value and the constant value is expressed by (Equation 1).

Figure 2005184654
図4(c)にVAのタイミングを示す。図4(d)はカレントミラー回路の電流受部の電流I4であり、SW3がオフしてから電圧VAが前述のとおり一定値になった時点で電流が流れI4=I0となる。図4(e)はミラーされた電流I3で、ここではミラー比を1と仮定してI3=I4=I0となる。図4(f)にアンプ3の各入力を示す。Vrefは電流I3と抵抗R6の積で決まりアンプの基準電圧として働く、一方VINは入力電圧であり任意の波形が入力される。本説明では解りやすくするために正弦波の入力とした。
Figure 2005184654
FIG. 4C shows the timing of VA. FIG. 4D shows the current I4 of the current receiving portion of the current mirror circuit. When the voltage VA becomes a constant value as described above after SW3 is turned off, the current flows and I4 = I0. FIG. 4 (e) shows the mirrored current I3, where I3 = I4 = I0 assuming a mirror ratio of 1. FIG. 4F shows each input of the amplifier 3. Vref is determined by the product of the current I3 and the resistor R6, and serves as a reference voltage for the amplifier. On the other hand, VIN is an input voltage and an arbitrary waveform is input. In this description, a sine wave input is used for easy understanding.

図4(g)はアンプ3の出力であり、図4(f)の波形における電圧Vrefが本来の動作電圧に回復してから出力信号が出始める。図4(g)中のt2はリカバリ時間であり決定要因はA点電圧のリカバリ時間で、この時間は寄生容量C1と電流I0と電圧差ΔVAで決まり(数2)で表される。   FIG. 4G shows the output of the amplifier 3, and the output signal begins to be output after the voltage Vref in the waveform of FIG. 4F has recovered to the original operating voltage. In FIG. 4G, t2 is the recovery time, and the determining factor is the recovery time of the voltage at the point A. This time is determined by the parasitic capacitance C1, the current I0, and the voltage difference ΔVA, and is expressed by (Expression 2).

Figure 2005184654
本来はもっと複雑な式となるが本説明の目的は動作説明であるため前述のとおり簡素化のためQ1及びQ2はスイッチング動作を行うと仮定している。
Figure 2005184654
Originally, the equation is more complicated, but the purpose of this description is to explain the operation. Therefore, it is assumed that Q1 and Q2 perform a switching operation for the sake of simplification as described above.

結果として電圧差ΔVAによって決まるリカバリ時間t2が、高速なリカバリ時間を要求される回路においては大きなリカバリ時間となってしまう。   As a result, the recovery time t2 determined by the voltage difference ΔVA becomes a large recovery time in a circuit that requires a fast recovery time.

また、リカバリ時間を高速にするために考えられる解決の手段の1つとしてSW3を無くしカレントミラー回路に電流を常時流すことにより高速化は実施できるが、反面低消費電力化ができないという欠点を有する。   In addition, as one of the possible solutions for speeding up the recovery time, the speed can be increased by eliminating the SW3 and allowing the current to flow constantly through the current mirror circuit, but it has the disadvantage that the power consumption cannot be reduced. .

本発明は、前記従来技術の問題を解決することに指向するものであり、消費電力も削減しつつ高速化を行うことができるカレントミラー回路を提供することを目的とする。   The present invention is directed to solving the problems of the prior art, and an object of the present invention is to provide a current mirror circuit capable of speeding up while reducing power consumption.

この目的を達成するために、本発明のカレントミラー回路は、電流源の電流をミラーするカレントミラー回路であって、カレントミラー回路の電流受部と電流源の接続点にカレントミラー回路の抵抗との抵抗比によって分配率を任意に設定した電流分配を目的とし、カレントミラー回路の電流受部と同様の構成を持った第1のスイッチによって切り離しが可能な第1の電流分配手段を備え、カレントミラー回路でミラーされた電流を出力するトランジスタと接地との間に電流電圧変換を目的とした第1の負荷抵抗が接続され、第1の負荷抵抗によって作られる基準電圧が各モードによって一定値となるように、第1の負荷抵抗の抵抗値を電流分配率に応じて可変する第2のスイッチが、一端を第1の負荷抵抗とトランジスタとの接続点に接続し、かつ他端が接地された第2の負荷抵抗に他端を接続しており、第1のスイッチによって各モードが電流分配手段のオン/オフのどちらであっても基準電圧を同電圧とすることを特徴とする。   In order to achieve this object, the current mirror circuit of the present invention is a current mirror circuit that mirrors the current of the current source, and the resistance of the current mirror circuit is connected to the connection point between the current receiving portion of the current mirror circuit and the current source. The first current distribution means that can be separated by a first switch having the same configuration as the current receiving part of the current mirror circuit is provided for the purpose of current distribution in which the distribution ratio is arbitrarily set by the resistance ratio of A first load resistor for the purpose of current-voltage conversion is connected between the transistor that outputs the current mirrored by the mirror circuit and the ground, and the reference voltage generated by the first load resistor is set to a constant value in each mode. The second switch that varies the resistance value of the first load resistor according to the current distribution ratio is connected to one end of the first load resistor and the transistor. The other end is connected to a second load resistor whose other end is grounded, and the reference voltage is set to the same voltage regardless of whether each mode is on / off of the current distribution means by the first switch. It is characterized by that.

前記構成によれば、電流源の電流をカレントミラー回路と第1のスイッチにより、カレントミラー回路の抵抗比で任意に設定した分配率で電流分配し、カレントミラー回路の電流を無くすのではなく減らすと同時に、基準電圧の負荷抵抗も電流分配比に応じて切り替える構成として、電流削減をしながら基準電圧を電流分配手段のオン/オフいずれかのモードに依存せずにほぼ一定に保つようにして、低消費電力と高速リカバリ時間を実現することができる。   According to the above configuration, the current of the current source is distributed by the current mirror circuit and the first switch at a distribution ratio arbitrarily set by the resistance ratio of the current mirror circuit, and the current of the current mirror circuit is reduced rather than eliminated. At the same time, the load resistance of the reference voltage is switched according to the current distribution ratio, and the reference voltage is kept almost constant without depending on the on / off mode of the current distribution means while reducing the current. Low power consumption and fast recovery time can be realized.

以上説明したように、本発明によれば、低電力モード時にカレントミラー回路の電流をゼロにするのではなく削減させることによってカレントミラー回路をオフ状態ではなくオン状態にして消費電力の削減と高速リカバリ時間を同時に実現することができるという効果を奏する。   As described above, according to the present invention, in the low power mode, the current mirror circuit is turned on rather than turned off by reducing the current of the current mirror circuit to zero. The recovery time can be realized at the same time.

以下、図面を参照して本発明における実施の形態を詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1は本発明の実施の形態における低消費電力で高速リカバリ時間に対応のカレントミラー回路を示す構成図である。ここで、前記従来例を示す図3において説明した構成部材に対応し実質的に同等の機能を有するものには同一の符号を付してこれを示す。   FIG. 1 is a configuration diagram showing a current mirror circuit corresponding to a fast recovery time with low power consumption in an embodiment of the present invention. Here, components having substantially the same functions corresponding to the components described in FIG. 3 showing the conventional example are denoted by the same reference numerals.

図1において、1は電流分配手段の電流分配回路、2は電流源、3はアンプ、C1はカレントミラー回路の発振防止またはそのノードにつく寄生容量を意味し、カレントミラー回路は一般的によく知られているものである。   In FIG. 1, 1 is a current distribution circuit of current distribution means, 2 is a current source, 3 is an amplifier, C1 is an oscillation prevention of a current mirror circuit or a parasitic capacitance attached to its node. It is a known one.

図1に示すカレントミラー回路には、電流源2の電流をミラーするための一般的なカレントミラー回路と、電流源2とカレントミラー回路の接続点にカレントミラー回路の負荷抵抗との抵抗比によって分配率を任意に設定可能な電流分配を目的とし、カレントミラー回路の電流受部と同様の構成を持った第1のSW1によって切り離しが可能な電流分配回路1が接続されている。   The current mirror circuit shown in FIG. 1 includes a general current mirror circuit for mirroring the current of the current source 2 and a resistance ratio of a load resistance of the current mirror circuit at a connection point between the current source 2 and the current mirror circuit. A current distribution circuit 1 that can be separated by a first SW 1 having the same configuration as that of the current receiving portion of the current mirror circuit is connected for the purpose of current distribution capable of arbitrarily setting the distribution ratio.

さらに、ミラーされた電流を出力するトランジスタQ3と電流電圧変換を目的とした負荷抵抗が対接地間に接続され、第1の負荷抵抗R4によって作られる基準電圧が各モードによって一定値となるように、負荷抵抗を電流分配率に応じて可変する第2のSW2の一端が第1の負荷抵抗R4とトランジスタQ3との接続点に接続される。この第2のSW2の他端は第2の負荷抵抗R7に接続され、さらに第2の負荷抵抗R7の他端は接地されており、第1のSWによって電流分配回路1がオン/オフのどちらであっても、第2のSW2による第1,第2の負荷抵抗R4,R7の切り替えによって、基準電圧が同電圧となるようにする構成した低消費電力で高速リカバリ時間に対応のカレントミラー回路である。   Further, a transistor Q3 that outputs a mirrored current and a load resistor for current-voltage conversion are connected between the ground and the reference voltage generated by the first load resistor R4 is a constant value in each mode. One end of the second SW2 that varies the load resistance in accordance with the current distribution ratio is connected to a connection point between the first load resistance R4 and the transistor Q3. The other end of the second SW2 is connected to the second load resistor R7, and the other end of the second load resistor R7 is grounded, and the current distribution circuit 1 is turned on / off by the first SW. Even so, by switching the first and second load resistors R4 and R7 by the second SW2, the current mirror circuit is configured so that the reference voltage becomes the same voltage and low power consumption and fast recovery time It is.

以上のように構成された本実施の形態における低消費電力で高速リカバリ時間に対応のカレントミラー回路についてその動作を説明する。   The operation of the current mirror circuit configured as described above and corresponding to the fast recovery time with low power consumption will be described.

制御信号VctrlによってSW1のオン/オフ制御及びSW2のオフ/オン制御が行われ、SW1がオン時SW2はオフであり、カレントミラー回路の電流受部の電流I1及び電流分配回路1の電流I2の比はトランジスタのVbeを一定電圧で近似すると抵抗R1と抵抗R5の比で決定され(数3),(数4)で表される。   SW1 ON / OFF control and SW2 OFF / ON control are performed by the control signal Vctrl. When SW1 is ON, SW2 is OFF, and the current I1 of the current receiving part of the current mirror circuit and the current I2 of the current distribution circuit 1 are The ratio is determined by the ratio of the resistor R1 and the resistor R5 when Vbe of the transistor is approximated by a constant voltage, and is expressed by (Expression 3) and (Expression 4).

Figure 2005184654
Figure 2005184654

Figure 2005184654
さらに、この時SW2はオフ状態にあるため電圧Vrefの決定要因の負荷抵抗はR4となり、電流I3は定常状態でI1=I4=I3であるためVrefは(数5)で表される。
Figure 2005184654
Furthermore, since SW2 is in the off state at this time, the load resistance that determines the voltage Vref is R4, and the current I3 is steady and I1 = I4 = I3. Therefore, Vref is expressed by (Equation 5).

Figure 2005184654
次に、SW1はオフ、SW2がオンの状態を考えると、電流源3の電流はすべてカレントミラー回路に流れるためI1=I4=I0となる。また、負荷抵抗はSW2がオン状態のためR4とR7の並列抵抗をなりVrefは(数6)で表される。
Figure 2005184654
Next, considering the state in which SW1 is off and SW2 is on, all the current from the current source 3 flows through the current mirror circuit, so that I1 = I4 = I0. The load resistance is a parallel resistance of R4 and R7 because SW2 is on, and Vref is expressed by (Equation 6).

Figure 2005184654
この2つの状態の電圧Vrefが同じ電圧となるようなR1とR5、R4とR7の比を決定することで各モードにおいて同電位にすることができる。
Figure 2005184654
By determining the ratios of R1 and R5 and R4 and R7 so that the voltages Vref in the two states become the same voltage, the same potential can be obtained in each mode.

図2は本実施の形態における図1に示すカレントミラー回路の動作(a)〜(g)を示すタイミングチャートである。なお、前述の従来例における説明と同様に動作説明の簡単化のためトランジスタQ1及びQ2はスイッチング動作(すなわち、A点における電圧VAが一定値に達してはじめて電流が流れる)と仮定している。   FIG. 2 is a timing chart showing the operations (a) to (g) of the current mirror circuit shown in FIG. 1 in the present embodiment. It is assumed that the transistors Q1 and Q2 perform a switching operation (that is, a current flows only when the voltage VA at the point A reaches a certain value) for the sake of simplifying the operation description as in the conventional example described above.

まず、図2(a)は各SWの制御信号VctrlでありSW1がオン→オフとSW2のオフ→オンの切り替え入力をしている。図2(b)に示すように、SW1がオン→オフに切り替わったあとI1が初期電流からI0に切り替わる、また、図1中のA点の電位は(数7),(数8)で表される電圧からスタートし、   First, FIG. 2A is a control signal Vctrl of each SW, and SW1 is switched on and off and SW2 is switched on and off. As shown in FIG. 2B, after SW1 is switched from on to off, I1 is switched from the initial current to I0, and the potential at point A in FIG. 1 is expressed by (Equation 7) and (Equation 8). Start with the voltage

Figure 2005184654
Figure 2005184654

Figure 2005184654
C1に蓄えられた電荷は電流I1によって放電される。このA点の電位が一定値になるところまでの放電電圧、すなわち初期値と一定値との電圧差ΔVAは(数9)で表される。
Figure 2005184654
The charge stored in C1 is discharged by the current I1. The discharge voltage until the potential at the point A becomes a constant value, that is, the voltage difference ΔVA between the initial value and the constant value is expressed by (Equation 9).

Figure 2005184654
図2(c)にA点の電圧VAのタイミングを示す。図2(d)はカレントミラー回路の電流受部の電流I4でありSW1がオフしてから電圧VAが前述のとおり一定値になった時点で電流が流れI4=I0となる。図2(e)はミラーされた電流I3であり、ここではミラー比を1と仮定してI3=I4=I0となる。図2(f)にアンプ3の各入力を示す。Vrefは電流I3とSW2の状態によって決まる負荷抵抗の積で決まりアンプ3の基準電圧として働く、一方、VINは入力電圧であり任意の波形が入力される。本説明では解りやすくするために正弦波の入力とした。
Figure 2005184654
FIG. 2C shows the timing of the voltage VA at the point A. FIG. 2D shows the current I4 of the current receiving portion of the current mirror circuit. When SW1 is turned off and the voltage VA becomes a constant value as described above, the current flows and I4 = I0. FIG. 2 (e) shows the mirrored current I3. Here, assuming that the mirror ratio is 1, I3 = I4 = I0. FIG. 2F shows each input of the amplifier 3. Vref is determined by the product of the load resistance determined by the states of the currents I3 and SW2, and works as a reference voltage for the amplifier 3, while VIN is an input voltage and an arbitrary waveform is input. In this description, a sine wave input is used for easy understanding.

図2(g)はアンプ3の出力であり、図2(f)波形における電圧Vrefが本来の動作電圧に回復してから出力信号が出始める。図2(g)中のt1はリカバリ時間であり決定要因はA点の電圧のリカバリ時間であって、この時間は寄生容量C1と電流I0と電圧差ΔVAで決まり(数10)で表される。   FIG. 2G shows the output of the amplifier 3, and the output signal starts to be output after the voltage Vref in the waveform of FIG. In FIG. 2 (g), t1 is the recovery time, and the determining factor is the recovery time of the voltage at the point A. This time is determined by the parasitic capacitance C1, the current I0, and the voltage difference ΔVA, and is expressed by (Equation 10). .

Figure 2005184654
本来はもっと複雑な式となるが本説明の目的は動作説明であるため前述のとおり簡素化のためQ1及びQ2はスイッチング動作を行うと仮定している。
Figure 2005184654
Originally, the equation is more complicated, but the purpose of this description is to explain the operation. Therefore, it is assumed that Q1 and Q2 perform a switching operation for the sake of simplification as described above.

ここで、仮に電流、容量、抵抗の数値を代入して従来例とのリカバリ時間と比較してみる。例えば、I0=100μA、R1=1KΩ、R5=9KΩ、Vbe=0.7V、C1=10pFとして、従来例の(数1)で表されたΔVAをΔVAoldとした(数11)に代入すると、   Here, it is assumed that current, capacity, and resistance values are substituted and compared with the recovery time of the conventional example. For example, assuming that I0 = 100 μA, R1 = 1 KΩ, R5 = 9 KΩ, Vbe = 0.7 V, C1 = 10 pF, and ΔVA represented by (Equation 1) of the conventional example is substituted for ΔVAold, (Equation 11)

Figure 2005184654
また、従来例の(数2)で表されたリカバリ時間t2は(数12)に代入すると、
Figure 2005184654
Further, when the recovery time t2 represented by (Expression 2) in the conventional example is substituted into (Expression 12),

Figure 2005184654
次に本実施の形態におけるリカバリ時間は、前述の(数9)で表されたΔVAをΔVAnewとする(数13)に代入すると、
Figure 2005184654
Next, the recovery time in the present embodiment is obtained by substituting ΔVA represented by the above (Equation 9) into ΔVAnew (Equation 13).

Figure 2005184654
また、本実施の形態の(数10)で表されたリカバリ時間t1は(数14)に代入すると、
Figure 2005184654
Further, when the recovery time t1 represented by (Equation 10) of the present embodiment is substituted into (Equation 14),

Figure 2005184654
となり、本計算における仮の定数でも従来例と比べ約7倍と早くなっていることが解る。また、ここではSW1=オン時のカレントミラー回路で消費される電流比はI1:I0=1:10となるように抵抗値の設定を行った。
Figure 2005184654
Thus, it can be seen that the temporary constant in this calculation is about seven times faster than the conventional example. In addition, the resistance value is set so that the current ratio consumed by the current mirror circuit when SW1 = ON is I1: I0 = 1: 10.

以上のように本実施の形態によれば消費電力を削減しつつ高速リカバリ時間を実現することが可能である。   As described above, according to the present embodiment, it is possible to realize a fast recovery time while reducing power consumption.

本発明に係るカレントミラー回路は、低電力モード時にカレントミラー回路の電流を削減させて、消費電力の削減と高速リカバリ時間を同時に実現し、モード切り替え時の高速リカバリ時間と低消費電力に対応したカレントミラー回路であって、低消費電力モードを含むモード切り替え機能を有する半導体集積回路等として有用である。   The current mirror circuit according to the present invention reduces the current mirror circuit current in the low power mode to simultaneously reduce power consumption and fast recovery time, and supports fast recovery time and low power consumption during mode switching. The current mirror circuit is useful as a semiconductor integrated circuit having a mode switching function including a low power consumption mode.

本発明の実施の形態における低消費電力で高速リカバリ時間に対応のカレントミラー回路を示す構成図The block diagram which shows the current mirror circuit corresponding to high-speed recovery time with low power consumption in embodiment of this invention 本実施の形態における図1に示すカレントミラー回路の動作(a)〜(g)を示すタイミングチャートTiming chart showing the operations (a) to (g) of the current mirror circuit shown in FIG. 従来の低消費電力機能付きのカレントミラー回路の構成図Configuration diagram of conventional current mirror circuit with low power consumption function 従来の図3に示す低消費電力型のカレントミラー回路の動作(a)〜(g)を示すタイミングチャートTiming chart showing operations (a) to (g) of the conventional low power consumption type current mirror circuit shown in FIG.

符号の説明Explanation of symbols

1 電流分配回路
2 電流源
3 アンプ
1 Current distribution circuit 2 Current source 3 Amplifier

Claims (1)

電流源の電流をミラーするカレントミラー回路であって、前記カレントミラー回路の電流受部と前記電流源の接続点に前記カレントミラー回路の抵抗との抵抗比によって分配率を任意に設定した電流分配を目的とし、前記カレントミラー回路の前記電流受部と同様の構成を持った第1のスイッチによって切り離しが可能な第1の電流分配手段を備え、前記カレントミラー回路でミラーされた電流を出力するトランジスタと接地との間に電流電圧変換を目的とした第1の負荷抵抗が接続され、前記第1の負荷抵抗によって作られる基準電圧が各モードによって一定値となるように、前記第1の負荷抵抗の抵抗値を電流分配率に応じて可変する第2のスイッチが、一端を前記第1の負荷抵抗と前記トランジスタとの接続点に接続し、かつ他端が接地された第2の負荷抵抗に他端を接続しており、第1のスイッチによって前記各モードが前記電流分配手段のオン/オフのどちらであっても前記基準電圧を同電圧とすることを特徴とするカレントミラー回路。   A current mirror circuit for mirroring a current of a current source, wherein a distribution ratio is arbitrarily set by a resistance ratio between a current receiving portion of the current mirror circuit and a resistance of the current mirror circuit at a connection point of the current source And a first current distribution means that can be separated by a first switch having the same configuration as the current receiving portion of the current mirror circuit, and outputs a current mirrored by the current mirror circuit A first load resistor for the purpose of current-voltage conversion is connected between the transistor and the ground, and the first load is set so that the reference voltage generated by the first load resistor becomes a constant value depending on each mode. A second switch that varies the resistance value of the resistor in accordance with the current distribution ratio has one end connected to the connection point between the first load resistor and the transistor, and the other end connected. The other end is connected to the second load resistor, and the first switch makes the reference voltage the same regardless of whether each mode is on or off of the current distribution means. Current mirror circuit.
JP2003425171A 2003-12-22 2003-12-22 Current mirror circuit Pending JP2005184654A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003425171A JP2005184654A (en) 2003-12-22 2003-12-22 Current mirror circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003425171A JP2005184654A (en) 2003-12-22 2003-12-22 Current mirror circuit

Publications (1)

Publication Number Publication Date
JP2005184654A true JP2005184654A (en) 2005-07-07

Family

ID=34785141

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003425171A Pending JP2005184654A (en) 2003-12-22 2003-12-22 Current mirror circuit

Country Status (1)

Country Link
JP (1) JP2005184654A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110944424A (en) * 2018-09-05 2020-03-31 茂达电子股份有限公司 Light emitting diode driving circuit with brightness control and driving method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110944424A (en) * 2018-09-05 2020-03-31 茂达电子股份有限公司 Light emitting diode driving circuit with brightness control and driving method thereof
CN110944424B (en) * 2018-09-05 2021-09-07 茂达电子股份有限公司 Light emitting diode driving circuit with brightness control and driving method thereof

Similar Documents

Publication Publication Date Title
JP4287678B2 (en) Internal power circuit
KR20190141868A (en) Oscillator
JPH08272470A (en) Circuit for generation of reference voltage and for detection of undervoltage of power-supply voltage and corresponding method
KR100431256B1 (en) Digital-to-analog converter
JP3335183B2 (en) Buffer circuit
KR960701506A (en) CLICK / POP FREE BIAS CIRCUIT
JP4497742B2 (en) Voltage detection circuit
JP2006311419A (en) Signal output circuit
JPH04315207A (en) Power supply circuit
JP2005184654A (en) Current mirror circuit
JP2001189645A (en) System and method for controlled oscillation
CN111464000B (en) Output stage circuit of power supply conversion circuit
JP4848692B2 (en) Boost power supply circuit and boost method
JPH10225106A (en) Stabilized power supply circuit
JP4627932B2 (en) Voltage step-down circuit
US5631650A (en) Sample/hold free most significant bit comparator using bisection comparators
JP3036756B2 (en) Oscillation circuit
US20030218496A1 (en) Very small current generating ciruit
JP3815181B2 (en) Constant current output circuit, square wave current generation circuit and triangular wave voltage output circuit using the same
JP4493450B2 (en) Charge / discharge circuit
JPH1124765A (en) Step-down circuit device
JP2009284130A (en) Filter circuit and semiconductor device
JP3343833B2 (en) Power amplifier
JP2006114068A (en) Power source
JPH08321752A (en) Delay circuit