JP2005180641A - Constant velocity universal joint and method of manufacturing outer ring of constant velocity universal joint - Google Patents
Constant velocity universal joint and method of manufacturing outer ring of constant velocity universal joint Download PDFInfo
- Publication number
- JP2005180641A JP2005180641A JP2003425125A JP2003425125A JP2005180641A JP 2005180641 A JP2005180641 A JP 2005180641A JP 2003425125 A JP2003425125 A JP 2003425125A JP 2003425125 A JP2003425125 A JP 2003425125A JP 2005180641 A JP2005180641 A JP 2005180641A
- Authority
- JP
- Japan
- Prior art keywords
- peripheral surface
- outer ring
- inner peripheral
- constant velocity
- ring
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16D—COUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
- F16D3/00—Yielding couplings, i.e. with means permitting movement between the connected parts during the drive
- F16D3/16—Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts
- F16D3/20—Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members
- F16D3/22—Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members the rolling members being balls, rollers, or the like, guided in grooves or sockets in both coupling parts
- F16D3/223—Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members the rolling members being balls, rollers, or the like, guided in grooves or sockets in both coupling parts the rolling members being guided in grooves in both coupling parts
- F16D3/226—Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members the rolling members being balls, rollers, or the like, guided in grooves or sockets in both coupling parts the rolling members being guided in grooves in both coupling parts the groove centre-lines in each coupling part lying on a cylinder co-axial with the respective coupling part
- F16D3/227—Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members the rolling members being balls, rollers, or the like, guided in grooves or sockets in both coupling parts the rolling members being guided in grooves in both coupling parts the groove centre-lines in each coupling part lying on a cylinder co-axial with the respective coupling part the joints being telescopic
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16D—COUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
- F16D3/00—Yielding couplings, i.e. with means permitting movement between the connected parts during the drive
- F16D3/16—Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts
- F16D3/20—Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members
- F16D3/22—Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members the rolling members being balls, rollers, or the like, guided in grooves or sockets in both coupling parts
- F16D3/223—Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members the rolling members being balls, rollers, or the like, guided in grooves or sockets in both coupling parts the rolling members being guided in grooves in both coupling parts
- F16D2003/2232—Elements arranged in the hollow space between the end of the inner shaft and the outer joint member
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Forging (AREA)
Abstract
Description
この発明は、自動車において車輪に駆動力を伝達するために用いられる等速自在継手のうち、例えば、前輪を常時駆動して必要に応じて後輪を駆動するパートタイム四輪駆動車の後輪用ドライブシャフトのように、対象とする車両が走行する期間のなかで、ごく短時間・限定的に使用され、かつ、使用角度や負荷トルクが小さい用途に用いられる、固定式等速自在継手に関するものである。 The present invention relates to a rear wheel of a part-time four-wheel drive vehicle in which, for example, a constant velocity universal joint used for transmitting driving force to wheels in an automobile, for example, a front wheel is always driven and a rear wheel is driven as necessary. Related to fixed constant velocity universal joints, such as drive shafts, used in applications where the target vehicle travels for a very short time and in a limited time, and for which the operating angle and load torque are small Is.
従来、前輪を常時駆動して必要に応じて後輪を駆動するパートタイム四輪駆動車の後輪用ドライブシャフトにおいては、使用時間や負荷トルクなど負荷条件が軽いため、常時駆動する前輪のドライブシャフトに比べて、負荷容量の小さい小型の等速自在継手が使用されている。また、その形式としては、車輪側には固定式のバーフィールド型等速自在継手が用いられ、ディファレンシャルギヤ側には摺動式のダブルオフセット型あるいはトリポード型等速自在継手が用いられることが多い。
近年ニーズが増加している小型乗用車においても、雪道などのごく限られた状況での走行安定性の確保を目的とした、パートタイム四輪駆動車の需要があり、車体が軽量でありエンジンも低出力であるため、その後輪駆動用としては、従来にない小型、軽量の等速自在継手が最適である。また、車輪側に使用する固定式等速自在継手については、転舵機構のない後輪では、前輪のように40°以上の大きな最大作動角を必要としない。 There is a demand for part-time four-wheel drive vehicles for the purpose of ensuring running stability in extremely limited conditions such as snowy roads, even for small passenger cars whose needs have increased in recent years. Because of its low output, an unprecedented small and lightweight constant velocity universal joint is optimal for driving rear wheels. Further, as for the fixed type constant velocity universal joint used on the wheel side, the rear wheel without the steering mechanism does not require a large maximum operating angle of 40 ° or more unlike the front wheel.
しかしながら、従来の等速自在継手の製造方法では、この用途に限定して設計した小型の等速自在継手を少量生産することは、製造コスト面で非常に不利である。そのため、既に量産した実績のある比較的小型の等速自在継手の設計を流用する場合が多く、結果として、負荷条件に対して負荷容量の大きい、大型で重い等速自在継手が適用されてきた。 また、特に車輪側に使用されるバーフィールド型等速自在継手の場合、その構成部品(外輪、内輪、ケージ)に形成されるトラック溝や球面部の、輪郭形状と相対位置において、高い加工精度が要求される。 However, in the conventional method for manufacturing a constant velocity universal joint, it is very disadvantageous in terms of manufacturing cost to produce a small amount of a small constant velocity universal joint designed exclusively for this application. For this reason, the design of relatively small constant velocity universal joints that have already been mass-produced is often used, and as a result, large and heavy constant velocity universal joints with large load capacity for load conditions have been applied. . In particular, in the case of a Barfield type constant velocity universal joint used on the wheel side, high machining accuracy is achieved in the contour shape and relative position of the track groove and spherical surface formed in its component parts (outer ring, inner ring, cage). Is required.
図9にバーフィールド型等速自在継手の構造を示す。この等速自在継手は、外輪1のトラック溝5と内輪2のトラック溝6との間にトルク伝達ボール3を組み込み、トルク伝達ボール3をケージ4で保持したものである。外輪1は、カップ部分1aと、このカップ部分1aの底部から軸方向に延びる軸部分1bとを有する。カップ部分1aは凹球状内周面7を有し、その内周面7の円周方向複数箇所に、軸方向に延びるトラック溝5が形成されている。溝本数は例えば6本または8本とされる。カップ部分1aの開口縁には入口チャンファ9が形成される。内輪2は軸10に取り付けられ、その凸球状外周面8に、外輪1のトラック溝5と対をなすトラック溝6が形成されている。トラック溝5,6は、縦断面(図9)における溝底形状が円弧状の曲線とされている。ケージ4は、外輪1の内周面7と内輪2の外周面8とで接触案内される凸球状外周面4aおよび凹球状内周面4bを有する。外輪1のトラック溝5の円弧中心O1と内輪2のトラック溝6の円弧中心O2を、継手角度中心O0に対して軸方向で左右に等距離オフセットさせることにより、外輪1と内輪2が作動角をとったときに、その作動角の二等分位置にトルク伝達ボール3が保持されるようにしている。 FIG. 9 shows the structure of a bar field type constant velocity universal joint. In this constant velocity universal joint, a torque transmission ball 3 is incorporated between a track groove 5 of the outer ring 1 and a track groove 6 of the inner ring 2, and the torque transmission ball 3 is held by a cage 4. The outer ring 1 has a cup portion 1a and a shaft portion 1b extending in the axial direction from the bottom of the cup portion 1a. The cup portion 1 a has a concave spherical inner peripheral surface 7, and track grooves 5 extending in the axial direction are formed at a plurality of locations in the circumferential direction of the inner peripheral surface 7. The number of grooves is, for example, 6 or 8. An inlet chamfer 9 is formed at the opening edge of the cup portion 1a. The inner ring 2 is attached to a shaft 10, and a track groove 6 that forms a pair with the track groove 5 of the outer ring 1 is formed on the convex spherical outer peripheral surface 8. The track grooves 5 and 6 are curved with arc-shaped groove bottoms in the longitudinal section (FIG. 9). The cage 4 has a convex spherical outer peripheral surface 4 a and a concave spherical inner peripheral surface 4 b that are contact-guided by the inner peripheral surface 7 of the outer ring 1 and the outer peripheral surface 8 of the inner ring 2. The arc center O 1 and the arc center O 2 of the track grooves 6 of the inner ring 2 of the track grooves 5 of the outer ring 1, by the same distance offset to the right in the axial direction relative to the joint angle center O 0, the outer ring 1 and inner ring 2 When the operating angle takes an operating angle, the torque transmitting ball 3 is held at a position equally divided by the operating angle.
バーフィールド型等速自在継手では、トラック溝5,6の横断面における輪郭形状の精度がよく、縦断面の円弧形状における半径が設計どおり正確に加工されていることや、O1,O2のオフセット量の誤差が小さいことなどが、その作動性を大きく左右する要因となる。これらの加工精度が悪いと伝達ロスや回転トルクが大きくなって、車両において振動、騒音や、燃費などを悪化させる要因となるばかりか、過度な発熱などの重大な欠陥の原因となる可能性も生じる。そのため、前述のごく限られた状況で使用される軽い負荷条件に適用する場合においても、熱処理後に切削または研削加工による仕上加工を行うなど、加工精度の高い製造方法を適用する必要があり、この点が製造コストを削減する上での阻害要因となっていた。 In the Barfield type constant velocity universal joint, the accuracy of the contour shape in the cross section of the track grooves 5 and 6 is good, the radius in the circular arc shape of the vertical section is precisely processed as designed, and O 1 and O 2 A small error in the offset amount is a factor that greatly affects the operability. If these machining precisions are poor, transmission loss and rotational torque will increase, causing vibration, noise, fuel consumption, etc. in the vehicle to deteriorate, and may cause serious defects such as excessive heat generation. Arise. Therefore, even when applying to light load conditions used in the above-mentioned limited circumstances, it is necessary to apply a manufacturing method with high processing accuracy such as finishing by cutting or grinding after heat treatment. The point was an impediment to reducing the manufacturing cost.
前述のとおり、従来の等速自在継手の構造および製造方法では、小型乗用車のパートタイム四輪駆動車における後輪用ドライブシャフトのような、作動角範囲が小さく、負荷条件の軽い用途に最適な、低コストで製造可能な小型・軽量の固定式等速自在継手を提供することは困難であった。 As described above, the conventional constant velocity universal joint structure and manufacturing method are suitable for applications with a small operating angle range and light load conditions, such as a rear wheel drive shaft in a part-time four-wheel drive vehicle of a small passenger car. Therefore, it has been difficult to provide a small and lightweight fixed type constant velocity universal joint that can be manufactured at low cost.
本発明の目的は、この問題を解決するために、作動角範囲が小さく、負荷条件の軽い用途に最適な、低コストで製造可能な、小型・軽量の固定式等速自在継手の構造および製造方法を提供することにある。 In order to solve this problem, the object of the present invention is a structure and manufacturing of a small and lightweight fixed type constant velocity universal joint that can be manufactured at a low cost and is suitable for applications with a small operating angle range and light load conditions. It is to provide a method.
本発明の固定式等速自在継手は、円筒状内周面に軸方向に伸びる複数のトラック溝25と凹球状内周面27を形成した外輪21と、凸球状外周面28に軸方向に伸びる複数のトラック溝26を形成した内輪22と、外輪21のトラック溝25と内輪22のトラック溝26とで形成されたボール軌道に転動自在に組み込まれたトルク伝達ボール23と、トルク伝達ボール23を収容するポケット39を有し、外輪21の凹球状内周面27および内輪22の凸球状外周面28と係合する凸球状外周面29および凹球状内周面30を有するケージ24とを具備し、前記ケージ24の凸球状外周面29の中心Oxと凹球状内周面30の中心Oyを継手の角度中心Ooから軸方向に互いに逆向きに等距離オフセットさせた固定式等速自在継手において、前記トラック溝25,26の縦断面における溝底形状を軸線に平行な直線状としたことを特徴とするものである(請求項1)。図9を参照して既に述べたように、バーフィールド型等速自在継手では外輪および内輪のトラック溝の縦断面における溝底形状が円弧状の曲線であるため、外輪のトラック溝の縦断面における溝底形状の円弧中心と、外輪の凹球状内周面の中心との位置関係精度が、作動性に大きく影響する。これに対し、本発明では、外輪21のトラック溝25の縦断面における溝底形状が軸線に対して平行な直線であるため、外輪21の凹球状内周面27の球面中心Oxの軸方向位置は作動性に全く影響を与えない。これは、外輪21の凹球状内周面27の加工工程において仕上加工が容易であることを意味し、製造コストの低減につながる。製造工程は外輪21と異なるが、内輪22の凸球状外周面28の加工についても同様の特徴があり、仕上加工が容易であるため製造コストの低減につながる。 The fixed type constant velocity universal joint of the present invention extends in the axial direction to the outer ring 21 formed with a plurality of track grooves 25 and a concave spherical inner peripheral surface 27 extending in the axial direction on the cylindrical inner peripheral surface, and to the convex spherical outer peripheral surface 28. A torque transmission ball 23 rotatably incorporated in a ball raceway formed by an inner ring 22 having a plurality of track grooves 26, a track groove 25 of the outer ring 21 and a track groove 26 of the inner ring 22; And a cage 24 having a convex spherical outer peripheral surface 29 and a concave spherical inner peripheral surface 30 engaged with the concave spherical inner peripheral surface 27 of the outer ring 21 and the convex spherical outer peripheral surface 28 of the inner ring 22. In the fixed type constant velocity universal joint, the center Ox of the convex spherical outer peripheral surface 29 and the center Oy of the concave spherical inner peripheral surface 30 of the cage 24 are offset from the angular center Oo of the joint by an equal distance in the opposite directions in the axial direction. , Is characterized in that it has a parallel straight to the axis of the groove bottom shape in longitudinal section of the serial track grooves 25 and 26 (claim 1). As already described with reference to FIG. 9, in the bar field type constant velocity universal joint, the groove bottom shape in the longitudinal section of the outer and inner ring track grooves is an arcuate curve. The positional relation accuracy between the center of the arc of the groove bottom shape and the center of the concave spherical inner peripheral surface of the outer ring greatly affects the operability. On the other hand, in the present invention, since the groove bottom shape in the longitudinal section of the track groove 25 of the outer ring 21 is a straight line parallel to the axis, the position in the axial direction of the spherical center Ox of the concave spherical inner peripheral surface 27 of the outer ring 21. Has no effect on operability. This means that the finishing process is easy in the process of processing the concave spherical inner peripheral surface 27 of the outer ring 21 and leads to a reduction in manufacturing cost. Although the manufacturing process is different from that of the outer ring 21, the processing of the convex spherical outer peripheral surface 28 of the inner ring 22 has the same characteristics, and the finishing process is easy, leading to a reduction in manufacturing cost.
具体的には、本発明の固定式等速自在継手における外輪21は、バーフィールド型等速自在継手の外輪に比べて、しごき成形などの冷間プレス加工により容易に製造することができる。その理由は、本発明の固定式等速自在継手のカップ部分21aの形状は、冷間プレス加工において、管材や円筒状素材に対してトラック溝25の部分を外径側に拡径させるか、または、その逆にトラック溝25間の部分を内径側に縮径させることにより、少ない変形を与えることで、容易に得られるからである(請求項5、請求項6)。また、その他に、冷間引抜加工によりカップ部分21aと同一の断面形状を有する長尺の引抜材を成形し、適当な長さに切断してもよい(請求項7)。 Specifically, the outer ring 21 in the fixed type constant velocity universal joint of the present invention can be easily manufactured by cold press working such as ironing, as compared with the outer ring of the Barfield type constant velocity universal joint. The reason is that the shape of the cup portion 21a of the fixed type constant velocity universal joint of the present invention is such that the portion of the track groove 25 is expanded to the outer diameter side with respect to the tube material or the cylindrical material in the cold pressing process. Alternatively, conversely, the portion between the track grooves 25 can be easily obtained by reducing the diameter to the inner diameter side to give a small deformation (claims 5 and 6). In addition, a long drawn material having the same cross-sectional shape as the cup portion 21a may be formed by cold drawing and cut into an appropriate length (Claim 7).
請求項2の発明は、請求項1の固定式等速自在継手において、前記外輪21が、冷間加工により成形した後表面硬化処理を施したカップ部分21aと、高周波焼入れにより必要範囲を硬化処理させた軸部分21bとを接合することによって構成されたことを特徴とするものである。カップ部分21aをプレス加工などの冷間成形法により製造し、適用車両ごとに必要形状が異なる軸部分21bはカップ部分21aとは別体として製造し、カップ部分21aと軸部分21bを接合して外輪21を構成する製造方法を適用することにより(請求項8)、カップ部分21aの設計は共通化してまとめて生産することができるためコスト面で有利となる。 The invention according to claim 2 is the fixed type constant velocity universal joint according to claim 1, wherein the outer ring 21 is formed by cold working and then subjected to surface hardening treatment, and the necessary range is hardened by induction hardening. It is characterized by being formed by joining the shaft portion 21b. The cup portion 21a is manufactured by a cold forming method such as press working, and the shaft portion 21b having a different shape for each application vehicle is manufactured separately from the cup portion 21a, and the cup portion 21a and the shaft portion 21b are joined. By applying the manufacturing method for forming the outer ring 21 (Claim 8), the design of the cup portion 21a can be made common and produced together, which is advantageous in terms of cost.
請求項3の発明は、請求項1または2の固定式等速自在継手において、前記内輪22と結合されるシャフト31の先端に、一定の作動角θに達したときに外輪21の一部と干渉する突起32を設けたことを特徴とするものである。外輪21とシャフト31が一定の相対角度に達した場合に、外輪21の一部、たとえば外輪内周に設けられた環状体33の内径部に突起32の先端が干渉することにより、外輪21とシャフト31との相対角度、すなわち作動角θが制限される。通常、前輪を常時駆動して必要に応じて後輪を駆動するパートタイム四輪駆動車の後輪用ドライブシャフトの用途において、作動角θの上限は25°〜30°前後に設定されていれば機能上十分である。 According to a third aspect of the present invention, in the fixed type constant velocity universal joint according to the first or second aspect, the tip of the shaft 31 coupled to the inner ring 22 has a part of the outer ring 21 when a certain operating angle θ is reached. This is characterized in that an interference projection 32 is provided. When the outer ring 21 and the shaft 31 reach a certain relative angle, the tip of the protrusion 32 interferes with a part of the outer ring 21, for example, the inner diameter portion of the annular body 33 provided on the inner periphery of the outer ring. The relative angle with respect to the shaft 31, that is, the operating angle θ is limited. Normally, the upper limit of the operating angle θ is set to about 25 ° to 30 ° in the application of a rear wheel drive shaft for a part-time four-wheel drive vehicle that always drives the front wheels and drives the rear wheels as needed. Functionally sufficient.
車両に取り付けられる以前の製造工程内において、バーフィールド型等速自在継手では、外輪21とシャフト31の相対角度を、車両で使用される作動角θの上限よりも大きい角度、すなわちシャフト31の外径と外輪21の開口端部が干渉する角度まで屈曲させることが可能である場合が多い。この場合、継手内部の密閉を目的としたブーツにおける蛇腹状部分または屈曲変形部分に、想定され得る最大の変形が生じることになる。その結果、車両においては取りえない大きな作動角に対応する設計によりブーツは必要以上に大型となり、その内部に封入する潤滑剤の量も多いため、コストダウンが困難となる。これに対し、本発明のように、突起32と環状体33を備えて作動角θを構造的に制限することにより、ブーツ35を必要最小限の大きさに設計して潤滑剤の量も少なくすることが可能となり、低コスト化を図ることができる。 In the manufacturing process prior to being attached to the vehicle, in the Barfield type constant velocity universal joint, the relative angle between the outer ring 21 and the shaft 31 is larger than the upper limit of the operating angle θ used in the vehicle, that is, outside the shaft 31. In many cases, it can be bent to an angle at which the diameter and the opening end of the outer ring 21 interfere. In this case, the maximum deformation that can be assumed occurs in the bellows-like portion or the bent deformation portion of the boot intended to seal the inside of the joint. As a result, the boots are unnecessarily large due to the design corresponding to a large operating angle that cannot be taken by a vehicle, and the amount of lubricant enclosed in the boots is large, so that it is difficult to reduce costs. On the other hand, as in the present invention, the protrusion 35 and the annular body 33 are provided and the operating angle θ is structurally limited, so that the boot 35 is designed to the minimum necessary size and the amount of lubricant is small. This makes it possible to reduce the cost.
また、本発明の固定式等速自在継手においては、その構造上、カップ部分21aにケージ24と内輪22を組み込んだ後にトルク伝達ボール23を一箇所ずつ組み込む方法により組み立てられるように構成すると、組立て後に外輪21と内輪22の相対角度が過大になると、トルク伝達ボール23がケージ24のポケット39から脱落するという問題が生じる。そのため製造工程においては、内輪22にシャフト31を挿入嵌合した後に、外輪21と内輪22の相対角度が過大にならないように、作動角θを制限する手段(32,33)を備えていることが非常に好都合である。突起32はシャフト31の一部、環状体33は外輪21の軸部分21bの一部として形成することにより、製造コストの増加を抑えることができる。 In addition, the fixed type constant velocity universal joint of the present invention is structured so that it can be assembled by a method in which the torque transmission balls 23 are assembled one by one after the cage 24 and the inner ring 22 are assembled in the cup portion 21a. If the relative angle between the outer ring 21 and the inner ring 22 becomes excessive later, there arises a problem that the torque transmitting ball 23 falls out of the pocket 39 of the cage 24. Therefore, in the manufacturing process, after the shaft 31 is inserted and fitted into the inner ring 22, means (32, 33) for limiting the operating angle θ is provided so that the relative angle between the outer ring 21 and the inner ring 22 does not become excessive. Is very convenient. By forming the protrusion 32 as a part of the shaft 31 and the annular body 33 as a part of the shaft portion 21b of the outer ring 21, an increase in manufacturing cost can be suppressed.
請求項4の発明は、請求項1、2または3の固定式等速自在継手において、トルク伝達ボール23の直径をd、トルク伝達ボール23の中心を結ぶ円の直径をPCD、外輪21の凹球状内周面27の直径をS1、内輪22の凸球状外周面28の直径をS2、外輪21のカップ部分21aの冷間加工におけるトラック溝25の肉厚をtとするとき、これらの比d:PCD:S1:S2:tが、1.0:(2.6〜3.3):(3.0〜4.3):(2.3〜3.7):(0.22〜0.42)なる範囲に設定され、かつ、トルク伝達ボール23が5個で構成されていることを特徴とするものである。等速自在継手としての必要強度および耐久性と、カップ部分21aにケージ24と内輪22を組み込んだ後にトルク伝達ボール23を組み込む方法における組立て性とを両立させるため、トルク伝達ボール23の数は5個に設定されている。 According to a fourth aspect of the present invention, in the fixed type constant velocity universal joint of the first, second or third aspect, the diameter of the torque transmission ball 23 is d, the diameter of the circle connecting the centers of the torque transmission balls 23 is PCD, and the concave of the outer ring 21 is. When the diameter of the spherical inner peripheral surface 27 is S 1 , the diameter of the convex spherical outer peripheral surface 28 of the inner ring 22 is S 2 , and the thickness of the track groove 25 in the cold working of the cup portion 21a of the outer ring 21 is t. The ratio d: PCD: S 1 : S 2 : t is 1.0: (2.6-3.3) :( 3.0-4.3) :( 2.3-3.7) :( 0 .22 to 0.42), and the number of torque transmitting balls 23 is five. In order to achieve both the required strength and durability as a constant velocity universal joint and the assemblability in the method of incorporating the torque transmission ball 23 after the cage 24 and the inner ring 22 are assembled in the cup portion 21a, the number of torque transmission balls 23 is five. It is set to pieces.
d=1.0を基準として、各寸法の比率およびトルク伝達ボール数を上記の範囲外とした場合には、次に述べる代表的な問題または傾向が生じる。 When the ratio of each dimension and the number of torque transmission balls are out of the above ranges with d = 1.0 as a reference, the following typical problems or trends occur.
PCDを上限値の比率3.3より大きくとると、カップ部分21aの外径が大きくなり、軽量・コンパクト性が低下する。従来の製造方法である、温間または熱間鍛造により成形されたものより軽量かつコンパクトなカップ部分21aが得られなくなる。 If the PCD is larger than the upper limit ratio 3.3, the outer diameter of the cup portion 21a is increased, and the lightweight and compactness is lowered. A cup portion 21a that is lighter and more compact than that formed by warm or hot forging, which is a conventional manufacturing method, cannot be obtained.
PCDを下限値の比率2.6より小さくすると、ケージ24の隣り合うポケット39間の柱状部分が細くなり、ケージ24の強度低下により継手の許容伝達トルクが低下する。 If the PCD is smaller than the lower limit ratio 2.6, the columnar portion between the adjacent pockets 39 of the cage 24 becomes thin, and the allowable transmission torque of the joint decreases due to the strength reduction of the cage 24.
S1を上限値の比率4.3より大きくすると、カップ部分21aのトラック溝25が浅くなり、ボール23が溝肩に乗り上げやすくなり、トラック溝25とボール23との接触点が、トラック溝25から脱落することにより、カップ部分21aの強度が低下し、継手の許容伝達トルクが低下する。S1を下限値の比率3.0より小さくすると、ケージ24の凸球状外周面29と凹球状内周面30が接近して肉厚が薄くなるため、ケージ24の強度が低下し、継手の許容伝達トルクが低下する。 When S 1 is made larger than the upper limit ratio 4.3, the track groove 25 of the cup portion 21a becomes shallow and the ball 23 can easily ride on the shoulder of the groove, and the contact point between the track groove 25 and the ball 23 becomes the track groove 25. As a result, the strength of the cup portion 21a decreases, and the allowable transmission torque of the joint decreases. If S 1 is made smaller than the lower limit ratio of 3.0, the convex spherical outer peripheral surface 29 and the concave spherical inner peripheral surface 30 of the cage 24 approach each other and the wall thickness decreases, so that the strength of the cage 24 decreases, Allowable transmission torque decreases.
S2を上限値の比率3.7より大きくすると、ケージ24の凸球状外周面29と凹球状内周面30が接近して肉厚が薄くなるため、ケージ24の強度が低下し、継手の許容伝達トルクが低下する。S2を下限値の比率2.3より小さくすると、内輪22のトラック溝26が浅くなり、トルク伝達ボール23が溝肩に乗り上げやすくなり、トラック溝26とトルク伝達ボール23との接触点がトラック溝26から脱落することにより、内輪22の強度が低下し、継手の許容伝達トルクが低下する。 If S 2 is made larger than the upper limit ratio of 3.7, the convex spherical outer peripheral surface 29 and the concave spherical inner peripheral surface 30 of the cage 24 approach each other and the wall thickness becomes thin. Allowable transmission torque decreases. If S 2 is made smaller than the lower limit ratio 2.3, the track groove 26 of the inner ring 22 becomes shallow, and the torque transmission ball 23 easily rides on the shoulder of the groove, and the contact point between the track groove 26 and the torque transmission ball 23 becomes the track. By dropping from the groove 26, the strength of the inner ring 22 is reduced and the allowable transmission torque of the joint is reduced.
tを上限値の比率0.42より大きくすると、カップ部分21aの重量が大きくなるとともに、軽量・コンパクト性が低下する。従来の製造方法である、温間または熱間鍛造により成形されたものより軽量かつコンパクトなカップ部分21aが得られなくなる。tを下限値の比率0.22より小さくすると、継手の負荷トルクによりボール23からトラック溝25に加わる荷重に対するカップ部分21aの強度が低下し、継手の許容伝達トルクが低下する。 When t is made larger than the upper limit ratio 0.42, the weight of the cup portion 21a is increased, and the light weight and compactness are lowered. A cup portion 21a that is lighter and more compact than that formed by warm or hot forging, which is a conventional manufacturing method, cannot be obtained. When t is smaller than the lower limit ratio of 0.22, the strength of the cup portion 21a with respect to the load applied from the ball 23 to the track groove 25 due to the load torque of the joint decreases, and the allowable transmission torque of the joint decreases.
トルク伝達ボール23の数を増やすと、ケージ24の隣り合うポケット39間の柱状部分を構成できなくなり、ケージ24の構造が成立しない。逆に、トルク伝達ボール23の数を減らすと、継手の負荷トルクに対するトルク伝達ボール23とトラック溝25,26との接触荷重が大きくなるため、カップ部分21aおよび内輪22の強度低下により継手の許容伝達トルクが低下する。また、トルク伝達ボール23とトラック溝25,26の摩耗が激しくなるため、継手の耐久性も低下する。 When the number of the torque transmission balls 23 is increased, the columnar portion between the adjacent pockets 39 of the cage 24 cannot be formed, and the structure of the cage 24 is not established. On the contrary, if the number of torque transmission balls 23 is reduced, the contact load between the torque transmission balls 23 and the track grooves 25 and 26 with respect to the load torque of the joint increases. Transmission torque decreases. In addition, since the wear of the torque transmission ball 23 and the track grooves 25 and 26 becomes severe, the durability of the joint also decreases.
以上のとおり、d、PCD、S1、S2、tの寸法比およびトルク伝達ボール数が、本発明の固定式等速自在継手における機能(許容負荷トルク、耐久性)と特性(軽量・コンパクト性)とを決定する要因となる。前述の寸法比は、本発明の固定式等速自在継手が、その用途に対して最適な機能と特性を発揮することを目的として設定したものである。 As described above, the dimension ratio of d, PCD, S 1 , S 2 , and t and the number of torque transmission balls are functions (allowable load torque, durability) and characteristics (light weight / compact) of the fixed type constant velocity universal joint of the present invention. Sex). The above-mentioned dimensional ratio is set for the purpose of the fixed constant velocity universal joint of the present invention exhibiting the optimum functions and characteristics for the application.
本発明により、小型乗用車のパートタイム四輪駆動車における後輪用ドライブシャフトのような、作動角範囲が小さく、負荷条件の軽い用途に最適な、低コストで製造可能な小型・軽量の固定式等速自在継手の構造および製造方法を提供することができる。 According to the present invention, a small and lightweight fixed type that can be manufactured at a low cost and is suitable for applications with a small operating angle range and a light load condition, such as a rear wheel drive shaft in a part-time four-wheel drive vehicle of a small passenger car. A structure and manufacturing method of a constant velocity universal joint can be provided.
本発明の要点は、外輪のカップ部分の製造方法として冷間プレス加工を適用する上で、カップ部分の成形が最も容易な固定式等速自在継手の構造を選択し、製造方法を考案したことである。等速自在継手の適用用途、構造、製造方法を総合的に検討することにより、製造コストを抑えられる反面、鍛造による成形方法と比べて成形できる形状が制約される冷間プレス加工の利点を、最大限に活かす製造方法を提供することができる。 The main point of the present invention is that, in applying cold pressing as a manufacturing method of the cup portion of the outer ring, the structure of the fixed type constant velocity universal joint that is most easy to mold the cup portion is selected and the manufacturing method is devised. It is. By comprehensively examining the application, structure, and manufacturing method of constant velocity universal joints, the manufacturing cost can be suppressed, but the advantage of cold pressing that restricts the shape that can be molded compared to the molding method by forging, It is possible to provide a manufacturing method that makes the most of it.
図1および図2に従って本発明の実施の形態を説明する。この実施の形態の固定式等速自在継手は、外輪21と、内輪22と、トルク伝達ボール23と、ケージ24を主要な構成要素として成り立っている。符号35はブーツを示す。 An embodiment of the present invention will be described with reference to FIGS. The fixed type constant velocity universal joint according to this embodiment includes an outer ring 21, an inner ring 22, a torque transmission ball 23, and a cage 24 as main components. Reference numeral 35 denotes a boot.
外輪21はカップ部分21aと軸部分21bとからなる。カップ部分21aは概ね円筒形で、内周面に、軸方向に伸びる複数、ここでは5本のトラック溝25を有する。トラック溝25の縦断面(図1(a))における溝底形状は軸線に平行な直線である。トラック溝25間の部分には凹球状内周面27が形成してある。カップ部分21aを製造するにあたっては、低炭素鋼の円管材から冷間プレス加工により成形した後、凹球状内周面27、ブーツ35を装着するための係合溝34、軸部分21bとの係合部などの必要箇所に切削加工を施し、さらに浸炭焼入れによる表面硬化処理を施した後、凹球状内周面27に仕上加工を施す。カップ部分21aの形状は、冷間プレス加工において、円管材に対してトラック溝25の部分を外径側に拡径させるか、または、その逆にトラック溝25間部分を内径側に縮径させることにより、少ない変形を与えることで、容易に得ることができる。トラック溝25に要求される形状精度や位置関係精度は、前述の加工方法により充分に達成し得るものであり、熱処理後の仕上加工を必要としない。軸部分21bは、鍛造により粗成形した素材に切削加工を施して必要形状を得た後、熱処理を施したものである。この実施の形態では、カップ部分21aと軸部分21bは、符号38で示すように、係合部分の外径面に適度の開先形状を設けて溶接することにより接合されており、前述の浸炭焼入れ工程において、カップ部分21aの接合部周辺は防炭処理を施してある。 The outer ring 21 includes a cup portion 21a and a shaft portion 21b. The cup portion 21a is substantially cylindrical, and has a plurality of (here, five) track grooves 25 extending in the axial direction on the inner peripheral surface. The groove bottom shape in the longitudinal section (FIG. 1A) of the track groove 25 is a straight line parallel to the axis. A concave spherical inner peripheral surface 27 is formed in a portion between the track grooves 25. In manufacturing the cup portion 21a, after forming from a low carbon steel circular pipe material by cold press working, the concave spherical inner peripheral surface 27, the engagement groove 34 for mounting the boot 35, and the shaft portion 21b. After cutting a necessary portion such as a joint, and further performing a surface hardening treatment by carburizing and quenching, the concave spherical inner peripheral surface 27 is finished. The shape of the cup portion 21a is such that the portion of the track groove 25 is expanded toward the outer diameter side with respect to the circular pipe material, or conversely, the portion between the track grooves 25 is reduced in diameter toward the inner diameter side in cold pressing. Thus, it can be easily obtained by giving a small deformation. The shape accuracy and positional relationship accuracy required for the track grooves 25 can be sufficiently achieved by the above-described processing method, and does not require finishing after heat treatment. The shaft portion 21b is obtained by subjecting a raw material roughly formed by forging to a cutting process to obtain a necessary shape, and then performing a heat treatment. In this embodiment, the cup portion 21a and the shaft portion 21b are joined by providing an appropriate groove shape on the outer diameter surface of the engaging portion and welding as shown by reference numeral 38, and the above-mentioned carburization is performed. In the quenching process, the periphery of the joint portion of the cup portion 21a is subjected to a carbon-proof treatment.
内輪22は、スプラインやセレーションを代表とする回り止め手段によってトルク伝達可能にシャフト31と結合される。内輪22は凸球状外周面28を有し、その外周面に外輪21のトラック溝25と対応するトラック溝26が形成してある。ここでもトラック溝26の縦断面(図1(a))における溝底形状は軸線に平行な直線である。内輪22は鍛造素材に切削加工やブローチ加工を施して成形され、浸炭焼入れによる表面硬化処理を施した後、凸球状外周面28に仕上加工を施したものである。内輪22についても外輪21のカップ部分21aと同様に、トラック溝26に要求される形状精度や位置関係精度は、冷間鍛造により成形した素材に前述の加工を施すことで充分に達成し得るものであり、熱処理後の仕上加工を必要としない。 The inner ring 22 is coupled to the shaft 31 so that torque can be transmitted by a detent means represented by splines and serrations. The inner ring 22 has a convex spherical outer peripheral surface 28, and a track groove 26 corresponding to the track groove 25 of the outer ring 21 is formed on the outer peripheral surface. Again, the groove bottom shape in the longitudinal section of the track groove 26 (FIG. 1A) is a straight line parallel to the axis. The inner ring 22 is formed by subjecting a forging material to cutting or broaching, subjecting it to surface hardening treatment by carburizing and quenching, and then finishing the convex spherical outer peripheral surface 28. As with the cup portion 21a of the outer ring 21, the inner ring 22 can sufficiently achieve the shape accuracy and positional relationship accuracy required for the track groove 26 by subjecting the material formed by cold forging to the aforementioned processing. It does not require finishing after heat treatment.
外輪21のトラック溝25と内輪22のトラック溝26とは対をなし、各対のトラック溝に1個宛トルク伝達ボール23が転動自在に組み込んである。この実施の形態では5個のトルク伝達ボール23があり、それぞれケージ24のポケット39内に保持される。ケージ24は、外輪21の凹球状内周面27および内輪22の凸球状外周面28と係合する凸球状外周面29および凹球状内周面30を有する。ケージ24の凸球状外周面29および凹球状内周面30の中心Ox,Oyを継手の角度中心Ooから軸方向に互いに逆向きに等距離オフセットさせてある。ケージ24は、鍛造素材に切削加工を施して成形され、浸炭焼入れによる表面硬化処理を施した後、凸球状外周面29と凹球状内周面30の仕上加工を施したものである。 The track groove 25 of the outer ring 21 and the track groove 26 of the inner ring 22 form a pair, and a single torque transmission ball 23 is rotatably incorporated in each pair of track grooves. In this embodiment, there are five torque transmission balls 23, each held in a pocket 39 of the cage 24. The cage 24 has a convex spherical outer peripheral surface 29 and a concave spherical inner peripheral surface 30 that engage with the concave spherical inner peripheral surface 27 of the outer ring 21 and the convex spherical outer peripheral surface 28 of the inner ring 22. The centers Ox and Oy of the convex spherical outer peripheral surface 29 and the concave spherical inner peripheral surface 30 of the cage 24 are offset equidistantly from each other in the axial direction from the angular center Oo of the joint. The cage 24 is formed by cutting a forged material, subjecting it to surface hardening treatment by carburizing and quenching, and then finishing the convex spherical outer peripheral surface 29 and the concave spherical inner peripheral surface 30.
図1および図2に示す実施の形態では、トルク伝達ボール23の直径をd、トルク伝達ボール23の中心を結ぶ円の直径をPCD、カップ部分21aの凹球状内周面27の直径をS1、内輪22の凸球状外周面28の直径をS2、カップ部分21aのプレス成形加工におけるトラック溝の肉厚をtとするとき、これらの比d:PCD:S1:S2:tが、1.0:(2.6〜3.3):(3.0〜4.3):(2.3〜3.7):(0.22〜0.42)となるように寸法設定されている。 In the embodiment shown in FIGS. 1 and 2, the diameter of the torque transmission ball 23 is d, the diameter of the circle connecting the centers of the torque transmission balls 23 is PCD, and the diameter of the concave spherical inner peripheral surface 27 of the cup portion 21a is S 1. When the diameter of the convex spherical outer peripheral surface 28 of the inner ring 22 is S 2 and the thickness of the track groove in the press molding of the cup portion 21a is t, the ratio d: PCD: S 1 : S 2 : t is 1.0: (2.6 to 3.3): (3.0 to 4.3): (2.3 to 3.7): (0.22 to 0.42) ing.
シャフト31の先端には、作動角を制限するための突起32が設けてある。図2に示すように、外輪21に対して内輪22およびシャフト31が一定の作動角θに達した場合に、外輪21の内周に設けられた環状体33に突起32の先端が干渉することにより、作動角が制限される。通常、前輪を常時駆動して必要に応じて後輪を駆動するパートタイム四輪駆動車における後輪用ドライブシャフトの用途において、作動角θの上限は25°〜30°前後に設定されている。 A protrusion 32 for limiting the operating angle is provided at the tip of the shaft 31. As shown in FIG. 2, when the inner ring 22 and the shaft 31 reach a certain operating angle θ with respect to the outer ring 21, the tip of the protrusion 32 interferes with the annular body 33 provided on the inner periphery of the outer ring 21. Due to this, the operating angle is limited. Usually, in a use of a rear wheel drive shaft in a part-time four-wheel drive vehicle in which the front wheels are always driven and the rear wheels are driven as necessary, the upper limit of the operating angle θ is set to about 25 ° to 30 °. .
ブーツ35は、クロロプレンゴムを材料として、射出成形法により成形されたものである。ブーツ35は、金属製の固定バンド36,37により、小径側端部をシャフト31に、大径側端部をカップ部分21aに、それぞれ固定されている。ブーツ35の軸方向中央に位置する蛇腹状部分の形状は、適用する等速自在継手の作動角の範囲に応じて設計されている。通常、等速自在継手におけるブーツの耐久性を考慮するうえで、対象とする等速自在継手の作動角の範囲が広いほど、蛇腹状部分の形状は軸方向に長く、ひだの数を多くする必要がある。しかし、ここでは前述の構造により作動角を制限するため、ブーツ35の蛇腹状部分を必要最小限の大きさに設計することが可能である。また、ブーツ35の内部容積が小さいため、内部に充填する潤滑剤の量も少なくすることができる。 The boot 35 is formed by an injection molding method using chloroprene rubber as a material. The boot 35 is fixed to the shaft 31 by the metal fixing bands 36 and 37, and the large diameter end to the cup portion 21a. The shape of the bellows-like portion located in the axial center of the boot 35 is designed according to the operating angle range of the constant velocity universal joint to be applied. In general, considering the durability of boots in constant velocity universal joints, the wider the operating angle range of the target constant velocity universal joint, the longer the shape of the bellows-like portion is in the axial direction and the greater the number of pleats There is a need. However, since the operating angle is limited by the above-described structure, the bellows-like portion of the boot 35 can be designed to the minimum necessary size. Further, since the internal volume of the boot 35 is small, the amount of lubricant filled in the boot 35 can be reduced.
次に、図3〜図9に従って、図示した実施の形態の等速自在継手の組立て方法について説明する。 Next, the method for assembling the constant velocity universal joint of the illustrated embodiment will be described with reference to FIGS.
まず、図3に示すように内輪22とケージ24の回転位相を合わせ、図3(a)に示すように内輪22をケージ24に対して軸方向に矢印の向きに挿入する。 First, as shown in FIG. 3, the rotational phases of the inner ring 22 and the cage 24 are matched, and the inner ring 22 is inserted into the cage 24 in the direction of the arrow in the axial direction as shown in FIG.
次に、内輪22の凸球状外周面28とケージ24の凹球状内周面30が係合するように、内輪22をケージ24に対して回転させ、図4の状態に至る。 Next, the inner ring 22 is rotated with respect to the cage 24 so that the convex spherical outer peripheral surface 28 of the inner ring 22 and the concave spherical inner peripheral surface 30 of the cage 24 are engaged, and the state shown in FIG. 4 is reached.
図5に示すように、内輪22およびケージ24とカップ部分21aとの回転位相を合わせ(図5(b))、内輪22およびケージ24をカップ部分21aに対して軸方向に矢印の向きに挿入する(図5(a))。 As shown in FIG. 5, the rotation phases of the inner ring 22 and the cage 24 and the cup portion 21a are matched (FIG. 5B), and the inner ring 22 and the cage 24 are inserted in the direction of the arrow in the axial direction with respect to the cup portion 21a. (FIG. 5A).
ケージ24の凸球状外周面29とカップ部分21aの凹球状内周面27が係合するように、内輪22およびケージ24をカップ部分21aに対して回転させ、図6の状態に至る。
5)図7に示すように、カップ部分21aに対する内輪22およびケージ24の傾斜角θ1,θ2が、θ1=2×θ2となる位置で、トルク伝達ボール23を一ヶ所ずつ(計5ヶ所)挿入してゆく。
The inner ring 22 and the cage 24 are rotated with respect to the cup portion 21a so that the convex spherical outer peripheral surface 29 of the cage 24 and the concave spherical inner peripheral surface 27 of the cup portion 21a are engaged, and the state shown in FIG. 6 is reached.
5) As shown in FIG. 7, the torque transmission balls 23 are placed one by one at a position where the inclination angles θ 1 and θ 2 of the inner ring 22 and the cage 24 with respect to the cup portion 21a are θ 1 = 2 × θ 2 (total 5 places) Insert.
この後、潤滑剤(図示せず)を内部に封入したうえで、内輪22にシャフト31を挿入し、ブーツ35をバンド36,37により固定した状態が図1に示すものである。 Thereafter, a lubricant (not shown) is sealed inside, the shaft 31 is inserted into the inner ring 22, and the boot 35 is fixed by the bands 36 and 37 as shown in FIG.
以上説明したとおり、本発明の実施の形態である図1に示す固定式等速自在継手により、従来のバーフィールド型等速自在継手よりも低コストで製造できる等速自在継手を提供することが可能である。 As described above, the fixed type constant velocity universal joint shown in FIG. 1 which is an embodiment of the present invention provides a constant velocity universal joint that can be manufactured at a lower cost than a conventional barfield type constant velocity universal joint. Is possible.
その他の実施の形態として、カップ部分21aを円管材から成形する代わりに、円盤状の板材を絞り成形により有底の円筒材に成形し、前述の方法と同様にトラック溝25の部分を外径側に拡径させるか、または、その逆にトラック溝25間の部分を内径側に縮径させた後、底部を切断して成形することにより同様の形状を得てもよい。 As another embodiment, instead of forming the cup portion 21a from a circular pipe material, a disk-shaped plate material is formed into a bottomed cylindrical material by drawing and the portion of the track groove 25 is formed in the outer diameter in the same manner as described above. The same shape may be obtained by expanding the diameter to the side, or conversely, by reducing the portion between the track grooves 25 to the inner diameter side and then cutting and molding the bottom.
また、冷間引抜加工によりカップ部分と同一の断面形状を有する長尺の引抜材を成形し、適当な長さに切断してカップ部分を形成した実施の形態を図8に示す。図1の実施の形態に対して、カップ部分21aの軸部分21bとの接合部の断面形状が異なり、溶接部40は全周隅肉溶接の形態としている。 Moreover, FIG. 8 shows an embodiment in which a long drawn material having the same cross-sectional shape as the cup portion is formed by cold drawing and cut into an appropriate length to form the cup portion. The cross-sectional shape of the joint portion between the cup portion 21a and the shaft portion 21b is different from that of the embodiment shown in FIG.
さらに他の実施の形態としては、カップ部分を前述の低炭素鋼を用いて成形した後、浸炭焼入れを施す方法の代わりに、高炭素鋼を用いてプレス成形したものに高周波焼入れを施してもよいし、軸部分との接合方法にレーザ溶接や摩擦圧接などの他の接合手段を適用してもよい。いずれも本発明の固定式等速自在継手の構造が目的とする製造コストの低減を図ることが可能である。 As yet another embodiment, after the cup portion is molded using the above-mentioned low carbon steel, instead of the method of carburizing and quenching, it is possible to subject the one formed by press molding using high carbon steel to induction hardening. Alternatively, other joining means such as laser welding or friction welding may be applied to the joining method with the shaft portion. In any case, it is possible to reduce the manufacturing cost intended by the structure of the fixed type constant velocity universal joint of the present invention.
21 外輪
21a カップ部分
21b 軸部分
22 内輪
23 トルク伝達ボール
24 ケージ
25 トラック溝
26 トラック溝
27 カップ部分21aの凹球状内周面
28 内輪22の凸球状外周面
29 ケージ24の凸球状外周面
30 ケージ24の凹球状内周面
31 シャフト
32 突起
33 環状体
34 ブーツ溝
35 ブーツ
36 ブーツバンド
37 ブーツバンド
38 溶接部
39 ポケット
21 outer ring 21a cup portion 21b shaft portion 22 inner ring 23 torque transmission ball 24 cage 25 track groove 26 track groove 27 concave spherical inner peripheral surface of cup portion 21a 28 convex spherical outer peripheral surface of inner ring 22 convex spherical outer peripheral surface of cage 24 30 cage 24 concave spherical inner peripheral surface 31 shaft 32 protrusion 33 annular body 34 boot groove 35 boot 36 boot band 37 boot band 38 welded portion 39 pocket
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003425125A JP2005180641A (en) | 2003-12-22 | 2003-12-22 | Constant velocity universal joint and method of manufacturing outer ring of constant velocity universal joint |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003425125A JP2005180641A (en) | 2003-12-22 | 2003-12-22 | Constant velocity universal joint and method of manufacturing outer ring of constant velocity universal joint |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2005180641A true JP2005180641A (en) | 2005-07-07 |
Family
ID=34785106
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003425125A Withdrawn JP2005180641A (en) | 2003-12-22 | 2003-12-22 | Constant velocity universal joint and method of manufacturing outer ring of constant velocity universal joint |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2005180641A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007071394A (en) * | 2005-09-08 | 2007-03-22 | Gkn Driveline Bruneck Ag | Cage for uniform joint and manufacturing method thereof |
WO2009092078A2 (en) * | 2008-01-17 | 2009-07-23 | Gkn Driveline North America, Inc. | Articulation stop |
JP2010054268A (en) * | 2008-08-27 | 2010-03-11 | Ntn Corp | Working angle sensor for constant velocity universal joint |
WO2011142375A1 (en) * | 2010-05-13 | 2011-11-17 | Ntn株式会社 | Sliding-type constant-velocity universal joint |
WO2016088501A1 (en) * | 2014-12-02 | 2016-06-09 | Ntn株式会社 | Stationary constant velocity universal joint |
CN106015372A (en) * | 2016-07-20 | 2016-10-12 | 万向钱潮股份有限公司 | Corner limiting structure for novel spherical cage type constant velocity universal joint |
WO2017073267A1 (en) * | 2015-10-27 | 2017-05-04 | Ntn株式会社 | Fixed constant velocity universal joint |
CN114846250A (en) * | 2019-12-26 | 2022-08-02 | Ntn株式会社 | Fixed constant velocity universal joint |
-
2003
- 2003-12-22 JP JP2003425125A patent/JP2005180641A/en not_active Withdrawn
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007071394A (en) * | 2005-09-08 | 2007-03-22 | Gkn Driveline Bruneck Ag | Cage for uniform joint and manufacturing method thereof |
WO2009092078A2 (en) * | 2008-01-17 | 2009-07-23 | Gkn Driveline North America, Inc. | Articulation stop |
WO2009092078A3 (en) * | 2008-01-17 | 2009-10-15 | Gkn Driveline North America, Inc. | Articulation stop |
JP2010054268A (en) * | 2008-08-27 | 2010-03-11 | Ntn Corp | Working angle sensor for constant velocity universal joint |
WO2011142375A1 (en) * | 2010-05-13 | 2011-11-17 | Ntn株式会社 | Sliding-type constant-velocity universal joint |
WO2016088501A1 (en) * | 2014-12-02 | 2016-06-09 | Ntn株式会社 | Stationary constant velocity universal joint |
JP2016109145A (en) * | 2014-12-02 | 2016-06-20 | Ntn株式会社 | Fixed constant velocity universal joint |
WO2017073267A1 (en) * | 2015-10-27 | 2017-05-04 | Ntn株式会社 | Fixed constant velocity universal joint |
CN106015372A (en) * | 2016-07-20 | 2016-10-12 | 万向钱潮股份有限公司 | Corner limiting structure for novel spherical cage type constant velocity universal joint |
CN114846250A (en) * | 2019-12-26 | 2022-08-02 | Ntn株式会社 | Fixed constant velocity universal joint |
DE112020006389T5 (en) | 2019-12-26 | 2022-11-17 | Ntn Corporation | Fixed constant velocity joint |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102575720B (en) | Fixed type constant velocity universal joint | |
KR101510797B1 (en) | constant velocity universal joint | |
WO2011114505A1 (en) | Tripod constant velocity universal joint | |
JP5872150B2 (en) | Rear wheel drive shaft | |
JP2005180641A (en) | Constant velocity universal joint and method of manufacturing outer ring of constant velocity universal joint | |
JP2000240673A (en) | Constant velocity universal joint for propeller shaft and propeller shaft | |
JP5410163B2 (en) | Drive shaft and drive shaft assembly method | |
JP5355876B2 (en) | Constant velocity universal joint | |
JP2001323920A (en) | Structure for fitting spline shaft for constant velocity joint | |
JP2011236976A (en) | Constant velocity universal joint | |
WO2019208277A1 (en) | Sliding-type constant-velocity universal joint for propeller shaft | |
WO2013027765A1 (en) | Constant velocity universal joint | |
JP4896662B2 (en) | Fixed constant velocity universal joint | |
JP2005337290A (en) | Drive shaft for all terrain vehicle | |
JP6591223B2 (en) | Fixed constant velocity universal joint | |
JP2014025486A (en) | Power transmission mechanism | |
WO2023243319A1 (en) | Sliding-type constant velocity universal joint | |
JPH11336783A (en) | Universal uniform coupling | |
CN218266870U (en) | Sliding type constant velocity universal joint | |
WO2023248683A1 (en) | Constant velocity universal joint and method for manufacturing same | |
JP2011058639A (en) | Drive shaft for saddle-riding type vehicle for traveling on off-road and method of manufacturing undercut-free type constant velocity universal joint used therefor | |
JP2011231792A (en) | Sliding constant velocity universal joint, and ironing process method of outer joint member thereof | |
JP2009191901A (en) | Cage of constant speed universal joint, propeller shaft assembly, and drive shaft assembly | |
JP2024093536A (en) | Power transmission shaft | |
JP2021156325A (en) | Constant velocity joint |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20061024 |
|
A761 | Written withdrawal of application |
Free format text: JAPANESE INTERMEDIATE CODE: A761 Effective date: 20070702 |