JP2005171868A - Compound windmill - Google Patents
Compound windmill Download PDFInfo
- Publication number
- JP2005171868A JP2005171868A JP2003412577A JP2003412577A JP2005171868A JP 2005171868 A JP2005171868 A JP 2005171868A JP 2003412577 A JP2003412577 A JP 2003412577A JP 2003412577 A JP2003412577 A JP 2003412577A JP 2005171868 A JP2005171868 A JP 2005171868A
- Authority
- JP
- Japan
- Prior art keywords
- windmill
- speed
- wind turbine
- low
- darrieus
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/70—Wind energy
- Y02E10/74—Wind turbines with rotation axis perpendicular to the wind direction
Landscapes
- Wind Motors (AREA)
Abstract
Description
本発明は風車に関し、特に2種類の風車を連結した複合風車に関する。 The present invention relates to a windmill, and more particularly to a compound windmill in which two types of windmills are connected.
風車の種類として従来から種々のものが知られている。
例えば、比較的低速で回る風車としては、帆布を張った木製の羽根を水平軸に取付け、製粉等に利用されるオランダ形風車、板をS字状に折曲げて回転軸に取付けたS字ローター、円筒を縦半分に切って円周方向にずらして垂直軸の回りに回転可能としたサボニウス形風車、三角帆を張ったセイルウィング形風車、などが知られている。
Various types of windmills are conventionally known.
For example, as a wind turbine rotating at a relatively low speed, a wooden blade with canvas attached to a horizontal shaft, a Dutch wind turbine used for milling, etc., an S-shape with a plate bent into an S shape and attached to a rotating shaft There are known rotors, Savonius type windmills that cut a cylinder in half and rotate in the circumferential direction around the vertical axis, and sail wing type windmills with triangular sails.
また、中速で回転するものとして、羽根の枚数が多い多翼形風車や、風速計によく使われている半球形の受風面を持つ風車によりパドル形風車などがある。 In addition, examples of rotating at medium speed include a multi-blade windmill with a large number of blades, and a paddle type windmill with a hemispherical wind receiving surface often used for anemometers.
更に、高速回転する風車としては、飛行機の羽根と同じ断面を持つ翼形を弓形に曲げて垂直軸に取付けた風車であるダリウス形風車や、飛行機のプロペラと同じ翼形を持ち高速で回転する風車であるプロペラ形風車などが知られている。 Furthermore, as a windmill that rotates at high speed, a Darrieus-type windmill that is a windmill that is bent on an airfoil with the same cross section as an airplane blade and attached to a vertical axis, and has the same airfoil as an airplane propeller, and rotates at high speed. Propeller type windmills that are windmills are known.
特に、ダリウス形風車は飛行機の翼断面を有するブレードが揚力を受けることにより、ブレードの周速が風速よりも高い回転数で回転させることができ、高い発電効率を達成することができる。 In particular, the Darrieus-type windmill can be rotated at a higher rotational speed than the wind speed because the blade having the blade cross section of the airplane receives lift, so that high power generation efficiency can be achieved.
また、ダリウス形風車は回転軸が垂直であるために、風向きに影響されないという利点がある。 Further, the Darrieus type windmill has an advantage that it is not influenced by the wind direction because the rotation axis is vertical.
しかしながら、ダリウス形風車はその構造上、自ら回転を始めることができない。このために微風で回転を始める他の風車やモータと組合わせる必要がある。 However, due to its structure, the Darrieus wind turbine cannot start rotating itself. For this reason, it is necessary to combine with other windmills and motors that start rotating with a slight breeze.
このようなダリウス形風車を用いた例として、ダリウス形風車とともにサボニウス形風車をその回転軸に一体的に取付けることによって、弱い風で低速でサボニウス形風車により回転を始めた後、ダリウス形風車により高速回転するようにした風車がハイブリット風車として知られている。 As an example of using such a Darrieus-type windmill, a Savonius-type windmill is integrally mounted on the rotating shaft together with the Darrieus-type windmill. A windmill that rotates at high speed is known as a hybrid windmill.
しかしながら、このような従来のハイブリット風車においては、低速回転時においてダリウス形風車に連結されている発電機の発電効率が低いために、低速回転時においての発電効率が低いという問題があり、また、ダリウス形風車により高速回転する場合には、サボニウスローターが一緒に高速回転するために、サボニウスローターの強度を充分強くしなければいけないという問題がある。これらを防ぐために回転速度を制限するような装置を取付けたりする必要があり、このような回転速度制限装置を具備することによりハイブリッド風車が複雑化し、設備費も高価となる。 However, in such a conventional hybrid windmill, since the power generation efficiency of the generator connected to the Darrieus type windmill at low speed rotation is low, there is a problem that the power generation efficiency at low speed rotation is low, When rotating at high speed with a Darrieus-type windmill, there is a problem that the strength of the Savonius slater must be sufficiently increased because the Savonius slater rotates at a high speed together. In order to prevent these problems, it is necessary to install a device that restricts the rotational speed. By providing such a rotational speed restricting device, the hybrid wind turbine becomes complicated and the equipment cost becomes expensive.
本発明は、このような従来のハイブリット形風車に付随する問題点を解消し、微風で回転を開始し、低速回転から高速回転まで効率よく回転し、高速回転時においても損傷することがなく、構造が極めて簡単な複合風車を提供することを目的とする。 The present invention eliminates the problems associated with such conventional hybrid wind turbines, starts rotating with a breeze, efficiently rotates from low speed rotation to high speed rotation, without being damaged even at high speed rotation, An object of the present invention is to provide a complex wind turbine having an extremely simple structure.
本発明においては飛行機の羽根と同じ断面を有する翼形を弓形に曲げて回転可能な垂直軸に取付けたダリウス形風車および前記垂直軸と同軸状に配置した第2の垂直軸を有する低速用風車からなり、前記低速用風車の回転を前記ダリウス形風車の垂直軸へ伝達するとともに該ダリウス形風車の垂直軸の回転を該低速用風車へは伝達しないワンウェイクラッチにより前記ダリウス形風車の垂直軸と前記低速用風車の垂直軸とを連結したことを特徴とする複合風車により上記の目的を達成する。 In the present invention, a Darrieus-type windmill in which an airfoil having the same cross section as an airplane blade is bent into an arcuate shape and attached to a rotatable vertical axis, and a low-speed windmill having a second vertical axis arranged coaxially with the vertical axis The rotation of the low-speed wind turbine is transmitted to the vertical axis of the Darrieus-type wind turbine and the rotation of the vertical axis of the Darius-type wind turbine is not transmitted to the low-speed wind turbine by the one-way clutch. The above object is achieved by a compound wind turbine in which the vertical shaft of the low-speed wind turbine is connected.
また、この場合にダリウス形風車が下段に設けられ、低速用風車が上段に設けられており、ダリウス形風車の垂直軸の下部に下部発電機が連結されるとともに低速用風車の垂直軸の上部に上部発電機が連結されていることが好ましい。 In this case, the Darrieus wind turbine is provided in the lower stage, the low speed wind turbine is provided in the upper stage, the lower generator is connected to the lower part of the vertical axis of the Darrieus wind turbine, and the upper part of the vertical axis of the low speed wind turbine. It is preferable that the upper generator is connected to the main body.
なお本発明においては低速用風車が、S形風車、サボニウス形風車またはパドル形風車の何れかであることが好ましい。 In the present invention, the low-speed wind turbine is preferably an S-type wind turbine, a Savonius-type wind turbine, or a paddle-type wind turbine.
本発明においては、高速回転時に発電効率が極めて高いダリウス形風車と低速回転に適する低速用風車をワンウェイクラッチを用いて連結しており、回転開始時または低速回転時においては低速用風車の回転により回転を始め、この回転がワンウェイクラッチを介してダリウス形風車に伝達されるようにしており、それによりダリウス形風車も回転を開始するようになっている。 In the present invention, a Darrieus-type windmill with extremely high power generation efficiency during high-speed rotation and a low-speed windmill suitable for low-speed rotation are connected using a one-way clutch, and at the start of rotation or during low-speed rotation, the low-speed windmill is rotated. The rotation is started, and this rotation is transmitted to the Darrieus type windmill through the one-way clutch, so that the Darius type windmill also starts to rotate.
ダリウス形風車は飛行機の翼断面を有するブレードが揚力を受けることにより、ブレードの周速が風速よりも高い回転数まで高められるが、ダリウス形風車の回転はワンウェイクラッチにより低速用風車に伝達されることがなく、このため低速用風車はその低速用風車として比較的低速で回転し続ければよく、高速回転時においても低速用風車が損傷するようなことがない。 The Darius type windmill receives the lift of the blade with the blade cross section of the airplane, so that the peripheral speed of the blade is increased to a higher rotational speed than the wind speed, but the rotation of the Darius type windmill is transmitted to the low speed windmill by the one-way clutch. Therefore, the low-speed wind turbine only needs to keep rotating at a relatively low speed as the low-speed wind turbine, and the low-speed wind turbine is not damaged even at high-speed rotation.
また、本発明においては、ダリウス形風車および低速用風車にそれぞれ低速用発電機および高速用発電機を取付けることによって、それぞれの回転に最も適した発電効率で発電することができる。これにより低速回転時においては主として低速用風車により最適な発電効率で発電をし、高速回転時は高速用発電機によりダリウス形風車により高速発電され、何れの回転速度においても発電効率が極めて高められる。 Further, in the present invention, by attaching a low-speed generator and a high-speed generator to the Darrieus-type wind turbine and the low-speed wind turbine, respectively, it is possible to generate power with the power generation efficiency most suitable for each rotation. As a result, during low-speed rotation, power is generated with optimum power generation efficiency mainly by the low-speed wind turbine, and during high-speed rotation, high-speed power generation is performed by the Darrieus-type wind turbine by the high-speed generator, and the power generation efficiency is extremely enhanced at any rotation speed. .
なお、本発明に用いる低速用風車は、起動時に小さい力で起動するものであることが好ましく、具体的にはS形風車、サボニウス形風車またはパドル形風車などを用いることができる。 The low-speed windmill used in the present invention is preferably started with a small force at the time of startup, and specifically, an S-shaped windmill, a Savonius-type windmill, a paddle-shaped windmill, or the like can be used.
以下、本発明の実施例を図示した添付図面を参照して、本発明を詳細に説明する。図1は本発明に係る複合風車の斜視図であり、図2はその正面図を示している。 Hereinafter, the present invention will be described in detail with reference to the accompanying drawings illustrating embodiments of the present invention. FIG. 1 is a perspective view of a compound wind turbine according to the present invention, and FIG. 2 is a front view thereof.
本発明において、垂直に設けられたダリウス形風車10の回転軸11には飛行機の翼の断面形状をした細幅のブレード12が複数本弓形に取着されている。ダリウス形モータの垂直な回転軸11の下端部には増速ベルト13を介して下部発電機14が連結されている。この実施例では下部発電機14は3.7キロワットの発電機を用いている。これによりダリウス形風車が回転すると、その回転により垂直な回転軸11が回転し、その回転は増速ベルト13により増速されて、下部発電機14を高速で回転するようになっている。
In the present invention, a plurality of
また、ダリウス形風車10の垂直な回転軸11と同軸状に低速用風車20の回転軸21を垂直に設けている。この実施例においては、低速用風車20として4枚翼のバケット形風車を用いている。この低速用風車20(バケット形風車)の垂直な回転軸21の上部には増速機23を介して上部発電機24を連結している。この実施例においては上部発電機24は500ワット発電機としている。
In addition, a
そしてダリウス形風車10の垂直な回転軸11と低速用風車20(バケット形風車)の垂直な回転軸21とはワンウェイクラッチ30により連結されている。このワンウェイクラッチ30は低速用風車20(本実施例ではバケット形風車)の回転軸21の回転をダリウス形風車10の垂直な回転軸11へは伝達するが、ダリウス形風車10の垂直な回転軸11の回転を低速用風車20(バケット形風車)ヘは伝達しない構造となっている。本発明のワンウェイクラッチ30としては、市販のワンウェイクラッチ30を用いることができる。
The
更に本実施例においては、図2に示すように、ダリウス形風車10の回転軸11の上端部および下端部の近傍には台形断面をした風帽41a、41bを設けており、上下の風をダリウス形風車10の上下方向中央部に集めるようにしている。
Further, in the present embodiment, as shown in FIG. 2, trapezoidal
上記の構造からなる本実施例においては、起動時においては低速用風車20が回転し、風速の増加とともに図3の細い実線に沿って低速用風車20の回転速度が増加し、これに伴い低速用風車20により上部発電機24が発電する。それとともに、その低速用風車20の回転はワンウェイクラッチ30を通じてダリウス形風車10に伝達され、ダリウス形風車10も一緒に回転を始める。これにより本来自ら回転することができないダリウス形風車10が回転を始め、風速の増加と共に図3の太い破線および太い実線に沿ってダリウス形風車10の回転速度が増加し、これに伴いダリウス形風車10により下部発電機14が発電する。
In the present embodiment having the above-described structure, the low-
この際に、ダリウス形風車10のブレード12が風を受けると、そのブレード12が揚力を生じ、それによりダリウス形風車10の周速は風の風速よりも高速となり、図3において低速用風車20の速度特性を示す細い実線とダリウス形風車10の速度特性を示す破線および太い実線との交点以上の風速では、ダリウス形風車10の回転速度は低速用風車20の回転速度を越える。
At this time, when the
このように回転したことによってダリウス形風車10は下部発電機14を高効率で発電することができる。またダリウス形風車10が高速で回転しても、その回転は、ワンウェイクラッチ30によって、低速用風車20に伝達されないようになっているため、低速用風車20がダリウス形風車10につられて過大な回転速度で回転し破損するようなことが防止される。また、本発明においては、ダリウス形風車10と低速用風車20とをワンウェイクラッチ30によって連結するだけでよく、特別なワンウェイクラッチ30の制御機構を設ける必要がなく、装置が簡単であって、設備費も充分に安価にできる。
By rotating in this way, the Darrieus
10 ダリウス形風車
11 回転軸
12 ブレード
13 増速ベルト
14 下部発電機
20 低速用風車
21 回転軸
23 増速機
24 上部発電機
30 ワンウェイクラッチ
41a、41b 風帽
DESCRIPTION OF
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003412577A JP2005171868A (en) | 2003-12-10 | 2003-12-10 | Compound windmill |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003412577A JP2005171868A (en) | 2003-12-10 | 2003-12-10 | Compound windmill |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2005171868A true JP2005171868A (en) | 2005-06-30 |
Family
ID=34732950
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003412577A Pending JP2005171868A (en) | 2003-12-10 | 2003-12-10 | Compound windmill |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2005171868A (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007100558A (en) * | 2005-10-03 | 2007-04-19 | Matsushita Electric Ind Co Ltd | Wind power generator |
JP2007113562A (en) * | 2005-09-22 | 2007-05-10 | Kanzaki Kokyukoki Mfg Co Ltd | Wind power generation device |
JP2008106700A (en) * | 2006-10-26 | 2008-05-08 | Fueroo:Kk | Wind power generating device |
JP4480051B1 (en) * | 2009-08-24 | 2010-06-16 | 英治 川西 | A hybrid power generator connected to a gravity power generator using a balance having a pressure load device. |
KR100984702B1 (en) * | 2007-07-05 | 2010-10-01 | 고영은 | Wind generator |
WO2010147257A1 (en) * | 2009-06-16 | 2010-12-23 | Kim Tae Wan | Wind power generation apparatus |
WO2011024928A1 (en) * | 2009-08-24 | 2011-03-03 | Kawanishi Eiji | Hybrid power generator coupled to gravity power generator using balance which has pressure load device |
JP2012524867A (en) * | 2009-04-23 | 2012-10-18 | ウィンドストリーム テクノロジーズ インコーポレイテッド | Modular alternative energy generator |
KR101559047B1 (en) | 2013-11-26 | 2015-10-12 | 허봉락 | Wind power generator |
TWI687589B (en) * | 2019-01-09 | 2020-03-11 | 國立臺東大學 | Wind power generation device |
RU2747736C1 (en) * | 2020-09-01 | 2021-05-13 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Казанский национальный исследовательский технический университет им. А.Н. Туполева - КАИ" | Adjustable wind turbine |
-
2003
- 2003-12-10 JP JP2003412577A patent/JP2005171868A/en active Pending
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007113562A (en) * | 2005-09-22 | 2007-05-10 | Kanzaki Kokyukoki Mfg Co Ltd | Wind power generation device |
JP2007100558A (en) * | 2005-10-03 | 2007-04-19 | Matsushita Electric Ind Co Ltd | Wind power generator |
JP2008106700A (en) * | 2006-10-26 | 2008-05-08 | Fueroo:Kk | Wind power generating device |
KR100984702B1 (en) * | 2007-07-05 | 2010-10-01 | 고영은 | Wind generator |
JP2012524867A (en) * | 2009-04-23 | 2012-10-18 | ウィンドストリーム テクノロジーズ インコーポレイテッド | Modular alternative energy generator |
US9157414B2 (en) | 2009-04-23 | 2015-10-13 | Windstream Technologies, Inc. | Modular alternative energy unit |
US8823194B2 (en) | 2009-04-23 | 2014-09-02 | Windstream Technologies, Inc. | Modular alternative energy unit |
WO2010147257A1 (en) * | 2009-06-16 | 2010-12-23 | Kim Tae Wan | Wind power generation apparatus |
JP4480051B1 (en) * | 2009-08-24 | 2010-06-16 | 英治 川西 | A hybrid power generator connected to a gravity power generator using a balance having a pressure load device. |
WO2011024928A1 (en) * | 2009-08-24 | 2011-03-03 | Kawanishi Eiji | Hybrid power generator coupled to gravity power generator using balance which has pressure load device |
JP2011043137A (en) * | 2009-08-24 | 2011-03-03 | Eiji Kawanishi | Hybrid power generation device connected to gravity power generation device using balance and having pressure applying device |
KR101559047B1 (en) | 2013-11-26 | 2015-10-12 | 허봉락 | Wind power generator |
TWI687589B (en) * | 2019-01-09 | 2020-03-11 | 國立臺東大學 | Wind power generation device |
RU2747736C1 (en) * | 2020-09-01 | 2021-05-13 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Казанский национальный исследовательский технический университет им. А.Н. Туполева - КАИ" | Adjustable wind turbine |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3451085B1 (en) | Windmill for wind power generation | |
DK2334931T3 (en) | WIND-DRIVED DEVICE WITH CONTROLLATIVE WINGS | |
US9284944B2 (en) | Vertical shaft type darius windmill | |
US7766602B1 (en) | Windmill with pivoting blades | |
JP2010121518A (en) | Vertical shaft magnus type wind turbine generator | |
JP2005171868A (en) | Compound windmill | |
US20180171966A1 (en) | Wind turbine with rotating augmentor | |
JPH11294313A (en) | Hybrid windmill type power generation system | |
JP2005090332A (en) | Darrieus wind turbine | |
JP2004176551A (en) | Darrieus windmill | |
JP2004084590A (en) | Wind mill with winglet | |
JP2008057350A (en) | Wind power generator | |
JP2001065446A (en) | Cascade structure for vertical shaft type windmill and vertical shaft type windmill | |
AU2008235238A1 (en) | Wind wheel | |
JP2002235656A (en) | Linear vane installation method for vertical shaft wind power generating device | |
KR20020005556A (en) | Savonius Windmill Blade with Air-Vent Groove | |
JP2008150963A (en) | Vertical axis lift utilizing type counter-rotating wind turbine generator | |
JP2003222071A (en) | Invention of darries wind turbine power generation setting a plurality of power generators and wind collecting panel | |
RU2189494C2 (en) | Magnus-rotor windmill-electric generating plant | |
JP2001073925A (en) | Windmill | |
JP2005002816A (en) | Hybrid turbine | |
JP2005282451A (en) | Wind power generator | |
CN109356787A (en) | Low wind speed self-starting vertical axis rises resistance composite type wind power generator wind wheel structure | |
WO2006021074A1 (en) | An auxiliary propeller rotor for horizontal wind turbine generators “ booster/stabilizer props” | |
JP4175360B2 (en) | Vertical windmill |