Nothing Special   »   [go: up one dir, main page]

JP2005155359A - Exhaust emission control device for internal combustion engine - Google Patents

Exhaust emission control device for internal combustion engine Download PDF

Info

Publication number
JP2005155359A
JP2005155359A JP2003391967A JP2003391967A JP2005155359A JP 2005155359 A JP2005155359 A JP 2005155359A JP 2003391967 A JP2003391967 A JP 2003391967A JP 2003391967 A JP2003391967 A JP 2003391967A JP 2005155359 A JP2005155359 A JP 2005155359A
Authority
JP
Japan
Prior art keywords
exhaust
nox
internal combustion
exhaust gas
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003391967A
Other languages
Japanese (ja)
Inventor
Yasuaki Nakano
泰彰 仲野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2003391967A priority Critical patent/JP2005155359A/en
Publication of JP2005155359A publication Critical patent/JP2005155359A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Exhaust Gas After Treatment (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an exhaust emission control device for an internal combustion engine capable of suppressing poisoning of NOx retention material by CO<SB>2</SB>. <P>SOLUTION: The exhaust emission control device is provided with an exhaust emission control means 8 arranged in an exhaust gas passage 5 of the internal combustion engine 1 and including NOx retention material 13 capable of retaining NOx and a CO<SB>2</SB>reduction means 7 arranged to reduce CO<SB>2</SB>in exhaust gas flowing in the NOx retention material. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、吸蔵還元型NOx触媒などのNOxを保持可能な保持材を利用して排気を浄化する内燃機関の排気浄化装置に関する。   The present invention relates to an exhaust gas purification apparatus for an internal combustion engine that purifies exhaust gas using a holding material capable of holding NOx, such as an NOx storage reduction catalyst.

流入排気ガスの空燃比がリーンのときにはNOxを吸収し、流入排気ガス中の酸素濃度が低下すると吸収したNOxを放出するNOx吸収剤を機関排気通路内に配置した内燃機関の排気浄化装置が知られている(特許文献1参照)。その他、本発明に関連する先行技術文献として特許文献2〜4及び非特許文献1が存在する。
特許第2658757号公報 特開平11−262632号公報 特開平6−346768号公報 特開平6−336914号公報 東芝レビューVol.56、No.8(2001)p.11−14
An internal combustion engine exhaust gas purification apparatus is known in which an NOx absorbent that absorbs NOx when the air-fuel ratio of the inflowing exhaust gas is lean and releases NOx absorbed when the oxygen concentration in the inflowing exhaust gas decreases is disposed in the engine exhaust passage. (See Patent Document 1). In addition, Patent Documents 2 to 4 and Non-Patent Document 1 exist as prior art documents related to the present invention.
Japanese Patent No. 2658757 JP 11-262632 A JP-A-6-346768 JP-A-6-336914 Toshiba Review Vol. 56, no. 8 (2001) p. 11-14

NOx吸収材や吸蔵還元型NOx触媒などのNOx保持材は、NOxの他に排気中のCOも吸着する。吸着されたCOはNOx保持材において炭酸塩を形成する。この炭酸塩はNOx保持材を被毒してNOxの吸着を阻害し、NOx保持性能を低下させる。 NOx holding materials such as NOx absorbents and NOx storage reduction catalysts adsorb CO 2 in the exhaust as well as NOx. The adsorbed CO 2 forms carbonate in the NOx holding material. This carbonate poisons the NOx holding material and inhibits the adsorption of NOx, thereby reducing the NOx holding performance.

そこで、本発明は、COによるNOx保持材の被毒を抑制可能な内燃機関の排気浄化装置を提供することを目的とする。 Accordingly, an object of the present invention is to provide an exhaust purification device for an internal combustion engine capable of suppressing poisoning of a NOx holding material by CO 2 .

本発明の内燃機関の排気浄化装置は、内燃機関の排気通路に配置されてNOxを保持可能なNOx保持材を有する排気浄化手段と、前記NOx保持材へ流入する排気中のCOを低減させるように配置されるCO低減手段と、を備えることにより、上述した課題を解決する(請求項1)。 The exhaust gas purification apparatus for an internal combustion engine of the present invention reduces exhaust gas purification means having a NOx holding material that is disposed in an exhaust passage of the internal combustion engine and can hold NOx, and CO 2 in the exhaust gas flowing into the NOx holding material. The above-described problem is solved by providing the CO 2 reduction means arranged in this way (Claim 1).

本発明の排気浄化装置によれば、CO低減手段によりNOx保持材へ流入する排気中のCOを低減させることができる。そのため、COによるNOx保持材の被毒を抑制することができる。 According to the exhaust purification system of the present invention, it is possible to reduce CO 2 in the exhaust gas flowing into the NOx retention member by CO 2 reduction unit. Therefore, poisoning of the NOx holding material by CO 2 can be suppressed.

本発明の排気浄化装置は、前記CO吸収手段として、第一の状態でCOを吸収し、第二の状態でCOを放出するCO吸放出材が設けられていてもよい(請求項2)。第一の状態のCO吸放出材に排気中のCOを吸収させることができるので、NOx保持材へ流入する排気中のCOを低減させることができる。 The exhaust emission control device of the present invention may be provided with a CO 2 absorption / release material that absorbs CO 2 in the first state and releases CO 2 in the second state as the CO 2 absorbing means (claim). Item 2). It is possible to absorb CO 2 in the exhaust to a first state of the CO 2 absorbing material, it is possible to reduce the CO 2 in the exhaust gas flowing into the NOx retention member.

本発明の排気浄化装置において、前記CO吸放出材は、前記排気通路に前記排気浄化手段へ流入する排気中のCOを低減するように配置されていてもよい(請求項3)。このようにCO吸放出材と排気浄化手段とをそれぞれ排気通路に配置することで、多くのCO吸放出材を配置させることができる。 In the exhaust emission control device of the present invention, the CO 2 absorption / release material may be disposed so as to reduce CO 2 in the exhaust gas flowing into the exhaust gas purification means into the exhaust passage. By arranging the CO 2 absorption / release material and the exhaust gas purification means in the exhaust passage in this way, a large number of CO 2 absorption / release materials can be arranged.

本発明の排気浄化装置は、前記CO吸放出材が、前記排気浄化手段に前記NOx保持材と一体に担持されていてもよい(請求項4)。このようにCO吸放出材とNOx保持材とを排気浄化手段に一体に担持させることで、排気浄化装置をコンパクトにすることができる。これにより、排気浄化装置の搭載性を向上させることができる。 In the exhaust purification apparatus of the present invention, the CO 2 absorption / release material may be carried integrally with the NOx holding material on the exhaust purification means (claim 4). Thus, the exhaust purification device can be made compact by carrying the CO 2 absorption / release material and the NOx holding material integrally with the exhaust purification means. Thereby, the mountability of the exhaust emission control device can be improved.

本発明の排気浄化装置は、流入する排気の空燃比がストイキ又はリッチに設定されるとともに所定の温度以上に加熱されることにより機能を再生する吸蔵還元型NOx触媒が前記NOx保持材として設けられ、前記CO吸放出材のCO放出時に、前記NOx触媒の機能が再生されてもよい(請求項5)。機能再生中は、吸蔵されていたNOxや硫黄(S)などが吸蔵還元型NOx触媒から放出されているので、NOx触媒にCOが吸着されない。そのため、CO吸放出材のCO放出時にNOx触媒の機能を再生させることで、追加機器を設けることなくCO吸放出材から放出されたCOによるNOx触媒の被毒を抑制することができる。 The exhaust purification apparatus of the present invention is provided with an NOx storage material as an NOx holding material, in which the air-fuel ratio of the inflowing exhaust gas is set to stoichiometric or rich, and the function is restored when heated to a predetermined temperature or higher. The function of the NOx catalyst may be regenerated at the time of CO 2 release of the CO 2 absorption / release material (Claim 5). In the functional regeneration, since such NOx and sulfur that was stored (S) is released from the NOx storage reduction catalyst, CO 2 is not adsorbed to the NOx catalyst. Therefore, by reproducing the function of the NOx catalyst at the time of CO 2 emission of CO 2 absorbing material, to suppress the poisoning of the NOx catalyst by the CO 2 released from without CO 2 absorbing material providing the additional equipment it can.

なお、CO吸放出材からCOが放出される場合(CO放出時)には、意図的にCOを放出させた場合と、内燃機関の運転状態により排気温度が上昇して意図せずにCOが放出されてしまった場合との両方の場合を含む。 When CO 2 is released from the CO 2 absorption / release material (when CO 2 is released), the exhaust temperature rises depending on the intentional release of CO 2 and the operating state of the internal combustion engine. This includes both the case where CO 2 has been released without being released.

本発明の排気浄化装置において、流入する排気の空燃比がストイキ又はリッチに設定されるとともに所定の温度以上に加熱されることにより機能を再生する吸蔵還元型NOx触媒が前記NOx保持材として設けられ、前記第一の状態と前記第二の状態とが互いに異なる温度範囲に対応付けられており、前記NOx触媒の機能再生時は、前記NOx触媒へ流入する排気の空燃比がストイキ又はリッチに設定され、その後前記NOx触媒が前記所定の温度以上に加熱されてもよい(請求項6)。NOx触媒を所定の温度以上に加熱した後に排気の空燃比をストイキ又はリッチに設定した場合、NOx触媒の加熱の影響によりCO吸放出材の温度が第二の温度範囲になり、NOx触媒が機能再生状態になる前にCO吸放出材から放出されたCOがNOx触媒へ流入するおそれがある。そこで、まず排気の空燃比をストイキ又はリッチに設定し、その後NOx触媒を所定の温度以上に加熱することで、CO吸放出材のCO放出時にNOx触媒の機能を再生させることができる。そのため、COによるNOx触媒の被毒を抑制することができる。 In the exhaust emission control device of the present invention, an NOx storage reduction catalyst is provided as the NOx holding material, in which the air-fuel ratio of the inflowing exhaust gas is set to stoichiometric or rich and is heated to a predetermined temperature or more to regenerate the function. The first state and the second state are associated with different temperature ranges, and at the time of function regeneration of the NOx catalyst, the air-fuel ratio of the exhaust gas flowing into the NOx catalyst is set to stoichiometric or rich. Then, the NOx catalyst may be heated to the predetermined temperature or higher (Claim 6). When the air-fuel ratio of the exhaust is set to stoichiometric or rich after heating the NOx catalyst to a predetermined temperature or higher, the temperature of the CO 2 absorption / release material becomes the second temperature range due to the heating effect of the NOx catalyst, and the NOx catalyst There is a possibility that CO 2 released from the CO 2 absorption / release material before flowing into the function regeneration state flows into the NOx catalyst. Therefore, first set the air fuel ratio of the exhaust gas to stoichiometric or rich, then to heat the NOx catalyst than a predetermined temperature, it is possible to reproduce the function of the NOx catalyst at the time of CO 2 emission of CO 2 absorbing material. Therefore, poisoning of the NOx catalyst by CO 2 can be suppressed.

本発明の排気浄化装置は、前記排気浄化手段をバイパスさせて排気を下流へ導くバイパス通路と、前記CO吸放出材の下流に配置され、前記排気浄化手段と前記バイパス通路とへ排気の流れを切り替え可能なバイパス弁と、を備え、前記バイパス弁は、前記CO吸放出材のCO放出時に排気の流れを前記バイパス通路へ切り替えてもよい(請求項7)。この場合、CO吸放出材のCO放出時にバイパス弁が排気浄化手段をバイパスさせて排気を下流へ導くので、CO吸放出材から放出されたCOのNOx保持材への流入を防止することができる。従って、COによるNOx保持材の被毒を抑制することができる。 The exhaust gas purification apparatus of the present invention is disposed downstream of the CO 2 absorption / release material, bypassing the exhaust gas purification means to guide the exhaust gas downstream, and the flow of exhaust gas to the exhaust gas purification means and the bypass passage The bypass valve may switch the flow of exhaust gas to the bypass passage when CO 2 is released from the CO 2 absorption / release material. In this case, CO 2 since absorbing materials of CO 2 bypass valve upon release leads to exhaust to bypass the exhaust gas purification unit downstream, preventing the flow of the CO 2 absorbing materials CO 2 in the NOx retention material released from can do. Therefore, poisoning of the NOx holding material by CO 2 can be suppressed.

本発明の排気浄化装置は、前記CO吸放出材、前記NOx保持材の順に排気が流れる第一の排気流れと、前記NOx保持材、前記CO吸放出材の順に排気が流れる第二の排気流れと、を選択的に切り替え可能な少なくとも一つの切り替え弁を備え、前記切り替え弁は、前記CO吸放出材のCO放出時に、排気の流れを前記第二の排気流れに切り替えてもよい(請求項8)。この場合、CO吸放出材のCO放出時に排気の流れを第二の排気流れへ切り替えるので、CO吸放出材が放出したCOのNOx保持材への流入を防止することができる。また、第一の排気流れと第二の排気流れとの両方とも排気はNOx保持材を通過するので、排気がそのまま外部へ排出されることを防止することができる。 Exhaust purification system of the present invention, the CO 2 absorbing material, a first exhaust stream flowing through the exhaust in the order of the NOx retention material, the NOx retention material, the CO 2 absorbing material sequentially to the exhaust flows second of And at least one switching valve capable of selectively switching between the exhaust flow and the switching valve even when the exhaust flow is switched to the second exhaust flow when CO 2 is released from the CO 2 absorption / release material. Good (claim 8). In this case, CO 2 is switched to flow of exhaust when CO 2 emission-absorbing material to a second exhaust stream, may be CO 2 absorbing material is prevented from flowing into the NOx retention material of CO 2 released. Further, since both the first exhaust flow and the second exhaust flow pass through the NOx holding material, it is possible to prevent the exhaust from being discharged to the outside as it is.

本発明によれば、NOx保持材へ流入する排気中のCOを低減することができるので、COによるNOx保持材の被毒を抑制することができる。そのため、NOx保持材のNOx保持性能を向上させることができる。 According to the present invention, since CO 2 in the exhaust gas flowing into the NOx holding material can be reduced, poisoning of the NOx holding material by CO 2 can be suppressed. Therefore, the NOx holding performance of the NOx holding material can be improved.

図1に本発明の一実施形態に係る排気浄化装置が適用される内燃機関を示す。図1の内燃機関1は、複数(図1では4つ)の気筒2を備えたディーゼルエンジンとして構成されている。各気筒2には、それぞれインジェクタ3が設けられている。内燃機関1には、吸気通路4及び排気通路5が接続され、排気通路5には排気浄化装置6が設けられている。排気浄化装置6は、CO低減手段としてのCO吸放出材7と、NOx保持材としての吸蔵還元型NOx触媒13を有する排気浄化手段としての排気浄化触媒8とを備えている。NOx触媒13は、流入する排気の空燃比がストイキ又はリッチに設定されるとともに所定の再生温度(例えば600度〜650度)以上に加熱されることにより、吸着されていた硫黄(S)などを放出して機能を再生する。排気通路5は、排気の一部を吸気通路4へ戻すためEGR通路9によって吸気通路4と接続されている。EGR通路9には、EGR量を調整するためのEGR弁10が設けられている。 FIG. 1 shows an internal combustion engine to which an exhaust emission control device according to an embodiment of the present invention is applied. The internal combustion engine 1 of FIG. 1 is configured as a diesel engine including a plurality (four in FIG. 1) of cylinders 2. Each cylinder 2 is provided with an injector 3. An intake passage 4 and an exhaust passage 5 are connected to the internal combustion engine 1, and an exhaust purification device 6 is provided in the exhaust passage 5. The exhaust purification device 6 includes a CO 2 absorption / release material 7 as CO 2 reduction means and an exhaust purification catalyst 8 as exhaust purification means having an NOx storage reduction NOx catalyst 13 as NOx holding material. The NOx catalyst 13 sets the air-fuel ratio of the inflowing exhaust gas to a stoichiometric or rich state, and is heated to a predetermined regeneration temperature (for example, 600 ° C. to 650 ° C.) or higher to remove the adsorbed sulfur (S) and the like. Release and regenerate function. The exhaust passage 5 is connected to the intake passage 4 by an EGR passage 9 in order to return a part of the exhaust gas to the intake passage 4. The EGR passage 9 is provided with an EGR valve 10 for adjusting the EGR amount.

内燃機関1の運転状態は、エンジンコントロールユニット(ECU)11により制御される。ECU11は、マイクロプロセッサ及びその動作に必要なROM、RAM等の周辺装置を組み合わせたコンピュータとして構成されている。ECU11は、例えば気筒2内へ燃料が所定のタイミングで供給されるようにインジェクタ3の動作を制御する。また、内燃機関1がアイドリングや低負荷の状態で運転されている場合にEGR弁10の開度を大きくして吸気通路4へ供給される排気の流量を増加させ、内燃機関1の燃焼温度を低下させる低温燃焼を実行する。   The operating state of the internal combustion engine 1 is controlled by an engine control unit (ECU) 11. The ECU 11 is configured as a computer in which a microprocessor and peripheral devices such as ROM and RAM necessary for its operation are combined. For example, the ECU 11 controls the operation of the injector 3 so that fuel is supplied into the cylinder 2 at a predetermined timing. Further, when the internal combustion engine 1 is operated in an idling or low load state, the opening of the EGR valve 10 is increased to increase the flow rate of the exhaust gas supplied to the intake passage 4, and the combustion temperature of the internal combustion engine 1 is increased. Perform low-temperature combustion to reduce.

CO吸放出材7は、例えばリチウムジルコネート(LiZrO)等のリチウムの複合酸化物を主体として構成され、第一の温度範囲(例えば400度〜580度)でCOを吸収し、第二の温度範囲(例えば630度〜700度)でCOを放出する特性を備えた公知のものである。 The CO 2 absorption / release material 7 is mainly composed of a composite oxide of lithium such as lithium zirconate (Li 2 ZrO 3 ), for example, and absorbs CO 2 in the first temperature range (for example, 400 degrees to 580 degrees). , A known one having the characteristic of releasing CO 2 in the second temperature range (for example, 630 to 700 degrees).

ECU11は、CO吸放出材7に吸収されたCO量(CO吸収総量)がCO吸放出材7からCOの放出させる時期を判断する所定量(放出開始所定量)を超えた場合に、CO吸放出材7を第二の温度範囲まで加熱してCO吸放出材7からCOを放出させる。図2は、ECU11がCO吸放出材7からCOを放出させるために実行するCO放出制御ルーチンを示すフローチャートである。図2の制御ルーチンは、内燃機関1の運転中に所定の周期で繰り返し実行される。 ECU11 has exceeded a predetermined amount of CO 2 absorbing material 7 CO 2 amount absorbed by the (CO 2 absorption amount) to determine when to release the CO 2 absorbing material 7 of the CO 2 (the emission turn a predetermined amount) case, by heating the CO 2 absorbing material 7 to a second temperature range to release the CO 2 from the CO 2 absorbing material 7. FIG. 2 is a flowchart showing a CO 2 release control routine executed by the ECU 11 to release CO 2 from the CO 2 absorption / release material 7. The control routine of FIG. 2 is repeatedly executed at a predetermined cycle during the operation of the internal combustion engine 1.

図2の制御ルーチンにおいて、ECU11はまずステップS11でCO吸収総量(CCO2)を算出する。CO吸収総量(CCO2)は例えば以下に示す方法により算出される。
まず、内燃機関1へ供給された燃料量と吸気量とから排気流量及び排気中のCO量を算出する。次に、CO吸放出材7の温度と、排気流量及び排気中のCO量から算出された排気中のCO分圧と、前回実行した図2の制御ルーチン内で算出されたCO吸収総量とに基づいて、CO吸放出材7のCOの吸収速度又は放出速度を特定する。その後、この特定した吸収速度又は放出速度と前回の制御ルーチン内で算出されたCO吸収総量とに基づいて、現在のCO吸収総量(CCO2)を算出する。
In the control routine of FIG. 2, the ECU 11 first calculates the total CO 2 absorption amount (C CO2 ) in step S11. The total CO 2 absorption amount (C CO2 ) is calculated by the following method, for example.
First, the exhaust gas flow rate and the CO 2 amount in the exhaust gas are calculated from the fuel amount supplied to the internal combustion engine 1 and the intake air amount. Then, CO 2 absorbing material and temperature of 7, an exhaust flow rate and the CO 2 partial pressure in the calculated exhaust gas from the amount of CO 2 in the exhaust, CO 2 calculated in the control routine of FIG. 2 that the last run Based on the total amount of absorption, the absorption rate or release rate of CO 2 of the CO 2 absorption / release material 7 is specified. Thereafter, the current total CO 2 absorption amount (C CO2 ) is calculated based on the specified absorption rate or release rate and the total CO 2 absorption amount calculated in the previous control routine.

次にECU11はステップS12で、CO吸収総量(CCO2)が放出開始所定量(C)を超えたか否かを判断する。放出開始所定量(C)を超えていないと判断した場合、今回の制御ルーチンを終了する。 Next, in step S12, the ECU 11 determines whether or not the total CO 2 absorption amount (C CO2 ) has exceeded a predetermined release start amount (C 1 ). If it is determined that the discharge start predetermined amount (C 1 ) has not been exceeded, the current control routine is terminated.

一方、放出開始所定量(C)を超えていると判断した場合はステップS13へ進み、ECU11は、排気の空燃比をストイキ又はリッチにするとともにNOx触媒13が所定の再生温度まで加熱されるように排気温度を上昇させて、NOx触媒13の機能を再生させる。NOx触媒13が排気に含まれるS分によって被毒されると、Sによって被毒された分NOx触媒13のNOx保持性能が低下する。そこで、NOx触媒13が所定量のS分によって被毒された時点で、NOx触媒13を所定の再生温度まで加熱するとともに排気の空燃比をストイキ又はリッチにして、NOx触媒13に吸着されたS分を放出させてNOx触媒13の機能を再生(S再生)させる。なお、NOx触媒13の機能を再生させる際、ECU11は、先ず内燃機関1に低温燃焼を行わせて排気の空燃比をストイキ又はリッチにさせ、その後インジェクタ3による気筒2内への燃料の主噴射後さらにインジェクタ3から燃料を気筒2内へ追加噴射させるいわゆるポスト噴射をさせて排気温度を所定の再生温度まで上昇させる。 On the other hand, if it is determined that the release start predetermined amount (C 1 ) has been exceeded, the process proceeds to step S13, where the ECU 11 makes the air-fuel ratio of the exhaust stoichiometric or rich and the NOx catalyst 13 is heated to a predetermined regeneration temperature. Thus, the exhaust gas temperature is raised to regenerate the function of the NOx catalyst 13. When the NOx catalyst 13 is poisoned by S contained in the exhaust gas, the NOx retention performance of the NOx catalyst 13 poisoned by S deteriorates. Therefore, when the NOx catalyst 13 is poisoned by a predetermined amount of S, the NOx catalyst 13 is heated to a predetermined regeneration temperature and the air-fuel ratio of the exhaust is stoichiometric or rich so that the S adsorbed on the NOx catalyst 13 is absorbed. And the function of the NOx catalyst 13 is regenerated (S regeneration). When the function of the NOx catalyst 13 is regenerated, the ECU 11 first causes the internal combustion engine 1 to perform low-temperature combustion to make the air-fuel ratio of the exhaust stoichiometric or rich, and then the main injection of fuel into the cylinder 2 by the injector 3 Thereafter, so-called post-injection in which fuel is additionally injected from the injector 3 into the cylinder 2 is performed to raise the exhaust gas temperature to a predetermined regeneration temperature.

次のステップS14においてECU11は、CO吸放出材7を第二の温度範囲まで上昇させて、CO吸放出材7からCOを放出させる。その後、今回の制御ルーチンを終了する。 In the next step S14 ECU 11 is a CO 2 absorbing material 7 is raised to a second temperature range, to release CO 2 from the CO 2 absorbing material 7. Thereafter, the current control routine is terminated.

このようにCO吸放出材7のCO放出時にNOx触媒13の機能を再生させることで、COによるNOx触媒13の被毒を抑制することができる。また、CO吸放出材7からのCO放出とNOx触媒13の機能再生とを同時に行わせることで、加熱に消費される燃料量が低減できる。 Thus CO 2 absorbing material during CO 2 release of 7 by regenerating the function of the NOx catalyst 13, it is possible to suppress the poisoning of the NOx catalyst 13 by the CO 2. Further, the amount of fuel consumed for heating can be reduced by simultaneously performing the CO 2 release from the CO 2 absorption / release material 7 and the functional regeneration of the NOx catalyst 13.

なお、NOx触媒13の機能を再生させる方法は、低温燃焼とポスト噴射との組み合わせに限定されない。例えば、内燃機関1に低温燃焼をさせた後、ピストンの排気上死点から吸気行程の初期の間にインジェクタ3から気筒2内へ燃料を噴射させるいわゆるVIGOM噴射をさせることによりNOx触媒13の機能を再生させてもよい。この場合、さらにポスト噴射を追加し、低温燃焼とVIGOM噴射とポスト噴射とを組み合わせてNOx触媒13の機能を再生させてもよい。また、排気通路5に排気に燃料を添加する添加インジェクタを設け、この添加インジェクタによる燃料添加と低温燃焼とを組み合わせてNOx触媒13の機能を再生させてもよい。この場合も先ず内燃機関1に低温燃焼を行わせ、その後排気に燃料を添加する。さらに、内燃機関1が低負荷の場合は、内燃機関1に低温燃焼を行わせることによって排気の空燃比をリッチにさせ、排気温度を上昇させることができる。そのため、この場合は低温燃焼のみでNOx触媒13の機能を再生させることができる。   The method for regenerating the function of the NOx catalyst 13 is not limited to the combination of low temperature combustion and post injection. For example, after causing the internal combustion engine 1 to perform low temperature combustion, the function of the NOx catalyst 13 is performed by performing so-called VIGOM injection in which fuel is injected from the injector 3 into the cylinder 2 from the exhaust top dead center of the piston to the initial stage of the intake stroke. May be played back. In this case, post-injection may be further added, and the function of the NOx catalyst 13 may be regenerated by combining low-temperature combustion, VIGOM injection, and post-injection. Further, an addition injector for adding fuel to the exhaust gas may be provided in the exhaust passage 5, and the function of the NOx catalyst 13 may be regenerated by combining fuel addition by the addition injector and low-temperature combustion. Also in this case, the internal combustion engine 1 is first subjected to low temperature combustion, and then fuel is added to the exhaust. Further, when the internal combustion engine 1 has a low load, the air-fuel ratio of the exhaust gas can be made rich by causing the internal combustion engine 1 to perform low temperature combustion, and the exhaust gas temperature can be raised. Therefore, in this case, the function of the NOx catalyst 13 can be regenerated only by low temperature combustion.

CO吸放出材7の配置方法は、図1に示した方法に限定されない。例えば、図3及び図4に示したように、排気浄化触媒8の担体12にCO吸放出材7と吸蔵還元型NOx触媒13とを一体に担持させてもよい。 The arrangement method of the CO 2 absorption / release material 7 is not limited to the method shown in FIG. For example, as shown in FIGS. 3 and 4, the CO 2 storage / release material 7 and the NOx storage reduction catalyst 13 may be integrally supported on the carrier 12 of the exhaust purification catalyst 8.

排気浄化触媒8内の排気の流れがストレートフロー(図3(a)、(b)の矢印A方向の流れ)の場合、図3(a)に示したように担体12にNOx触媒13を担持させ、このNOx触媒13の上にCO吸放出材7を担持させる。このようにNOx触媒13とCO吸放出材7とを配置することで、COの低減された排気をNOx触媒13へ流入させることができる。また、図3(b)に示したように、CO吸放出材7を有するNOx触媒13を担体12へ担持させ、その上にさらにCO吸放出材7を担持させてもよい。 When the flow of exhaust gas in the exhaust purification catalyst 8 is a straight flow (flow in the direction of arrow A in FIGS. 3A and 3B), the NOx catalyst 13 is supported on the carrier 12 as shown in FIG. The CO 2 absorption / release material 7 is supported on the NOx catalyst 13. By disposing the NOx catalyst 13 and the CO 2 absorption / release material 7 in this manner, the exhaust gas with reduced CO 2 can flow into the NOx catalyst 13. Further, as shown in FIG. 3 (b), the NOx catalyst 13 having a CO 2 absorbing material 7 is supported on the carrier 12 may be on to further carry the CO 2 absorbing material 7 thereof.

排気浄化触媒8内の排気の流れがウォールフロー(図4の矢印B方向の流れ)の場合、図4に示したように担体12の一方の側にCO吸放出材7を他方の側に吸蔵還元型NOx触媒13を担持させる。このようにCO吸放出材7を担持させることにより、NOx触媒13へ流入する排気中のCOを低減させることができる。 When the flow of exhaust gas in the exhaust purification catalyst 8 is a wall flow (flow in the direction of arrow B in FIG. 4), the CO 2 adsorbing / releasing material 7 is placed on one side of the carrier 12 as shown in FIG. The NOx storage reduction catalyst 13 is supported. By thus carrying CO 2 absorbing material 7, it is possible to reduce the CO 2 in the exhaust gas flowing into the NOx catalyst 13.

このように、排気浄化触媒8の担体12にNOx触媒13とCO吸放出材7とを一体に担持させることにより、排気浄化装置6をコンパクトにすることができる。 In this way, the exhaust purification device 6 can be made compact by carrying the NOx catalyst 13 and the CO 2 absorption / release material 7 integrally on the carrier 12 of the exhaust purification catalyst 8.

CO吸放出材7から放出されたCOの排気浄化触媒8への流入は、排気通路5の排気流れを変更することでも防止できる。例えば、図5に示したように、排気浄化触媒8をバイパスさせて下流へ排気を導くバイパス通路14と、CO吸放出材7と排気浄化触媒8との間に配置されて排気浄化触媒8とバイパス通路14とへ排気の流れを切り替えるバイパス弁15とを排気通路5に設け、CO吸放出材7のCO放出時はバイパス通路14へ排気の流れを切り替えてもよい。 The inflow of CO 2 released from the CO 2 absorption / release material 7 into the exhaust purification catalyst 8 can also be prevented by changing the exhaust flow in the exhaust passage 5. For example, as shown in FIG. 5, the exhaust gas purification catalyst 8 is disposed between the bypass passage 14 that bypasses the exhaust gas purification catalyst 8 and leads the exhaust gas downstream, and the CO 2 absorption / release material 7 and the exhaust gas purification catalyst 8. And a bypass valve 15 that switches the flow of exhaust gas to the bypass passage 14 may be provided in the exhaust passage 5, and the flow of exhaust gas may be switched to the bypass passage 14 when CO 2 is released from the CO 2 absorption / release material 7.

また、図6に示したように内燃機関1とCO吸放出材7との間に、排気の流れをCO吸放出材7、排気浄化触媒8の順に排気が流れる第一の排気流れ(図6(a)の矢印C方向の排気流れ)と、排気浄化触媒8、CO吸放出材7の順に排気が流れる第二の排気流れ(図6(b)の矢印D方向の排気流れ)とを選択的に切り替え可能な切り替え弁16を設けてもよい。 Further, as shown in FIG. 6, the first exhaust flow (the exhaust gas flows between the internal combustion engine 1 and the CO 2 absorption / release material 7 in the order of the CO 2 absorption / release material 7 and the exhaust purification catalyst 8 ( Exhaust flow in the direction of arrow C in FIG. 6A) and second exhaust flow in which exhaust flows in the order of the exhaust purification catalyst 8 and the CO 2 absorption / release material 7 (exhaust flow in the direction of arrow D in FIG. 6B). A switching valve 16 that can selectively switch between and may be provided.

図6の切り替え弁16の動作はECU11により制御される。図7は、図6のECU11がCO吸放出材7からCOを放出させるために実行するCO放出制御ルーチンを示すフローチャートである。図7の制御ルーチンは、内燃機関1の運転中に所定の周期で繰り返し実行される。なお、図7において、図2と同一の処理には同一の参照符号を付し、説明を省略する。 The operation of the switching valve 16 in FIG. 6 is controlled by the ECU 11. FIG. 7 is a flowchart showing a CO 2 release control routine executed by the ECU 11 of FIG. 6 to release CO 2 from the CO 2 absorption / release material 7. The control routine of FIG. 7 is repeatedly executed at a predetermined cycle during the operation of the internal combustion engine 1. In FIG. 7, the same processes as those in FIG. 2 are denoted by the same reference numerals, and the description thereof is omitted.

図7の制御ルーチンにおいて、ECU11はまずステップS11でCO吸放出材のCO吸収総量(CCO2)を算出する。次のECU11はステップS12において、CO吸収総量(CCO2)が放出開始所定量(C)より多いか否かを判断する。CO吸収総量が放出開始所定量以下であると判断した場合、ステップS21へ進み、ECU11は、排気流れが図6(a)に示した第一の排気流れになるように切り替え弁16へ動作を指示する。その後、今回の制御ルーチンを終了する。 In the control routine of FIG. 7, ECU 11 first calculates the CO 2 absorbing materials for CO 2 absorption amount (C CO2) at step S11. In step S12, the next ECU 11 determines whether or not the CO 2 absorption total amount (C CO2 ) is larger than the predetermined amount (C 1 ) for starting the release. When it is determined that the total CO 2 absorption amount is equal to or less than the predetermined amount at the start of release, the process proceeds to step S21, and the ECU 11 operates to the switching valve 16 so that the exhaust flow becomes the first exhaust flow shown in FIG. Instruct. Thereafter, the current control routine is terminated.

一方、CO吸収総量が放出開始所定量よりも多いと判断した場合、ステップS22へ進み、ECU11は、排気流れが図6(b)に示した第二の排気流れになるように切り替え弁16へ動作を指示する。続くステップS13において、ECU11は、NOx触媒13の機能を再生させる。次のステップS14では、ECU11は、CO吸放出材7を第二の温度範囲まで上昇させて、CO吸放出材7からCOを放出させる。その後、今回の制御ルーチンを終了する。 On the other hand, when it is determined that the total CO 2 absorption amount is larger than the predetermined amount at the start of release, the process proceeds to step S22, where the ECU 11 switches the switching valve 16 so that the exhaust flow becomes the second exhaust flow shown in FIG. Instruct the operation. In subsequent step S13, the ECU 11 regenerates the function of the NOx catalyst 13. In the next step S14, ECU 11 is a CO 2 absorbing material 7 is raised to a second temperature range, to release CO 2 from the CO 2 absorbing material 7. Thereafter, the current control routine is terminated.

このように、CO吸放出材7のCO放出時は、排気浄化触媒8、CO吸放出材7の順に排気を流すことにより、CO吸放出材7から放出されたCOの排気浄化触媒8への流入を防止することができる。また、内燃機関1の排気がそのまま外部へ排出されることを防止することができる。なお、図6では一つの切り替え弁16で排気流れを切り替えているが、二つ以上の弁を組み合わせて第一の排気流れと第二の排気流れとを切り替えてもよい。 Thus, CO 2 upon release of the CO 2 absorbing material 7, an exhaust gas purification by passing an exhaust in the order of the catalyst 8, CO 2 absorbing material 7, CO 2 absorbing material 7 of the CO 2 released from the exhaust Inflow to the purification catalyst 8 can be prevented. Further, it is possible to prevent the exhaust from the internal combustion engine 1 from being discharged to the outside as it is. In FIG. 6, the exhaust flow is switched by one switching valve 16, but the first exhaust flow and the second exhaust flow may be switched by combining two or more valves.

本発明は、上述した実施形態に限定されることなく、種々の形態にて実施してよい。例えば、内燃機関1はディーゼルエンジンに限定されず、ガソリンエンジンに本発明を適用することもできる。排気浄化触媒は、担体に吸蔵還元型NOx触媒を担持したものに限定されず、種々の排気浄化触媒を適用することができる。例えば、パティキュレートを捕集するためのフィルタ基材に吸蔵還元型NOx触媒物質を担持させたものを適用してもよい。なお、NOx触媒におけるNOxの吸蔵はNOxを保持できればよく、その形態は問わない。   The present invention is not limited to the above-described embodiments, and may be implemented in various forms. For example, the internal combustion engine 1 is not limited to a diesel engine, and the present invention can also be applied to a gasoline engine. The exhaust purification catalyst is not limited to the one in which the NOx storage reduction catalyst is supported on the carrier, and various exhaust purification catalysts can be applied. For example, a filter substrate for collecting particulates may be used in which an NOx storage reduction catalyst material is supported. The NOx occlusion in the NOx catalyst is not limited as long as it can hold NOx.

本発明の一実施形態に係る排気浄化装置の適用された内燃機関を示す図。The figure which shows the internal combustion engine to which the exhaust emission control device which concerns on one Embodiment of this invention was applied. 図1のECUが実行するCO放出制御ルーチンを示すフローチャート。Flowchart illustrating the CO 2 release control routine by the ECU in FIG. 1 executes. NOx触媒とCO吸放出材とが一体に担持された排気浄化触媒の実施形態を示す図。Figure the NOx catalyst and CO 2 absorbing material shows an embodiment of an exhaust gas purification catalyst supported integrally. NOx触媒とCO吸放出材とが一体に担持された排気浄化触媒の他の実施形態を示す図。Figure the NOx catalyst and CO 2 absorbing material is shown another embodiment of an exhaust gas purification catalyst supported integrally. 本発明の排気浄化装置の第二の実施形態を示す図。The figure which shows 2nd embodiment of the exhaust gas purification apparatus of this invention. 本発明の排気浄化装置の第三の実施形態を示す図。The figure which shows 3rd embodiment of the exhaust gas purification apparatus of this invention. 図6のECUが実行するCO放出制御ルーチンを示すフローチャート。Flowchart illustrating the CO 2 release control routine executed by the ECU of FIG.

符号の説明Explanation of symbols

1 内燃機関
5 排気通路
6 排気浄化装置
7 CO吸放出材(CO低減手段)
8 排気浄化触媒(排気浄化手段)
13 吸蔵還元型NOx触媒(NOx保持材)
14 バイパス通路
15 バイパス弁
16 切り替え弁
1 engine 5 exhaust passage 6 exhaust gas purifier 7 CO 2 absorbing material (CO 2 reduction means)
8 Exhaust gas purification catalyst (exhaust gas purification means)
13 NOx storage reduction catalyst (NOx retention material)
14 Bypass passage 15 Bypass valve 16 Switching valve

Claims (8)

内燃機関の排気通路に配置されてNOxを保持可能なNOx保持材を有する排気浄化手段と、前記NOx保持材へ流入する排気中のCOを低減させるように配置されるCO低減手段と、を備えたことを特徴とする内燃機関の排気浄化装置。 Exhaust purification means having a NOx holding material arranged in the exhaust passage of the internal combustion engine and capable of holding NOx; CO 2 reduction means arranged to reduce CO 2 in the exhaust flowing into the NOx holding material; An exhaust emission control device for an internal combustion engine, comprising: 前記CO低減手段として、第一の状態でCOを吸収し、第二の状態でCOを放出するCO吸放出材が設けられていることを特徴とする請求項1に記載の内燃機関の排気浄化装置。 2. The internal combustion engine according to claim 1, wherein a CO 2 absorbing / releasing material that absorbs CO 2 in a first state and releases CO 2 in a second state is provided as the CO 2 reducing means. Engine exhaust purification system. 前記CO吸放出材は、前記排気通路に前記排気浄化手段へ流入する排気中のCOを低減するように配置されていることを特徴とする請求項2に記載の内燃機関の排気浄化装置。 3. The exhaust gas purification apparatus for an internal combustion engine according to claim 2, wherein the CO 2 absorption / release material is disposed so as to reduce CO 2 in the exhaust gas flowing into the exhaust gas purification means in the exhaust passage. . 前記CO吸放出材が、前記排気浄化手段に前記NOx保持材と一体に担持されていることを特徴とする請求項2に記載の内燃機関の排気浄化装置。 The exhaust gas purification apparatus for an internal combustion engine according to claim 2, wherein the CO 2 absorption / release material is carried integrally with the NOx holding material on the exhaust gas purification means. 流入する排気の空燃比がストイキ又はリッチに設定されるとともに所定の温度以上に加熱されることにより機能を再生する吸蔵還元型NOx触媒が前記NOx保持材として設けられ、
前記CO吸放出材のCO放出時に、前記NOx触媒の機能が再生されることを特徴とする請求項3又は4に記載の内燃機関の排気浄化装置。
An NOx storage reduction catalyst that regenerates the function by setting the air-fuel ratio of the inflowing exhaust to stoichiometric or rich and being heated to a predetermined temperature or higher is provided as the NOx holding material,
5. The exhaust gas purification apparatus for an internal combustion engine according to claim 3, wherein the function of the NOx catalyst is regenerated when CO 2 is released from the CO 2 absorption / release material.
流入する排気の空燃比がストイキ又はリッチに設定されるとともに所定の温度以上に加熱されることにより機能を再生する吸蔵還元型NOx触媒が前記NOx保持材として設けられ、
前記第一の状態と前記第二の状態とが互いに異なる温度範囲に対応付けられており、
前記NOx触媒の機能再生時は、前記NOx触媒へ流入する排気の空燃比がストイキ又はリッチに設定され、その後前記NOx触媒が前記所定の温度以上に加熱されることを特徴とする請求項3又は4に記載の内燃機関の排気浄化装置。
An NOx storage reduction catalyst that regenerates the function by setting the air-fuel ratio of the inflowing exhaust to stoichiometric or rich and being heated to a predetermined temperature or higher is provided as the NOx holding material,
The first state and the second state are associated with different temperature ranges,
4. The function regeneration of the NOx catalyst, the air-fuel ratio of the exhaust gas flowing into the NOx catalyst is set to stoichiometric or rich, and then the NOx catalyst is heated to the predetermined temperature or higher. 5. An exhaust emission control device for an internal combustion engine according to 4.
前記排気浄化手段をバイパスさせて排気を下流へ導くバイパス通路と、前記CO吸放出材の下流に配置され、前記排気浄化手段と前記バイパス通路とへ排気の流れを切り替え可能なバイパス弁と、を備え、
前記バイパス弁は、前記CO吸放出材のCO放出時に排気の流れを前記バイパス通路へ切り替えることを特徴とする請求項3に記載の内燃機関の排気浄化装置。
A bypass passage that bypasses the exhaust purification means and guides the exhaust downstream; a bypass valve that is disposed downstream of the CO 2 absorption / release material and can switch the flow of exhaust gas to the exhaust purification means and the bypass passage; With
The bypass valve, the exhaust purification system of an internal combustion engine according to the flow of exhaust when CO 2 emission of the CO 2 absorbing material in claim 3, characterized in that switching to the bypass passage.
前記CO吸放出材、前記NOx保持材の順に排気が流れる第一の排気流れと、前記NOx保持材、前記CO吸放出材の順に排気が流れる第二の排気流れと、を選択的に切り替え可能な少なくとも一つの切り替え弁を備え、
前記切り替え弁は、前記CO吸放出材のCO放出時に、排気の流れを前記第二の排気流れに切り替えることを特徴とする請求項3に記載の内燃機関の排気浄化装置。
The CO 2 absorbing material, a first exhaust stream flowing through the exhaust in the order of the NOx retention material, the NOx retention material, the CO 2 absorbing and releasing a second exhaust stream flowing through the exhaust in the order of design, selectively the Comprising at least one switching valve that can be switched;
4. The exhaust gas purification apparatus for an internal combustion engine according to claim 3, wherein the switching valve switches an exhaust flow to the second exhaust flow when CO 2 is released from the CO 2 absorption / release material.
JP2003391967A 2003-11-21 2003-11-21 Exhaust emission control device for internal combustion engine Pending JP2005155359A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003391967A JP2005155359A (en) 2003-11-21 2003-11-21 Exhaust emission control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003391967A JP2005155359A (en) 2003-11-21 2003-11-21 Exhaust emission control device for internal combustion engine

Publications (1)

Publication Number Publication Date
JP2005155359A true JP2005155359A (en) 2005-06-16

Family

ID=34718822

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003391967A Pending JP2005155359A (en) 2003-11-21 2003-11-21 Exhaust emission control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP2005155359A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008093732A1 (en) * 2007-02-01 2008-08-07 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification device for internal combustion engine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008093732A1 (en) * 2007-02-01 2008-08-07 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification device for internal combustion engine
JP2008190364A (en) * 2007-02-01 2008-08-21 Toyota Motor Corp Exhaust emission control device for internal combustion engine

Similar Documents

Publication Publication Date Title
CN201513221U (en) Post-processing system used in LEB
EP0861973B1 (en) Exhaust gas purifying method for engine
JP3252793B2 (en) Exhaust gas purification device for internal combustion engine
CN107023355B (en) Exhaust gas purification system and control method thereof
JP3855818B2 (en) Diesel engine exhaust purification system
US20080202098A1 (en) Exhaust Gas Purifying Method and Purifier
JPH1150836A (en) Catalyst recovery device for internal combustion engine
JP2006070834A (en) Exhaust gas purification method and exhaust gas purification system
JP2007278214A (en) Method for controlling exhaust emission and system for controlling exhaust emission
JP5625872B2 (en) Exhaust gas purification device for internal combustion engine
JP4168781B2 (en) NOx catalyst regeneration method for NOx purification system and NOx purification system
JP3912294B2 (en) Exhaust gas purification method and exhaust gas purification apparatus for internal combustion engine
JP2009138692A (en) Exhaust emission control system for internal combustion engine
JP2006112313A (en) Exhaust emission control device and method for controlling the same
US10933374B2 (en) Exhaust emission control device, method and computer program product for an engine
WO2014016965A1 (en) Exhaust purification device of internal combustion engine
JP5163808B2 (en) Exhaust gas purification device for internal combustion engine
JP2004092445A (en) Control method of exhaust gas purification system
JP4556364B2 (en) Exhaust gas purification device for internal combustion engine
JP2010101303A (en) Exhaust emission control device of internal combustion engine
JP4888134B2 (en) Exhaust gas purification system for internal combustion engine
JP2004092584A (en) Exhaust emission control device for internal combustion engine
JP2005155359A (en) Exhaust emission control device for internal combustion engine
JP3374780B2 (en) Exhaust gas purification device for internal combustion engine
JP2004251188A (en) Exhaust emission control system for internal combustion engine